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Multi-epoch combination of direct imaging
observations for exoplanet detection

Jules Dallant, Maud Langlois, Éric Thiébaut, and Olivier Flasseur

CRAL, CNRS, Université de Lyon, ENS, Saint-Genis-Laval, France

ABSTRACT

Detecting exoplanets by direct imaging is a difficult task that systematically requires the use of advanced
post-processing algorithms in addition to an efficient adaptive optics and coronagraphic system. The upcoming
thirty meters class telescopes will enable exploring the inner stellar environments where the typical contrast
levels to reach will require long exposure times only achievable by combining several observations conducted days,
weeks, or months apart. For such observations, the orbital motion of exoplanets will no longer be negligible, and
a proper orbital modeling will be crucial to combine multi-epoch observations without drastically degrading the
detection confidence and the achievable contrast. In that context, we recently developed the Pacome algorithm
which efficiently combines observations of the same star while accounting for the Keplerian motion of the sought
exoplanets within an end-to-end statistical detection formalism. The sensitivity and reliability of the proposed
method constitute major advantages in the field to detect new companions at a statistically grounded confidence
level. In this paper, we consider a case-study example of thirteen VLT/SPHERE-IRDIS observations of the
HD 95086 system, and we illustrate the efficiency of the Pacome by (re-)detecting HD 95086 b with a very high
multi-epoch signal-to-noise ratio of 53.7. We also derive its orbital elements posterior distributions.

Keywords: Instrumentation: high angular resolution, techniques: image processing, methods: statistical,
methods: data analysis, planets and satellites: detection, stars: HD 95086.

1. INTRODUCTION

Direct imaging exoplanet detection and characterization require combining extreme adaptive optics with custom
differential imaging techniques and dedicated post-processing algorithms to eliminate or account for the residual
stellar leakages. Over the last decade, large efforts have been invested on new powerful post-processing algorithm
(see [20, 3] for reviews). They currently allow the detection of massive exoplanets down to 10 au but their
performance remain limited at shorter angular separations. One of the limiting factor, from a data processing point
of view, is related to the lack of diversity induced by the processing of each epoch of observations individually.
The upcoming thirty meters class telescopes such as the ELT, will enable exploring much deeper the inner
environment of nearby solar-type stars. The contrast levels to reach will require long exposure times of several tens
of hours, that will only be achieved by combining several observations conducted days, weeks, or months apart.
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At these timescales and separations, the orbital motion of exoplanets will no longer be negligible, and a proper
orbital modeling will be crucial to combine multi-epoch observations without drastically degrading the detection
confidence and the achievable contrast. Very recently, we proposed the Pacome algorithm [5] that combines
optimally several observations of the same star within an end-to-end matched filter based statistical detection
formalism. It accounts for the Keplerian orbital motion of the sought exoplanets across epochs and co-adds
constructively their weak signals. Its sensitivity and the reliability of its astrophysical outputs (orbital elements
and their uncertainties) constitute major advantages in the field to detect new companions at a statistically
grounded confidence level. Besides, its implementation is efficient and fully automatized, allowing to test and
refine a large number of orbits in a reasonable computation time.

We present the mathematical framework of our method and derive its statistical guarantees in Sect. 2,
apply and test its performances on a multi-epoch dataset of 13 observations of HD95086 acquired with the
SPHERE-IRDIS instrument, operating on the VLT, in Sect. 3 and draw the conclusions of this work in Sect. 4.

2. MULTI-EPOCH COMBINATION FORMALISM

2.1 Direct model

A typical angular and spectral differential imaging (ASDI) dataset consists of an hypercube of several 2-D frames
per spectral channel. The Paco algorithm [11, 12] learns the statistical model of the nuisance of the data in small
local patches of a few tens of pixels to remove the strong spatial correlations that lie within and to extract the
signal of a potential source. Additionally, it reduces an hypercube down to a signal-to-noise ratio (S/N) map for
each spectral channel. It is shown in [11, 13, 12] that, in the absence of source, the distribution of these S/N maps
is well approximated by a normal law. However, since the stellar leakages are caused by the diffraction of the
light in the presence of residual optical aberrations, the mono-epoch S/N maps of a given epoch t are spectrally
correlated. Consequently, in order to combine properly the different S/N maps spectrally and temporally, and
therefore to increase the detection sensitivity, the corresponding spectral correlations need to be learned and
whitened beforehand.

