Supporting Information

Table of Contents

1.	ACYLATION OF PERILLYL ALCOHOL	4
-	Снеоматодеамя	4
	Transesterification between perillyl alcohol and vinyl acetate	4
	Esterification between perillyl alcohol and acetic acid	5
	 NMR Spectra :	5
	(S)-perillyl alcohol	5
	(S)-perillyl acetate	6
	Reaction with Acetic acid:	8
	Negative control	9
2.	ACYLATION OF SESQUITERPENE LACTONES FROM CHICORY ROOT	10
•	Chromatograms and Mass Spectra	10
	 Dihydrolactucin 	11
	Dihydrolactucin acetate	12
	Lactucin acetate	12
	Lactucopicrin acetate	13
	Dihydrolactucopicrin acetate	13
	DHLc chloroacetate	14
	 DHLc propionate 	15
	 DHLc hexanoate 	15
	 DHLc octanoate 	16
•	NMR SPECTRA OF STLS	18
	DHLc	18
	 DHLc acetate 	19
	 Reaction between DHLc and acetic acid 	20
	Controls	20
	 Lactucin 	21
	 Lactucin acetate 	21
	Lactucopicrin acetate	22
	 Dihydrolactucopicrin 	22
	Dihydrolactucopicrin acetate	23
	 DHLc chloroacetate 	24
	 DHLc propionate 	24
	 DHLc hexanoate 	25
	 DHLc octanoate 	25
3.	SYNTHESIS OF VINYL ESTERS AS ACYL DONORS	26
•	PD-CATALYZED ESTERIFICATION	26
•	CHAN-LAM-EVANS (CLE)-TYPE ESTERIFICATION	26

