
HAL Id: hal-04402986
https://hal.science/hal-04402986

Submitted on 18 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessing Distributed Consensus Performance on Mobile
Cyber-Physical System Swarms

jiayi chen, Maxime Vacheron, Bruno Chianca Ferreira, Guthemberg Silvestre

To cite this version:
jiayi chen, Maxime Vacheron, Bruno Chianca Ferreira, Guthemberg Silvestre. Assessing Distributed
Consensus Performance on Mobile Cyber-Physical System Swarms. 2023 International Wireless
Communications and Mobile Computing (IWCMC), Jun 2023, Marrakesh, Morocco. pp.650-656,
�10.1109/IWCMC58020.2023.10182856�. �hal-04402986�

https://hal.science/hal-04402986
https://hal.archives-ouvertes.fr


Assessing Distributed Consensus Performance on
Mobile Cyber-Physical System Swarms

Jiayi Chen, Maxime Vacheron, Bruno Chianca Ferreira and Guthemberg Silvestre
ENAC, Université de Toulouse, France

jiayi.chen@recherche.enac.fr, maxime.vacheron@alumni.enac.fr, {bruno.chianca, silvestre}@enac.fr

Abstract—Mobile Cyber-Physical System (CPS) Swarms are
likely to change our daily lives significantly in several application
domains, including smart cities, space exploration, environmental
monitoring, and transporting systems. Yet, industrial projects
fundamentally rely on centralized communication infrastructures
which in turn lead to suboptimal performance and limited
autonomy for both sensing and actuating. To enhance commu-
nication and distributed coordination within the swarm, reliable
distributed computing through consensus protocols constitutes a
promising approach. Nonetheless, only a handful of studies has
considered evaluating reliable distributed computing in Mobile
CPS Swarms. The goal of this work is to evaluate the performance
of consensus protocols on CPS swarms with processing units
deployed on mobile nodes. Running on top of an emulation
framework for mobile CPS, our preliminary evaluation focuses
on evaluating three key deployment aspects of Mobile CPS
Swarms executing a consensus protocol: the effective cost of
mobility; the impact of the connectivity of nodes and the eventual
network partitions; and the price of continuous routing updates
in the mobile environment. Our experimental results indicate the
transient network partition in mobile environments are common.
They also suggest that the sparsity of dynamic communication
network and continuous routing updates have a major impact
on the performance of distributed consensus protocols.

Index Terms—Fault-tolerant mobile computing, Distributed
consensus, Paxos, Cyber-physical systems, Swarm intelligence.

I. INTRODUCTION

We are currently experiencing the revolution of industry 4.0
in terms of Cyber-Physical Systems (CPS). According to the
NIST definition [17], “Cyber-physical systems are engineered
systems that are built from and depend upon the synergy of
computational and physical components”. Unlike traditional
embedded systems, which are designed as stand-alone devices,
CPS focuses more on networking several devices [31]. At
the same time, by using integrated sensors to realize real-
time haptics and support customized actuation on physical
devices, they provide high-quality user personalized services
and experiences by reducing communication delays [5]. There
has been an upward trend in having information and services
everywhere at hand, thus these emerging systems are inevitable
in the highly networked world of today.

CPS have already been used in many projects of academia
and industry such as smart electric power grids, manufacturing
systems, aerospace systems, and defense systems [36]. By
leveraging engineered swarm system and mobility, groups of
CPS (e.g., swarm of drones, underwater robotics, nanosat

constellations or ground rovers) have an opportunity to interact
with each other in order to collectively provide swarm intel-
ligence [39] through adaptability, robustness, and scalability.
However, the design and the operations of CPS swarms remain
exceptionally challenging, which constitute major obstacles to
a successful transition from research platforms to industrial
swarm applications [40].

Indeed, many industrial projects still rely on centralized in-
frastructure to pragmatically circumvent challenges in control,
data sharing and processing atop of a CPS swarm. Whereas
centralized approaches might speed-up the design and the
deployment of industrial prototypes, they hinder the ability
of CPS swarms to achieve high autonomy and fault tolerance.
Figure 1(a) shows a centralized approach commonly used to
operate a swarm of drones [21]. It illustrates a CPS swarm
where mission’s control, data collection, data sharing and
processing strongly rely on the central base station, which,
in turn, results in poor fault tolerance and unpredictable
performance issues. Alternatively, Figure 1(b) depicts a swarm
of CPSs that relies on a distributed, dynamic configuration
service to tolerate faults and to improve performance through
swarm-level coordination and synchronisation.

