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Université Cote d’Azur, Observatoire de la Cote d’Azur, CNRS, Laboratoire
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ABSTRACT

The prediction of the atmospheric and turbulence conditions are of great interest for the astronomical community
and free space optical telecommunications. With the advent of the next generation of extremely large telescopes
(ELT), the knowledge of atmospheric conditions several hours prior to observations has become essential. As
well, in the field of free space optical telecommunications, the propagation of optical signals in the atmosphere
is significantly influenced by weather conditions (clouds, fog, rain, etc.) and optical turbulence. A numerical
approach based on the Weather and Research Forecasting (WRF) model coupled with an optical turbulence
model for the predictions above the Calern site has been used. Results have shown good agreement between
predictions and observation. However, a difference persists in the first 500 m of the atmosphere. We present in
this paper two approaches to improve the predictions. The first one has been developed by Giordano et al.[1]
using a ‘site learning’ method. The second one consists of using data from an instrumented drone to improve
the initial conditions of the simulations. We will also present a new method for short-term prediction using two
statistical learning algorithms: ARIMA (Autoregressive Integrated Moving Average) and SARIMA (Seasonal
Autoregressive Integrated Moving Average).

1. INTRODUCTION

Turbulence is a natural and ubiquitous phenomenon present in various aspects of our universe, influencing both
astronomical and telecommunications communities. In astronomy, turbulence affects the quality of observations,
limiting our ability to explore the space with very high precision. Therefore, besides the importance of reducing
the lost in cost of observations due to bad atmospheric conditions, it is important to specify a site that provides
an optimal optical quality. Generally, the objective is to minimize the impact of turbulence on the optical beam
as it travels through the atmosphere. Adaptive Optics (AO) techniques are employed to achieve this goal, aiming
to mitigate turbulence effects. However, relying solely on AO methods cannot completely eliminate the challenges
posed by turbulence. Therefore, there is a critical necessity to develop a robust and efficient tool capable of
forecasting atmospheric turbulence conditions several hours in advance. This advancement would facilitate the
optimization of astronomical observation plans, following the concept of “Flexible Scheduling”.

Similarly, in telecommunication, turbulence introduces complexities in signal propagation, resulting in fading,
distortion, and signal losses. These disturbances can significantly impede communication, particularly within
free-space optical networks. As a result, it becomes crucial to anticipate the optical ground station that experiences
the least turbulence, thus enabling the identification of optimal time frames for laser links, both in transmission



and reception. This approach can be described as “Smart Scheduling.” Within this context, the significance of
turbulence prediction in both astronomy and telecommunications cannot be emphasized enough.

Previously, our team has developed a numerical approach based on the Weather and Research Forecasting
(WRF) model coupled with different optical turbulence models. The results were then compared with in-situ
and optical measurements from the Calern Atmospheric Turbulence Station (CATS) (Rafalimanana et al.[4]). In
order to improve the predictions, an optimization process by incorporating local measurements to better capture
site-specific characteristics was tested by Giordano et al.[1]. This technique, known as “site learning,” yielded good
results when tested at the Calern Observatory site in France, resulting in better prediction accuracy. Although
there has been an improvement in the prediction, some dispersion still persists within the first 500 meters of the
atmosphere. In order to improve the predictions in this part of the atmosphere, we have employed an instrumented
drone to conduct in-situ measurements of meteorological parameters, including pressure, temperature, humidity,
and wind, within the first 500 meters above the ground. The obtained data will contribute to the improvement of
the simulations, which will improve the turbulence prediction. On the other hand, we used two statistical learning
algorithms, ARIMA and SARIMA, to predict surface weather parameters. This approach can subsequently help
us predict the OT vertical profile parameters once we have successfully predicted the vertical weather parameter
profile using data from the drone.

This paper is organized as follows. In section 2, we give an overview of the WRF model configuration. Section 3
describes the model of optical turbulence (OT). In Section 4, we will explore the ways to optimize the predictions.
Section 5 will present the results stemming from improvements in model validation achieved through the site
learning method, the instrumented drone and the statistical learning models. And finally, in section 6 we draw
the primary conclusion from our study.

2. WRF SIMULATIONS SETUP

In our research, we used the Weather Research and Forecasting (WRF) model, which was developed by the
National Center for Atmospheric Research (NCAR). This model allows us to predict weather parameters which
are central for deriving turbulence predictions as illustrated in the Figure 1.

