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Accuracy and Computational Efficiency of Various Methods
for Atmospheric Turbulence Structure Function Computation

Deborah Malonea and Nicholas Devaneya

aApplied Optics, University of Galway, Ireland

ABSTRACT

Structure functions are used to characterise spatial variations in turbulent quantities such as air temperature,
density, refractive index and wavefront phase. They are often used to verify numerically generated phase screens
for use in numerical simulations or with, for example, spatial light modulators. The usual method of calculating
the structure function of such a screen in principle requires the comparison of each pixel with every other
pixel, a computationally complex and time-consuming process. This paper will compare alternative methods for
calculating the structure function of numerically generated atmospheric turbulence. Specifically, it evaluates the
efficiency and accuracy of the methods and highlights the strengths and limitations of each. The study aims to
help researchers select the appropriate method for their specific needs, choosing between faster computation, or
higher accuracy.
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1. INTRODUCTION

Atmospheric turbulence primarily occurs in the lower part of the atmosphere, known as the planetary boundary
layer (PBL), and refers to the small scale chaotic flow of air [3]. The turbulence in the PBL transfers heat,
moisture, and momentum between the Earth’s surface and the atmosphere. Since the atmosphere is a system in
hydrostatic equilibrium, changes in temperature affect the density of the atmosphere in that region, and as a
consequence, the refractive index also changes.

Changes in refractive index cause a difference in phase across any wavefront travelling through the atmosphere.
The statistics of the phase changes can be described by the Kolmogorov theory of turbulence, which describes the
atmosphere as a series of energy cascades from larger to smaller structures, known as eddies [4]. We can describe
the average phase difference squared between any two points using a structure function, defined by Equation 1;

Dϕ(r) = ⟨[ϕ(r1 + r)− ϕ(r1)]
2⟩ (1)

where ϕ(r1) is the phase at a point r1, and ϕ(r1 + r) is the phase a distance r away. The angle brackets indicate
the statistical expected value [5]. It can be shown that Kolmogorov turbulence gives rise to a power law given by
Equation 2.

Dϕ(r) = 6.88

(
r

r0

)5/3

(2)
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where r is the separation between two points, and r0 is the Fried parameter [1]. By measuring the structure
function of phase screens, one can compare to the Kolmogorov power law to see how accurate the phase screen
simulates real atmospheric turbulence.

2. EXPERIMENT SETUP

For the experiment outlined in this paper, phase screens were generated using the code developed by Johnston,
Harding, and Lane, which uses a midpoint displacement method to increase the resolution of a simulated
low-resolution phase screen [2]. The hardware setup of the computer used for timed comparisons is given in Table
1.

Table 1: Computer set-up for running calculations.

Operating System Windows 11 Home, version 10.0.22621
Processor IntelR CoreTM i5-13600K (14 Cores, up to 5.10GHz)
RAM 32 GB DDR5 @ 6000 MHz
MATLAB Version 9.13.0.2126072 (R2022b) Update 3

The purpose of this experiment is to find fast ways of measuring the structure function of many phase screens
when used either numerically for simulations, or with optical devices which can display them, such as Spatial Light
Modulators (SLMs). Because of this, the experiments will use a reference phase screen diameter of 100 pixels for
initial testing, and a diameter of 512 pixels for the final experiments, which is a commonly used resolution for
off-the-shelf SLMs.

3. PERFORMANCE OF BASELINE STRUCTURE FUNCTION ALGORITHM

In this paper, we define the Baseline Structure Function (BSF) as the structure function which compares every
pixel to every other pixel. It is the most computationally expensive, but also the one which will give the most
accurate result. The number of calculations in a phase screen goes according to Equation 3, where p is the number
of pixels within the area used to calculate the structure function.

ncalc =

p−1∑
i=1

(p− i) (3)

Since the function is defined over a circular aperture, a phase screen with a diameter of 512 pixels would contain
205887 pixels within the aperture (using πr2 where r = 512/2), requiring 2.1× 1010 calculations.

The first experiment uses phase screen sizes from 10 to 200 pixels in diameter in steps of 10, and measures the
time taken for the structure function to be calculated using the BSF approach. The resulting Time vs Screen
Diameter graph can be found in Figure 1. Fitting a power curve to the results gives the following equation;

T (x) = (5.991× 10−9)x5.344 (4)

where x is the screen diameter in pixels, and T (x) is the time to perform the calculation. For a screen size of 512
pixels, this gives 20.9 days. This length of time is not practical, and so a faster method must be used to deal with
large numbers of phase screens.

