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ABSTRACT

Learn and Apply is a 2-step reconstruction scheme for Adaptive Optics (AO) instruments, and has recently been
extended to include a predictive step, i.e., predictive Learn and Apply (pL&A). It estimates the pseudo-real-time
atmospheric turbulence profile directly from the AO telemetry buffer (the so-called Learn step), and then performs
tomographic reconstruction based on the outputs (the so-called Apply step). We implement the entire pL&A
pipeline in end-to-end simulations, where both the Learn and the Apply steps are performed in turns. We present
the results of these simulations, as well as the challenges that were encountered and overcome – in particular, the
challenges which have had an impact on the design of the MAVIS AO module.
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1. INTRODUCTION

The MCAO Assisted Visible Imager and Spectrograph (MAVIS) is part of the next generation of Very Large
Telescope instrumentation [31], and is set to deliver an image quality close to the diffraction limit in the visible
wavelengths over a wide (30” squared) field of view, allowing deeper and sharper observations than ever before.
These ambitious goals lead to a tight error budget, and are met by the current system design (the readers may refer
to [26] for a comprehensive review). To fully measure the three-dimensional volume of atmospheric turbulence,
MAVIS employs 8 laser guide stars (LGSs) located on a 17.5” radius circle for high-order (HO) aberration
components, the corresponding Shack-Hartmann wavefront sensors (SH WFSs) have 40 sub-apertures along the
telescope pupil. The tip-tilt (TT) and truth sensing is carried out by using 3 natural guide stars (NGSs) located
within the 120” telescope technical FoV, and the corresponding WFSs have only 1× 1 or 2× 2 sub-apertures.
As reported in [2], such NGS asterism achieves 50% sky coverage at the galactic pole with approximately 25
mas residual jitter. The real-time wavefront compensation is performed by three HO deformable mirrors (DMs)
conjugated at [0, 6, 13.5] km. MAVIS will be installed on the highly performant Adaptive Optics Facility (AOF)
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of the VLT UT4, taking advantage of its extensive operational experience and the state-of-the-art instruments,
e.g., the 4 Laser Guide Star Facility (4LGSF, see [16]) and the Deformable Secondary Mirror (DSM, see [11]).

The temporal error, caused by the constantly evolving atmospheric turbulence and the delay introduced
by wavefront sensing, algorithms execution, and DM response, is one of the most critical components of the
overall error budget, and has been extensively studied in the context of various instruments, see, e.g., [27], [4]
and [9]. Regarding the MAVIS MCAO system, Agapito [2, 1] has presented that the expected temporal error
yields approximately 38 nm (high-order) and 11 nm (low-order) under the assumption of bright NGSs with good
asterism, whereas the overall error budget is 107 nm for high-order, and 30 nm for low-order (LO). Unlike other
major error sources such as fitting error (error caused by the finite spatial sampling) and generalised fitting error
(difference between the reconstructed turbulent layers and the projected phase on a finite number of DMs), the
temporal error can be effectively modelled and mitigated with a well-designed control scheme, thus motivating
the research of predictive control.

The Learn and Apply (L&A) approach was initially proposed in [30] and then demonstrated on-sky in [13]
for the tomographic reconstruction in multi-object AO (MOAO) systems. It inherits the key concepts from the
well-accepted MMSE approach (see, e.g., [6, 10, 20]), but accelerates the computation by operating directly
from the WFS slope space. The two major steps in L&A are (i) the Learn step, where the recent (open-loop or
pseudo-open-loop) WFS slopes are recorded to identify the atmospheric turbulence profile, and (ii) the Apply
step, where the tomographic reconstructor is calculated from the results of the previous step with an MMSE
process. Recently, Zhang [34] and Cranney [3] have introduced a predictive step to the L&A pipeline, i.e., the
predictive L&A (pL&A). As demonstrated by the end-to-end numerical simulations, pL&A substantially mitigates
the impact of temporal error, without any extra hardware or heavy computational load in hard real-time.

In this paper, we implement the entire pL&A pipeline in a closed supervisory loop, where both the Learn
and the Apply steps are performed in turns. Sec. 2 derives the pL&A supervisory scheme by addressing a set of
fundamental problems, including the issue of TT indetermination, the pseudo-open-loop (POL) implementation,
the mitigation of tilt anisoplanatism (TA), and the MCAO supervisor pipeline. Sec. 3 presents the end-to-end
numerical simulations to demonstrate the performance of pL&A as a closed-loop MCAO supervisor based on the
MAVIS system configuration. In Sec. 4, we discuss the simulation results and propose future work to be done in
the upcoming phases of the MAVIS project.