Table of figures

Figure S1. GC-FID of the transesterification of perillyl alcohol (POH, 100 mM) with vinyl acetate (30	00
mM) with 10 mg of N435 and the negative control without lipase	4
Figure S2. GC-FID chromatogram of the esterification of perillyl alcohol (POH, 100 mM) with acetic	•
acid (300 mM) with 10 mg of N435 and the negative control without lipase	5
Figure S3. ¹ H NMR (300 MHz, DMSO-D ₆) spectra of perillyl alcohol 100 mM (reference)	5
Figure S4. ¹³ C NMR DEPT135 (75 MHz, DMSO-D ₆) spectra of perillyl alcohol 100 mM (reference)	6
Figure S5. ¹³ C NMR HSQC (75 MHz, DMSO-d6) of perillyl alcohol 100 mM (reference)	6
Figure S6. ¹ H NMR (300 MHz, DMSO-D ₆) spectra of perillyl acetate obtained via the transesterificat	ion
with vinyl acetate	7
Figure S7. ¹³ C NMR DEPT135 (300 MHz, DMSO-D ₆) spectra of perillyl acetate obtained via the	
transesterification with vinyl acetate	7
Figure S8. ¹³ C NMR HSQC (75 MHz, DMSO-D ₆ , ns=128) spectra of perillyl acetate	8
Figure S9. ¹ H NMR (300 MHz, DMSO-D ₆) spectra of the esterification of perillyl alcohol with acetic	
acid after 5 days (37 °C)	8
Figure S10. ¹ H NMR (300 MHz, DMSO-D ₆) of the negative control (reaction mixture) from the	
esterification with acetic acid after 5 days	9
Figure S11. UPLC-MS analysis of the transesterification between 10 mM of DHLc and 100 mM of Vi	inyl
acetate with 2 mg of N435 in 1 mL of MTBE-ACN in the presence of 5 A molecular sieves at 37 °C.	
Samples (25 μL) diluted in 200 μL ACN at t0+5 min and t0+24 h	.10
Figure S12. UPLC-MS analysis of the esterification between 10 mM of DHLc and 100 mM of acetic	
acid with 20 mg of N435 in 1 mL of MTBE-ACN in the presence of 5 A molecular sieves at 37 °C.	
Samples (25 μ L) diluted in 200 μ L ACN at t0+5 min and t0+24 h	.11
Figure S13. UPLC-MS of the esterification reaction between DHLc and acetic acid after 6 days at 30)
, °C. Luna Omega Polar C18	.11
Figure S14. TOFMS-ES+ spectra of dihvdrolactucin	.12
Figure S15. TOFMS-ES+ spectra of dihvdrolactucin acetate	.12
Figure S16. I C-MS analysis of the reaction between lactucin and vinvl acetate: UV at 254 nm. full	
diode array. TIC ESI+. TIC ESI- : mass spectra of lactucin acetate in ESI+ and ESI-	13
Figure S17, I C-MS analysis of the reaction between lactuconicrin and vinyl acetate: UV at 254 nm.	full
diode array. TIC ESI ⁺ . TIC ESI ⁺ : mass spectra of lactucopicrin acetate in ESI ⁺ and ESI ⁺	.13
Figure S18. I c-MS analysis of the reaction between dihydrolactuconicrin and vinyl acetate: UV at 2	54
nm full diode array. TIC FSI^+ TIC FSI^- : mass spectra of dibydrolactucopicrin acetate in FSI^+ and FS^-	13
Figure S19, I.C.MS analysis of the reaction between DHLc and vinyl chloroacetate: I.I.V at 254 nm fi	.13 .11
diode array TIC FSI ⁺ TIC FSI ⁻	1/
Figure S20. Mass spectra of DHL c chloroacetate in FSI^+ and FSI^-	1 <u>/</u>
Figure S21, IC-MS analysis of the reaction between DHLc and vinyl propionates LIV at 254 nm, full	. 14
diode array TIC ESI ⁺ TIC ESI ⁺	15
Figure S22 Mass spectra of DHI c propionate in ESI^{+} and ESI^{-}	15
Figure S22. Mass spectra of the reaction between DHL cand vinul bevaneates LIV at 254 nm full	.15
diada array TIC FSI ⁺ TIC FSI ⁺	10
Cioure 224 Mass sports of Dill a bayanasta in ESIt and ESIt	.10
Figure S2E. LC MC analysis of the reaction between DUL and similar terrests UV at 25.4 mm f. H	. 10
rigure 525. LC-IVIS analysis of the reaction between DHLC and Vinyi Octanoate; UV at 254 nm, full diada array, TIC FSI ⁺ , TIC FSI ⁺	17
LIDUE AITAY, THE EST, THE EST	. 17
Figure SZD. IVIASS Spectra OF DHLC OCIANOATE IN ESF and ESF	.1/
Figure 27 indiecular weight and main ion tragments detected in ESI+ of DHLC esters	.18
Figure S28H NIVIK (300 MHZ, DIVISO-D6) of DHLC extracted from chicory root	.18

