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ABSTRACT

The prediction of Adaptive Optics (AO)-corrected PSFs offers considerable potential, with implications ranging
from enhanced observational planning to the post-processing of astronomical data. The intricate nature of
AO-corrected PSFs necessitated the development of advanced analytical models capable of efficiently capturing
their intricate morphology. In this work, we utilize the TIPTOP[3] PSF model to predict on-axis PSFs produced
by the SPHERE instrument of ESO’s UT3. TIPTOP accepts integrated (reduced) telemetry as input. In theory,
the physics-based analytical nature of TIPTOP should result in precise PSF predictions when using reduced
telemetry as inputs to the PSF model. However, our research underscores a divergence from this expectation.
By utilizing real on-sky datasets recorded on SPHERE, we demonstrate that the calibration of these analytical
models is essential for improved prediction accuracy. This work introduces an approach to calibrating PSF models
by conjoining them with a feed-forward Neural Network (NN). Furthermore, we present two methodologies to
approach its training. Our findings reveal that the calibrated PSF model can achieve a prediction error of 13.6%
on real on-sky datasets, while on simulated data, PSF prediction error can be further reduced to only 1.7%.
Without calibration, the direct application of the PSF model results in errors of 34.6% for on-sky data and 14.8%
for synthetic datasets.

Keywords: PSF reconstruction, PSF prediction, Adaptive Optics, PSF modelling, Machine Learning, Telemetry,
Focal Plane PSF, PSF

1. INTRODUCTION

Within the Adaptive Optics (AO) community, there is a growing interest in accurately determining the morphology
of focal-plane science-path Point Spread Functions (PSFs), primarily within the scope of AO-assisted observations.
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The knowledge of PSFs can prove useful in various applications, including more precise exposure time estimation
or improved observation planning, where observations can be ranked based on the quality evaluated from predicted
PSF morphology under specific environmental conditions. Additionally, PSFs can be used in the post-processing
of astronomical observations. This is especially helpful when observing extended targets or crowded stellar fields
where PSFs may not be directly accessible. Predicted PSFs can also be utilized to diagnose AO systems health
and estimate the error budget.

Several types of PSF reconstruction (synonymously, PSF-R or PSF prediction) algorithms were proposed to
address the abovementioned applications. Back in 1997, Véran et al.[5] proposed a PSF Reconstruction (PSF-R)
method allowing one to estimate the “Atmosphere/AO” PSF solely based on the AO data (WFS measurements
and deformable mirror shapes - also called telemetry). Applying the method for PUEO (the CFHT AO system),
they demonstrated that the AO-PSF could be estimated to be better than 5% error for its FWHM. This seminal
work, proposed already 20 years ago, initiated an effort in the AO community to provide astronomers with PSF
models associated with their observations. However, even if the efforts have been continuously progressing (e.g.,
140 papers on Astro-ph since 1997), the lack of scientific applications is a clear sign of the complexity of the whole
process. Several factors can explain this situation. First, the impact of the telescope and instrument PSF, not
encoded in the telemetry, plays a major role in the final PSF shape. In particular, calibrating instrumental NCPA
in conditions as close as possible to the actual observations has been one of the main challenges. Then, the AO-PSF
reconstruction assumes a perfectly calibrated AO system while operational constraints (temperature, gravity,
local turbulence, misalignment) may modify the working point of the adaptive telescopes. This miscalibration
information is not (or only partially) captured by the telemetry. Finally, the generalization of the PSF-R algorithm
to multi-LGS systems remains a challenge. This brings us to the conclusion that the main limitation in PSF-R
is not due to the accuracy of the model but to its actual calibration. Therefore, in this work, we propose an
alternative approach where we significantly simplify the model and focus our efforts on trying to properly calibrate
it with on-sky data.