2. THE PREDICTIVE LEARN AND APPLY SCHEME

L&A’s fundamental assumption is that optimising the DM commands is straightforward enough when an on-axis
guide star (GS) is available, where the control matrix is the pseudo-inverse of the interaction matrix D. Though
the on-axis GS is generally not available in MCAO, L&A introduces one or multiple virtual GSs (VGS, in the
literature it is usually referred to as a truth sensor, e.g., in [21, 12, 5], but we prefer to call it VGS to avoid
ambiguity, as ”truth sensors” is generally used in AO for Non-Common Path Aberration control applications).
The VGS is usually considered as a bright HO NGS, therefore free from noise, cone effect, and LO uncertainty.
In the case of MCAO, one VGS is not sufficient. A constellation of multiple VGSs is usually chosen to optimise
the performance in the FoV of interest. Fig. 1 shows a 3× 3 VGSs constellation for the MAVIS MCAO system.
Note that the number, constellation, and individual weight of VGSs may vary according to the performance
requirements and the computational resources.

Now, the goal of the tomographic reconstruction process is to link the VGSs to actual WFSs. Specifically,
we consider a matrix R that reconstructs the slopes for all VGSs, denoted sv, from the slopes of actual WFSs,
denoted sm:

sv = Rsm, (1)

where both slopes are assumed to be open-loop (i.e., independent of any DM influence). The linear least mean
square error (LLMSE) [18] estimation of R is written as (neglecting the noise covariance term):

R = ⟨sv, sTm⟩⟨sm, sTm⟩−1, (2)



Figure 1. A typical VGS constellation for the MAVIS MCAO system.

where ⟨·⟩ denotes the ensemble average, and the superscript ·T denotes the transpose. By definition, ⟨sv, sTm⟩ is
the covariance matrix between VGSs and actual WFSs, ⟨sm, sTm⟩ is the covariance matrix between actual WFSs
and themselves,

Under observational conditions, ⟨sm, sTm⟩ can be populated from either numerical method (i.e., with the recent
telemetry data) or pseudo-analytical method (i.e., from a well-defined atmospheric turbulence model), while
⟨sv, sTm⟩ is available only in the pseudo-analytical method, as the VGSs are not present in the actual instrumental
setting. As an illustration, the predictive Learn (pLearn) step takes as input the numerical ⟨sm, sTm⟩, and estimates
a set of atmospheric turbulence parameters, including the fractional C2

n, the wind speed and direction for each
turbulent layer, via an iterative fitting process. The Learnt parameters are then used in the predictive Apply
(pApply) step to calculate the pL&A reconstructor matrix for the closed-loop AO control. The readers are pointed
to [34, 3] for detailed derivations of the predictive tomography model based on the von Kármán spectrum [32] and
Taylor’s frozen flow hypothesis [29], whereas in this paper we focus on the fundamental limitations encountered
in the closed-loop implementation.

2.1 Tip-tilt indetermination

During the uplink propagation of a LGS, the laser beam is distorted by atmospheric turbulence, which means its
angular position on-sky is not determined, and the TT measurements from an LGS becomes useless, i.e., the
TT indetermination ([25]). In practice, we remove the average TT from each WFS by removing the averaged x
component from all x slopes, and the same for y slopes. Note that this is a linear function of the slope vector,
and can be embedded as a matrix-vector multiplication:

sTTF
m = Qsm, (3)

where Q is the so-called TT filtering (TTF) matrix.

Similarly, for the covariance matrix of TT-filtered slopes:

⟨sm, sTm⟩TTF =
〈(

sTTF
m

) (
sTTF
m

)T〉
=

〈
Q (sm) (sm)

T QT
〉

= Q⟨sm, sTm⟩QT ,

(4)

where ⟨sm, sTm⟩ is the TT-included covariance matrix. Eq. (4) is valid for either the whole covariance matrix or a
block of it, but not for individual covariance values.

