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Abstract. It is common knowledge that using directional antennas is
often mandatory for Multi-hop ad-hoc wireless networks to provide satis-
fying quality of service, especially when dealing with an important num-
ber of communication nodes [1]. As opposed to their omnidirectional
counterpart, directional antennas allow for much more manageable in-
terference patterns: a receiving antenna is not necessarily interfered by
nearby emitting antennas as long as this receiving antenna is not di-
rected towards these undesired emission beams. Two nodes then need to
steer one of their antennas in the direction of the other node in order
to create a network communication link. These two users will then be
able to, in turn, emit and receive to and from each other. The scope
of this work resides in finding a centralized algorithm to governate these
antenna steering decisions for all users to instantaneously provide a valid
set of communication links at any time given the positions of each user.
The problem that raises is then a geometrical one that implies finding
topologies of network links that present satisfying throughput and over-
all QoS and guarantee instantaneous connectedness i.e. the computed set
of links allows any user to reach any other user in a certain number of
hops. Building such optimized link topologies makes further tasks, such
as routing and scheduling of the network, much simpler and faster. This
problem is highly combinatorial and, while it is solvable with traditional
Mixed Integer Programming (MIP), it is quite challenging to carry it out
in real time. For this purpose, we propose a Deep Neural Network that
is trained to imitate valid, solved instances of the problem. We use the
Attention mechanism [2] [3] to let nodes exchange information in order
to capture interesting patterns and properties that then enable the neu-
ral network to generate valid network link topologies, even dealing with
unseen sets of users positions.

1 Introduction

Multi-hop wireless networks, especially with the current deployment of 5G tech-
nologies and research work on 6G, constitute a very active field of research. While
the per-user capacity and throughput of a network are known to scale poorly



with the increase of users [4], it has been proven that using directional antennas
with reduced beamwidth can help mitigate the loss in Quality of Service (QoS)
by a factor inversely proportional to the beamwidth [1]. Using directional an-
tennas allows for both higher per-link throughput and much better interference
management. One must chose wisely, for each antenna, towards which node to
point. Indeed, we want to steer all the antennas in a way that avoids creat-
ing low SNR links and high interference patterns. In order for the antennas to
be aligned at transmission time, paths from users to others have to be com-
puted in advance, either in the form of routes computed along with the resource
allocation and traffic control level (OSI layer 3), or even beforehand to reduce
later computations, by computing carefully an optimized network topology (OSI
layer 2) to allow for easier network and traffic management afterwards. Usually,
on top of the network constituted by the links, proper routing and scheduling
need to be computed. An example is given by [5], that assumes a slotted frame
structure as well as some known antenna orientations, and that, on that basis,
computes a routing table and then establishes a transmission schedule. Some
important network properties have to be guaranteed, the most crucial one being
connectedness. Moreover, the network must respect several physical constraints.
We observe that this problem has a highly combinatorial aspect: global connect-
edness relies on complex combinations of links, and physical constraints require
taking into account interdependence and interference between created links. We
aim to create a topology that provides instantaneous global connectedness and
fair adherence to physical constraints to alleviate further network tasks. In an
ideal scenario, where the topology is optimal, routing can then be simple shortest
paths and scheduling can consist in simple 2-slot scheduling where one half of
the nodes emits while the other half receives and vice versa. This is of course a
complex problem to tackle. To mitigate some of the combinatorial and computa-
tional burdens, we propose a one-step process that generates such a topology. We
train a Deep Neural Network to imitate the results of an Integer Programming
(IP) instance of the problem. It can then be used to infer graphs that hold the
same properties as the ones labeled as solutions of the IP problem, in constant
time.
Graphs are heterogeneous objects, composed of both nodes and edges, which
do not have any natural ordering. They then require an Neural Network archi-
tecture that can feature both node and edge computations and respect some
crucial properties not to bring undesirable biases due to the nodes’ or the edges’
ordering. This is the main focus of our work. The rest of the article is organized
as follows: in Sec. 2, we present articles and literature related to optimizations
of such networks. In Sec. 3, we detail the system model and our problem state-
ment. Then we introduce our solution and its properties in Sec. 4.1. In Sec.
6, we present some results that confirm the value of our method and illustrate
how its components impact its performance, thus proving their merit. We finally
conclude in Sec. 7.
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2 Related Work