Figure S29. ¹ H NMR (300 MHz, DMSO-D₀) spectra of DHLc-A	19
Figure S30. ¹³ C NMR APT (75 MHz, DMSO-D ₆) spectra of DHLc-A	19
Figure S31. 1 H NMR (300 MHz, DMSO-D $_6$) spectra of the acylation of DHLc with 10 mM of DHLc, 100)
mM of acetic acid, 20 mg N435 after 6 days at 37°C and 35 rpm in 1 mL of MTBE-ACN (3 :1)	20
Figure S32. ¹ H NMR (300 MHz, DMSO-D ₆) spectra of the reaction mixture for the negative control	
without lipase (with DHLc and Vinyl Acetate) after 48 h at 37 °C	20
Figure S33. ¹ H NMR (300 MHz, DMSO-D ₆) spectra of the reaction mixture for the negative control	
without DHLc (with N435 and Vinyl Acetate) after 48 h at 37 °C	21
Figure S34. 1H NMR (300 MHz, DMSO-D ₆) spectra of the reaction mixture for the negative control	
without lipase (with Lc and Vinyl Acetate) after 48 h at 37 °C	21
Figure S35. ¹ H NMR (DMSO-D ₆) spectra of lactucin acetate obtained via the lipase-catalysed	
transesterification between lactucin and vinyl acetate (48 h at 37 °C)	22
Figure S36. ¹ H NMR (ACN-D ₃) spectra of lactucopicrin acetate obtained via the lipase-catalysed	
transesterification between lactucopicrin and vinyl acetate (48 h at 37 °C)	22
Figure 37. ¹ H NMR (300MHz, DMSO-D ₆) spectra of the reaction mixture for the negative control	
without lipase (with dihydrolactucopicrin and vinyl acetate) after 48h at 37°C	23
Figure S38. ¹ H NMR (ACN-D₃) spectra of dihydrolactucopicrin acetate obtained via the lipase-	
catalysed transesterification between dihydrolactucopicrin and vinyl acetate (48 h at 37 °C)	23
Figure S39. ¹ H NMR (DMSO-D ₆) spectra of dihydrolactucin chloroacetate obtained via the lipase-	
catalysed transesterification between dihydrolactucin and vinyl chloroacetate (48 h at 37 °C)	24
Figure S40. ¹ H NMR (DMSO-D ₆) spectra of dihydrolactucin propionate obtained via the lipase-	
catalysed transesterification between dihydrolactucin and vinyl propionate (48 h at 37 °C)	24
Figure S41. ¹ H NMR (DMSO-D ₆) spectra of dihydrolactucin hexanoate obtained via the lipase-	
catalysed transesterification between dihydrolactucin and vinyl hexanoate (48 h at 37 $^\circ$ C). Purple :	
protons of DHLc-P ; Blue : protons of both DHLc-P and vinyl hexanoate/hexanoic acid ; Green :	
protons of vinyl hexanoate/hexanoic acid	25
Figure S42. ¹ H NMR (DMSO-D ₆) spectra of dihydrolactucin octanoate obtained via the lipase-	
catalysed transesterification between dihydrolactucin and vinyl octanoate (48 h at 37 °C). Purple :	
protons of DHLc-P ; Blue : protons of both DHLc-P and vinyl octanoate/octanoic acid ; Green : proto	ons
of vinyl octanoate/octanoic acid	25
Figure S43. Synthesis of compounds 8 and 9	26
Figure S44. Synthesis of compounds 7,10,11,12	26

1. Acylation of perillyl alcohol

Chromatograms

Transesterification between perillyl alcohol and vinyl acetate

Figure S1. GC-FID of the transesterification of perillyl alcohol (POH, 100 mM) with vinyl acetate (300 mM) with 10 mg of N435 and the negative control without lipase

Esterification between perillyl alcohol and acetic acid

Figure S2. GC-FID chromatogram of the esterification of perillyl alcohol (POH, 100 mM) with acetic acid (300 mM) with 10 mg of N435 and the negative control without lipase

NMR Spectra :

(S)-perillyl alcohol

- $\frac{1}{10} \text{ NMR (300 MHz, DMSO-} D_6) \delta 5.58 \text{ (s, 1H), } 4.70 \text{ (s, 2H), } 4.59 \text{ (t, 1H, 11), } 3.78 \text{ (d, 2H), } 2.16 1.97 \text{ (m, 2H), } 2.02 1.94 \text{ (m, 2H), } 1.94 1.83 \text{ (m, 1H), } 1.83 1.70 \text{ (m, 1H), } 1.71 \text{ (s, 3H), } 1.45 1.30 \text{ (m, 1H). } 1.21 \text{ (m, 2H), } 1.21$
- ¹³C NMR (75 MHz, DMSO-D₆) δ 119.37 (C2), 108.49 (C9), 64.57 (C7), 40.49 (C4), 29.48 (C3), 26.81 (C6), 25.32 (C5), 20.35 (C10).