PSF prediction can be approached within the framework of Fourier-based PSF models[4, 2, 1], such as
TIPTOP, which we use extensively in this work. TIPTOP models PSF by leveraging statistical properties of the
residual wavefront by breaking it down into multiple pupil-plane Power Spectral Density (PSD) contributors.
It enables easy inclusion of various error contributors into the model, making it modular and flexible. The
Fourier-based approach is compatible with all types of AO systems, including Laser Tomography Adaptive Optics
(LTAO) and Multi-Conjugate Adaptive Optics (MCAO), which is pivotal within the context of the upcoming
ELT instruments. The statistical nature of TIPTOP enables the generation of infinite-exposure PSFs in one shot
without the need for extensive end-to-end simulations, making it fast and efficient. TIPTOP relies on integrated
telemetry instead of full AO telemetry recorded at the loop frequency. It is beneficial since using the latter for
PSF-R poses a challenge for many current and upcoming systems due to the large amount of telemetry data that
needs to be stored and transferred in this case. For example, the Extremely Large Telescope (ELT) will only
accommodate the storage/transfer capacity of 40TB of data per night, including science images, calibrations, and
potentially some AO telemetry. This is approximately a factor 2 lower than the typical amount of data produced
by a multi-WFS system (e.g., LTAO or MCAO) during a single night. Consequently, there is a pressing need
to compress the volume of telemetry data used for PSF-R applications, which can be approached by utilizing
Fourier-based methods and storing a reduced set of telemetry only.

It is important to note that the telemetry reduction process is also very system-specific. The PSF model also
must be tailored to each AO system individually. It is valid for other PSF-R methods, as well as for TIPTOP.
In this study, we focus primarily on the SPHERE instrument of UT3. It has the most extensive PSF dataset
produced on VLT, with over 1300 samples available, including 360 in H-band. Moreover, SPHERE is a SCAO
system, making it a more straightforward instrument to model. SPHERE can be viewed as a path-finder for
future work with GALACSI Narrow-Filed Mode (NFM) and ELT instruments. As a PSF model, we employ the
TipTorch code∗, which is an alternative implementation of the P3 library (part of the TIPTOP† framework).

∗https://github.com/EjjeSynho/TipTorch
†https://github.com/astro-tiptop/TIPTOP
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2. DIRECT PSF PREDICTION

The main aim of this study is to achieve PSF prediction accuracy below 10%. We are not discussing this
requirement here and how it would link to science cases, but we arbitrarily take it as the first reasonable goal.
Also, this study will rely on the full PSF morphology and not only the SR of the FWHM: we will consider the
full PSF profile to be estimated to be better than 10%.

As described above, we employ the reduced telemetry as input into the TipTorch model to predict PSFs under
specified conditions. This methodology of utilizing telemetry as a direct input of the model will later be termed
direct prediction. It is crucial to clarify the distinction between full telemetry and reduced telemetry mentioned
before. In this context, full telemetry includes DM commands, slopes, site monitoring data, WFS images, raw
scientific images, instrument configurations, and more. Meanwhile, the reduced telemetry is derived from the raw
telemetry and includes such integrated parameters as atmospheric profiles, r0, wind speed/direction, instrument
settings, processed scientific images, etc.

Reduced on-sky telemetry Model inputs TipTorch

Predicted PSF

Figure 1. TIPTOP provides a full-analytical prediction of the PSF morphology based on the reduced telemetry input.

We tested the direct prediction approach on a real on-sky 360 H-band SPHERE PSFs dataset. Each data
point in this dataset consists of a PSF with associated synchronously recorded reduced telemetry, making it
possible to compare the model with real on-sky data. For consistency, we utilized PSFs at a single wavelength of
1.625 microns in these tests. The results are presented in Fig. 2. The radial profiles in this figure are normalized
to the maximum value of a median on-sky PSF profile. The same normalization is applied for all similar figures
onwards. The radial profiles are computed by averaging the radial slices of PSF with the centre at PSF intensity
maximum.

102

101

100

10-1

100 205 15
Separation from on-axis, [pix]

Re
la

tiv
e 

in
te

ns
ity

, [
%

]

On-sky PSF dataset

Predicted PSF dataset

Absolute error

Maximum error: 37.8 %

Max. absolute error

Figure 2. The prediction proved to be inaccurate when reduced telemetry is directly input into the TipTorch PSF model.
This can be caused by inaccuracies and biases present in on-sky telemetry, or by potential inaccuracies in the PSF model
itself.