Recently, there has been a significant push to develop more effective network
solutions, particularly with the emergence of 5G and 6G technologies. Integer
Programming is commonly employed for finding optimal solutions, often utilizing
linear formulations for paths, links, and flows as seen in sources like [6]. However,
to quicken this process, different algorithms and heuristics are frequently imple-
mented, as in [7] [5]. Despite speeding up solution computation, these methods
are usually iterative and rely heavily on greedy algorithms, which can be a draw-
back in certain practical applications.
Deep Learning offers a notable advantage in this context. It simplifies the solution
generation process to a sequence of matrix multiplications using pre-trained coef-
ficients. This approach effectively transforms combinatorial challenges into non-
linear, multivariate statistical problems with parametric nuances. Deep Learning
is particularly beneficial because it scales efficiently with user numbers, main-
taining linear complexity relative to the input nodes - a stark contrast to the
scalability issues faced by combinatorial methods with numerous input nodes.
Deep Neural Networks (DNNs) are versatile and can be applied to both simple
tasks like network performance prediction (as in [8]) and more complex ones like
inferring network graphs, often through dynamic temporal prediction methods
(as in [9]). The field of Deep Learning for graph structures, including Graph
Neural Networks (GNN) [10][11], has been gaining immense attention. Genera-
tive graph models like GraphVAE [12], which use a GNN and a global pooling
operation to represent entire graphs, facilitate continuous and potentially condi-
tioned graph generation. GNNs typically offer edge-conditioned convolution or
message passing techniques. In our case, without actual edges to analyze, we
employ an alternative feature extractor aligned with some of the main GNN
principles that ensure permutation invariance. Here, the well-known Attention
mechanism, first introduced in [2] and popularized through its use in the Trans-
former model as demonstrated in [3], becomes highly relevant. This mechanism
offers a promising approach, akin to a retrieval system, and its effectiveness has
been empirically validated. Attention is generally popular to treat graph-shaped
data, as [13] [14]. Attention could also benefit from some of the expressive power
proved in [15][16] due to its Query/Key Retrieval formulation that implies some
form of successive node-matrix multiplications in the layers. As a solution for
node-conditioned network topology generation, nodes2net [17] was proposed, the
authors use Attention and a flattened linear layer to get link predictions. While
it gives good results, the generalization lacks theoretical guarantees and can be
inconsistent because of the flat linear layer, which can be greatly biased by the
ordering of the nodes. The fixed-sized linear layer also implies that the model is
not flexible regarding the number of communication nodes.

3 System Model

The system we wish to study is the same as the one in [17]. We consider a set
V of n nodes described by their respective 2D coordinates (x, y). We assume an
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idealized “protocol model”, where nodes can transmit if they are within the radio
range. Each node has a fixed number of independent antennas, each of which can
establish at most one link. Candidate links correspond to pairs of nodes that are
in range of each other, and hence are represented as undirected edges. Our prob-
lem is to find a subset of those edges, denoted E, that satisfies some constraints
(antenna number, placement, more importantly connectedness...) while possibly
optimizing some objective function f . E amounts to the links obtained after ori-
enting (configuring) antennas. Once the edges are given, we then have a graph
G = (V,E) that can serve as the network link topology. As a comprehensive
example, and throughout this work, we will consider the problem of the creation
of a network of n nodes under some physical link constraints (limited number
of communication links per user, a fixed maximum length for each link...) that
must ensure global connectedness while minimizing the total number of links. It
can be viewed as an optimization problem with several constraints corresponding
to physical limitations of the communication links. We formalize our problem as
an Integer Programming one to obtain optimal solutions, and will train a neural
network to output graphs as close as possible to these solutions.

Our problem can be formalized as follows :

– V is the set of nodes 1,2,. . . ,n
– ei,j is a binary decision variable that indicates that there is an edge between

node i and node j (i.e. after orientation of one of their antennas to create
this link)

– One node is also described by its 2D coordinates xi, yi

We want to solve the following optimization problem

min
ei,j

n∑
i=1

n∑
j=1

ei,j (1)

s.t.