The TTF process can be highly expensive in terms of computations, especially in the pLearn algorithm. As
discussed in [17], the current pLearn algorithm is accelerated by the stochastic Levenberg-Marquardt (SLM)



algorithm where every iteration uses a subset of the numerical covariance matrix, substantially reducing the total
number of calculations. However, when considering the TT indetermination issue, the TTF process must be
applied at each iteration of the SLM algorithm, requiring to generate the whole covariance matrix instead of only
a subset. If not handled properly, SLM loses its advantage in computation speed.

An efficient way to circumvent the TTF issue is reconstructing the effective TT information from the
NGS measurements. This can be achieved by constructing a cross-covariance matrix between the HO and LO
measurements. NGS WFSs generally have fewer sub-apertures due to the limited flux: in the case of MAVIS, the
NGS WFSs have only 1× 1 or 2× 2 sub-apertures. In this case, all NGSs sub-apertures are not perfect squares
nor fully illuminated, limiting the use of existing models (see, e.g., [21]).

We hereby propose a generalised wavefront sensing model that takes the illumination condition of different
sub-apertures into consideration. A detailed derivation and analysis of the generalised model will be submitted
as a separate paper, here we give a brief summary of the key concepts. First off, a fine grid is defined in each
sub-aperture area, as shown in Fig. 2 (a). Due to the telescope spider, central obstruction and pupil shape, a
sub-aperture is sometimes partially illuminated, especially for large NGS sub-apertures. In this case, introducing
the fine grid allows us to consider only the valid area of a sub-aperture in the covariance model. We will denote
d the cell width of the grid, L the width of a square sub-aperture, and we have d ∈ (0, L]. For simplicity, we
assume L is a multiple of d, and the number of cells along the telescope pupil is given by nsub−ap = L/d, where
nsub−ap is the number of sub-apertures along the pupil. The x-slope measured by a sub-aperture is defined by
the average wavefront phase difference over its valid area

sx =
λ

2πNc

Nc∑
i=1

φli − φri

d
, (5)

where Nc is the number of valid cells in this sub-aperture, φli and φri are the phase on the left and right sides of
ith cell, respectively.

Figure 2. (a) Geometry of a 2× 2 WFS with telescope central obstruction and spider, grids are defined on the valid area
only; (b) illustration of the left or right side of a cell/cell-pair.

As shown in Fig. 2 (b), the right side of one cell is equivalent to the left side of the next cell in the same row
(this can be extended to the y-slope case by replacing left/right to bottom/top and row to column). That is to
say, populating a pseudo-analytical slope-space covariance matrix from all cells is equivalent to using only the
effective cell-pairs, so the overall computational load of the generalised model is still affordable in soft real-time.

Now we consider a set of VGSs that has the same (i) angular constellation, (ii) altitude, and (iii) sub-aperture
geometry as the actual LGSs, but is capable of measuring both TT and higher-order slopes. In this case, TTF
shall be applied to the actual LGS slopes as well as the covariance matrices, so Eq. (1) becomes:

ŝv = ⟨sv, sTm⟩QT
(
Q⟨sm, sTm⟩QT

)−1 Q︸ ︷︷ ︸
WTT

sPOL
m , (6)



where the noise covariance term is neglected, sPOL
m is the POL slopes (the POL implementation will be explained in

more details in the following sub-section) collected from actual WFSs. As shown by Eq. (6), the TT measurements
from LGSs, if any, do not propagate through the reconstruction process, therefore the reconstructed TT in ŝv
only comes from the NGS slopes. Note that ⟨sv, sTm⟩ is almost identical to the non-filtered ⟨sm, sTm⟩, except that
the NGS rows are removed.

Given the system geometry and the atmospheric turbulence profile, the overall projection matrix WTT can be
pre-calculated and combined to the POL slopes. The reconstructed ŝv is then used to populate the TT-included
numerical covariance matrix, so that SLM can be directly applied without any TTF during the pLearn algorithm.

2.2 Pseudo-open-loop control

Previous discussions are mainly based on the statistical properties of the open-loop slope. However, the statistical
properties of the open-loop slope are different from those of the closed-loop slope. This discrepancy may lead to
degraded performance and, in extreme cases, for the AO system to become unstable. The POL method described
in [8, 3] provides a computationally efficient yet robust cure.