(a) Centralized infrastructure

(b) Distributed infrastructure

Fig. 1. Examples of CPS swarm based on a different infrastructure.

In this work, we argue that fault-tolerant, distributed com-
puting is key to enhance both autonomy and fault tolerance
in CPS swarms. In this context, distributed consensus proto-
cols contribute to enabling swarm intelligence by providing
fault-tolerant sub-systems including dynamic reconfiguration,



distributed locking, reliable broadcast and state machine repli-
cation. Although consensus protocols have been extensively
studied [9], [12], [20], [22], [30], [32], [37], [43], [44], previ-
ous works mostly overlooked the performance evaluation and
practical aspects of consensus algorithms in mobile systems
in general and in mobile CPS swarms in particular [35]. For
instance, it is well known that wireless communication eventu-
ally increases message loss, and that network partitions of the
communication network are far more likely to occur in mobile
environments [45]. Consequently, wireless communication and
mobility undoubtedly create serious uncertainties that affect
the functioning of consensus protocols [38]. Yet, the impact
of concurrent, practical uncertainties on the performance of
consensus protocols in mobile CPS swarms remains unclear.

Therefore, our goal is to better understand the impact of
intrinsic uncertainties of CPS swarms on consensus protocols.
Specifically, we aim at evaluating the performance of a real-
world implementation of multi-Paxos [42], by far the most
popular consensus protocol in production systems. Using an
emulation framework for mobile CPS [15], we investigate the
impact of three practical, common uncertainties created by
the mobile environment of CPS swarms: (1) the effective cost
of mobility of the nodes within the deployed mission’s area,
(2) the impact of the connectivity of nodes and the eventual
network partitions, and (3) cost of continuous routing updates
in the mobile environment.

Overall, our work makes the following contributions:

• We survey fault-tolerant, distributed computing in CPS
swarms on mobile environments. First we explain the
important role of distributed computing on fault-tolerant,
autonomous CPS swarms. Then we introduce mobile
networks for CPS and we describe how consensus pro-
tocols can be useful for emerging CPS swarms, includ-
ing nanosatellite constellations and swarm of unmanned
aerial vehicle (UAV, also known as drones);

• We conduct experiments to evaluate the performance of
a real implementation of a consensus protocol in an
emulated, mobile CPS swarm. Our preliminary results
quantify the critical trade-off between fault tolerance and
performance. They also suggest that both the sparsity of
the communication graph and continuous routing updates
considerably hinder the performance of consensus proto-
cols in mobile CPS swarms.

The remainder of this work is organized as follows: We
first provide some background about distributed computing on
CPS swarms and consensus protocols in mobile environments
in Section II. Then we present the system model in Section
III. Section IV describes our experimental settings. Section
V contains a set of preliminary experiments assessing the
performance of the consensus protocol multi-Paxos in mobile
CPS swarms. We discuss the limitations of our work and the
relevant topics in Section VI. Finally, we conclude our work
in Section VII.

II. BACKGROUND

We first provide some background on distributed computing
on Cyber-Physical Systems (CPS) swarms. Then, we briefly
review consensus protocols in mobile environments.

A. Distributed computing on CPS swarms

CPS are industrial automation systems that enable many
innovative functionalities through their networking and their
access to the cyber world [24]. Such systems find applications
in a number of large-scale, safety-critical domains, such as
satellite constellation, swarm of drones, smart cities, and smart
grids [4]. In a CPS swarm, multiple nodes cooperate to provide
services whose performance and availability strongly rely on
swarm’s properties, such as fault tolerance and autonomy [39].

The increasingly large amounts of data that must be col-
lected, processed and transmitted by emerging CPS appli-
cations challenges the design and the deployment of CPS
swarms. Despite the powerful computation capacity of cloud
computing platforms, the limited transmission capacity of
remote CPS nodes and the high propagation delay to push data
to cloud infrastructures inevitably usually incur prohibitive
performance degradation [7]. Yet, the most of the state-
of-the-art CPS swarms still relies on centralized operations
techniques, which in turn constitute a major obstacle to a suc-
cessful transition from research platforms to industrial swarm
applications [40]. We argue that distributed computing [41] can
be leveraged to improve both fault tolerance and autonomy
of emerging CPS swarms. Indeed, distributed computing on
CPS can decrease the dependency on third-party, cloud service
providers by enabling fault-tolerant, distributed services.