We consider a multi-epoch datasets of T epochs. Each mono-epoch observation consist of K 2-D frames and
L spectral channels. Let xt ∈ RL be the collection of all temporo-spectral S/N at epoch t. Assuming a prior
spectral spectrum can improve the detection of sources having a similar spectral energy distribution [12]∗. Hence,
at a given epoch t, we model xt by:

xt = αint
t γt ⊙ βt(θt(µ)) + ϵt , (1)

where ⊙ denotes the pointwise product and where αint
t is the spectrally integrated flux (0 in the absence of

source), γt ∈ RL is the assumed spectrum of the point source (normalized between 0 and 1), βt ∈ RL is a vector
whose ℓ-th element is the inverse of the expected flux standard deviation of spectral channel ℓ, θt(µ) ∈ R2 is the
2-D projected position of the potential source along its orbit µ ∈ R7, and ϵt ∈ RL is a random vector accounting
for the fluctuations of the temporo-spectral S/N values that have a Gaussian distribution with zero mean and
spectral covariance Σt such that:

ϵt ∼ N (0,Σt) . (2)

2.2 Maximum likelihood estimation

Considering all epochs independent, the multi-epoch log-likelihood of the spectrally correlated data under the
assumption of a prior spectrum γ = {γt}t=1:T writes:

Lγ(α
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∑
t
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, (3)

∗This is a mild assumption. Even when the prior spectrum differs significantly from the truth, the contrast degradation
remains modest [12].



where c1 and c3 are irrelevant constants, and where the At,γt and Bt,γt quantities are pre-calculated by Paco as
described in [12]: {

At,γt
(θ) =

(
γt βt(θ)

)T
Σ−1

t

(
γt βt(θ)

)
,

Bt,γt(θ) =
(
γt βt(θ)

)T
Σ−1

t xt .
(4)

The two terms correspond respectively to the auto-correlation of the spectrally whitened point spread function
(PSF) and to the data whitened spatially and spectrally and filtered by the shape of the whitened PSF. Remarkably,
At,γt(θt(µ)) and Bt,γt(θt(µ)) provide sufficient statistics to study a potential source with orbital elements µ. An
illustration of these terms is given in Fig. 1.

The maximum likelihood estimator of the spectrally integrated flux at epoch t with prior spectrum γt has an
analytical expression that depends solely on the At,γt and Bt,γt terms:

α̂int
t,γt

(θt(µ)) = argmax
αint

t

Lt,γt
(αint

t ,θt(µ)) =
Bt,γt

(θt(µ))

At,γt(θt(µ))
. (5)

Given our model, Bt,γt
(θ) is Gaussian distributed of variance Var{Bt,γt

(θ)} = At,γt
(θ), which is supposed

deterministic. The variance of the spectrally integrated flux estimate is in this case:

Var{α̂int
t,γt

(θ)} =
Var{Bt,γt(θ)}

A2
t,γt

(θ)
=

1

At,γt
(θ)

. (6)

As demonstrated in [12], the spectrally combined mono-epoch signal-to-noise ratio with prior spectrum γt follows
a Gaussian distribution in the absence of source. At epoch t and position θ the former given by:

S/Nt,γt(θ) =
E{α̂int

t,γt
}√

Var{α̂int
t,γt

}
=

Bt,γt
(θ)√

At,γt
(θ)

. (7)

In addition, it was shown in [23] that explicitly accounting for the non-negativity of the exoplanet flux is beneficial
and enhances the detection performance. In the following, we denote the positivity constraint by

[
u
]
+
= max(0, u).