Figure S3. ¹H NMR (300 MHz, DMSO-D₆) spectra of perillyl alcohol 100 mM (reference)

Figure S4. ¹³C NMR DEPT135 (75 MHz, DMSO-D₆) spectra of perillyl alcohol 100 mM (reference)

Figure S5. ¹³C NMR HSQC (75 MHz, DMSO-d6) of perillyl alcohol 100 mM (reference)

(S)-perillyl acetate

- ¹H NMR (300 MHz, DMSO-D₆) δ 5.72 (s, 1H), 4.71 (s, 2H), 4.40 (s, 2H), 2.16 2.06 (m, 2H), 2.06 1.98 (m, 2H), 2.00 (s, 3H), 1.97 1.86 (m, 1H), 1.83 1.73 (m, 1H), 1.70 (s, 3H), 1.49 1.30 (m, 1H).
- $\frac{^{13}\text{C NMR, DEPT135 (75 MHz, DMSO-D_6) \delta 125 (C2), 109.28 (C9), 67.68 (C7), 40.49 (C13), 30.06 (C3), 27.10 (C6), 26.06 (C5), 20.97 (C10), 20.89 (C4).}$

Figure S6. ¹H NMR (300 MHz, DMSO-D₆) spectra of perillyl acetate obtained via the transesterification with vinyl acetate

Figure S7. ¹³C NMR DEPT135 (300 MHz, DMSO-D₆) spectra of perillyl acetate obtained via the transesterification with vinyl acetate

Figure S8. ¹³C NMR HSQC (75 MHz, DMSO-D₆, ns=128) spectra of perillyl acetate

Reaction with Acetic acid:

Figure S9. ¹H NMR (300 MHz, DMSO-D₆) spectra of the esterification of perillyl alcohol with acetic acid after 5 days (37 °C)

Figure S10. ¹H NMR (300 MHz, DMSO-D₆) of the negative control (reaction mixture) from the esterification with acetic acid after 5 days

2. Acylation of Sesquiterpene Lactones from chicory root

Chromatograms and Mass Spectra

Figure S11. UPLC-MS analysis of the transesterification between 10 mM of DHLc and 100 mM of Vinyl acetate with 2 mg of N435 in 1 mL of MTBE-ACN in the presence of 5 A molecular sieves at 37 °C. Samples (25 μL) diluted in 200 μL ACN at t0+5 min and t0+24 h

Figure S12. UPLC-MS analysis of the esterification between 10 mM of DHLc and 100 mM of acetic acid with 20 mg of N435 in 1 mL of MTBE-ACN in the presence of 5 A molecular sieves at 37 °C. Samples (25 μL) diluted in 200 μL ACN at t0+5 min and t0+24 h

Figure S13. UPLC-MS of the esterification reaction between DHLc and acetic acid after 6 days at 30 °C. Luna Omega Polar C18

- Dihydrolactucin
 - Exact Mass: 278.1154 Da

Figure S14. TOFMS-ES+ spectra of dihydrolactucin

Dihydrolactucin acetate

- Exact Mass : 320.1260 Da

Figure S15. TOFMS-ES+ spectra of dihydrolactucin acetate

- Lactucin acetate
 - Exact Mass : 318.1103 Da

Figure S16. LC-MS analysis of the reaction between lactucin and vinyl acetate; UV at 254 nm, full diode array, TIC ESI+, TIC ESI+ ; mass spectra of lactucin acetate in ESI+ and ESI-

- Lactucopicrin acetate
 - Exact Mass : 452.1471 Da

Figure S17. LC-MS analysis of the reaction between lactucopicrin and vinyl acetate; UV at 254 nm, full diode array, TIC ESI⁺, TIC ESI⁺; mass spectra of lactucopicrin acetate in ESI⁺ and ESI⁻

- Exact Mass : 454.1628 Da

Figure S18. Lc-MS analysis of the reaction between dihydrolactucopicrin and vinyl acetate; UV at 254 nm, full diode array, TIC ESI⁺, TIC ESI⁺; mass spectra of dihydrolactucopicrin acetate in ESI⁺ and ES⁻

DHLc chloroacetate

- Exact Mass: 354.09 Da

Figure S19. LC-MS analysis of the reaction between DHLc and vinyl chloroacetate; UV at 254 nm, full diode array, TIC ESI⁺, TIC ESI⁺