A good example of an emerging CPS systems that can
fully take advantage of distributed computing is a nanosatellite
constellation. In a constellation, nanosats must continuously
synchronise sensing units and computing tasks, potentially
for multiple application workloads, colocated on the same
constellation. To improve both mission efficiency and fault
tolerance, nanosats could directly exchange messages via
wireless communication links to accomplish the system targets
in a synchronized, distributed manner [33]. Consequently,
although nanosats constellation would still need to eventually
transmitting data to ground stations under the bent-pipe ar-
chitecture, a distributed orbital edge computing solution [13]
would improve constellation’s autonomous reconfiguration and
synchronisation. For instance, it would contribute to coping
with partial failures of constellation’s nanosats, enhancing
missions’ deployment and operations, as well as to reducing
the latency and to increasing throughput of the constellations’
distributed services. Similarly, swarms of drones [10] can
leverage distributed computing to offer fault-tolerant, novel
services. For instance, a swarm of drones can rely on an
distributed, dynamic configuration service to continuously
maintain a consistent list of available sensors and actuators, or
they can use distributed locking service to perform a conflict-
free, cooperative sensing [19].



B. Consensus protocols in mobile environments

Distributed consensus is a fundamental building block of
many practical, fault-tolerant computing applications, includ-
ing distributed storage systems [34], wait-free coordination
services and dynamic configuration for real-world production
systems [6], [23]. Broadly speaking, the distributed consensus
involves getting a set of processes to agree on a value proposed
by one or more of the processes [11]. To guarantee the dis-
tributed consensus, a consensus protocol implements a fault-
tolerant algorithm that formally enforces specific safety and
liveness properties with regard to predefined timing and failure
assumptions [14]. Among the production distributed consensus
services, multi-Paxos [42] protocol, based on Paxos [28]
algorithm, is by far the most popular. In a nutshell, Paxos
algorithm works with two types of nodes to constitute a
strongly consistent and fault-tolerant replica set, namely leader
and replica. Clients issue requests to the leader. In order to
respond a client’s request, the leader spreads it to the replicas,
and waits for a majority of replicas’ replies. While a majority
of replicas is available, the replica set consistently processes
clients’ requests. Although distributed consensus was widely
evaluated in wired, cloud-based systems, only a handful of
previous work investigated distributed consensus in wireless
networks [35] and in CPS swarms [5].

There exist two major types of mobile wireless networks:
infrastructure-based networks and mobile ad-hoc networks
(MANETs). MANET technology is perhaps unique in its
ability to facilitate collaboration among mobile users that
have no fixed infrastructures for communication support [3].
Although some probabilistic protocols for MANETs have been
proposed, few works have been reported on performance anal-
ysis of consensus protocols. We are interested in understanding
the performance of consensus protocols in mobile networks
with properties similar to MANETs. In order to reproduce
additional features specific to CPS systems, this work relies
on MACE [15], an emulation framework for mobile CPS.

Unlike traditional wired networks, mobile environments in
general have dynamic properties regarding the communication
network, node’s mobility, resources’ availability and capac-
ity, which make the design and deployment of distributed
algorithms much more difficult [45]. In addition, intrinsic
characteristics of mobile networks introduce additional chal-
lenges and uncertainties to be coped by consensus protocols,
including unpredictable messages loss and network partitions.
It is important to note that consensus protocols trade either
availability or network partitions off for enforcing strong
consistency of the replicated data, as described in CAP theo-
rem [18]. Therefore, both of the aforementioned uncertainties,
common in mobile environments, are likely to render the
consensus protocol unavailable. To the best of our knowledge,
this is the first study of the impact of practical, intrinsic
uncertainties of CPS swarms, such as mobility and network
density, on the performance of the consensus protocols.

III. SYSTEM MODEL

We consider a distributed system composed by two non-
overlapping sets of processes, a finite set of N nodes
S = {s1, s2, . . . , sN} and an infinite set of clients C =
{c1, c2, . . . }. Each process has a unique identifier. Every client
or server knows the set of nodes. The processes communicate
by message passing. The consensus protocol investigated in
this work is considered in a CPS swarm that consists of a
set of M CPS nodes, including N nodes that constitute a
replica set for solving the consensus problem. Moreover, the
consensus protocol runs under the following assumptions.