Fig. 2 shows that direct PSF prediction proved to have very poor accuracy, way below the requirements
(i.e., above 10% error). This can be attributed to two potential factors: the incomplete PSF model and/or the
inaccurate telemetry inputs. Therefore, in this case, it is instrumental to first validate the PSF model. By
validation, we mean proving that our model is able to fit on-sky PSFs with high accuracy.



3. MODEL VALIDATION

To validate the model, the approach is to fit the PSF model to the dataset of on-sky PSFs and identify the highest
accuracy of the fitting achieved. The H-band dataset mentioned in the previous section was used for this purpose.
The TipTorch model was fitted to each PSF in the dataset, utilizing the on-sky telemetry as an initial guess for
the optimizer. The comparison between the fitted and the on-sky profiles is depicted in Fig. 3. The same fitting
process was repeated for the MUSE Narrow Field Mode (NFM) PSFs, as shown in Fig. 4.
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Figure 3. (a) From top to bottom (logarithmic scale): an example of on-sky SPHERE PSF, a PSF fitted with TipTorch,
and the difference between on-sky and fitted PSFs. (b) The profiles of fitted SPHERE PSFs show precise correspondence to
on-sky data, proving the ability of TipTop to accurately represent PSF morphology when provided with the correct inputs,
which in this case are determined by fitting. Reduced telemetry here serves as an initial guess for the fitted parameters.
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Figure 4. (a) From top to bottom (logarithmic scale): an example of on-sky MUSE NFM PSF, a PSF fitted with TipTorch,
and the difference between on-sky and fitted PSFs (logarithmic scale). (b) Profiles for the same PSF.

These findings indicate that the model can accurately represent the morphology of PSFs, but only when precise
inputs are utilized. Therefore, the poor accuracy of prediction described earlier can be potentially attributed to
inaccuracies and biases inherent to the model inputs (and not the model itself). To enhance accuracy, we will
delve into the process of calibrating the model inputs in the next section.



4. MODEL CALIBRATION

We propose adding a corrective transformation preceding the PSF model to implement the model calibration.
This transformation acts as an intermediary between the PSF model inputs and the reduced telemetry, generating
corrected inputs that lead to more accurate PSF predictions. This approach assumes some systematic biases are
present in the reduced telemetry. The details of this approach are outlined in Fig. 5.

Model inputs TipTorch
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Model inputs TipTorch
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Reduced on-sky telemetry

Calibrated
prediction

Direct
prediction

Figure 5. It has been demostrated earlier that TipTop can accurately recreate on-sky PSFs provided correct inputs.
However, the fitting showed that these inputs differ from the reduced telemetry. It was suggested, that a transformation
(calibrator) can be found to map reduced telemetry to PSF model inputs, assuming a systematic relationship exists between
the two. This calibrator is a feed-forward Neural Network (NN). Note, that some parameters are directly passed into the
PSF model bypassing the calibrator as indicated in Tab. 1. This arrow will be later omitted.

We use a feed-forward Neural Network (NN) as a calibrator, which is trained to learn an implicit transformation
from reduced telemetry to model inputs. The advantage of using an NN is its ability to efficiently handle non-
linearities and learn latent correlations between input and output parameters from data. In this application,
the network architecture can be very compact, which is beneficial since the datasets we use are very limited in
number of samples. Then, the problem of determining the optimal calibrator reduces to the problem of training
the NN. In this work, we proposed several approaches to this problem.

Table 1. A comprehensive yet non-exhaustive list of TipTorch inputs used to simulate SPHERE PSFs. Parameters that
are ”passed directly” are extracted from the reduced telemetry and directly used in TipTorch. Meanwhile, ”calibrator
inputs” are first passed to the calibrator to make it generate model inputs for TipTorch model.

Passed directly in TipTorch Calibrator inputs Model inputs

DM pitch, Nactuators r0 Flux normalization

Pupil/apodizer masks Loop rate WFS reconst. noise

Telescope pointing Photons per [s] per WFS subap. Tip/tilt jitter

λscience, λWFS Wind speed (ground and 200 [mbar]) PSF background

C2
n profile Wind dir. (ground and 200 [mbar])

L0

Loop delay, loop gain

It is also important to underscore that certain parameters essential for initializing the TipTop model are
missing in the telemetry. In our particular case, the data related to tip/tilt jitter was not recorded in the reduced
telemetry generated by the SPHERE instrument, and therefore, it had to be inferred by the calibrator based on
other available inputs. Thus, the calibrator plays an indispensable role in the entire process.