Running a Weather Research and Forecasting (WRF) simulation involves several steps to accurately model
atmospheric conditions and predict weather patterns. First one needs to gather the necessary input data, including
meteorological observations and terrain information. Next, configure the WRF model by selecting appropriate
physics schemes, grid resolutions, and simulation domain. Then, preprocess the data to create initial and boundary
conditions for the simulation.

Weather parameters OT parameter
Pressure,
Temperature, Model 2 .
n%'?j'; Relative humidity, of OT C,, profile
Wind speed,

Wind direction

Figure 1: The flowchart for the turbulence prediction.

For our simulations, we used the meteorological input data from the Global Forecast System (GFS) with a
resolution of 0.25x0.25 degrees (approximately 111x111 km). To account for the terrain roughness accurately, the
topographic data were sourced from the Shuttle Radar Topography Mission (SRTM), providing a resolution of
0.09x0.09 km. The model was configured with four domains of horizontal resolutions varying from 27 x 27 km to
1 x 1 km (Figure 2). Table 1 summarized the configuration of our domains.



Domains Resolution (km?) | Grid points number | Vertical level number | Vertical resolution (m)
D01 27 x 27 140 x 140 45
D02 9x9 130 x 130 45 Ah . =23
D03 3x3 118x 118 45 Ah =532
D04 1x1 106 x 106 45
Table 1: The flowchart for the turbulence prediction.
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Figure 2: Left: topography of the main and nested domains. Right: vertical levels of the model.

3. OPTICAL TURBULENCE MODEL

In this study, we used the empirical model developed by Trinquet and Vernin[5]. This model is based on the
analysis of data from a large number of radiosondes launched worldwide. The data sets consisted of simultaneous
measurements of meteorological parameters (Pressure, Temperature, Relative Humidity, and Wind Velocity) and
of the refractive index structure parameter C2. Trinquet and Vernin derived a statistical relationship from these
radiosonde measurements, linking the C2 profile to the vertical gradient of horizontal wind shear S(z) and the
vertical gradient of mean potential temperature x(z) given by the equation 1.

CF(2) = 6(2).x(2).5(2)"/? (1)

In this equation, z represents the altitude and ¢(z) is a function derived from the data, which represents the
statistical profile of the radiosonde balloons given by equation 2.
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where (), is the median value. The formulas for x(z) and S(z) are given by the equations 3 and 4.
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where V, and V,, represent the horizontal components of wind velocity, and 6 represents the potential
temperature!. To derive the C2, we use the Gladstone’s law given by equation 5.

e = (B p) e )

where P(z) is the vertical profile of atmospheric pressure in hPa, T'(z) is the vertical profile of air temperature in
Kelvin.

4. PREDICTION OPTIMIZATION
4.1 Site learning

Giordano et al.[1] implemented a method to enhance the empirical model obtained from balloon radio-soundings.
This method consists in incorporating site-specific local statistics to consider the unique characteristics of the site.
This method was called site learning (SL). As described in the equation 1, ¢(z) is the statistical profile depending
on available measurements. Giordano et al.[1][2], used sample from the CATS database that corresponds to the
same WRF forecasting sample to evaluate the influence of integrating local measurements into the empirical
model as a constraint. The results have shown a significant enhancement in comparison to the original empirical
method for our forecasting tool. However, there is still some dispersion in predictions primarily attributable to
the difficulties of accurately forecast ground conditions due to the complexity of the terrain. To address these
issues, we intend to explore the utilization of instrumented drones within the first 500 meters above the ground
(section 4.2).

4.2 Instrumented drone

Our experiment consists of an unmanned aircraft system (UAS) equipped with a nacelle containing instruments to
measure the meteorological parameters (pressure, temperature, humidity, wind) in the first 500 m above ground.
These in-situ measurements of vertical profiles will enable us to improve the turbulence model.

The UAS employed for this study was the DJI Matrice 600 Pro, as illustrated in Figure 3. This UAS model is
capable of accommodating a payload of up to 6 kg at maximum capacity, with a flight duration varying from 16
to 38 minutes depending on the transported weight. The nacelle is attached to the drone by a rope 15 to 30m
long, and contains different weather stations. Rafalimanana et al.[3] has made several test campaigns on the site
of Calern to determine the best configurations for the position of the stations below the drone. Furthermore, he
proved that the chosen weather stations were in good agreement with the reference weather stations in Calern.

