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Solving singular integral equations with orthogonal

rational functions

Bernhard Beckermann∗and Ana C. Matos∗

Abstract

We suggest a new numerical method of solving the signed equilibrium with
external field in logarithmic potential theory on a union of distinct real intervals.
A reformulation of our problem leads us to a system of integral equations with a
weakly singular Cauchy kernel. We then recall a polynomial spectral method and
its error analysis, and suggest a new spectral method using orthogonal rational
functions in order to solve our problem. Choosing appropriate and explicitly given
poles allows to speed up computation. Such techniques have been exploited also
in the famous adaptative multipole algorithm for particle simulations [8] or more
recently for solving the Laplace equation [28].

Keywords: equilibrium problems, singular integral equations, orthogonal rational
functions, spectral methods

1 Introduction

We are interested in solving the following signed equilibrium problem in logarithmic po-
tential theory, which can be seen also as a particular singular integral equation with
logarithmic kernel.

Problem 1.1. Given a union I of m real compact and disjoint intervals Ij = [aj , bj] and
Q ∈ C(R), find a (signed) measure µ of mass

∫
dµ = 1 with supp (µ) ⊂ I and F ∈ R s.t.

∀x ∈ I : V µ(x) + Q(x) = F, (1.1)

with logarithmic potential V µ(x) =
∫
log( 1

|x−y|
)dµ(y).

In the literature [4, §1.3], a measure µ as in Problem 1.1 often is referred to as a signed
equilibrium measure, namely the one with within all signed measures ν of mass 1 which
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minimizes the weighted logarithmic energy ν 7→
∫
V νdν+2

∫
Qdν. Defining the measures

supported on Ij by

dωj(x) =
dx

π
√

(bj − x)(x− aj)
, dηj(x) =

√
(bj − x)(x− aj)dx

π
, (1.2)

then we show in Theorem 2.2 below that, provided that Q′ ∈ L2(ηj) for all j, we have one
and only one solution with density (with respect to ωj)

ρj(x) :=
dµ|Ij
dωj

(x) = π
√

(x− aj)(bj − x)
dµ|Ij
dx

(x) ∈ L2(ωj) (1.3)

for j = 1, ..., m. Notice that the choice of our functional spaces is essential, for existence
and uniqueness in different Lp spaces we refer the reader to the classical reference [20,
§10, 11, 18 and 19], or [1, 2, 18] and the recent paper [15] for the case of several intervals.

Example 1.2. In the case m = 1 of a single interval I = I1 = [a1, b1] and external field
Q = 0, it is known that the solution of Problem 1.1 is given by µ = ω1 and hence ρ1 = 1.
Even for a general external field Q we may explicitly write down the solution in terms of
Tn, the Chebyshev polynomials of the first kind, being orthogonal (but not orthonormal)
with respect to ω1: the Ansatz

ρ1(x) =
dµ

dω1
(x) = T0(

2x− a1 − b1
b1 − a1

) +

∞∑

n=1

cnTn(
2x− a1 − b1
b1 − a1

) ∈ L2(ω1)

is known to give for x ∈ I1 the logarithmic potential

V µ(x) = log(
4

b1 − a1
) +

∞∑

n=1

cn
n
Tn(

2x− a1 − b1
b1 − a1

),

and we find the coefficients cn by comparing with the Chebyshev expansion of Q on I1.

In the case of a single interval m = 1, the previous example shows that the choice of
the basis of Chebyshev polynomials allowed us to diagonalize the map µ 7→ V µ, being
compact, with unbounded inverse. It turns out that, by taking derivatives in (1.1), we are
left with a Cauchy kernel instead of a logarithmic kernel, which allows to apply Fredholm
theory. It is well known that derivatives of

x 7→ V µ|Ik (x) =

∫

Ik

log(
1

|x− y|)ρk(y)dωk(y)

can be expressed in terms of Cauchy and Hilbert transforms for x ∈ R, but the scaling
factor in the definition of such transforms is unfortunately not unique, compare with, e.g.,
[10, §6.7 p. 169 ff] and [17]. We will choose a scaling such that the derivative is given by
Ck(ρk)(x) for x ∈ R \ Ik, and by Hk(ρk)(x) for x ∈ Ik.