4.1 Näıve approach to calibrator training

To train the calibrator NN, creating a training dataset that maps reduced telemetry to model inputs is crucial.
To do it, the dataset of fitted model inputs is used. This approach assumes that systematic relations between
the reduced telemetry and the fitting results are present in the training data. To generate the dataset of fitted
parameters, the PSF model is sequentially fitted to each PSF in the on-sky dataset independently. The NN is
then directly trained to learn the implicit transformation between reduced telemetry fitted parameters. Here and
later in this work, we employ 300 H-band samples for training, while 60 samples are used for validation. The
results of this approach are shown in Fig. 6ab.

On-sky sample Fitted model inputsFitting2.

On-sky sample Fitted model inputsFittingN.
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Figure 6. (a) The dataset of fitted PSF model parameters is created to train the calibrator. (b) The näıve approach for
training the calibrator NN adopts the optimal model inputs that can be found via fitting and related to reduced telemetry
via training the calibrator.
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Figure 7. Radial profiles are predicted for the validation dataset. The prediction made by the calibrator, which was
trained using a näıve approach, shows poor accuracy. The calibrator failed to generalize the transformation from the
reduced telemetry to model inputs. This can mean that the correlation between them is absent. This can be attributed to
overfitting, which resulted in creating an inconsistent dataset of fitted modal inputs.

One can see from Fig. 7 that this method leads to even inferior quality compared to previously discussed direct
prediction when reduced telemetry was used without any proceeding transformation applied. This can be caused
by a weak correlation between initial estimations and fitting results, which can be attributed to inconsistencies
in the fitting outcomes. During optimization, the model seeks parameter values that align with the morphology



of observed on-sky PSFs. However, it does not always maintain the physical plausibility of these values. The
optimizer might settle into local minima instead of converging to a global one, overfitting to PSF morphology but
yielding parameter values that are not physically meaningful.

One method to mitigate this is by incorporating regularization strategies like Maximum A Posteriori (MAP)
probability. This approach minimizes not only the disparity between the generated and on-sky PSFs but
also ensures that optimized parameters remain within physically meaningful ranges defined by their statistics.
Nevertheless, this is only a partial remedy. MAP can yield biased estimates and does not guarantee convergence
to the global minimum if the statistics of the regularized parameters are not precisely known.

The TIPTOP/TipTorch models are flexible, offering precise control over PSF morphology with multiple
parameters (discussed in Sec. 1). However, these parameters can overlap in their effects on PSF morphology.
For instance, the r0 parameter and tip/tilt jitter can influence the PSF morphology similarly, both manifesting
themselves as a blur. Thus, the optimizer can identify multiple combinations of these parameters that achieve
nearly identical training errors. Such scenarios represent ill-conditioned optimization problems where the landscape
of the optimization criteria is notably flat, facilitating overfitting. One way to address this issue is by selecting
the parameters with the most significant impact on PSF morphology, which reduces the size of the optimized
parameters space. The present study focuses solely on fitting and predicting normalized flux, tip/tilt jitter, and
WFS reconstruction noise. In our application to the SPHERE instrument, they are proven to impact PSF the
most. The remaining model inputs are directly fetched from reduced telemetry bypassing the calibrator.

The issue of overparameterization is also directly connected to noise sensitivity. Models with too many
parameters become particularly susceptible to training data noise. This hypersensitivity can lead to unpredictable
optimization behaviors with minor data variations and a higher possibility of converging to local minima. This
challenge is exacerbated by the low signal-to-noise ratio of some on-sky samples used for training. Moreover,
extensive filtering of samples is not a practical solution, provided the limited size of our dataset.