Figure 3: The instrumented drone.

!The potential temperature is the temperature assigned to a parcel of dry air, which represents the temperature that
the parcel would have if it were brought adiabatically to a reference pressure level of 1000mb.



To achieve measurements of vertical profiles of meteorological parameters within the first 500m layer of
atmosphere, the entire instrument would move vertically above a fixed location, ascending and descending at a
rate of approximately 1 meter per second, in order to gather a substantial amount of data with a high vertical
precision.

The next step is to inject these data into the WRF model. This is the role of the module “Objective Analysis”
(OBSGRID). In our case, pressure, temperature, relative humidity, wind speed, and wind direction profiles from
the instrumented drone are used as input into WRF.
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Figure 4: Drone data injection in WRF workflow diagram.

4.3 Statistical learning models

ARIMA and SARIMA models are time series forecasting techniques used to predict data with a temporal
component. ARIMA model is typically denoted by ARIMA(p,q,d), where p, d and q represents the three key
components of the model. SARIMA model includes additional parameters to model the seasonal component
of the data, it’s represented by SARIMA(p, d, q)(P, D, Q)s. In both models, the p component represent the
relationship between the current value and its past values. The d component, accounts for differencing the data
to make it stationary. The q component models the relationship between the current value and past error terms.
The next three components (P, D, Q) used in addition for the SARIMA model, are similar to (p, d, q) but pertain
to the seasonal part of the model. The ‘s’ is the length of the seasonal cycle. We choose ‘s’ to be equal to 24
as our data is sampled every hour. Concerning the other components, we used pmdarima library in pthon to
perform automatic ARIMA and SARIMA components selection.
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Figure 5: Workflow of the data division for the models.

The data used for this study is the weather surface parameters from the CATS database. As shown in the
Figure 5, we used 30% of our data to find the optimal (p,d,q) or (p,d,q)(P,D,Q) components for our model for
each weather parameter. The remaining 70% were divided into batches of 10 days of fitting using the optimal
(p,d,q) or (p,d,q)(P,D,Q)s and 4 hours of prediction for each weather parameter. The preliminary results are



presented for 500 prediction of 4 hours each. The predictions were compared to measurement by CATS. The
preliminary results are encouraging.

5. RESULTS AND DISCUSSION
5.1 Site-learning

In this subsection, we present the impacts of the SL (presented in section 4.1) on the improvement of the
turbulence model. Figure 6, shows the median profiles for the entire month of March 2021 of the C2 measured
by the PML (Profiler of Moon Limb) provided by the Calern Atmospheric Turbulence at Calern Observatory
(Ziad, A. et al.[6]) and predicted by WRF. The associated colored surfaces represent, for each layer, the range
between the first and third quartiles. When using the statistical model (radio sounding balloons model) of the
optical turbulence (OT) model without SL, a significant disparity is observed between the prediction and the
measurement mostly in the lower part of the atmosphere. However, when applying the SL method, the gap is
reduced. These results are consistent with those presented in Giordano et al.[1].
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Figure 6: Median vertical profiles of the C? for the month of March 2021. The black profiles represent
measurements by PML. The red profiles are predicted by WRF using the empirical model, with the left side
representing predictions made without considering the SL method and the right side showing predictions made
with consideration of the SL method. The colored regions show the interval between the first and the third
quartiles at each altitude.

Regarding these median profiles, it is observed that WRF without SL underestimates C2 more than WRF
with SL when compared to PML measurements. So, this SL method brings a significant improvement to the
forecasts. However, it is important to highlight that the prediction of the C2 in the surface layer exhibit significant
inaccuracies even after using the SL method. This could be attributed to the difficulties of predicting the ground
factors due to the theoretically demanded high resolution.

5.2 Instrumented drone

In the following, we will present the preliminary results of weather parameter prediction using drone data.
Simulations with and without using drone data are compared to drone profiles to check the accuray of the



predictions. Figures 7 and 8 presents two instantaneous profiles of weather parameters for two different days. For
these two days, we observe that injecting drone observation data into the WRF model using OBSGRID leads to
improve the predictions on the temperature.
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Figure 7: Example of vertical profiles for weather parameters for 12 December 2022. Drone profiles are represented
in blue, WRF simulations without drone data in red and WRF simulations with drone data in black.
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Figure 8: Examples of vertical profiles for weather parameters for 8 December 2022. Drone profiles are represented
in blue, WRF simulations without drone data in red and WRF simulations with drone data in black.

