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ABSTRACT

Adaptive optics (AO) corrected image restoration is particularly difficult, as it suffers from the lack of knowledge
on the point spread function (PSF) in addition to usual difficulties. An efficient approach is to marginalize
the object out of the problem and to estimate the PSF and (object and noise) hyperparameters only, before
deconvolving the object using these estimates. Recent works have applied this marginal semi-blind deconvolution
method, based on the Maximum A Posterior (MAP) estimator, combined to a parametric model of the PSF, to a
series of AO corrected astronomical and satellite images. However, this method does not enable one to infer global
uncertainties on the estimated parameters, nor to compute posterior correlations between the sought parameters.

In this communication, we propose to use a new restoration method that allows to infer such uncertainties
(Yan et al., JATIS, to appear, 2023). This method consists in choosing the Minimum Mean Square Error (MMSE)
estimator and computing the latter as well as the associated uncertainties thanks to a Markov chain Monte Carlo
(MCMC) algorithm.

We validate our method by means of realistic simulations in the context of an astronomical observation.
Finally, we present results on an experimental image of asteroid Vesta, taken on VLT/SPHERE with the Zimpol
instrument.

Keywords: Image restoration, semi-blind deconvolution, adaptive optics, astronomical imaging, satellite imaging,
MCMC, Bayes

1. INTRODUCTION

Ground-based high angular resolution imaging in the visible has numerous applications in astronomy, such as the
observation of asteroids. The observations are limited by atmospheric turbulence, which can be corrected in real
time by adaptive optics (AO). However, the correction is partial and residual blurring remains, impacting high
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spatial frequencies of the observed object. Therefore, the observation system includes post-processing to restore
the high frequencies.

The residual blurring is described by the system point-spread function (PSF), which is not entirely known,
so both the observed object and the PSF are estimated. A way to proceed is to first estimate the PSF by
“marginalizing” over the object, i.e. by integrating the joint probability density function over all possible objects
with a given prior probability density function, and then to deconvolve the image with the estimated PSF.1 In our
case, the PSF has a physical parametric model and the object is described by a Gaussian prior with a parametric
model for its power spectral density (PSD), whose parameters are also estimated along with PSF parameters.
The method we have been using so far, AMIRAL (standing for Automatic Myopic Image Restoration ALgorithm),
combines PSF and PSD parametrization as well as a marginal maximum a posteriori (MAP) estimator.2

The method we propose in the present paper uses another Bayesian estimator, which minimizes the mean
square error on the sought parameters (MMSE estimator), corresponding to the mean of the marginal posterior
distribution. From this method, we also infer uncertainties on PSF and PSD parameters3 and compute posterior
correlations between them. To do so, we include prior distributions for PSF and PSD parameters and we compute
the marginal posterior distribution by stochastic sampling. We first introduce our framework, as well as a Markov
chain Monte Carlo (MCMC) algorithm to sample this posterior distribution: this method is further detailed
in [4]. Then, we validate our method on simulated astronomical data and we finally apply it to experimental
astronomical data.

2. IMAGING MODEL AND MMSE ESTIMATOR

2.1 Imaging equation

We consider that the image i results from the 2D discrete convolution of the object o with the PSF h, to which
noise n (mostly photon noise and detector readout noise) is added, giving the following imaging model:

i = h ∗ o+ n. (1)

In this study, we simulate and restore astronomical AO-corrected images taken on a VLT/SPHERE-like
instrument5 with the Zimpol imaging polarimeter.2

Throughout this work, we will consider having long-exposure PSFs, meaning that the exposure time is greater
than the typical variation time of turbulence. For the PSF, we use the PSFAO19 model,6 which has been designed
specifically for describing an AO-corrected PSF with few physical parameters. The two main parameters of
the PSFAO19 model, are the Fried parameter r0 taken at the imaging wavelength (850 nm), describing the
turbulence’s strength, and the variance of the residual turbulent phase vϕ, describing the quality of AO correction.
In this study, the AO parameters as well as other PSF secondary parameters are taken identical to those in,2 for
comparison purposes.

2.2 Prior distributions

Noise is taken independently from the object, and is approximated as zero-mean, additive, white and Gaussian,
which is a fine description given the flux levels in typical images. We denote the noise precision (inverse variance)
by γn, thus the noise covariance matrix is Rn = 1/γnI, with I the identity matrix and the noise PSD is
Sn = 1/γn.