For the estimator of the spectrally integrated flux under positivity constraint, it gives:

α̂int+

t,γt
(θt(µ)) =

[
Bt,γt(θt(µ))

]
+

At,γt
(θt(µ))

. (8)

Finally, injecting the expression of α̂int+

t,γt
in Eq. (3) enables to write the log-likelihood only as a function of the

orbital elements µ:

Lγ(µ) = c2 +
1

2

∑
t

[
Bt,γt

(θt(µ))
]2
+

At,γt(θt(µ))

= c2 +
1

2

∑
t

[
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]2
+
, (9)

whose maximum likelihood estimator under prior spectrum γt is:

µ̂γ = argmax
µ

{
Cγ(µ) =

∑
t

[
S/Nt,γ(θ(µ))

]2
+

}
. (10)

This estimator has no closed-form expression and can only be approximated via global optimization numerical
methods. The problem comes down to maximizing Cγ(µ) with respect to the orbital elements. This criterion
combines optimally the information provided by the data and should increase the detection sensitivity, enable
the detection of sources yet undetectable in individual epochs and simultaneously provide an estimation of their
orbital elements.
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Figure 1: From left to right, mono-epoch At,γt , Bt,γt and S/Nt,γt maps computed with Paco.

2.3 Derivation of a multi-epoch signal-to-noise ratio

It is possible to use a matched filter approach [17, 18] and feed it with the previously derived maximum likelihood
estimators. In this case, the best achievable multi-epoch S/N of any linear combination of the observed data,
given a prior spectrum γ = {γt}t=1:T , writes:

S/Nγ(µ) =

√∑
t

[
S/Nt,γ(θ(µ))

]2
+
=

√
Cγ(µ) . (11)

It can be noted that this quantity is exactly the square root of the criterion Cγ derived above. Hence, maximizing
S/Nγ(µ) or Cγ(µ) with respect to µ yields the exact same estimator for µ, as expected from the literature [17,
18]. Searching for the maximum likelihood estimator of µ given our direct model is equivalent to searching for the
orbital elements for which the best possible S/N is reached among all possible linear combinations of the reduced
data collected along the apparent trajectory of the companion. The derived combination criterion is therefore
optimal both in the maximum likelihood sense and in terms of S/N. For the rest of the paper, we refer to the
multi-epoch S/Nγ(µ) of Eq. (11) when searching for the best estimator and assess the multi-epoch detection
relevance.

We specifically developed the Pacome algorithm [5] to tackle the problem of finding a solution that maximizes
Eq. (11). This algorithm aims at sampling the orbital elements parameter space, usually on a multi-dimensional
grid. For each orbit sample, the method solves Kepler’s equation to compute the associated 2-D positions projected
on the detector at all given observation times, interpolates the At,γt and Bt,γt maps at these positions and
computes the multi-epoch S/N. Once the search space has been sufficiently explored, the best orbital candidates,
i.e. with the highest multi-epoch S/N, are optimized with a gradient-based numerical method, the best orbit of
all is selected and finally its significance is assessed.

2.4 Multi-epoch noise distribution

As explained in Sect. 2.2, the mono-epoch spectrally combined S/N of Eq. (7) closely follows a normal distribution
in the absence of source, which is very convenient to evaluate a potential detection as it is directly interpretable
in terms of probability of detection and of probability of false alarm. On the other hand, the multi-epoch S/N
derived in Eq. (11) is the square root of the sum of all squared non-negative mono-epoch S/N. To our knowledge
such a distribution has no analytical form, making the detection evaluation more difficult. We thus compute the
probability distribution function of the multi-epoch S/N distribution empirically by resorting to a Monte-Carlo
approach. From this empirical distribution, we estimate the upper bound of the confidence interval associated to
the confidence level 1 − ρ ∈ [0, 1] of a detection, with ρ a small number representing the targeted probability

of false alarm. For that, we use the sample quantile function Q̂M (1− ρ) (threshold value below which random
draws from the given distribution would fall 100× (1− ρ) percent of the time) as defined in [16]. The probability
density functions of the multi-epoch S/N in the absence of source computed by the Monte Carlo procedure are



shown in Fig. 2a and some values of the sample quantile function evaluated at different thresholds and for several
degrees of freedom are given in Fig. 2b.
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Figure 2: Multi-epoch S/N distribution in the absence of source and associated detection thresholds.