Figure S20. Mass spectra of DHLc chloroacetate in ESI⁺ and ESI⁻

DHLc propionate

Exact Mass: 334.14 Da

Figure S21. LC-MS analysis of the reaction between DHLc and vinyl propionate; UV at 254 nm, full diode array, TIC ESI+, TIC ESI+

Figure S22. Mass spectra of DHLc propionate in ESI⁺ and ESI⁻

- DHLc hexanoate
- Exact Mass: 376.19 Da

Figure S23. LC-MS analysis of the reaction between DHLc and vinyl hexanoate; UV at 254 nm, full diode array, TIC ESI⁺, TIC ESI⁺

Figure S24. Mass spectra of DHLc hexanoate in ESI⁺ and ESI⁻

- DHLc octanoate
 - Exact Mass: 404.22 Da

Figure S25. LC-MS analysis of the reaction between DHLc and vinyl octanoate; UV at 254 nm, full diode array, TIC ESI+, TIC ESI-

Figure S26. Mass spectra of DHLc octanoate in ESI⁺ and ESI⁺

Compound	Molecular weight	ESI+ major ions (m/z)
DHLc acetate	320.12	321.12 [M+H]⁺
DHLc chloroacetate	354.09	355.1 [M+H]⁺ 372.2 [M+NH₄]⁺ 377.1 [M+Na]⁺
DHLc propionate	334.14	335.2 [M+H]⁺ 352.3 [M+NH₄]⁺ 357.1 [M+Na]⁺
DHLc hexanoate	376.19	377.3 [M+H]⁺ 394.3 [M+NH₄]⁺ 399.3 [M+Na]⁺
DHLc octanoate	404.22	405.3 [M+H]⁺ 422.4 [M+NH₄]⁺ 427.3 [M+Na]⁺

Figure 27 Molecular weight and main ion fragments detected in ESI+ of DHLc esters

NMR spectra of STLs

DHLc

¹H NMR (300 MHz, DMSO- D_6) δ 6.28 (s, 1H, 3), 5.29 (t, 1H, A), 5.21 (d, 1H, B), 4.65 (dd, 1H, 15a), 4.23 (dd, 1H, 15b), 3.71 (m, 2H, 5-6), 3.56 (m, 1H, 8), 2.66 (m, 2H, 9a-11), 2.35 (s, 3H, 14), 2.25 (dd, 2H, 7-9b), 2.13 (ddd, 1H, 7), 1.26 (d, 3H, 13).

Figure S28. ¹H NMR (300 MHz, DMSO-D₆) of DHLc extracted from chicory root

DHLc acetate

¹H NMR (300 MHz, DMSO-*D*₆) 6.28 (s, 1H, 3), 5.30 − 5.18 (m, 2H, 15a-B), 4.83 (dd, 1H, 15b), 3.76 (m, 2H,5-6), 3.57 (m, 1H, 8), 2.68 (m, 2H, 9a-11), 2.35 (s, 3H, 14), 2.32 − 2.13 (m, 2H, 7-9b), 2.12 (s, 3H, 17), 1.26 (d, 3H, 13).

Figure S29. ¹H NMR (300 MHz, DMSO-D₆) spectra of DHLc-A

¹³CAPT NMR (75 MHz, ns= 20480, DMSO-D₆) δ 194.49 (C2), 178.10 (C12), 170.44 (C16), 168.07 (C4), 148.64 (C10), 132.72 (C3), 131.84 (C1), 80.67 (C6), 68.29 (C8), 63.35 (C15), 60.40 (C7), 48.83 (C9), 48.65 (C5), 40.96 (C11), 21.65 (C17), 20.98 (C14), 15.67 (C13).