Definition 1.3. We define the weighted Cauchy transform, and weighted Hilbert trans-
form, respectively, by

Ck(ρk)(x) =
∫

Ik

ρk(y)

y − x
dωk(y) if x 6∈ Ik,

Hk(ρk)(x) := lim
ǫ→0+

ReCk(ρk)(x+ iǫ) = −
∫

Ik

ρk(y)

y − x
dωk(y) if x ∈ Ik,

with the principal value integral −
∫
.
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Then our initial Problem 1.1 can be reformulated as follows.

Problem 1.4. Find ρj =
dµ|Ij
dωIj

∈ L2(ωj) for j = 1, ..., m such that

(M) The total mass of the measure is 1:

∫
dµ =

m∑

k=1

∫

Ik

ρkdωk = 1.

(D) The derivative (V µ +Q)′ vanishes on each subinterval:

∀j = 1, ..., m ∀x ∈ Ij : Q′(x) +Hj(ρj)(x) +
∑

k 6=j

Ck(ρk)(x) = 0.

(C) V µ +Q is equal to the same constant on each subinterval:

∀j = 2, ..., m :

∫ aj

bj−1

(
Q′(x) +

m∑

k=1

Ck(ρk)(x)
)
dx = 0.

In (D) we therefore have derived a new system of integral equations, containing one
singular integral operator Hj with a Cauchy kernel, and other integral operators with a
smooth kernel, which describe the interaction between intervals. As it is typically done
in spectral methods, we will choose a basis in which the action of Hj is easy to describe,
compare with Example 1.2, and show that the interaction can be well approximated by
simpler finite rank approximations, leading to an effective way of computing the unknown
densities ρj , where we provide a complete error analysis. Spectral methods for (systems
of) integral equations have been considered before by many authors. In the setting of
Problem 1.4, we refer the readers for instance to [23] based on bases of Chebyshev orthog-
onal polynomials, and to [9] where piecewise linear splines are used, each time without
error analysis. In contrast, we will show that a basis of orthogonal rational functions
(ORF) allows for high precision with a small number of degrees of freedom, even in the
critical case where two of the intervals Ij are close to each other. Using rational functions
is also implicit in the so-called multi-pole method [8] for single/double layer potential
problems, where, roughly speaking, the precise form of µ in the far field, that is, for x
sufficiently far from Ij , is not so important: for obtaining the equilibrium (1.1) for x ∈ Ij ,
we may replace µ|Ik for k 6= j by a suitable weighted sum of Dirac measures, leading for
the potential to a weighted sum of logarithmic terms, with a derivative being a rational
function with poles at the supports of the Dirac mass points. Hence the interaction terms
in (D) should be well approximable by rational functions with fixed poles, as long as the
poles are carefully chosen. Our choice of poles will be inspired by the third Zolotarev
extremal problem, which recently gained a lot of attention in the context of row rank
approximations of matrices with small displacement rank [3].

Before going further, let us first briefly discuss the link with Riemann-Hilbert tech-
niques.
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Remark 1.5. As shown in [10, §6.7 p. 169 ff], the Cauchy transform Cj has boundary
values by approaching x ∈ Int(Ij) through the complex plane from above or below, and
more precisely,

x ∈ Int(Ij) : Cj(ρj)(x± i0) = Hj(ρj)(x)± iπ
dµ

dx
(x). (1.4)

Thus the function f(z) :=
∑m

k=1 Ck(ρk)(z) with ρk as in Problem 1.4 has the following
properties: it is obviously analytic in C \ I, behaves like f(z) = 1

z
+ O( 1

z2
)z→∞ by (M),

satisfies the jump condition f(x+ i0) + f(x− i0) + 2Q′(x) = 0 for all x ∈ Int(I) by (D),

and finally satisfies the side conditions
∫ aj

bj−1

(
f(x) + Q′(x)

)
dx = 0 for j = 2, ..., m by

(C). In other words, f is a solution of a Riemann-Hilbert (RH) problem. Conversely, any
numerical method for solving this RH-problem provides the required measure µ through
(1.4). However, those numerical methods for solving RH-problems we are aware of are
based on the a non-trivial task of numerical evaluation of singular integrals, which explains
the different approach taken in this paper.