4. SPEEDING UP THE STRUCTURE FUNCTION ALGORITHM

The simplest way to speed up the structure function calculation is to reduce the number of pixel comparisons.
However, we also consider whether the geometry of the positions of the comparison pixels has an effect on the
resulting structure function. For the sake of this investigation, three different geometries are used. They are
defined as grid, circular, and random. Examples of these geometries can be seen in Figure 2. In each case, every
pixel within the defined structure function area (the circular aperture shown in white) is compared to a sub-set



Figure 1: Time to complete the structure function of phase screens of diameters varying between 10 and 200.

(a) Grid layout – The pixels are ar-
ranged in a uniform grid throughout
the defined area.

(b) Circle layout - The pixels are ar-
ranged in equally spaced concentric
circles.

(c) Random layout - The positions of
the pixels are chosen randomly.

Figure 2: The three layouts used for the investigation of the reduced pixel comparisons method. Each method will
have approximately the same number of comparisons. The area over which the structure function is calculated is
shown in white.



of pixels (shown in red). Each method has approximately the same number of comparisons, the only difference
being the position of the pixels which are compared.

For these comparisons, the variable n is introduced, defined as the number of columns and rows skipped
between comparison pixels in the grid algorithm. This means for every value of n, one comparison is made in
each n× n grid. For example, for n = 2, one comparison is made in each 2× 2 grid, or 1/4 of the total number of
pixels are compared. The number of comparisons, C(n), therefore, is given by Equation 5;

C(n) =
p

n2
(5)

where C(n) is the number of comparisons, p is the number of pixels contained within the aperture, and n is
the number of columns and rows to skip between comparisons. While this value is based on the grid algorithm,
the same number of comparison pixels is used for the circular and random algorithms to keep the number of
computations the same.

4.1 Preliminary Testing

First, we wish to compare the speed and the accuracy of the algorithms on a smaller data set. To achieve this, a
single 100× 100 pixel phase screen with a D/r0 value of 10 is generated, and its structure function calculated
using the baseline algorithm (n = 1). This is shown in Figure 3. While structure functions are expected to fit
Equation 2, this law is an average over many realisations and a single screen is not expected to match the law
exactly. This can be seen by comparing the fit result in Figure 3b with Equation 2. With a diameter of 100 and a
D/r0 value of 10, the values of a and b if the structure function fit the theoretical exactly would be 0.688 and
1.6667 respectively. This is not the case, as the measurement is based on only one screen.

(a) Phase Screen (b) Structure function

Figure 3: 100× 100 Phase Screen with resulting structure function produced using the baseline algorithm, which
compares every pixel to every other pixel. The value of D/r0 is 10.

Instead of comparing results to the Kolmogorov power law (Eqn. 2) for this smaller dataset, the results from
the fast algorithms will be compared only to the resulting structure function from the baseline algorithm.

4.1.1 Computation time

The time to calculate a structure function with the three different algorithms on a single phase screen with
different values of n can be found in Figure 4. The speed of the three algorithms are comparable for all values of
n considered here, which shows that approximately the same number of comparisons are made for each algorithm,
as required.



Figure 4: Comparison of the time to complete and for the grid, circular, and random algorithms in calculating a
structure function for a single 100× 100 phase screen. Note: y-axis is log scale.

4.1.2 Accuracy of multiple screens for different values of n

As the Structure Function is defined as the statistical average, it must be used on a larger data set. For this, 100
phase screens created with a D/r0 value of 10 and dimensions of 100× 100 pixels are created. Each algorithm
is tested on the phase screens with values of n equal to 5, 10, 15,and 20. The resulting structure functions are
shown in Figure 5.

In figures 5a and 5b, the resulting structure functions for each algorithm closely match the reference curve. In
Figure 5c, we can see the Grid and Random algorithms start to deviate from the reference, while the Circular
one remains very close. In Figure 5d, all the algorithms are significantly deviating, suggesting that this value
of n = 20 is too high for this method. In Figure 6, we can see that the time to compute all 100 phase screens
remained consistent for each algorithm.

It was noted during these measurements that the random algorithm gave different results for the structure
functions every time. While this was expected, it meant that the calculations would not be repeatable, and this
algorithm was discarded in favour of the other two.

4.1.3 Errors

Using the Grid and Circular algorithms, the errors of the structure functions were calculated. The errors on these
graphs are calculated using the Standard Error (SE), given by Equation 6.

SE =
σ
√
y

(6)

where:

σ =

√∑
(x2)− (

∑
x)2

y
(7)

and y is the number of samples for that value of x. These errors are shown as a shaded region in Figure 7.