Failure model. Processes may fail by crashing, but do
not experience arbitrary behaviour (i.e., no Byzantine fail-
ures). The network is mostly unreliable and is subject to
unpredictable latencies, as well as load imbalances (e.g.,
peak demand), that imposed on both nodes and the network.
Such imbalances may cause variations in transmission delays.
However, nodes rely on reliable one-to-one communication
channels, where transmitted messages can be lost (and retrans-
mitted) but not corrupted. Therefore, the system tolerates f
faulty nodes such that f < ⌈N/2⌉ (a quorum exists).

Timing model. We assume that the system is partially
synchronous [14], that is, it is initially asynchronous and even-
tually becomes synchronous, because a consensus protocol
cannot be both safe and live under asynchronous assumptions,
as the FLP impossibility result [16] states.

IV. EXPERIMENTAL SETTINGS

We assume the consensus protocol runs atop of N replicas
(a replica set), such that M ≥ N , where M is the total
number of mobile CPS nodes. Each node has a communication
range fixed to 160m, which means in-range pairs of nodes can
exchange messages directly. Out-of-range pairs of nodes can
eventually communicate to each other if there exists (at least) a
reachable route between them. Routes of a mobile CPS swarm
are continuously updated with B.A.T.M.A.N. IV [1], a real-
world routing protocol for highly dynamic MANETS [25].
Figure 2 is captured from the GUI (graphical user interface)
of the emulator, which clearly shows how nodes communicate
with each other. We take the node at the figure’s center as an
example, the two in-range nodes can exchange messages with
it directly (solid blue lines), the other two out-of-range nodes
communicate with it by the reachable route.

Fig. 2. Example of communication topology.

For generality, we make no assumption about the mobility
pattern of CPS swarm’s nodes. Therefore, to make experiments



reproducible, nodes move at slightly varying speeds ranging
from 2 to 2.1 meters/second according to the random waypoint
(RWP) mobility model [26]. For simplicity, RWP model
emulates random movements for each mobile node in a two-
dimensional (2D) square area of size A. We define the network
density D as

D =
M

A
(1)

for a number of nodes M and an area size A.
To reproduce such a mobility within A, our experiments

rely on the Mobile Ad-hoc Computing Emulator [15], MACE,
an emulation framework for mobile CPS swarms. MACE
generates a virtual environment as close to reality as possible
that allows us to run and evaluate distributed consensus
implementations. It is worth noting that the nodes’ mobility is
likely to incur transient network partitions, mostly caused by
routing protocol updates and out-of-range events in the mobile
environment.

We use Paxi [2], a framework that provides real-world
implementation of (multi-)Paxos. For ease of explanation and
to focus on the practical uncertainties of mobile environments,
we assume that the leader is fixed and it is co-located with
a set of emulated clients and a replica in a single node. For
instance, when N = M = 3, there are three nodes, including
a leader L 1 and two replicas({R1, R2}).

To assess the performance of consensus protocol, we con-
sider two well-known system-level metrics: throughput (in
requests per second) and latency (in milliseconds). To measure
the scalability in terms of tail latency, we instrument Paxi to
sequentially issue an increasing load of concurrent read/write
requests from the aforementioned set of clients up to the
system saturation. Finally, each experiment was repeated five
times to report performance statistics (i.e., median and 95th
percentile). Table I summarizes the main parameters of our
experimental settings.

TABLE I
MAIN PARAMETERS IN EXPERIMENTAL SETTINGS.

No. of CPS swarm nodes M

No. of replica set nodes (Paxos-specific) N (M ≥ N )
No. of tolerated faulty nodes (Paxos-specific) f (N = 2f + 1)

Read/write rate (Paxos-specific) 0.5
Total number of keys (Paxos-specific) 1000

Area size A
Network density D = M/A

Communication range 160 meters
Routing protocol B.A.T.M.A.N IV [25]

Bandwidth 433.3Mbps
Delay 3000us

Packet loss 0%
Running time of an experiment 100 seconds

Mobility model Random waypoint
Moving speed 2-2.1m/s

1Note that the leader L also plays the role of replica in the replica set.

V. PERFORMANCE EVALUATION

The objective of the performance evaluation is to study
the performances of consensus protocol – multi-Paxos on a
swarm of CPSs, which is a specific mobile ad-hoc network.
We perform the first set of experiments with fixed nodes in
order to establish a baseline. After that we conduct three sets
of experiments to study the impact of mobility, the effect of
nodes connectivity, and the cost of continuous routing updates.