2 A polynomial spectral method

We start by recalling orthonormal (and dense) bases of L2(ωj) and L
2(ηj), both measures

being defined in (1.2), and describe the action of Hj and Ck on these bases. Let {Tn(z)}n
and {Un(z)}n be the sequences of Chebyshev polynomials of first and second kind in the
interval [−1, 1]. We may obtain orthonormal bases of the above spaces by a linear change
of variables plus a suitable scaling, which is easiest described in terms of the Riemann
conformal map φj : C \ Ij 7→ C \ D, with D the open unit disk,

w = φj(z) ⇐⇒ 1

2
(w +

1

w
) =

2z − aj − bj
bj − aj

.

Then the orthonormal bases are given by shifted normalized Chebyshev polynomials of
first/second kind in [aj, bj ], defined by Tj,0 = 1 and, for n ≥ 1,

Tj,n(z) =
√
2Tn(

2z − aj − bj
bj − aj

) =
1√
2
(wn +

1

wn
),

bj − aj
2

Uj,n−1(z) =
√
2Un−1(

2z − aj − bj
bj − aj

) =
√
2
wn − 1

wn

w − 1
w

.

The action of Hj and Ck on these polynomials is well known [17, §11.12 p. 567 ff].

Lemma 2.1. For n ≥ 1,

Ck(Tk,n)(x) = −
√
2
φ′
k(x)

φk(x)

1

φk(x)n
, Ck(Tk,0)(x) = −φ

′
k(x)

φk(x)
,

Hj(Tj,n)(x) = Uj,n−1(x), Hj(Tj,0)(x) = 0,∫ aj

bj−1

Ck(Tk,n)dx =
√
2
φk(aj)

−n − φk(bj−1)
−n

n
,

∫ aj

bj−1

Ck(Tk,0)dx = log(
φk(bj−1)

φk(aj)
).
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Proof. The first 4 identities are a particular case of Lemma 3.3 below, the last two are
obtained by integration.

Setting
Cj,k : L2(ωk) 7→ L2(ηj), Cj,k(g) = Ck(g)|Ij ,

we notice that condition (D) holds iff Hj(ρj) + Q′ +
∑

k 6=j Cj,kρk equals 0 ∈ L2(ηj), or,
in other words, is ηj-orthogonal to Uj,ℓ−1 for all ℓ ≥ 1. This allows us to formulate
Problem 1.4 as a system of linear equations in (ℓ2)m of the form

(I +K)x = c, (2.1)

where K (and accordingly x and b) is partitioned into blocks Kj,k : ℓ2 7→ ℓ2 for j, k =
1, 2, ..., m, the kth block of the vector x of unknowns being

(x)k = (ρk,0, ρk,1, ...)
T with ρk(x) =

∞∑

n=0

ρk,nTk,n(x) (2.2)

allowing to describe in each equation the contribution of the density ρk, and the jth block
of the equations describing in the 0th row an exceptional equation (namely condition (M)
for j = 1 and (C) for j = 2, ..., m), and in the ℓth row for ℓ ≥ 1 the orthogonality with
Uj,ℓ−1 coming from condition (C). This leads to the matrix

((I +K)j,k)ℓ,n =





δn,0 if j = 1, ℓ = 0,∫ aj

bj−1
Ck(Tk,n)(x)dx if j > 1, ℓ = 0,

〈Cj,kTk,n, Uj,ℓ−1〉L2(ηj ) if j 6= k, ℓ > 0,
δℓ,n if j = k, ℓ > 0,

(2.3)

and the right-hand side

((c)j)ℓ =





1 if j = 1, ℓ = 0,
−
∫ aj

bj−1
Q′(x)dx = Q(bj−1)−Q(aj) if j > 1, ℓ = 0,

−〈Q′, Uj,ℓ−1〉L2(ηj) if ℓ > 0.