In conclusion, all these factors described above make it challenging for the optimizer to converge a global
minimum, making it more likely to converge into local minima instead. Consequently, individual sample fittings
might be precise in terms of the accuracy of PSFs, but the overall fitted parameter distribution appears randomized
across the dataset. Despite applying regularization and reducing the number of calibrated parameters to only
a necessary subset, the results depicted in Fig. 7 remain unsatisfactory, with poor generalization capabilities.
Ultimately, the solution to the problem lies in adeptly managing model complexity, necessitating a re-evaluation
of our calibrator training strategy.

4.2 Joint training approach

We aim to introduce an alternative calibrator training method that demonstrates resilience against noise,
reduces parameter coupling, and improves the generalization capabilities of the calibrator. The new proposed
method integrates the PSF model directly inside the training loop of the calibrator, essentially implementing the
physics-informed NN. Instead of linking reduced telemetry to the previously fitted model inputs, this approach
directly bridges telemetry to corresponding PSFs vie calibrator NN followed by the PSF model. The schematic
representation of this technique is outlined in Fig. 8.

We perform training in a batch-wise manner. By doing so, the calibrator is trained to learn an implicit
transformation that satisfies every sample in a given batch while all samples collectively contribute to the same
loss function. Therefore, the optimizer simultaneously minimizes the error for all training samples, preventing any
particular sample from dominating the loss. Additionally, since a single calibrator is shared for all training samples
in the batch, the gradient updates collected from all data samples are averaged, increasing the robustness of the
training loop to noise and mitigating the risk of overfitting. In Sec. 4.1, in contrast, the dataset of fitted model
inputs was generated by fitting the model to each PSF individually, resulting in no cross-sample regularization.
In this context, by loss function, we mean the Mean-Squared Error between the predicted and on-sky PSF cubes,
and by sample, we mean the reduced telemetry with its associated on-sky PSF. The outcomes of this methodology
are detailed in Fig. 9. The results reveal a significant improvement in accuracy. Although the error is still above
10%, the results are very promising.
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Figure 8. An alternate methodology for calibrator training integrates the PSF model directly into the calibrator training
loop. Using this technique, the calibrator is trained to directly associate reduced telemetry with PSF morphology by
backpropagating through the PSF model. The PSF model mitigates overfitting and incorporates underlying physics into
the problem by acting as an implicit regularization.
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Figure 9. The proposed training approach significantly improves calibrator generalization capabilities, leading to improved
accuracy when applied to real data. The profiles in this figure are computed for the validation dataset.

4.3 Training the calibrator on simulations

As discussed previously, on-sky data has its limitations. For example, realistic PSFs are prone to noise, while real
telemetry can suffer from inaccuracies and measurement biases. Furthermore, the number of available on-sky
samples is severely limited in our case. In fact, this problem is characteristic of most of the available on-sky
datasets. This can be explained by the practical challenge of collecting a systematic, extensive PSF dataset
simultaneously with associated telemetry and by the fact that the scientific community has generally given little
attention to this issue before.

Therefore, it is crucial to eliminate the mentioned factors by testing the proposed techniques within a
controllable environment to achieve clearer results. To do so, we ran realistic end-to-end simulations of SPHERE
(IRDIS) using the OOPAO code‡. In total, 10,000 H-band PSFs with associated telemetry were simulated.
Unlike on-sky data, simulated telemetry is error-free, and PSFs are noiseless. The resulting synthetic telemetry
underwent a reduction process analogous to on-sky telemetry. Initial parameters for simulations were sampled
from real telemetry and site monitoring data.

Utilizing a comprehensive synthetic dataset allows us to re-evaluate the previously proposed techniques by

‡https://github.com/cheritier/OOPAO

https://github.com/cheritier/OOPAO


using simulated datasets and test the hypothesis that the accuracy of the considered approaches is indeed limited
by the quality of datasets used and not by the PSF models.

First, the direct prediction is revisited. The methodology employed here is identical to the one introduced
earlier in Sec. 2. One can see in Fig. 10a that, notwithstanding the complete controllable environment of OOPAO
simulations, profiles directly predicted by TipTorch do not precisely match with OOPAO profiles (14.8% error).
This discrepancy arises from the difference in the representation of specific input parameters between OOPAO
and TipTorch, which introduces a bias in the telemetry, underscoring the necessity for using a calibrator.