A. Baseline experiment with fixed nodes

The first set of experiments involves fixed nodes and is
subjected to determine a baseline evaluation. In the baseline
measurements, we varied the number of replica as follows:
N = M = {3, 5, 7}, and we assumed a perfect deployment
scenario, where fixed nodes are close enough to each other to
always ensure optimal, one-hop communications. The results
are plotted in Figure 3.

(a) Median latency (b) 95th percentile latency

Fig. 3. Baseline evaluation with fixed nodes.

We observe that all the curves reach a maximum throughput
suggesting the saturation of replica set. We also observe a
big performance gap as the size of replica set increases. For
instance, a CPS swarm of three replicas can answer more than
10000 requests per second, while a configuration with seven
replicas can answer around 3000 requests per second only.

When the number of replicas (N ) increases, the resilience of
the system against faulty nodes f also increases. However, this
results in larger quorums, consequently the replica set needs
to spend more time reaching an agreement, which incurs in
higher latencies and lower throughput.

B. Cost of mobility

The second set of experiments aims at assessing the impact
of mobility on the performance of a consensus protocol. For
this experiment, we varied the number of replicas, N = M =
{3, 5, 7}, and we considered nodes are able to move within
a two-dimensional square zone with a network density of 80
nodes/km2.

We compare the results in mobile CPS swarms with the
baseline of Section V-A by plotting both in Figure 4. For
readability, plots in the rest of the paper, depict the median
latency only 2.

2With mobile nodes, the performance variability of 95 percentile latency
measurements became too high, therefore they were omitted.



Fig. 4. The cost of mobility in a consensus protocol.

Regardless of the configuration, i.e., N = {3, 5, 7}, our re-
sults suggest that nodes’ mobility leads to severe performance
degradation. In fact, as transient network partitions occurs,
replica sets running consensus protocols, like Paxos, become
temporally unavailable, which in turn results in performance
losses. Our results indicate that transient network partitions in
mobile environments are common.

In addition, we observe that the higher the fault tolerance
f , the bigger the performance gap between the baseline and
the mobile CPS swarm. For instance, when f = 1 (N = 3),
the performance losses due to mobility is nearly 6%. The
performance gap is about 60% when f = 3 (N = 7). These
findings clearly highlight the well-known trade-off between
performance and fault tolerance of consensus protocols, pro-
viding worthwhile insight for mobile CPS swarms configura-
tions. For simplicity, the results presented in the rest of this
work are obtained using f = 2 (N = 5) as a moderate level
of fault tolerance for better mobile swarm autonomy.

C. Impact of connectivity of nodes

To gain a deeper understanding of how consensus protocols
perform in mobile environments, we conducted experiments
to examine the impact of connectivity of nodes. Therefore,
for the same number of replicas N = M = 5, we varied
the 2D square area to reproduce three notable classes network
density (obtained via the Equation 1) detailed in Table II 3.
Our preliminary findings suggest that a relative high number
of nodes (i.e., at least 41 nodes/km2) is required to run a
consensus protocol properly.

TABLE II
NETWORK DENSITY SETTINGS.

Area size A Network density D Density class
150×150 m2 222 nodes/km2 High density
250×250 m2 80 nodes/km2 Medium density
350×350 m2 41 nodes/km2 Low density

3It is worth noting that two lower densities were evaluated, 25 nodes/km2

and 16 nodes/km2, but they were omitted because they performed very poorly
due to too frequent transient network partitions.

Figure 5 summarizes the impact of network density on
consensus protocols in a mobile CPS swarm. It is important
to note that the results are worse and more unstable when
the network density decreases. For instance, the protocol’s
throughput drops by nearly 90% as the network density
changes from high to low. In addition, we found that 38%
test files fail to run when the low density is considered. This
is primarily due to frequent network partitions caused by low
density, which results in the unavailability of the replicated
state machine (RSM) that relies on five replicas.

Fig. 5. Impact of connectivity of nodes.

To better explain the above results, Figure 6 shows three
examples of worst-case scenarios within different area size that
result in out-of-range events when N = 5 (including leader L
and four other replicas, {R1, R2, R3, R4}). In all these cases,
a quorum of three nodes, including the leader L and any 2
other replicas, is required to reach consensus and to make
progress. Suppose the leader L is located in one corner of
square area and there is only one in-range (i.e., located inside
the L’s gray shaded area) node, as depicted in Figures 6(a)
and (b), thus there is no quorum and the replica set becomes
temporally unavailable to ensure consistency of the previously
executed requests, as the CAP theorem [18] states. Similarly,
Figure 6(c) shows a worst-case scenario where the leader is
completely isolated.