If we assume that perfect a priori knowledge of the DM actuators to WFSs slopes interaction matrix is
available, so that the open-loop equations above can be extended to the closed-loop case by recovering sOL

m from
the closed-loop slopes:

sPOL
m,k = sCL

m,k +D
[
(1−∆)uk−δk+1 +∆uk−δk

]
, (7)

where sCL
m,k is the closed-loop slope of actual WFSs at the kth iteration, u is the DM command vector, δk accounts

for the delay and is assumed to be exactly 2 for the MAVIS configuration, ∆ is defined as (δk mod 1), δk is
defined as (ceil δk). sPOL

m,k is only an approximation of sOL
m at the kth iteration based on the interaction matrix

D and applied commands u, and as such the following terms are not (and cannot be) fully considered:

1. WFSs uncertainties, including the device noise, mis-calibrations, mis-alignments, as well as the non-linearity
from elongation and centroiding algorithms;

2. DM uncertainties caused by the electrical and mechanical noises, and the un-modelled dynamics of the
DMs;

3. Discrepancy in the interaction matrix caused by the mis-registration between DMs and WFSs.

Despite these error sources, [23] and [14] have demonstrated remarkable stability, efficiency, and performance of
the POL method in MCAO systems via theoretical and numerical approaches.

2.3 Mitigation of the tilt anisoplanatism

The tilt anisoplanatism is closely related to the TT indetermination: due to the TTF process, the TT measurements
are completely filtered out from every LGS, these include the global and field dependent TT. The latter can be
modelled and visualised by three quadratic modes (one defocus and two astigmatisms) on an altitude layer, the
readers may refer to [33] for a detailed discussion.

It is shown in [7] that these LGS-insensitive modes are well measured by at least three 1× 1 NGSs with a
reasonable asterism (e.g., not located in a line), as is the case in MAVIS. At least two DMs, one conjugated at the
ground layer h0 = 0, and the other conjugated at altitude hd, are then used for compensations, as detailed below.

In the general case where the turbulence phase φa on layer a is given by a combination of quadratic modes,
we have:

φa(xa, ya) = αa1x
2
a + αa2xaya + αa3y

2
a, (8)

where αaj , j ∈ {1, 2, 3} are scalar coefficients.

The overall projected phase on the pupil plane from all layers, as seen by a NGS or a science target at infinite
altitude (i.e., no cone effect), is given by:

φ0(x0, y0) =

nL∑
a=1

φa(x0 + haθx, y0 + haθy), (9)



where (θx, θy) is the angular position of the NGS or the target, nL is the number of turbulent layers.

Our goal is to find a set of DM commands, such that for any NGS or target in the FoV: (i) the DMs do not
introduce any second-order phase, and (ii) the overall plate scale modes are cancelled out. Similarly, we define
the ground layer DM phase φ0, and the altitude layer DM phase φd as:

φ0(x0, y0) = α01x
2
0 + α02x0y0 + α03y

2
0

φd(xd, yd) = αd1x
2
d + αd2xdyd + αd3y

2
d.

(10)

The solution is found when the projected result of Eq. (10) cancels the turbulence phase in Eq. (9), which
yields:

α0j = −αdj

αdj = − 1

hd

nL∑
a=1

haαaj ,
(11)

where j ∈ {1, 2, 3}.
Due to the limited number of NGS sub-apertures, it is generally not possible to resolve the altitude distribution

of TA modes. But this does not impact the conclusion in Eq. (11). As discussed in [24], the projected phase of
any Zernike mode on a sub-region of a given altitude can be written as a combination of Zernike modes up to the
same order, therefore the TA modes at different altitudes can be projected to a single layer, e.g., at hd, with a
combination of TT and TA coefficients (piston removed). Consequently, the second line in Eq. (11) becomes
αdj = −αaj , as ha = hd.

Various methods have been investigated to compensate for the TA modes in closed-loop, such as split
tomography [15], the slope-merging method [33], and the generalised model presented in this paper. As discussed
in Sec. 2.1, the generalised model allows estimating the cross-covariance between HO and LO measurements.
Consider a set of VGSs as shown in Fig. 1, the pL&A reconstructor takes the same format as in Eq. (6), except
that the LLMSE estimator here optimises the residual slope for the whole FoV.

Figure 3. Integrated controller block diagram, where the LGS and NGS measurements are combined together before the
predictive reconstruction step.

An integrated controller (IC) is used to control both the LO and HO sub-systems simultaneously. The
corresponding block diagram is shown in Fig. 3, where the LO and HO measurements are combined together using
the cross-covariance matrices during the tomographic reconstruction. Compared to conventional split tomography,
IC has the advantage of simplicity, thus reducing the complexity of the soft real-time cluster (SRTC) design.
Additionally, the predictive tomographic reconstruction can now be applied to both sub-systems, so an improved
MCAO performance is expected especially for the LO aberrations.