An example of simulated astronomical observation is given in Figure 1, with the true object on the left and
the simulated image on the right. The image is simulated using the PSFAO19 model.

As a prior for the object, we consider a Gaussian model described by its mean mo and its PSD So. Given
that we have little information on the the mean object mo, it is taken uniform on all pixels, estimated at the
average value of the image considering that

∑
h = 1, modeling flux conservation. For the object PSD, we use the

following parametric model:

So(f) =
1

γo
S̄o(f), with S̄o(f) = 1/(k + fp), (2)



Figure 1. Left: synthetic view of Vesta (true object o), of size 512× 512. Right: simulated image i, with true parameters
r0 = 0.15m, vϕ = 1.3 rad2 and γn = 2.62 10−4 ph−2.

and f = |f | the radial frequency. This circularly-symmetric model is a slightly modified writing of Matérn’s
model.7 In this model, γo sets the global PSD level, p is the PSD decrease rate at high frequencies, and k gives
the breakpoint between the two regimes of the model. In previous works,2 attempts to estimate hyperparameter
p jointly with the other parameters has been shown to strongly decrease PSF parameter estimation accuracy.
Therefore, we choose to work in a “mostly unsupervised” mode, where p is fixed to a standard value. In the case
of astronomical observations of asteroids, a well-fitting empirical value is around p = 3.

Regarding PSF parameters as well as noise and object PSD parameters, hereafter called parameters, we use
uniform priors for each parameter γn, γo, k, r0 and vϕ. In our model, we assume that the image i and object PSD
parameters γo and k are independent conditionally to the object and the other parameters. Additionally, the
object, the noise variance and the PSF parameters are taken independent conditionally to object PSD parameters.
Moreover, the parameters (γo, k, r0, vϕ and γn) are modeled as a priori independent.

2.3 Marginal estimator

The expression of the marginal posterior distribution is calculated from the integration of the joint distribution
over the object. This joint distribution is itself, following the conditioning rule, the multiplication of the likelihood
by the prior distributions. In practice, we write the marginal posterior distribution following the Bayes rule, from
the marginal likelihood and the priors taken as uniform and independent, as mentioned in section 2.2:

p(γn, γo, k, r0, vϕ|i) =
p(γn)p(γo)p(k)p(r0)p(vϕ)

p(i)
p(i|γn, γo, k, r0, vϕ). (3)

Given that the noise is taken Gaussian, white and a priori independent from the object considered Gaussian, the
image being a linear combination of both is also Gaussian. Therefore, the marginal likelihood writes:

p(i|γn, γo,k, r0, vϕ) = (2π)−P/2
∏
f

(
Si(f)

−1/2 exp
[
− 1

2
|̃i(f)− m̃i(f)|2/Si(f)

])
, (4)

with image PSD Si and mean image mi:

Si(f) = So(f)|h̃(f)|2 + Sn (5)

m̃i(f) = h̃(f)m̃o(f).

2.4 MMSE estimator and sampling

Given the complexity of the marginal posterior distribution, there is no known analytical way to calculate it.
A way to compute it is to draw samples under the posterior distribution using a MCMC method for instance,
and compute the sample mean. The posterior distribution being complex, it is not possible to sample it directly,



therefore we use a Metropolis-Hastings algorithm to bypass the problem.8 It consists, for each iteration, in
drawing samples under a chosen proposal distribution and accepting the samples (else, duplicating the previous
value) with a prescribed probability. For simplicity, we use here the Metropolis-Hastings algorithm within a
Gibbs algorithm, in order to draw under its own conditional posterior distribution, which is proportional to the
prior of the considered parameter times the marginal likelihood of Eq. (4). Asymptotically, the samples are under
the marginal posterior distribution for all parameters, and the samples average tends towards the mean of the
distribution.8 A typical number of iterations needed to reach convergence would be around 30 000 iterations,
corresponding to an hour on an ordinary laptop. This method is further explained in [4].