Fig. 6. Three worst-case scenarios examples.



In general, the network density decreases with increasing
node movement area, in which case chances that no quorum
with the leader is possible at any moment of the execution
due to mobility and wireless communications uncertainties.
As a result, the nodes’ connectivity reduces and the overall
performance of the system degrades, incurring higher latencies
and lower throughput. Indeed, the frequency of these practical,
transient incidents are closely related to network density and
they are likely to result in transient network partitions and, in
turn, severe performance degradation.

D. Effect of continuous routing updates

To investigate the cost of continuous routing updates in mo-
bile environment, we considered mobile CPS swarms whose
missions cover increasingly bigger areas. Therefore, whenever
a CPS node is added to the swarm, it routes messages of the
replica set nodes to i) permit the swarm to cover a bigger area
and to keep the same network density; and to ii) eventually
improve the fault tolerance of the replica set 4. To this end, we
fixed N = 5 and the network density to a medium level (i.e.,
80 nodes/km2), then we incrementally increased the number
of nodes M from 5 to 10. By increasing M for the same
N , the number of routing updates also increases. As a result,
the number of hops to exchange messages of the consensus
protocol among replica set nodes is likely to increase. Figure 7
summarizes the experimental results.

Fig. 7. Impact of continuous routing updates.

Our results suggest that routing updates cause a consistent,
large performance degradation of the consensus protocol.
Although one would expect higher latencies as the consensus
protocol’s messages need to cross more nodes, the cost of
continuous routing updates seem prohibitively high. Addition-
ally, we observed that as M increases, the proportion of failed
executions using Paxi also increases, as depicted in Table III.
For instance, for M = 10, the communication within the
replica set is so poor that half of experiment executions simply
failed.

4For instance, while M > N , we assume that additional nodes can
eventually replace faulty replicas in a system reconfiguration.

TABLE III
PERCENTAGE OF FAILED EXECUTIONS USING PAXI FOR DIFFERENT

VALUES OF M .

The value of M 5 6 7 8 9 10
Percentage of

failed executions
3.6% 7.3% 16.4% 20% 23.6% 50.9%

VI. DISCUSSION

While our preliminary work paves the way to better under-
stand the performance of consensus protocols on mobile CPS
swarms, our current study has several known limitations. We
believe that addressing these limitations will permit obtaining
a deeper understanding of the performance of distributed
consensus on mobile CPS swarms.
Consensus protocol framework and mobile wireless sys-
tems. Paxi provides a convenient open-source framework to
benchmark real-world implementation of (multi-)Paxos, and it
is particularly useful for independent reproducibility. However,
the number of failed executions using Paxi were surprisingly
high as the number of mobile replicas was increased. These
findings emphasize the need for further investigation to un-
derstand and adapt Paxi to mobile wireless systems, including
considering additional Paxos protocol variants.
Fault tolerance and blockchains. For simplicity, our current
failure model only assumes crash faults, where a mobile node
simply stops all computation and communication. Yet, CPS
nodes exchanging messages through a wireless network may
be subject to a wide variety of non-crash faults, where a node
acts arbitrarily. Thus, our failure model could be improved
in order to cope with Byzantine faults [29]. This research
direction would also contribute to the study of blockchains
and smart contracts [8], [27] on mobile CPS swarms, since
blockchains rely on consensus protocols to ensure all partici-
pants agree on a unified transaction ledger [46]. Nonetheless,
it is important to note that the use of blockchains in CPS
swarms is ultimately complementary to our work.

VII. CONCLUSION

The emerging applications for mobile CPS swarms will
allow us to provide complex, future industrial services. Yet, the
design and the operations of CPS swarms remain exceptionally
challenging, which constitute major obstacles to a successful
transition from research platforms to industrial swarm appli-
cation. We argue that a distributed consensus protocol is key
to enable essential features on these promising CPS swarm
applications, especially autonomy and fault tolerance.

In this work, we present a preliminary performance evalua-
tion of the most common consensus protocol in production
systems, Paxos. Different from previous work, our study
focuses on practical aspects of a real implementation of a
consensus protocol in mobile CPS swarms, including mobility,
nodes’ connectivity and continuous routing updates. Our ex-
perimental results atop of an emulation framework for mobile
CPS suggest that mobility, network density and continuous
routing updates have a major impact on the performance of
a consensus protocol. In addition, we assert that the mobile



deployment trade-offs are not obvious and require further
investigation: whenever the size of the replica set is bigger
than five or much smaller than the total number of CPS nodes,
severe performance degradations were observed.