Logical and physical constraints (2)-(9) :

One node holds nantennas. Since one antenna can not form several links one
node can then form at most Nantennas links :

∀i ∈ V,

n∑
j=1

ei,j ≤ Nantennas (2)

One link can be formed between two nodes only if they are within a maximum
radio range Dmax one from the other:

∀i, j ∈ V 2, eij × [(xj − xi)
2 + (yj − yi)

2] ≤ Dmax (3)

Links are bidirectional:
∀i, j ∈ V 2, ei,j = ej,i (4)
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One node can not form a link with itself:

∀i, j ∈ V 2, i = j ⇒ ei,j = 0 (5)

In addition, it is necessary to establish a mathematical formalization for the
connectedness of the entire network. A commonly used technique is to introduce
phantom flows originating from a virtual source at a specific node (without loss
of generality, let’s denote it as v0). These phantom flows are required to tra-
verse through every node in the network, and flow conservation equations are
formulated accordingly. The network is considered connected if such flows can
be identified. The constraints that enforce connectedness through phantom flows
are as follows:

Virtual source distributes n− 1 flows through the network:

n∑
j=0

f0,j = n− 1 (6)

Flows propagate through existing links:

∀i, j ∈ V 2, i ̸= j ⇒ fi,j ≤ (n− 1)× ei,j (7)

Each node absorbs one flow and transmits the rest:

∀i ∈ V,

n∑
j=0

fi,j =

n∑
j=0

fj,i − 1 (8)

One node can not send a flow to itself:

∀i, j ∈ V 2, i = j ⇒ fi,j = 0 (9)

4 Our Approach

We previously mentioned that carrying out such Integer Programming problems
in real time can be difficult, especially with an important number of communi-
cation nodes. This is why our goal is to be able to extract the essence of the
distribution of the solution graphs with a monolithic structure that can then
generate new valid graphs when dealing with new, unseen sets of nodes.

4.1 Model

In this paper, we propose using Deep Neural Networks to infer valid sets of links,
using the nodes’ positions as inputs, by "imitating" optimal instances obtained
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Neural Network

Input 2D nodes Set of selected links

Fig. 1: Overview of our solution: the model takes the nodes’ positions as input
and outputs the set of edges to connect them. The 2D positions of the nodes
and the selected links correspond on one actual dataset sample and its proposed
solution.

by solving the aforementioned linear program.
Our model takes as inputs the set V of nodes described as:

vi = (xi, yi) ∀i ∈ [1, n].

It outputs an adjacency matrix:

Epred =


e11 e12 · · · e1n
e21 e22 · · · e2n
...

...
. . .

...
en1 en2 · · · enn


that describes the set E of edges of the desired graph.

We want to find a function F, namely a Deep Neural Network, parametrized
by its weights θ, such that

Fθ(V ) = Epred.

In the training phase, we first solve the optimization problem (1)-(9) on some ran-
dom instances of graphs through a MILP solver (after linearization of the equa-
tions). We use these solved instances to constitute the dataset mapping input
nodes’ positions to their respective desired topology of links. For each datapoint
of nodes’ positions V this hence yields the label adjacency matrix corresponding
to the true solution called Epred, that the model should then “predict”. We then
want to find the best model to learn this mapping between nodes and topologies.

Permutation Invariance and Attention
While a Multi-Layer Perceptron (MLP) may initially seem like a straightforward
network architecture well suited for such problems, it is biased by the ordering of
the nodes. One main issue with creating a graph from nodes is indeed the need
for a feature aggregator that does not process nodes as an ordered sequence,
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which would for instance result in a neuron learning some combination of input
1 with input 2 and 4, which would not make sense and would obviously lead
to undesirable bias since, as stated before, nodes do not feature any natural or-
dering. In general, achieving permutation invariance, which involves processing
the graph at node-level, also allows a single neural network to be able to work
with any given number of input nodes. This particularly useful for embedded
environments where storage is limited, and to make sure that topologies are
infered following the same computations regardless of the number of communi-
cation nodes. The ability for a feature aggregator to process information and
capture patterns without being biased by the objects ordering is called permu-
tation invariance (at the object level) of permutation equivariance (at the whole
graph prediction level), both terms refer to a similar concept in the case of deep
learning on graphs. While GNNs use edge-conditioned, spectrally defined con-
volutions, or strict message passing algorithms, most of them are not perfectly
suited for a whole graph prediction task since the edges are yet to be predicted,
and hence do not hold information that can help the prediction process. The
global guideline a permutation invariant aggregator has to follow is to process
at node and possibly edge-level, in order to capture some underlying local dis-
tribution that explains the link patterns of the dataset’s graphs. Through the
layers, the feature aggregation process should be able to capture larger patterns,
involving more nodes and broader neighbourhoods of nodes, making the patterns
somewhat "global" while keeping the computation at node and edge-level.
We use the Attention mechanism [2] [3] as the message-passing modality of our
model. It enables nodes to exchange information in a way that allows fine feature
aggregation amongst several nodes without breaking permutation invariance. We
also use residual connections [18] from the input to further layers not to lose the
position signal of each node and between layers not to lose each node’s indi-
vidual embedding. The most popular version of Attention is the one used for
Transformer models [3], The simplified embeddings of the set of nodes V going
through one Attention layer l (for one Attention head, in practice we use up to
8) can be described as below:

Hl+1 = softmax
(
WqHl(WkHl)

T

√
dk

)
WvHl ⊕Hl ⊕Hl−1

where H0 represents the initial features of the inputs nodes, Hl the embeddings
of the nodes at layer l and ⊕ denotes the residual connections (we add previous
layers signals and apply normalization over the output). Wq,Wk and Wv are
learnable matrices that are what we train to form the Queries, the Keys and the
Values, in order to get the Attention to capture the relevant features. We use
MultiHead Attention, which defines several different instances of these learnable
weights to allow attending to different characteristics, then aggregates them.
The idea is that one node vj which is relevant to attend to for a node vi will
learn to define a WkKj rather similar (to maximize WqQiWkKj) to WqQi such
that vj "wins" the softmax i.e. vi "understands" that it must attend to node
vj . The point is then to learn a parametrization of the weight matrices Wq,Wk
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in order to learn a reliable transformation that captures relevant pairs of nodes
so that they present well-aligned Query and Key. The Value weight matrix Wv

learns how to finally embed the node combining the attended nodes information.
We use Multihead Attention as it is naturally fitted to treat unordered tokens,

Dot
Product

h1l

h2l

h3l

h4l

Query

Key 1

Key 2

Key 3

Key 4

Softmax

* V11

* V12

* V13

* V14

∑ h1l+1

Fig. 2: Illustration of one Attention embedding layer applied to one node v1 in a
4-node-network

and provides several good properties: it allows nodes to exchange information
based on different criteria without necessarily needing edges as trustable mean of
propagation, it can greatly avoid oversquashing (where long range dependencies
tend to vanish as the number of message passing intermediates augment) and it
can learn generalizable and intelligent gatherings of nodes’ coordinates to create
systematic patterns. Attention can also be prone to oversmoothing, particularly
inside dense neighbourhoods of nodes, where the attention scores tend to explode
and lead the nodes’ embeddings to become similar, or get one node to be attended
by or attending to an abnormally high number of other nodes, implying poor
and altered embedding. Using skip connections can be a way to deal prevent
some of these issues, as we will detail further on.
While this Attention-based message-passing scheme is appropriate, one major
challenge remains: how can we infer links from these node representations ?

5 Our Attention-based solutions

5.1 Attention-only Model

One model we implement is an Neural Network that uses Attention both as
the feature aggregator and for the prediction layer. Nodes exchange through
Attention-based message passing as described in 3, and infer their predictions
in the form of Attention scores. The prediction part of the network then only
consists in such Attention scores computed by each node for each other node to
go through unit-sized linear layers in order to output 0s or 1s, or to be directly
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used as thresholded predictions. The computation of the attention scores, can
then be formulated as:

Epred = softmax
(
WqHl(WkHl)

T

√
dk

)
We can also use unnormalized attention scores, which loses some of the benefits
and "logistic" expressivity of the softmax, but allows greater range of values for
link predictions, in order to get 0s and 1s more easily. In that case the formulation
of the link predictions is simply:

Epred =
WqHl(WkHl)

T

√
dk

In practice, we use the softmaxed values as it allows better global coherence of
the link predictions and generally create more plausible sets of links.