Figure S30. ¹³C NMR APT (75 MHz, DMSO-D₆) spectra of DHLc-A

Reaction between DHLc and acetic acid

Figure S31. ¹H NMR (300 MHz, DMSO-D₆) spectra of the acylation of DHLc with 10 mM of DHLc, 100 mM of acetic acid, 20 mg N435 after 6 days at 37° C and 35 rpm in 1 mL of MTBE-ACN (3 :1)

- Controls
 - Negative Control (without lipase and with DHLc and vinyl acetate)

Figure S32. ¹H NMR (300 MHz, DMSO-D₆) spectra of the reaction mixture for the negative control without lipase (with DHLc and Vinyl Acetate) after 48 h at 37 °C

 Negative control without DHLc ; with 20 mg Novozym 435 and 100 mL of vinyl acetate in 1 mL MTBE:ACN (3:1)

Remark : after concentration at 8mbar for 2h no vinyl acetate or acetic acid were detected

Figure S33. ¹H NMR (300 MHz, DMSO-D₆) spectra of the reaction mixture for the negative control without DHLc (with N435 and Vinyl Acetate) after 48 h at 37 °C

Figure S34. 1H NMR (300 MHz, DMSO-D₆) spectra of the reaction mixture for the negative control without lipase (with Lc and Vinyl Acetate) after 48 h at 37 °C

Lactucin acetate

Figure S35. ¹H NMR (DMSO-D₆) spectra of lactucin acetate obtained via the lipase-catalyzed transesterification between lactucin and vinyl acetate (48 h at 37 °C)

• Lactucopicrin acetate

Figure S36. ¹H NMR (ACN-D₃) spectra of lactucopicrin acetate obtained via the lipase-catalyzed transesterification between lactucopicrin and vinyl acetate (48 h at 37 °C)

Dihydrolactucopicrin

Figure 37. ¹H NMR (300MHz, DMSO-D₆) spectra of the reaction mixture for the negative control without lipase (with DHLp and vinyl acetate) after 48h at 37°C

Dihydrolactucopicrin acetate

Figure S38. ¹H NMR (ACN-D₃) spectra of DHLp acetate obtained via the lipase-catalyzed transesterification between DHLp and vinyl acetate (48 h at 37 °C)

DHLc chloroacetate

Figure S39. ¹H NMR (DMSO-D₆) spectra of DHLc chloroacetate obtained via the lipase-catalyzed transesterification between DHLc and vinyl chloroacetate (48 h at 37 °C)

-550 -500 -450 400 15a (dd) 4.85 5,6 (m) 3.76 18 (t) 1.06 7,9" (m) 2.22 -350 3 (s) 6.26 15b, B (m) 5.23 8 (m) 3.56 9',11 (m 2.69 13 (d) 1.26 -300 -250 -200 -150 -100 50 MM 2.26 J 3.00 Z 3.13 J 1.28J 2.11-3.254 02 2.03-1.00-2.12-3.43-1 -50 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 f1 (ppm)

Figure S40. ¹H NMR (DMSO-D₆) spectra of DHLc propionate obtained via the lipase-catalyzed transesterification between DHLc and vinyl propionate (48 h at 37 °C)

DHLc propionate

DHLc hexanoate

Figure S41. ¹H NMR (DMSO-D₆) spectra of DHLc hexanoate obtained via the lipase-catalyzed transesterification between DHLc and vinyl hexanoate (48 h at 37 °C). Purple : protons of DHLc-P ; Blue : protons of both DHLc-P and vinyl hexanoate/hexanoic acid ; Green : protons of vinyl hexanoate/hexanoic acid

Figure S42. ¹H NMR (DMSO-D₆) spectra of DHLc octanoate obtained via the lipase-catalysed transesterification between DHLc and vinyl octanoate (48 h at 37 °C). Purple : protons of DHLc-P ; Blue : protons of both DHLc-P and vinyl octanoate/octanoic acid ; Green : protons of vinyl octanoate/octanoic acid

3. Synthesis of vinyl esters as acyl donors

• Pd-catalyzed esterification.

Figure S43. Synthesis of compounds 8 and 9

Chan-Lam-Evans (CLE)-type esterification.

Figure S44. Synthesis of compounds 7,10,11,12.