REFERENCES

[1] B.a.t.m.a.n, 2021. https://open-mesh.org/projects/batman-adv/wiki.
[2] Ailidani Ailijiang, Aleksey Charapko, and Murat Demirbas. Dissecting

the performance of strongly-consistent replication protocols. In Pro-
ceedings of the 2019 International Conference on Management of Data,
pages 1696–1710, 2019.

[3] Khaled Alekeish and Paul Ezhilchelvan. Consensus in sparse, mobile ad
hoc networks. IEEE Transactions on Parallel and Distributed Systems,
23(3):467–474, 2011.

[4] Alessandra Bagnato, Regina Krisztina Bı́ró, Dario Bonino, Claudio
Pastrone, Wilfried Elmenreich, René Reiners, Melanie Schranz, and
Edin Arnautovic. Designing swarms of cyber-physical systems: the
h2020 cpswarm project. In Proceedings of the Computing Frontiers
Conference, pages 305–312, 2017.

[5] Umesh Bodkhe, Dhyey Mehta, Sudeep Tanwar, Pronaya Bhattacharya,
Pradeep Kumar Singh, and Wei-Chiang Hong. A survey on decentralized
consensus mechanisms for cyber physical systems. IEEE Access,
8:54371–54401, 2020.

[6] Mike Burrows. The chubby lock service for loosely-coupled distributed
systems. In Proceedings of the 7th symposium on Operating systems
design and implementation, pages 335–350, 2006.

[7] Kun Cao, Shiyan Hu, Yang Shi, Armando Walter Colombo, Stamatis
Karnouskos, and Xin Li. A survey on edge and edge-cloud computing
assisted cyber-physical systems. IEEE Transactions on Industrial
Informatics, 17(11):7806–7819, 2021.

[8] Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed Kosba, Ari Juels, and Elaine
Shi. Solidus: Confidential distributed ledger transactions via pvorm. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 701–717, 2017.

[9] Saksham Chand and Yanhong A Liu. What’s live? understanding
distributed consensus. arXiv preprint arXiv:2001.04787, 2020.

[10] Wu Chen, Jiajia Liu, and Hongzhi Guo. Achieving robust and efficient
consensus for large-scale drone swarm. IEEE Transactions on Vehicular
Technology, 69(12):15867–15879, 2020.

[11] George F Coulouris, Jean Dollimore, and Tim Kindberg. Distributed
systems: concepts and design. pearson education, 2005.

[12] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast
and multicast algorithms: Taxonomy and survey. ACM Computing
Surveys (CSUR), 36(4):372–421, 2004.

[13] Bradley Denby and Brandon Lucia. Orbital edge computing: Nanosatel-
lite constellations as a new class of computer system. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 939–954, 2020.

[14] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM), 35(2):288–
323, 1988.

[15] Bruno Chianca Ferreira, Guillaume Dufour, and Guthemberg Silvestre.
Mace: A mobile ad-hoc computing emulation framework. In 2021
International Conference on Computer Communications and Networks
(ICCCN), pages 1–6. IEEE, 2021.

[16] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossi-
bility of distributed consensus with one faulty process. Journal of the
ACM (JACM), 32(2):374–382, 1985.

[17] National Science Foundation(NSF). Cyber-physical systems, 2012.
https://www.nsf.gov/pubs/2021/nsf21551/nsf21551.htm.

[18] Seth Gilbert and Nancy Lynch. Perspectives on the cap theorem.
Computer, 45(2):30–36, 2012.

[19] Alessandro Giusti, Jawad Nagi, Luca Gambardella, and Gianni A
Di Caro. Cooperative sensing and recognition by a swarm of mobile
robots. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 551–558. IEEE, 2012.

[20] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant
broadcasts and related problems. Technical report, Cornell University,
1994.

[21] Gautier Hattenberger, Murat Bronz, and Michel Gorraz. Using the
paparazzi uav system for scientific research. In IMAV 2014, international
micro air vehicle conference and competition 2014, pages pp–247, 2014.

[22] Heidi Howard and Richard Mortier. Paxos vs raft: Have we reached
consensus on distributed consensus? In Proceedings of the 7th Workshop
on Principles and Practice of Consistency for Distributed Data, pages
1–9, 2020.