5.2 Graph Transformer

We hereby present a permutation-invariant structure that allows to infer a linkset
without having to utilize a global, permutation-biased, Linear prediction layer
as in [17]. The Graph Transformer, introduced in [14], can operate at both node
and edge levels, which is an incredibly valuable property as it allows us to ini-
tialize edge objects and then transform them into proper links using learned
"node-attentive" patterns. Since we don’t have information on edges and do
not want node-redundant information on the edges, we initialize them as simple
neutral values (ones, in order not to disturb fist layers propagation) or noisy
values following a normal distribution. In case where some communication links
are impossible (physical obstacle, discretion needs, jamming...) we can initialize
their value at 0, so that the model processes it as an impossible link. [19] to
improve graph-level feature extraction. We add skip connections between lay-
ers, in order to stabilize gradients and help access previous layers’ information.
The principle of the model is to rely on the Attention computed between nodes
to modulate the edge features. These edge features are also used to modulate
the Attention-based signal propagation between nodes. Nodes and Edges are
then updated interdependently and nodes serve as intermediates to create plau-
sible edge patterns. We use residual connections, that prove to be important for
deeper Neural Networks, and once again equip the model with Registers. We do
not really use Positional Embeddings, that usually are materialized by Laplacian
Eigenvectors [20][21] since we generally initialize our edges with ones and, even
with random values, the positional encodings did not appear to make significant
difference in the results, for a slightly more important computational cost due
to the eigendecomposition.
The simplified embeddings of the set of nodes V going through one Graph Trans-
former layer l (for one Attention head, in practice we use up to 8) can be de-
scribed as below:

Hl+1 = softmax
(
WqHl(WkHl)

T

√
dk

.WeEl

)
WvHl ⊕Hl ⊕Hl−1
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Dot
Product
(Q,K)

h1l

h2l

h3l

h4l

  Q1

    K1

    K2

    K3

    K4

Softmax

* E11l

* E12l

* E13l

* E14l

* EReg

* V11

* V12

* V13

* V14

* VReg

∑ h1(l+1)

hreg
E11(l+1)

E12(l+1)

E13(l+1)

E14(l+1)

Fig. 3: Illustration of one Graph Transformer (dotprod attention) layer applied
to one node v1 in a 4-node-network

and

El+1 =
WqHl(WkHl)

T

√
dk

.WeEl

with E0 being a linear projection of the initial edge embeddings
We also implement a model which presents a similar structure but whose At-
tention is additive, as in [2]. In this case, the Attention between two nodes is
computed by a 1-layer neural network that is fed the two nodes embeddings. We
implement it in order to study whether it can help avoid some of the typical
oversmoothing that appear in graph processing tasks, that the similarity-based
retrieval formulation used by Dot-Product Attention does not totally avoid.

5.3 Disentangled Transformer

We propose a model whose the edge embeddings are a bit disentangled from the
Attention computed between nodes. Here for an edge between i and j a small
MLP is fed the concatenation of the i and j’s embeddings to infer a edge-level
embedding.

Eij = tanh

(
We

[
hi

hj

]
+ be

)
It then modulates the attention scores of the layers as in the standard Graph
Transformer. We implement this component between Attention computation and
the final edge embeddings, in order to add some flexibility to the edge embedding
process. It is meant to alleviate some of the Attention tasks, since it has both to
operate some information gathering message passing and to arrange Attention
scores to form plausible edges. Here both are somewhat disentangled even though
they are of course interdependant.
We also implemented a model that would only process the concatenated pairs
of nodes and use Attention between the pairs, but it did not perform well as
the predictions of the edges were almost totally independent, which means any
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rather short edge would be predicted true with little to no respect to the other
predicted edges or nodes. Indeed, the model did not seem to make great use of
Attention, as we could observe when displaying the Attention scores and when
trying the model with and without the Attention layer. This proves that the
node-attention method to get edge predictions is much more expressive that the
simple concatenation of the nodes’ embeddings.

5.4 U-shaped Graph Transformer

The edge modulation process used by our Graph Transformer tends to make
the node embedding process a bit lossy, especially if you consider the relatively
simple and small input signal (nodes’ positions): while it allows us to shape edges
in a pleasant way, after several layers, the nodes can suffer from oversmoothing,
or can have "derived" a bit. The learned edges are mostly "taught" to form
probable links, and hence might not necessarily be perfectly suited for message
passing, especially in the last layers, which are the results of many successive
edge-modulated message passing. To address this issue, we connect last layers to
the first ones in a U-Net [22] way. It is important to state that the model does
not feature an downsampling-upsampling process, as U-Nets do (notably because
graph upsampling is much more difficult than in an image processing context),
the U-shape only comes from the use of skip connections between first and last
layers as shown in 4. It enables the network to access once again the nodes’
positions but, this time, with a almost formed set of links that bring a desirable
bias that can guide the final prediction of the edges. We also implement it with
the Attention-only model but it does not seem to be as relevant and important
given the model size and the absence of edge modulation. For instance, the value
of the nodes of the last layer would be:

Hlast = softmax
(
WqHl(WkHl)

T

√
dk

.WeEl

)
WvHl ⊕Hlast−1 ⊕H0

5.5 Registers

As these edges are only modified via node-level Attention schemes, even if these
can benefit from great expressivity and receptive field thanks to their consecutive
node-to-node signal exchange, we wish to add a component aimed at improving
global consistency by allowing to "store" graph-level attributes and patterns.
We follow the guidelines established in [19] and adapt them to graphs. We add
one or several dummy nodes whose initial embedding values are learned. These
dummy nodes can then serve as registers, meaning that, through Attention-
based message passing, they can be attended by the nodes of the graph to both
store and retrieve information. It is useful to gather information that might not
directly be related or useful to a single node or neighbourhood of nodes but,
combined with many information signals from different nodes of the graphs it
can aggregate in these registers as graph-level features. This type of global, long
dependency gathering of information is generally a problem in graph message
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Fig. 4: Illustration of a simplified U-shaped Graph Transformer, first and last
layers are directly connected

passing algorithms as nodes tend to keep neighbourhood-level interactions, as it
suffers from oversquashing.

5.6 Graph-level attributes

We can also add graph-level attributes by adding them as inputs and concate-
nating them with the nodes, allowing the nodes to attend to them (Register or
Cross-Attention), or using FiLM Layers [23][24] or a HyperNetwork [25] archi-
tecture. We then search F parametrized by θ such that

Fθ(V, γ) = Epred

where γ is a sequence of graph level attributes. Graph attributes can be for
example several spectral properties such as the algebraic connectivity, or can be
related to the density of links, centrality, and can also be learned. In the case
where the attribute can be directly expressed as a differentiable function of the
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output of the model and its weights, the respect of the desired the attribute
in the predicted matrix can be enforced using Lagrangian Duality framework
described in [26]. For instance, one could use an approximated differentiable
expression of the connectedness or the total number of links or such, from the
output of the model, and enforce it to be as close as their chosen value.

5.7 Generative formulation: Variational Inference

The problem itself is not deterministic, which might lead to sub-optimal training
and results in the supervised learning setting: the output of the model, even
if it corresponds to a possible solution for the given set of nodes, might be
different than the exact output that was expected, and cause large loss values,
even if the prediction was "valid" from a logical point of view. While this issue
has not been extremely problematic in practice, since, while the problem is not
deterministic, the dataset is (there are no equal sets of nodes’ positions in the
dataset), and the training seems rather stable. We still derive a Variational
Inference method, similar to a Variational Autoencoder version of the network,
so that the problem becomes a reconstruction, hence deterministic, problem.
This is a proper generative formulation of the problem that learns a continuous
solution space, which can also be an interesting property to be able to explore
the different possible solutions for a set of nodes. We then have a framework
comparable with [12], without the need of matching algorithms on the output
since our nodes are identified and initialized from the beginning of the decoding
process as the generation is conditioned by the nodes’ positions. The learning
problem consists in feeding the true graph to the encoder, compressing it into
a continuous and low dimensional latent space, then decoding the compressed
signal to reconstruct the inputs. We condition the decoder on the positions of
the nodes. Infering a new graph then consists in sampling in a continuous latent
space, adding the nodes’ positions as a conditioning signal and feeding them
to the decoder. To enable sampling, and thus generation, we want a smooth,
continuous latent space. To do so, we enforce the encoder’s output to follow a
multivariate Gaussian distribution. On the other hand, we train the decoder to
output values close to the input being reconstructed. The encoder consists in a
graph feature aggregator, typically GNN, followed by pooling layers in order to
obtain a graph level encoded vector z. The decoder can be any of the previously
described models (Attention model, Graph Transformer) described above but
we add the encoded latent vector by either concatenating it with each node, or
as a vector to be consulted through Attention.
The problem then results in maximizing the following:

L(θ, ϕ;G) = Eqϕ(z|G) [log pθ(E|V, z)]−DKL (qϕ(z|G)||p(z))

qϕ represents the approximated posterior latent distribution
pθ represents the approximated likelihood of the data
p(z) represents the prior distribution of the latents, we assume it to follow a
multivariate Gaussian distribution.
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The first term is the Reconstruction Loss, maximizing it enforces the recon-
structed edges to be as close as possible to the input edges. The second term is
the Kullback-Leibler Divergence, minimizing it enforces the approximated latent
distribution to be close to the prior distribution z that is assumed to follow a
multivariate Gaussian.
Infering a graph prediction hence consists in the network estimating:

decoder(V) = pθ(E|V, z).