3. APPLICATION ON REAL DATA: THE CASE OF HD 95086

3.1 Dataset description

We test the method on 13 datasets acquired with the InfraRed Dual Imaging Spectrograph (IRDIS) [9, 8] of the
VLT/SPHERE instrument [1] and demonstrate the ability of the proposed algorithm to both detect faint sources
and characterize their orbits. The observations are conducted with the ASDI technique using the pupil tracking
mode of the instrument. The observations were scheduled so that the star was observed during meridian passage
to take benefit, as best as possible, of the apparent rotation of the sought objects. All datasets correspond to
observations of HD95086 obtained in K1-K2 and H2-H3 spectral band under highly variable observing conditions
spanning over 4.3 years between 2015 and 2019 cumulating a total exposure time of about 18 hours (see Table 1
for more information).

Table 1: Observing conditions of the considered ASDI sequences of HD95086 acquired with the VLT/SPHERE-
IRDIS. Columns are: ESO survey ID, observation date, spectral band (DB = Dual Band), number Nframes of
temporal frames, total amount of rotation ∆par of the field of view, individual exposure time DIT, total exposure
time TDIT, coherence time τ0, average seeing. Both coherence time and seeing estimations come from SPARTA
or ESO’s Astronomical Site Monitor when the former is not available.

ESO ID Obs. date Band Nframes ∆par (◦) DIT (s) TDIT (s)
τ0 (ms) Seeing (”)

SPARTA ESO ASM SPARTA ESO ASM

095.C-0298(H) 2015-02-03 DB K12 113 22.42 16 1808 - 22.95 - 0.665
095.C-0298(A) 2015-05-05 DB H23 64 22.44 64 4096 - 2.28 - 0.742
095.C-0298(A) 2015-05-05 DB K12 52 18.21 64 3328 - 2.14 - 0.774
095.C-0298(A) 2015-05-11 DB H23 64 22.48 64 4096 - 2.79 - 1.259
096.C-0241(G) 2016-01-18 DB K12 80 28.09 64 5120 32.98 - 0.444 -
097.C-0865(A) 2016-04-16 DB H23 80 28.14 64 5120 9.65 - 0.565 -
097.C-0865(B) 2016-05-30 DB K12 70 25.24 64 4480 2.44 - 0.599 -
198.C-0209(M) 2017-05-09 DB K12 100 36.6 64 6400 35.46 - 0.438 -
1100.C-0481(E) 2018-01-06 DB K12 70 41.01 96 6720 23.3 - 0.322 -
1100.C-0481(D) 2018-02-24 DB K12 64 33.45 96 6144 20.4 - 0.357 -
1100.C-0481(E) 2018-03-28 DB K12 64 33.29 96 6144 14.82 - 0.513 -
1100.C-0481(M) 2019-04-13 DB K12 63 33.8 96 6048 3.47 - 0.711 -
1100.C-0481(N) 2019-05-18 DB K12 64 33.23 96 6144 4.93 - 0.578 -

HD95086 is a pre-main sequence A-type star of mass M⋆ = 1.6±0.1M⊙ [21] and parallax π = 11.5659±0.0187
mas [14]. Since 2013, the system is known to host HD95086 b [21], a 4− 5 Jupiter mass exoplanet orbiting at a



separation of about 50− 70 au. This system has been widely studied, in particular to characterize the orbit of
HD95086 b, its atmospheric properties and to search for additional planets [21, 4, 7].

3.2 Reduction with PACO

Raw observations are pre-processed with the pre-reduction and handling pipeline of the SPHERE consortium [19].
Background, flat-field, bad pixels, registration, true-North, wavelength and astrometric calibrations are performed
during this step. Additional custom steps implemented at the SPHERE Data Center [6] are also applied to refine
the wavelength calibration, reduce the crosstalk, and improve the identification of bad pixels.