2.4 MCAO supervisor pipeline

Finally, we implement the pL&A scheme as a MCAO supervisory solution. As one of the most critical components
of the SRTC, the MCAO supervisor is responsible for providing the hard real-time computer (HRTC) with
control matrices, and updating the matrices based on the statistics of atmospheric turbulence at a regular rate
(depending on the control strategy and the turbulence condition). It splits the MCAO observation time into
multiple rounds (see Fig. 4): an initial data collection round, i.e.,“zeroth round”, and the following pL&A
rounds. Every round consists of two parts: closed-loop MCAO operation and telemetry data collection, and the
reconstructor calculation. Note that under observational conditions where the turbulence statistics are constantly
evolving, the time taken by the algorithm execution has to be considered: in each round, only a part of the
telemetry buffer (green blocks) can be used in the current pLearn algorithm, whereas the rest is sent to the next
round.

Figure 4. Timing diagram for the pL&A MCAO supervisor, where Tr is the overall round duration. The size of the blocks
is scaled for better visualisation, not necessarily aligned with the actual operation time.

The main goal of the zeroth round is to collect the WFS measurements and DM commands buffer for the
pL&A tomography. Real-time information of the atmospheric turbulence profile is not available at the beginning
of the zeroth round, therefore predictive tomography cannot be performed. However, the MCAO loop shall be
closed to avoid significant truncation in the LGS WFS spots, and maintain a reasonable signal-to-noise ratio. In
this paper, the zeroth round is controlled by an integrated controller based on non-predictive L&A tomography.

As discussed in Sec. 2.1 and Sec. 2.2, the reconstruction of POL slopes uses a TT-included covariance matrix
between the WFS measurements and themselves. This covariance matrix has to be populated analytically for a
better estimation of the low-order information. In this case, an initial estimation of the atmospheric turbulence
profile is required, including the overall r0, the altitude for each layer, and the fractional C2

n profile. The wind
profile, on the other hand, is not necessary during the reconstruction, as the covariance matrix used here does
not include any time delay. Experience data or the off-line atmospheric turbulence profiling results (e.g., MASS,
SCIDAR, or SLODAR, see in [19, 28, 22]) can be used.

After calculating the reconstructor for each pL&A round, the pseudo-analytical, TT-included covariance
matrix is saved for the next POL reconstruction process. This introduces the risk of instability if there are any
unseen modes growing through different rounds. When instability happens, i.e., when the round-wise LESR
keeps reducing in multiple continuous rounds, the supervisor shall be reset with new initial profiles and geometric
POL projection matrices to avoid further loss of performance. Note that we have not witnessed any of these
instabilities in our simulations, and the reset feature is only provided as a precautionary measure.

At this stage, we do not take the real-time evolution of the turbulence statistics into consideration. However,
this study is quite important in optimising the observation time for each round, and will be carried out in the
following phases of the MAVIS project.



3. NUMERICAL SIMULATION RESULTS

3.1 Simulation configurations

Detailed system configurations and parameters are presented as follows. The MCAO system configuration can be
found in Table 1. The true atmospheric turbulence profile used in the simulations is adapted from the Paranal
Stereo-SCIDAR median profiles release 2019B, see [22]. Note that the wind direction settings are not directly
related to the AO performance, and are only selected to increase the complexity of the atmospheric turbulence
profiling process to fully investigate its performance. Atmospheric turbulence parameters used for a close init
(only used for the non-predictive control in the zeroth round) are presented in Table 2. The parameters used for
the pL&A algorithm are based on the configurations presented in [34] and [3].