The idea that motivates this formulation is that, despite the strong signal brought
by the position of the nodes, the variational encoder can still struggle to find the
exact link topology corresponding to this set, especially if several solutions cor-
responding to a similar set of nodes lie in the dataset. In this case, the encoded
vector, which brings additional information about the graph to be decoded, can
help distinguish the exact solution we are looking for. Since it is continuous,
the latent space in which this encoded vector lies can then be parsed to pro-
duce various solutions. In our case, we observed that the model mainly learns
a mapping from nodes’ positions to predicted links without making great usage
of the encoded vector. The training and the results did not happen to be much
different than the supervised counterpart, notably because the nodes’ feature
space is rather large hence it is really unlikely to find similar sets of nodes in the
dataset. Sampling through the latent space to feed the decoder different latent
vectors for a same set of nodes still showed to produce different outputs, which
means that the encoded vector is still somehow taken into account.

6 Experimental Results

We conduct our experiments with an Intel Xeon(R) E5-2650v3 at 2.30 GHz CPU
and a Tesla T4 GPU. With such hardware, inference time does not exceed a few
ms even with the largest versions of the model. Our method is implemented us-
ing PyTorch. We use AdamW optimizer with weight decay rates between 0.1 and
0.15, results below are given for models trained for an equivalent of at most 20
epochs at 1e-4 learning rate. We generally use a standard binary cross entropy
loss function. We use a dataset of multiple instances with randomly generated
nodes’ positions. It is composed of 180k samples of 16 nodes’ positions and
the adjacency matrix obtained solving the IP problem with a solver (namely
Gurobi). Generating such a dataset is long and costly so we can not, for now,
notably increase its size. To prevent overfitting, we wish to keep our models’
number of parameters roughly in the same order of magnitude as our dataset
size. Variational and supervised versions of the training and the models showed
to display similar results and similar variations so we do not feature and distin-
guish both in the benchmarks.
We found that the Transformer-ish models sometimes tended to make conser-
vative predictions between 0 and 0.4 instead of values closer to 0 and 1 so we
added a sparsity enforcing penalty in the loss:
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penalty = |y|
(p−y)2 with y being the prediction tensor and p an empirically ob-

served mean for non-zero predicted values, in order to push predictions away
from it (in practice it was close to 0.35). The Attention-only model showed to
perform better with solely two rather large Attention layers, and no activation
function, but we did not get it to output proper 0s and 1s without significant
loss in relevance of the results. It would also output values rather continuously
distributed from 0 to 0.4 so a simple 0.5 threshold would not work well, we then
adaptively chose the threshold that offered the best accuracy, which in general
was close to 0.25. The accuracy is measured as in a classical link prediction task

Table 1: Accuracy of both dataset and unseen graphs, results show that our
models vasty outperform a baseline MLP and showcase the utility of some of the
components.