As all the datasets of this work were acquired in pupil-tracking mode (at a given epoch the field rotates around
the star from a frame to another), knowing precisely the rotation center is critical to maximize the detection
confidence and to derive accurate astro-photometric estimates of the putative sources in mono-epoch datasets. To
ensure the good centering of our the datasets, we used the newly adopted routine of the SPHERE Data Center
which has shown to improve the S/N of real sources [5].

After this pre-reduction step, raw observations are assembled in calibrated ASDI datasets. Each pre-reduced
IRDIS observation is composed of L = 2 spectral channels that are processed jointly. Calibrated ASDI datasets
are processed with the Paco algorithm to produce, for each epoch, the At,γt

and Bt,γt
maps. These outputs

serve as inputs of the Pacome algorithm. For simplicity, a flat prior spectrum (same weight for the two spectral
channels) was chosen for each mono-epoch dataset reduced with Paco.

3.3 Re-detection of HD 95086 b

We carried a blind search with the Pacome method coded in Julia [2] on the 13 multi-epoch observations with a
7-D regularly space search grid sampled with 10 nodes per orbital elements totalling 107 explored orbits, see Fig. 2
for more details. We used a Catmull & Rom Spline for the sub-pixel interpolation (see [5] for details). To assess
the relevance of any potential multi-epoch detection, we chose a confidence level of ρ = 10−8 which corresponds to
a multi-epoch detection threshold of Q̂13(1− 10−8) ≃ 7.2. Evaluating the score of the 107 orbits and saving the
ones above the chosen threshold typically took less than 2 min on a single thread of our local machine running
at 2.40 GHz. All the 26 × 103 on-grid orbits yielding a combined signal higher than this threshold were then
optimized locally to maximize their associated multi-epoch S/N via the Vmlmb method [22].

Table 2: Search grid of the orbital elements explored by Pacome.

Not. Definition Unit Range Nnodes

a semi-major axis mas 46− 1045 10
e eccentricity - 0− 0.5 10
i inclination deg 0− 180 10
τ epoch of periapsis passage - 0− 1 10
ω argument of periapsis deg 0− 360 10
Ω longitude of ascending node deg 0− 360 10
K Kepler’s constant mas3/yr2 2320− 2631 10

The optimal orbit found by Pacome yields a very significant detection of HD95086 b with a multi-epoch
S/N of 53.7 (compared to a multi-epoch detection threshold of 7.2). For comparison, the corresponding worst
mono-epoch, mean mono-epoch and best mono-epoch S/N are 4.7, 14.0 and 21.3. Therefore, switching from
mono-epoch to multi-epoch gives a average gain of 3.8 which is optimal as it scales with the square root of the
number of epochs (

√
13 = 3.6). This optimal orbit, in the maximum likelihood sense, can be found in Table 3

and the corresponding mono-epoch and multi-epoch S/N maps centered on the solution are shown in Fig. 3.

3.4 Orbital elements characterization

Previous section showed that Pacome’s grid search approach was able to re-detect HD95086 b with a very high
and unprecedented multi-epoch S/N. While the search grid method quickly gives a plausible orbital solution
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Figure 3: From left to right, worst mono-epoch, best mono-epoch and multi-epoch S/N maps around the optimal
solution found by Pacome. The region of interest is sampled with 10 nodes per pixel. The colorbar is centered
on the detection threshold (S/N = 5 for mono-epoch, S/N = 7.2 for multi-epoch).

whose projection on the detector passes through the point source at each epoch, it is not sufficient to represent
accurately the statistical distribution of each orbital elements, which is often interesting information. Indeed, the
orbital elements are known to be strongly degenerated thus more sophisticated approaches need to be considered
to fully capture their non-symmetric, sometimes multi-modal, complex distributions. Several methods are often
used in the literature to tackle this problem, most of which are based on Bayesian statistics, such as Markov
Chain Monte Carlo (MCMC) or Nested Sampling (NS). Such methods tend to approximate (directly or indirectly)
the posterior distribution of each parameter given a likelihood function and a prior probability distribution.