Table 1. MAVIS MCAO module configuration and simulation parameters

Sub-Module Parameters

General

Tel. Diam 8 m
Central Obstruction 16% ∅

Nominal target Wavelength 550 nm
Frame-rate 1000 Hz
Science FoV 30” ∅

Atmos

Num. of Layers 10
r0 at 500 nm 12.6 cm

Altitude (min, max) (30, 14000) m
Wind Speed (min, max) (4.5, 34.3) m/s
Wind Dir.* (min, max) (0◦, 25◦)

LGS

Num. of LGS 8
Constellation 35” ∅

Num. of Sub-aperture 40× 40
Read-out Noise 0.2 e−

Flux/sub-ap/ms 75 photons
Excess noise ratio 2.0

NGS

Num. of NGS 3
Constellation 40” ∅

Num. of Sub-aperture 1× 1
Read-out Noise 0.5 e−

H-Magnitude down to 18.5

HO DMs
Altitude [0, 6, 13.5] km

Actuator Pitch [22, 25, 32] cm

Performance
Requirements

Sky coverage** ⩾ 50%

LESR***
⩾ 10% (goal 15%)

in V band
* This wind direction is chosen to test the controller performance.

** The sky coverage is defined at the galactic poles.
*** Here LESR is averaged over a circular field of diameter 30”.

3.2 Simulation results

We performed benchmarking of the closed-loop MCAO supervisor on a DGX server, equipped with 8 NVIDIA
V100 GPUs. At this stage, most of the tasks are carried out by a single GPU, including the SLM algorithm
and the calculation of analytical covariance matrices. The rest of the tasks, such as the POL calculation and
the sub-aperture filtering, are performed on CPUs. Comprehensive GPU-based computation and multi-GPU
parallelisation are not implemented in the latest version of the SRTC software, and will be implemented as future
work.



Table 2. Atmospheric turbulence profile used in the zeroth round

Name Value
Close init

Number of layers 4
r0 at 500 nm 12.6 cm

Altitude [30, 4500, 11000, 14000] m
C2

n [0.7, 0.1, 0.1, 0.1]
Wind speed Not used

Wind direction Not used
Outer scale [25, 25, 25, 25] m

The overall observation time is set to 30 mins (on-sky time) in our simulations to demonstrate the long
exposure stability of the MCAO supervisor. The averaged long-exposure Strehl ratio (LESR) from 15 targets
distributed in the 30” ∅ science FoV is used to investigate the overall performance, along with the corresponding
(spatial) standard deviation. The LESR of every target is reset before the first pL&A round, so that the limited
performance of the non-predictive zeroth round does not affect the final results.

3.3 Overall MCAO supervisor performance

Figure 5. Overall performance of the MCAO supervisor. Solid curves: cumulative LESR acquired with 100s or 15s round
duration Tr; Shaded area: standard deviation of the LESR from all targets. Zoom-in area: performance of the zeroth
round.

Fig. 5 presents the long exposure performance of the MCAO supervisor. Field averaged LESR acquired from
perfect predictive (i.e., given the exact atmospheric turbulence and wind profile) and non-predictive (i.e., given
perfect knowledge of r0, C

2
n and altitude distribution, without wind profile) L&A control scheme are provided as

reference. After 30 mins exposure time, perfect predictive controller gives 19.00± 1.25% LESR over the science
FoV, whereas perfect non-predictive controller gives 13.01± 0.89%.



In the simulations, the zeroth round takes 15 secs, as shown in the zoom-in area. The MCAO performance of
the zeroth round is worse than the non-predictive curve due to the close init profile used for the reconstructor
calculation. The LESR is reset before the first pL&A round, and a significant improvement in MCAO performance
can be seen in both cases. Note that a spike can be seen after resetting LESR, which is due to the settling time
of the long exposure performance.

Round durations of 100 secs and 15 secs are considered, the LESR yield 18.56± 1.21% and 17.07± 1.10%,
respectively. Compared to the non-predictive curve, the improvements in terms of RMS wavefront error are 52.18
nm (Tr = 100) and 45.62 nm (Tr = 15). In fact, the LESR acquired with Tr = 100 secs is quite close to the
perfect predictive curve, the difference corresponds to only 13.40 nm RMS error.

The results also demonstrate the stability of the MCAO supervisor: in both cases, the LESR converges after a
few rounds, with no significant fluctuations observed throughout the 30 mins exposure time. The stability is
improved with longer Tr, because of the lower convergence noise in numerical covariance matrices.

3.4 Robustness study: cumulative v.s. round-wise LESR

In Fig. 6, we show the round-wise field LESR side by side with the cumulative curves. The round-wise scatters
are acquired by resetting the LESR before every pL&A rounds, while all other settings, including the random
seed for phase screen generation, are identical to the red and blue curves. Due to the time required for LESR
settling, the performance at the beginning of each round might be different from the converged LESR, i.e., the
spikes in the round-wise scatters. These results are not directly related to the science cases, and typically not
available in real applications. Nevertheless, they provide useful information to study the robustness of the MCAO
supervisor given the stochastic nature of atmospheric turbulence.