Second, we revisited the procedure of calibrator training utilizing the fitted dataset. For this purpose, we
fitted the TipTorch model to each synthetic PSF in the dataset and used the fitting results to train a calibrator
that learns a relationship between the synthetic telemetry and the fitted model inputs. The method is identical
to the one discussed earlier in Sec. 4.1, with the only difference being the utilization of simulated data.

As one can see, even though this approach earlier proved inaccurate with on-sky datasets (Fig. 7), the results
shown in Fig. 10b demonstrate significantly higher prediction accuracy when synthetic data is used. In this case,
the error of calibrated predictions reached down to 1.7% compared to the catastrophic 64.7% achieved earlier
with on-sky data.

It can be explained by the fact that when the model inputs are fitted to noise-free PSFs, the optimizer is more
prone to approach a true global minimum. This, in turn, facilitates the identification of more robust correlations
between the reduced telemetry and the fitted optimal model inputs, facilitating the training of an accurate
calibrator that can effectively rectify systematic biases in the input data and learn intricate relationships between
the reduced telemetry and model inputs, resulting in enhanced prediction accuracy.

The subsequent steps involve assessing the influence of prediction precision on a synthetic dataset, considering
varying amounts of photon noise and reduced telemetry errors. Additionally, exploring the training dataset size
will be considered. Moreover, a joint training methodology incorporating synthetic data has yet to be attempted.
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Figure 10. (a) Direct prediction using the synthetic reduced telemetry. Although simulations are fully controlled, the
calibration is still required to match OOPAO and TipTorch models exactly. (b) The näıve approach to train calibrator was
revisited for synthetic data. Despite very inaccurate prediction results obtained for on-sky samples earlier in Sec. 4.1, for
synthetic samples, this approach resulted in a very high quality of prediction since clean, noiseless synthetic data were
used for training the calibrator.



5. CONCLUSION AND FUTURE WORK

The observed results suggest that the prediction accuracy is mainly limited by the quality of the input data rather
than by the PSF models. Model validation and experiments conducted using synthetic data have indicated that
PSF models can yield highly accurate results when supplied with appropriate inputs. Therefore, the quality and
quantity of available on-sky datasets might be the main concern within this scope. The lack of excessive and
systematically recorded on-sky datasets limits the potential for developing accurate PSF predictors. While a few
of these datasets are available, most remain poorly systematized and critically deficient in samples. Thus, it is
crucial to log system telemetry associated with scientific PSFs in current and upcoming systems. It is worth
mentioning that this data can be used not exclusively in PSF prediction but in various applications like system
diagnostics and debugging.

As illustrated, fast and compact PSF models, like TipTop, can accurately model PSFs using a compact set
of integrated parameters. This representation suffices for many PSF prediction tasks across varied instruments.
This obviates the necessity of archiving complete telemetry consistently every night. Nevertheless, recording the
full telemetry is sometimes still essential to create datasets that can be used in the future, e.g., to train the future
generation of PSF predictors or, as was mentioned earlier, for system debugging and diagnostics.

To mitigate on-sky data scarcity, providing access to ”digital twins” alongside scientific instruments is essential.
This entails offering officially supported instrument simulation tools to the community. For example, for this
research, we recreated the SPHERE IRDIS in OOPAO – a process that would have been unnecessary if pre-existing
end-to-end simulations had been freely available. As shown, digital twins can be useful in compensating for the
absence of on-sky data. They serve as valuable tools for instrument debugging in the design phase, as well as for
research involving these instruments later. Additionally, digital twins can be utilized for pre-training machine
learning models, as demonstrated in this study. The pre-trained models can then be fine-tuned with on-sky data.
In this case, fine-tuning will require significantly fewer samples than training a network from scratch using only
on-sky samples, which is practical in our applications when the number of on-sky samples is severely limited.

The forthcoming phase of this research involves developing a PSF-prediction framework for GALACSI NFM,
leveraging the methodologies and techniques discussed in this work. After successfully implementing these
techniques for NFM, this framework can be further extended towards ELT instruments.
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