We chose the Nested Sampling algorithm and sampled from the posterior distribution of the orbital elements
given the multi-epoch data using Julia’s NestedSamplers.jl package of the Turing.jl ecosystem [15]. We used
a cosine uniform distribution for the inclination i and uniform distributions for the other elements. We ran
the algorithm with multiple ellipsoids to bound the prior space (similar to the MultiNest implementation [10]),
7000 active points, a rejection proposal (uniform sampling within the bounding volume) and the fraction of the
remaining evidence dlogz ≤ 0.5 as stopping criterion. The median and 68% confidence intervals resulting from
the posterior distribution are given in Table 3 and compared to the latest literature [7]. All the orbital elements
we derive match those established by [7] within the errorbars except for t0, the epoch of periapsis passage, which
does not coincide to within 6.5 years. This difference corresponds to 1.4− 1.9% of the estimated period and could
be explained by our slightly higher eccentricity e and smaller period P estimates. It is also worth noticing that
the orbital characterization of [7] was performed with an MCMC method based on astrometric measurements (of
the already detected source) and not blindly on direct imaging data directly as it is the case in this work, which
is a much more complex and noisy problem. Corner plots of the orbital elements posterior distributions and the
first thousand best (a posteriori) projected orbits are given in Fig. 4.

3.5 Multi-epoch contrast limit

With mono-epoch datasets, the achievable 5σ contrast is quantified for a given angular separation whereas, in
a multi-epoch framework, the combined contrast is computed for a given orbit, where the angular separation
of the source may vary along its trajectory. Hence, to compare the multi-epoch contrast to the more classical
mono-epochs ones, we have to restrain the hypothesis and consider only face-on (i = 0) circular (e = 0) orbits.
Given our model, we also need to assume that the flux of the source is constant over the epochs, which is consistent
with face-on and circular orbits. These assumptions are restrictive but still more or less hold for the case of
HD95086. Under these hypothesis, the constant source flux equals:

α̂int
t,γt

(µ) = α̂int
γ (µ) =

∑
t Bt,γt

(θt(µ))∑
t At,γt

(θt(µ))
, (12)



Table 3: Orbital elements of HD95086 b found with Pacome. MLE represents the Maximum Likelihood Estimator
of the orbital elements found in Sect. 3.3. NS represents the median and the 68% confidence intervals of the
orbital elements marginal distributions estimated with the Nested Sampling algorithm described in Sect. 3.4.
The results of this work are compared to [7] whose orbital elements a and K were converted using the quantities
they used in their papers (star distance of 86.2± 0.3 pc, stellar mass M⋆ = 1.6± 0.1) and their period P was
computed using Kepler’s third law. For better comparability, our epoch of periapsis passage τ = t0/P (mod 1)
was re-expressed more conventionally as t0 in years.

Elem. Unit
This work

Desgrange et al. 2022
MLE NS

a mas 1045.00 732.17+73.31
−65.14 835+9

−242

e - 0.23 0.23+0.13
−0.08 ≤ 0.18

i deg 139.19 138.35+10.50
−23.37 144+18

−4

t0 yr 1979.36 1915.19+37.52
−88.68 2004+105

−45

ω deg 243.01 274.58+28.22
−30.2 (+180) 271+110

−2

Ω deg 63.49 100.31+26.24
−25.02 (+180) 72+53

−27

K mas3/yr2 2631.00 2479.67+49.45
−51.06 2498

P yr 658.59 398.08+61.61
−52.50 483+8

−194

and hence the associated multi-epoch contrast is given by:

σ̂γ(µ) =
√
Var{α̂γ(µ)} = 1

/√∑
t
At,γt(θt(µ)). (13)

The mono-epoch and multi-epoch 5σ contrast curves computed with Paco and Pacome are shown in Fig. 5.
Desgrange et al. [7] found a 5σ contrast of 2× 10−6 at 0.6” with IRDIS for the best epoch (2018-01-06) whereas
Pacome reaches an even deeper level with a multi-epoch 5σ contrast of 5.4× 10−7 at the same separation. Again,
the gain is 3.7, which is optimal as it scales as the square root of the number of epochs ≃

√
13 (= 3.6).