Regarding relative humidity, the use of drone data in the simulations improves the prediction for Figure 7,
while for Figure 8, improvement is observed up to 250 meters. For wind speed, a significant improvement is seen
in Figure 8.

As for wind direction, a slight improvement is observed for Figure 8, however for Figure 7, improvement is
observed above 250 meters. For wind speed, a clear improvement is observed in Figure 8.

In general, the improvement in weather parameter prediction will translate into an amelioration in the prediction
of OT parameters. However, to draw a definitive conclusion, it is necessary to make more measurements using
the drone for a comparative statistical study.



5.3 Statistical learning models

In the following subsection, we will present the preliminary results of forecasting using the SARIMA model
for different surface weather parameters. We have chosen to show the SARIMA results due to their superior
performance compared to the ARIMA model, primarily attributed to its ability to capture and account for
seasonal patterns. However, it’s essential to note that the SARIMA model does demand more computational
resources and processing time compared to the ARIMA model.
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Figure 9: Comparison for 500 predictions of 4 hours each with the measurements data from CATS for the weather
parameters.

Figure 9 present the correlation between the predictions and the measurements. For atmospheric pressure, it
stands out as the parameter with the most accurate predictions, primarily due to its dependence on altitude, which
remains relatively constant. The predicted values from the SARIMA model closely align with those recorded by
the CATS weather station. The correlation coefficient exceeds 95%. Temperature is also well-predicted, displaying
a correlation coefficient of over 90%. The correlation coefficient for wind speed reaches 80%. Wind speed is
highly sensitive to topography and surface effects, so its accuracy at ground level is usually hard to achieve.
Relative humidity is a challenging parameter to measure accurately, yet it still exhibits a reasonable correlation,
reaching more than 80%. Despite this, relative humidity has minimal impact on observations in the visible and
near-infrared spectrum. Nevertheless, it holds significance as it can lead to condensation on telescope mirrors,
making it an important factor to consider.

These results are encouraging, however, it would be beneficial to conduct a statistical analysis on a larger data
set. Moreover, this model can be employed to forecast drone profile weather data, contributing to predictions of
the OT parameters. This model holds significant potential for short-term weather forecasting.



6. CONCLUSION

In this study, the WRF model was used to predict vertical profiles of meteorological parameters and to estimate
the OT parameters (vertical profile of C2) over Calern Observatory site. To evaluate WRF model performances,
results of the C2 were compared with observational data coming from PML.

In order to compute the OT parameters, we used an empirical model deduced from a statistical analysis of radio
soundings balloons. Vertical distributions of OT given by this model are in good agreement compared to PML.
However, a gap persists in the ground layer. A Site Learning method was applied to improve the empirical model
and has demonstrated a significant improvement of the C? prediction. Although the dispersion above the ground
level still remains. To improve the predictions in the first 500 m above the ground we used a UAS DJI Matrice
600 Pro equipped with weather stations. We have injected the meteorological data collected using the UAS in the
WRF model. The preliminary results of the weather parameters shows encouraging results. And achieving an
improvement in weather parameter prediction will contribute to enhance the prediction of the OT parameters.
Nevertheless, further statistical analysis is required.

In the near future, we intend to make a measurement campaign using the instrumented UAS to gather a substantial
amount of data. This will allow us to derive a global conclusion on the prediction of the turbulence parameters.
Also, we plan to extend the instrumented UAS capabilities by adding temperature sensors for a direct measurement
of the structure constant of temperature fluctuations C%. Additionally, the UAS data can then be used to better
constrain the empirical optical turbulence model and improve its credibility for statistical studies that closely
align with the actual conditions of the site.

On a related note, the preliminary results of the SARIMA model were in a good agreement with measurements. It
is worthwhile to expand this study and apply this model to drone data, potentially yielding accurate predictions
for the OT parameters. Additionally, it’s worth noting that these encouraging findings encourage the exploration
of more advanced machine learning algorithms, which can prove highly beneficial for short-term predictions.
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