3. RESULTS ON SIMULATED ASTRONOMICAL DATA

3.1 Simulation conditions

The obtained results are shown for the simulated image displayed in Figure 1, using as the true object the synthetic
view of asteroid Vesta, built by the OASIS software,9 on a dark background of size 512× 512 pixels. True PSF
parameters are r0 = 0.15m and vϕ = 1.3 rad2 at the imaging wavelength λ = 550 nm, which correspond to realistic
turbulence and correction conditions. The AO system is a “SPHERE-like” AO system, and its parameters are taken
identical to those used with the previous method,2 for comparison purposes. Noise is taken zero-mean, additive,
white and Gaussian with a variance equal to the empirical mean value of the object as a first approximation of the
photon noise. The total flux of the object is set to Fo = 109 ph (photons), typical from VLT/SPHERE/Zimpol
asteroid observations (ESO Large Program ID 199.C-0074), therefore γn = P/Fo = 2.62× 10−4 ph−2.

The PSF and PSD parameters are estimated following the proposed method, except the mean object mo,
which is estimated to the average value of the image, and the object PSD power which is fixed to p = 3, which
corresponds to a reasonable default value of p for asteroids. The Gibbs sampler is run for 100 000 iterations,
which corresponds to a few hours, to verify the convergence.

3.2 Results on the estimated parameters and derived uncertainties

In Figure 2, we plot the samples chains and the corresponding histograms for γn, r0 and vϕ. The inspection
of Figure 2 suggests that chains have a short burn-in period, followed by a stationary state. As expected from
Markov chains, for each parameter the samples are correlated. Moreover, the samples are concentrated in a small
interval relatively to their prior interval.

Figure 2. From top to bottom: γn, r0, vϕ, γo, k. Left: chain of samples for simulated astronomical image. Right:
corresponding histogram. True values in dashed line.

The sample mean values m, corresponding to our estimates, and standard deviations σ, corresponding to our
predicted uncertainties, for each parameter are displayed in Table 1. Firstly, we can note that the error on the



Parameter m± σ True

γn (ph−2) 2.620×10−4 ± 0.008 ×10−4 2.621×10−4

r0 (m) 0.142 ± 0.007 0.15

vϕ(rad
2) 1.17 ± 0.03 1.30

γo (ph−2) 2.37×10−13 ± 5.41×10−14 -
k 0.768 ± 0.594 -

Table 1. Mean value, associated standard deviation and true value, for γn, r0, vϕ, γo and k for simulated astronomical
image (stationary Gaussian noise), with p = 3 and mo = mi.

parameters is small: the noise precision is very precisely estimated, with an error smaller than 0.2%, and PSF
parameters are also well estimated, with a 5% error on r0 and a 10% error on vϕ. Additionally, the estimated r0
and vϕ are very close to the previous results obtained with AMIRAL: for similar conditions,2 the estimated PSF
parameters were r0 = 0.142m and vϕ = 1.13 rad2 (compared to r0 = 0.142m and vϕ = 1.17 rad2 in Table 1).

Figure 3. True (in green) and estimated (in blue) OTF for simulated astronomical image, including computed uncertainties
(in blue, + and - for upper and lower uncertainty bounds).

3.3 Results on the OTF

We also compare the resulting OTF to the true OTF in Figure 3. The slight underestimation of r0 leads to
the lowering of the global OTF level and its impact can mainly be seen at low frequencies. Concerning vϕ, its
mild underestimation leads to a slower decrease of the OTF and impacts the slope of the latter at medium-high
frequencies.2 Thus, we notice that the errors on both parameters partially compensate. As a result, the normalized
RMSE for the OTFis quite small (around 7%).

Concerning the uncertainties derived from our method, we notice in Table 1 that the true value for parameter
r0 is in the range [mr0 ± 2σr0 ], and the true vϕ is in the interval [mvϕ ± 5σvϕ ], therefore the uncertainties on
PSF parameters seem under-estimated. We can also compute uncertainties directly on the sought OTF: for each
sample (r0, vϕ), we compute the corresponding OTF in order to compute its sample mean mh̃ and standard
deviation σh̃, meaning the mean and standard deviation for each frequency of the OTF. As shown in Figure 3,
the true OTF is within the interval [mh̃ ± 2σh̃], for all frequencies. Therefore, even though the uncertainties on
PSF parameters are somewhat under-estimated, our method gives a very satisfactory uncertainty estimation on
the OTF itself.