(2.4)

If we suppose that Q is given on each interval Ij as a Chebyshev series of the first kind,

∀j = 1, 2, ..., m, ∀x ∈ Ij : Q|Ij(x) =
∞∑

ℓ=0

Qj,ℓTj,ℓ(x), (2.5)

then, by taking derivatives, −〈Q′, Uj,ℓ−1〉L2(ηj ) = −ℓQj,ℓ for ℓ ≥ 1, since ℓ Uj,ℓ−1 is the
derivative of Tj,ℓ. Thus all entries of c occurring in (2.4) are computable. Using Lemma 2.1,
also all entries of K occurring in (2.3) including Cj,kTk,n are computable, up the the scalar
product with Uj,ℓ−1, which we will approach later on by some quadrature formula. The
last case in (2.3) shows that Kj,j is the zero matrix except the entries in the 0th row
coming from conditions (M) or (C), moreover, for j > 1 the decay of these entries is
rather slow. Notice that (x)k ∈ ℓ2 iff ρk ∈ L2(ωk), and (c)j ∈ ℓ2 iff Q′ ∈ L2(ηj). Moreover,
it is not too difficult to check using Lemma 2.1 that each row of Kj,k is in ℓ2 so that
(I+K)x makes sense (though it is not yet clear that Kj,k is a bounded operator acting on
ℓ2). Existence and uniqueness of a solution of (2.1) is shown in the following statement.
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Theorem 2.2. The operator K : (ℓ2)m 7→ (ℓ2)m defined in (2.3) is a compact operator of
Hilbert-Schmidt class, and (I +K) is bijective and boundedly invertible.

In particular, if Q′ ∈ L2(ηj) for j = 1, 2, ..., m, then Problems 1.1 or 1.4 have one and
only one solution with ρk ∈ L2(ωk) for k = 1, 2, ..., m.

Proof. We start by showing thatK has finite Hilbert-Schmidt norm. Since the exceptional
rows of index 0 are elements of ℓ2 by the last two formulas of Lemma 2.1 and there are
a finite number of intervals, it is sufficient to show that Cj,k is Hilbert-Schmidt for all
j, k ∈ {1, ..., m}, j 6= k. This is known to be true for any integral operator with smooth
kernel, see for instance [16, Example V.2.19], but also follows from Theorem 3.6 below.

In order to conclude, by the Fredholm alternative, we only have to show that I +K
is injective (or 0 is not an eigenvalue of I + K). Suppose on the contrary that there is
y ∈ (ℓ2)m, y 6= 0 and (I + K)y = 0. Then as in (2.2) and Remark 1.5 we construct
ρk ∈ L2(ηk), and

f(z) =
m∑

k=1

Ck(ρk)(z) 6= 0

being analytic in C \ I, and f(z) = O(1/z2)z→∞ by the homogeneous counterpart of
condition (M). The homogeneous counterpart of (D) gives the jump behavior f(x+ i0) +
f(x− i0) = 0 for ∈ I. From [20, §84] we know that such a function f necessarily has the
form

f(z) =
P (z)√
R(z)

, R(z) =
m∏

j=1

(z − aj)(z − bj),

where P is a non-trivial polynomial with real coefficients of degree ≤ m− 2. Thus there
is at least one index j such both P and

√
R do not change sign on [bj−1, aj ], implying

that
∫ aj

bj−1
f(x)dx 6= 0, in contradiction with the homogeneous counterpart of condition

(C).

On a computer, we have to change the system (2.1) into

(I +K)x = c (2.6)

with c ∈ (ℓ2)m close to c, and K of finite rank and close to K, in order to get a finite
number of equations and unknowns. In what follows we will only consider the case where
there exists some matrix F with a finite number of columns which are mutually orthogonal,
and which span both c and the image of K. The following lemma shows that in this case
the solution x of (2.6) can be obtained by solving a linear system with a finite number of
unknowns and equations.

Lemma 2.3. Let FF ∗K = K, FF ∗c = c, F ∗F = I, and suppose that ‖K − K‖‖(I +
K)−1‖ < 1. Then system (2.6) has a unique solution given by

x = Fy, with y unique solution of (I + F ∗KF )y = F ∗c.