3.6 Benefits of spectral whitened

We illustrate the importance of whitening the data spectrally in Fig. 6. The multi-epoch S/N maps of HD95086 b
with and without the spectral correlation corrections are compared. The source is intentionally masked to get a
better idea of the residual noise in its vicinity. The colorbar is scaled and centered on the detection threshold
at confidence level ρ = 10−5 such that any signal above (in red) is considered a false alarm. When no spectral
whitening is performed, a large number of structured patterns (noise and/or speckles) combine positively and
increase the background signal, thus being above the prescribed detection level. Explicitly accounting for the
spectral correlations reduces this side effect greatly so that solely the real known sources lie above the set detection
limit. Indeed, the spectral whitening effect is undeniably efficient in reducing the number of false alarms, counted
considering circular patches of the size of the FWMH, from 67 down to 0 at confidence level ρ = 10−5. This effect
is all the more pronounced the more spectral channels there are such, as with SPHERE-IFS, for example.

4. CONCLUSION

We developed a new source detection algorithm from multi-epoch ASDI observations based on a maximum
likelihood and matched filter approach that combines optimally multi-epoch direct imaging datasets while
accounting for the orbital motion of the sought sources. We also proposed a multi-epoch statistical framework to
assess and control the confidence level of detection.

The method was applied to 13 datasets of HD95086 observed with the SPHERE-IRDIS instrument, quickly
re-detected the well-known planet HD95086 b with an unprecedented S/N of 53.7 whose multi-epoch gain scales



Projected positions
Projected orbits

Figure 4: Left) Posterior distribution of each of the 7 orbital elements approximated with a Nested Sampling
algorithm. Upper right) First thousand best (a posteriori) orbits projected on the detector. The blue dots
represent the projected positions of HD95086 b identified by Pacome.

with the square root of the number of epochs. We used a Nested Sampling algorithm to characterize its plausible
ranges of orbital elements, all but one of which coincide with the latest literature. We reached with Pacome the
deepest level of contrast to date with IRDIS, scoring a 5σ multi-epoch contrast of 1.9× 10−6 at 0.2”. Finally, we
demonstrated the benefits of accounting for the strong spectral correlations of the ASDI data showing that doing
so drastically reduces the number of multi-epoch false alarms.

In the future, the Pacome algorithm will be used on several other multi-epoch datasets to probe and search for
currently hidden new exoplanet candidates. Other faster derivative-based sampling methods, such as Hamiltonian
Monte Carlo, will be explored for the orbital characterization and other spatial covariance matrix estimation
methods will be investigated, in addition to Paco, to improve the performances near the star. Finally, the
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PACO (DB K12)
PACO (DB H23)
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Figure 5: Mono-epoch contrast derived with Paco compared to the multi-epoch contrast obtained with Pacome
for HD95086 with IRDIS data assuming face-on circular orbits and a flux constant across epochs. The black
diamond corresponds to the 5σ detection limit of Desgrange et al. 2022 [7] obtained for their best epoch with
IRDIS.

threshold maxmin

Spectrally whitened
# False Alarms = 0

Not spectrally whitened
# False Alarms = 67

Figure 6: Comparison of the multi-epoch S/N maps for the not spectrally whitened and spectrally whitened data
centered on the optimal orbital solution resampled with 10 nodes per pixels. The combined signal of HD95096 b
is masked and the color bar is centered on the multi-epoch detection threshold at confidence level ρ = 10−5.

already available VLT/SPHERE-IFS multi-epoch observations will be reduced with Paco and the search for an
additional planet in the inner region of HD 95086 will be carried out and presented in a future paper.
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