Model Accuracy on dataset Test accuracy

Graph Transformer 94.70 % 88.68 %

2-layer Graph Transformer 93.55 % 87.48 %

U-shaped Graph Transformer 95.04 % 88.83 %

U-shaped Graph Transformer (additive attention) 94.69 % 88.79 %

U-shaped Disentangled Graph Transformer 94.78 % 88.67 %

Attention-only 94.49 % 88.59%

Flattened MLP (NOT permutation invariant) 89.86 % 84.73 %

for each link: we round the output of the network to either 0 or 1 and we measure
the difference with the true label for each entry of the adjacency matrix. The
dataset of Table 1 contains almost 75% zeros, it is easier to predict the absence
of link than to predict a link, so this has to be taken into account when reading
the accuracy scores. We include the accuracy on a substract of the dataset (seen
in training), because the task of imitating the samples is interesting in itself, to
see how well the model can theoretically reproduce these graphs in the setting
where they offer the best possible generalization property obtained for the test
set (not seen in training or validation). We observe that models generally repro-
duce dataset graphs with high accuracy, Test set graphs, which the graphs have
not seen during training, are not as well reproduced. This is not necessarily an is-
sue since, as stated before, one set of nodes can admit several optimal solutions,
and many more at least plausible solutions, which makes it really difficult to
find the exact one that is expected. Both models still perform much better than
the MLP baseline, and of course much better than random or only 0s guessing.
The Attention-only model performs surprizingly well but requires an adaptive
threshold. It happened to perform much better when using two Attention layers
then using the Attention scores directly as outputs. The downside is that it can
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not output values high enough for us to perform a simple 0.5 thesholding. Any
more complex versions of the model would perform much more poorly. Overall,
the best performing model is the Graph Transformer with the U-shaped skip
connections. Graph Transformers globally show good performance and very few
false negatives, but tend to be a bit greedy locally, predicting too many links.

Table 2: Verification of the range constraint on test graphs, Graph Transformers
seem to produce more reliable links, results highlight the merit of the different
components.

Model % of links of valid length

Graph Transformer 96.3 %

2-layer Graph Transformer 94.05 %

U-shaped Graph Transformer 97.41 %

U-shaped Graph Transformer (additive attention) 97.27 %

U-shaped Disentangled Graph Transformer 97.59 %

Attention-only 94.84 %

Flattened MLP (NOT permutation invariant) 85.37 %

We observe that, while Graph Transformers only beat the Attention model
on the link prediction accuracy test by a small margin, they tend to output much
more consistently valid links. We indeed observed that the Attention model could
sometimes output too long hence unrealistic nodes while the Graph Transform-
ers would rarely make such mistakes. We can deduct that the Attention-score
prediction does well in terms of link patterns consistency, as the the number of
predicted links is more realistic, globally and per node, but that the edge em-
bedding process of Graph Transformers allow them finer control over the edges
characteristics. Once again, the U-shaped Graph Transformers perform a bit
better than the original Graph Transformer, and the ones that feature small
MLPs to process the pairs of nodes seem to display slightly better results.
Since the aggregation mechanism is local, between nodes, the need to obtain com-
plex, coherent patterns that involve high level view and combination of nodes’
features requires the node embeddings to benefit from a large receptive field,
which typically profits from models to be rather deep. In practice, we tested up
to 10 Transformer-ish layers for each Graph-Transformer-like model and chose
to feature 7 of them for most experiments. We empirically notice a significant in-
crease of performance with the increase of the number of layers, while the simple
Attention score prediction model does not really benefit from it. The process of
"manipulating" the edges through the layers hence probably particularly enjoys
deeper networks. Unfortunately, the deeper the models are (particularly when
approaching 10 layers) the smaller the layers are, since we wish to keep the
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number of parameters in the same order of magnitude as the dataset size, as
mentioned before.

7 Conclusion

We tackled throughout this work the problem of infering optimized network
topologies in constant time with a Deep Neural Network with strong theoretical
generalization properties that is trained to imitate a dataset following a given
algorithm (a Integer Programming solver in our case). We covered the notion of
Permutation invariance and how important it is when dealing with graphs. We
then showed how Attention is a perfect feature aggregator for such graph prob-
lematics and proposed several versions of Attention-based models from a pure
Attention model using attention scores as predictions to Graph Transformers.
Some additional architecture elements to Graph Transformers, namely U-shaped
skip connections and Registers have been implemented to help us tackling our
problem. We obtained very satisfactory results that highlight the utility of the
components of our models. We hence provide a flexible, constant time model
that provides trustable topologies of network links given the nodes’ positions. It
can greatly help instanteneously reaching some very important structural prop-
erties (connectedness...) and feature the desirable traits of the graphs that we
train the model on. We highlighted the capacities of the different proposed ar-
chitectures their contribution to the expressivity of the and the robustness of
the predicted links. We hope our work has highlighted the interest of using Deep
Learning methods to tackle combinatorial problems by turning them into mono-
lithic global graph generation problems. Future steps will aim at improving the
reliability of the infered topologies, possibly by introducing some link pruning
algorithms. While this work is purely focused on one-shot generation of graphs,
we will also investigate more progressive methods such as Denoising Diffusion
Probabilistic Models [27], which follow similar "global generation" baselines but
in an Langevin-dynamic-ish formulation.
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