Figure 6. Cumulative v.s. round-wise LESR. Left: Tr = 100; Right: Tr = 15. Scatter plots: round-wise field averaged
LESR. Round-wise scatters: acquired by resetting the LESR for all targets before every pL&A rounds. Note that the
spikes are also caused by the LESR resetting.

Highly stable field averaged LESR is observed when Tr = 100. Throughout the exposure time, the worst
performance is seen at the first round, where the field averaged LESR is 16.85%, 1.7% lower than the overall
performance in the red curve. This is mainly constrained by the duration of the zeroth round, i.e., the convergence
noise caused by limited samples. The performance of all other pL&A rounds are fairly close to the red curve, the
maximum difference in LESR is within ±1% .

The round-wise performance when Tr = 15, on the other hand, shows higher fluctuation. Among the 119
pL&A rounds in the green scatter, the LESR of 24 rounds are higher than 18.5%. The LESR of 5 rounds are lower
than 13%, with the worst being the 6th and the 74th, whose LESR are 10.71% and 10.91%, respectively. At these
rounds, the predictive controller are doing even worse than the perfect non-predictive controller (reference curve 1
in Fig. 5). Although this comparison is not really fair – the non-predictive controller requires exact knowledge of



the C2
n distribution which is not available in real applications, the results still indicate strong convergence noise

in the numerical buffers.

Figure 7. pLearn outputs from different rounds. Left: pLearn outputs used in the worst rounds; Right: pLearn outputs
generated in the worst rounds, and used in the following rounds. Black curve: True profile.

The learnt profile from different rounds provide an efficient way to investigate the level of convergence noise,
and the propagation of convergence noise through rounds. This is particularly relevant to the robustness of the
MCAO supervisor Note that in our implementation, a pL&A round is controlled by the reconstructor calculated
from the previous pLearn output, and the numerical buffer collected in this round is used to control the next one.
In this case, we present in Fig. 7 the learnt profiles generated from the 5th and the 73rd rounds, side by side with
the profiles from the 6th and the 74th rounds.

Purple and green curves in the left subplot show strong convergence noise with the existence of undesired
peaks/valleys: pLearn tends to introduce extremely fast layers to fit those values, which severely reduces the
precision of the learnt profile. However, such error does not propagate to the next round. As shown by the pink
and orange curves in the right subplot, pLearn in the 6th and the 74th rounds perform well in spite of their poor
round-wise LESR. Consequently, the round-wise LESR climbs back immediately after the worst rounds, and the
supervisory loop remains stable throughout the 30 mins exposure time.

4. DISCUSSIONS AND FUTURE WORK

In this paper we implemented the predictive L&A scheme in a closed MCAO supervisory loop. The supervisory
loop can be divided into multiple rounds: a zeroth round controlled by a non-predictive scheme, and the following
L&A rounds with a predictive, integrated controller. We analysed the major challenges: the TT indetermination,
the pseudo-open-loop implementation, the mitigation of tilt anisoplanatism, and the MCAO supervising strategy.
End-to-end numerical simulations are performed to demonstrate the overall performance and robustness of the
MCAO supervisor. The RMS wavefront error is reduced by 45.62 nm when using 15 secs per round, or 52.18 nm
when using 100 secs per round (both compared to perfect non-predictive controller). Due to the stochastic nature
of the turbulence, some of the rounds suffer from high convergence noise, which reduces the MCAO performance,
but this error does not propagate to the next round, so the supervisory loop remains stable.

The predictive L&A scheme is an effective supervisory solution as it does not require extra hardware or extra
computations in hard real-time, and the increase in soft real-time computational load is affordable. Future work
will focus on optimising the performance of the MCAO supervisor. As an example, the off-line atmospheric
turbulence profiling data (e.g., the latest stereo-SCIDAR data release) acquired at the same observational site can
be analysed to derive the evolution rate of the turbulence statistics, which is helpful to balance the convergence
noise caused by limited time of data collection, and the capability of capturing the instantaneous turbulence profile.
Experimental validations will also be performed by the MAVIS consortium. Before the actual implementation on
the Very Large Telescope, key components of the AO module will be prototyped and tested in-lab, along with the
control schemes.
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