[23] Patrick Hunt, Mahadev Konar, Flavio P Junqueira, and Benjamin Reed.
{ZooKeeper}: Wait-free coordination for internet-scale systems. In 2010
USENIX Annual Technical Conference (USENIX ATC 10), 2010.

[24] Nasser Jazdi. Cyber physical systems in the context of industry 4.0. In
2014 IEEE international conference on automation, quality and testing,
robotics, pages 1–4. IEEE, 2014.

[25] David Johnson, Ntsibane S Ntlatlapa, and Corinna Aichele. Simple
pragmatic approach to mesh routing using batman. 2008.

[26] David B Johnson and David A Maltz. Dynamic source routing in ad
hoc wireless networks. In Mobile computing, pages 153–181. Springer,
1996.

[27] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts. In 2016 IEEE symposium on security
and privacy (SP), pages 839–858. IEEE, 2016.

[28] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed
Computing Column) 32, 4 (Whole Number 121, December 2001), pages
51–58, 2001.

[29] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine
generals problem. In Concurrency: the works of leslie lamport, pages
203–226. 2019.

[30] Butler W Lampson. How to build a highly available system using
consensus. In International Workshop on Distributed Algorithms, pages
1–17. Springer, 1996.

[31] Edward A Lee. Cyber physical systems: Design challenges. In 2008
11th IEEE international symposium on object and component-oriented
real-time distributed computing (ISORC), pages 363–369. IEEE, 2008.

[32] L Leslie. The part-time parliament. ACM Transactions on Computer
Systems, 16(2):133–169, 1998.

[33] Guo-Ping Liu and Shijie Zhang. A survey on formation control of small
satellites. Proceedings of the IEEE, 106(3):440–457, 2018.

[34] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis,
Jacob Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan,
Diego Ongaro, Guru Parulkar, et al. The case for ramcloud. Communi-
cations of the ACM, 54(7):121–130, 2011.

[35] Valentin Poirot, Beshr Al Nahas, and Olaf Landsiedel. Paxos made
wireless: Consensus in the air. In EWSN, pages 1–12, 2019.

[36] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic. Cyber-
physical systems: the next computing revolution. In Design automation
conference, pages 731–736. IEEE, 2010.

[37] Sergio Rajsbaum and Michel Raynal. 60 years of mastering concurrent
computing through sequential thinking. ACM SIGACT News, 51(2):59–
88, 2020.

[38] Michel Raynal. Fault-tolerant message-passing distributed systems: an
algorithmic approach. Springer, 2018.

[39] Melanie Schranz, Gianni A Di Caro, Thomas Schmickl, Wilfried El-
menreich, Farshad Arvin, Ahmet Şekercioğlu, and Micha Sende. Swarm
intelligence and cyber-physical systems: concepts, challenges and future
trends. Swarm and Evolutionary Computation, 60:100762, 2021.

[40] Melanie Schranz, Martina Umlauft, Micha Sende, and Wilfried Elmen-
reich. Swarm robotic behaviors and current applications. Frontiers in
Robotics and AI, 7:36, 2020.

[41] Andrew S Tanenbaum. Distributed operating systems. CERN Euro-
pean Organization for Nuclear Research-Reports-CERN, pages 101–
108, 1996.

[42] Robbert Van Renesse and Deniz Altinbuken. Paxos made moderately
complex. ACM Computing Surveys (CSUR), 47(3):1–36, 2015.

[43] Robbert Van Renesse, Nicolas Schiper, and Fred B Schneider. Vive la
différence: Paxos vs. viewstamped replication vs. zab. IEEE Transac-
tions on Dependable and Secure Computing, 12(4):472–484, 2014.

[44] Michael Whittaker, Neil Giridharan, Adriana Szekeres, Joseph Heller-
stein, and Ion Stoica. Sok: A generalized multi-leader state machine
replication tutorial. Journal of Systems Research, 1(1), 2021.

[45] Weigang Wu, Jiannong Cao, Jin Yang, and Michel Raynal. Design
and performance evaluation of efficient consensus protocols for mobile
ad hoc networks. IEEE Transactions on Computers, 56(8):1055–1070,
2007.

[46] Yang Xiao, Ning Zhang, Wenjing Lou, and Y. Thomas Hou. A survey
of distributed consensus protocols for blockchain networks. 22(2):1432–
1465.