3.4 Results on the restored image

Figure 4 shows the image in Figure 1 restored with the estimated OTF, using a quadratic regularization (which
hyperparameters are the ones estimated by the method) with positivity constraint. Many details of the Vesta
surface can be seen, that were not visible on the data. Particularly, with our method we retrieve sharp edges of



Figure 4. Left and center: true object and image for simulated asteroid observation, 256× 256 cropped from Figure 1.
Right: restored object from the estimated PSF and PSD parameters using a L2-norm regularization, with positivity
constraint, also cropped.

the asteroid from which one can estimate the object volume and sphericity, as well as main crater and albedo
features.

3.5 Posterior coupling between parameters

Sampling the whole posterior distribution, instead of computing a single point of it (for example, the maximum),
enables us to study the a posteriori coupling of the parameters. In Figures 5 and 6, we display the scatter graph
of the samples, after boiling time, for two different couples of parameters: (r0, vϕ) and (r0, γo). Most couples of
parameters have a scatter graph similar to Figure 5, where the 2D-histogram is rather Gaussian and along the
axis suggesting that most parameters are not correlated a posteriori.

Figure 5. Marginal posterior scatter graph of the samples for (r0, vϕ) after boiling time.

The only couple of parameters which does not have an elliptical-like scatter graph, but instead show a strong
a posteriori correlation, is r0 and γo. We explain this correlation by the fact that as shown in [2], r0 impacts the
global level of the OTF whereas γo gives the global level of the object PSD. Therefore, given the expression of
the image PSD in Eq. (5), both (r0, γo) have a similar impact on the global level of the image PSD, which is
fitted by our method, that explains their strong correlation.

Additional information and studies (on several noise realizations, with different tunings of hyperparameter p,
more realistic noise simulations,...) on this new method are provided in [4].



Figure 6. Marginal posterior scatter graph of the samples for (r0, γo) after boiling time.

4. RESULTS ON EXPERIMENTAL ASTRONOMICAL DATA

After testing our method on both astronomical and satellite simulated data, therefore for different turbulence
conditions and AO systems, we apply it to experimental images. Here we process an experimental image of
Vesta10 taken by SPHERE/Zimpol in the same mostly unsupervised mode as previously where p = 3, and run
the Gibbs sampler for 100 000 iterations. Data and restored object are shown in Figure 7. We recognize the same
surface features as from the synthetic view in Figure 1. In this experimental case, the bright edge corona starts
to appear (on the left side), and the image is slightly granular. This may be due to a slight over-deconvolution
i.e. to a slight under-estimation of the OTF, as to the quadratic regularization.

Figure 7. Left: Vesta observed by SPHERE/Zimpol on the European Very Large Telescope (VLT) in Chile.10 Right:
restored object with the estimated PSF using a L2-norm regularization, with positivity constraint.

Results obtained for the PSF parameters (mean±standard deviation) are the following: r0 = 0.26± 0.04m and
vϕ = 2.62± 0.06 rad2. These values are close to the values obtained with AMIRAL2 (r0 = 0.32m, vϕ = 2.78 rad2)
for the same conditions, the newly estimated r0 being more likely than the one estimated by AMIRAL according
to the known statistics on r0.
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5. CONCLUSION

We have presented a new marginal semi-blind deconvolution method extending previous works, using a MCMC
algorithm, more precisely a Metropolis-Hastings-within-Gibbs algorithm. In addition to PSF and hyperparameter
estimation combined with image restoration, we now have access to the whole posterior distribution. This
enables us to compute the optimal estimator minimizing the mean square error. Additionally, with the posterior
distribution, we can compute uncertainties based on the posterior standard deviation, as well as posterior
correlation between the parameters. This method has been validated on simulated images, giving accurate
estimations of noise and object hyperparameters, as well as satisfactory OTF estimations. Finally, our method
has also been applied to an experimental image.

In this work, hyperparameter p, which codes for the decrease of the object PSD, has been fixed to a reasonable
value according to the class of the object. The PSF estimation quality is sensitive to the choice of p, as we verified
it by changing its value.4 Moreover, jointly estimating p with the other parameters is difficult as mentioned in
earlier studies.2 In the near future, we plan to tackle the joint estimation of p. In order to enable it, and to
improve the PSF estimation quality, we are currently working on the addition a support constraint on the object.
Indeed, such constraint helps separate the contributions of the object and of the PSF to the image.11 First results
using a support constraint are shown in [12].
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