Both Grid and Circular algorithms performed very well for n values of 5 and 10, while the grid algorithm
begins to fail at the smaller distances for n ≥ 15. The base curve remained within the errors for the circular
algorithm for n = 15, but not so for the grid algorithm at distances less than 20 pixels. It can also be seen
that the circular algorithm works better than the grid algoritm for separations ≈> 80 pixels. This is due to
the structure function being defined on the circle rather than the square. However, the grid algorithm could be
adjusted so that the longest distances between pixels are sampled.



(a) n = 5 (b) n = 10

(c) n = 15 (d) n = 20

Figure 5: Structure functions for a data set of 100 phase screens of dimensions 100× 100 pixels. The reference
curve corresponds to the BSF where n = 1

Figure 6: Time to complete 100 structure functions of the 100 × 100 screens for all three algorithms for the
structure functions shown in Figure 5



(a) n = 5 (b) n = 10

(c) n = 15 (d) n = 20

Figure 7: Resulting structure functions of the 100× 100 phase screens with errors for n values of 5, 10, 15, and 20.

5. 512 X 512 PHASE SCREEN TESTING AND COMPARISON WITH FOURIER
METHOD

The grid and circular algorithms are then tested on 100 512× 512 phase screens. Due to the time constraint of
calculating a base curve to compare to, the results are instead compared to the theoretical curve generated from
the Kolmogorov Theory (Equation 2).

An alternative method of calculating the structure function, is to use a Fourier transform method. This is
based on the following relationship [6]

Dϕ(r) = 2[Bϕ(0)−Bϕ(r)] (8)

where Bϕ(r) is the covariance function of the phase. In this case, the Fourier power spectrum of the phase screen
(with mean subtracted) is inverse Fourier transformed to obtain the autocorrelation of the phase screen. The
structure function estimate is given by taking a radial average and using 8.

The results show that both grid and circular algorithms give very similar results. Both resulting structure
functions are a little higher than the theoretical, but still remaining within the error. Again noted here is the lack
of values at higher separations for the grid algorithm for n = 150 and n = 200. This is due to the geometry of
the grid not providing pixels with enough separation to make a measurement at these distances. The circular
algorithm, however, which contains at least one pixel at, or close to, the edge of the aperture, was able to
provide a measurement at these separations. The grid algorithm could be improved by ensuring that at least one
comparison pixel is at the edge of the aperture.

In Figure 8, the resulting Structure functions from the Grid and Circular algorithms are compared with the
Fourier method. The results show that the Fourier results overestimate the phase difference squared for the



shorter distances; however, it does it much faster than the comparison algorithms, as shown in Table 2.

(a) n = 50 (b) n = 100

(c) n = 150 (d) n = 200

Figure 8: Resulting structure functions with errors for n values of 50, 100, 150, and 200.

Table 2: Time taken to calculate a structure function of a single 512× 512 phase screen

Algorithm Time (s)
Fourier 1.2
Grid (n = 50) 658
Grid(n = 200) 39
Circular (n = 50) 731
Circular (n = 200) 81

The Fourier method is much faster than the algorithms that just compare the pixels themselves, but the
algorithm doesn’t produce the expected structure function. This may be due to the effect of windowing, i.e. the
fact that the phase screen has a finite size. It is also clear that the value of the central pixel of the estimated
autocorrelation directly affects the estimated structure function scaling.

6. CONCLUSION

In this work, we have presented a comparison of three algorithms for the calculation of structure functions. The
three algorithms focus on the comparison of the phase values between pixels with different numbers of difference
calculations and pixel location geometries. The grid algorithm, which compares pixels in an equally spaced grid,
performed comparably to the circular algorithm, which uses pixels in concentric circles. The random algorithm,
which compares to randomly location pixels, produced different results for each iteration and so was discarded as
the results were not repeatable.



The two remaining algorithms were tested on 512× 512 pixel phase screens and compared to the theoretical
structure function given by the Kolmogorov Power Law. The functions produced by the algorithms matched
with the theoretical within the errors for n values of 50 and 100, but began to deviate for 150 and 200. The
grid algorithm also did not provide comparisons at the larger distances (>≈ 470 pixels). These results were
also compared to a Fourier method of measuring the structure function, which showed that the Fourier method
over-estimated the squared phase difference between two pixels. While this may be due to window effects for the
Fourier transform, further work is needed to confirm whether this is the case or whether a different mechanism is
producing the discrepancy.
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