We furthermore have the error estimates, both for the residual and the error,

‖c− (I +K)x‖ ≤ ‖K −K‖ ‖x‖+ ‖c− c‖,
‖x− x‖ ≤ ‖(I +K)−1‖

(
‖K −K‖ ‖x‖+ ‖c− c‖

)
.
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Proof. Since I+K = (I+K)(I+(I+K)−1(K−K)), a simple Neumann series argument
shows that I +K is invertible, and hence (2.6) has a unique solution x. By assumption
on K and c we have that

x = (c−Kx) = FF ∗(c−Kx) = FF ∗x,

that is, there exists a unique y = F ∗x (with a finite number of components) such that
x = Fy. Inserting this information into (2.6) gives

(I +K)x− c = F (y + F ∗KFy − F ∗c).

Since the columns of F are linearly independent, we see that y = F ∗x is unique solution
of (I + F ∗KF )y = F ∗c, as claimed above. The error estimates follow by observing that

c− (I +K)x = (I +K)(x− x) = (K −K)x+ (c− c).

Example 2.4. Since K is Hilbert-Schmidt, a first attempt could be to follow the idea of
a finite section method,1 that is, to keep in the block (K)j,k only the first (Nj + 1) rows
from Kj,k, and to complete by zeros: here

K = FF ∗K, F ∗ = diag
[[

INj+1 0
]
j=1,...,m

]
, and c = FF ∗c. (2.7)

In this case, with y as in Lemma 2.3, computed in terms of F ∗KF and F ∗c, composed of
the the principal submatrices of Kj,k of size (Nj + 1)× (Nk + 1), and of the first Nj + 1
components of each block cj, we find that the kth block xk of x has the components
(xk)n = (yk)n for n = 0, ..., Nk, and (xk)n = 0 for n > Nk, which corresponds to the
ansatz of the form

ρ
k
(x) =

Nj∑

n=0

(xk)nTk,n(x) (2.8)

in order to get an approximate density ρ
k
approaching ρk. Notice that our estimates

of Lemma 2.3 for both the residual and the error will be only interesting if the entries
in c − c = (I − FF ∗)c decay sufficiently fast. According to (2.4), this vector contains
coefficients of order n > Nj of the Chebyshev expansion of Q′ on Ij, see (2.9), with their
decay depending on the smoothness of the external field Q.

The drawback of the finite section approach suggested in Example 2.4 is that, according
to (2.3), it requires to compute the scalar products 〈Cj,kTk,n, Uj,ℓ−1〉L2(ηj), where we have
explicit formulas for the two arguments, but no explicit formula for their scalar product.
Here the quantity (Cj,kTk,n) occurring in condition (D) is smooth in Ij. We will show in
Corollary 2.7 that it can be successfully approximated by a polynomial interpolant, where
the abscissa come from a Gauss quadrature rule related to ηj .

1Citations finite section method
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Definition 2.5. For j = 1, ..., m, and integers Nj > 0 to be fixed later, denote by d2j,h
and xj,h ∈ Ij, h = 1, ..., Nj, the weights/abscissa of the (Nj)th Gauss quadrature rule for

ηj , that is, dj,h =
bj−aj

2
√

Nj+1
sin( πh

Nj+1
), and xj,h =

aj+bj
2

+
bj−aj

2
cos( πh

Nj+1
) are the roots of

Uj,Nj
such that2

M−1
j =M∗

j , Mj :=
[
dj,hUj,ℓ−1(xj,h)

]
h,ℓ=1,...,Nj

.

Finally, denote by Πj the corresponding polynomial interpolation operator: for a function
g defined on Ij , we denote

Πjg(x) = (Uj,0(x), ..., Uj,Nj−1(x))M
∗
j

[
dj,hg(xj,h)

]
h=1,...,Nj

.

It is easily checked that computing 〈Πjg, Uj,ℓ−1〉L2(ηj) in case ℓ ≤ Nj is equivalent
of approaching the scalar product in 〈g, Uj,ℓ−1〉L2(ηj) by our Gauss quadrature rule, and
〈Πjg, Uj,ℓ−1〉L2(ηj ) = 0 in case ℓ > Nj . We thus define K as K in (2.3), but replace the
entry 〈Cj,kTk,n, Uj,ℓ−1〉L2(ηj ) for ℓ ≥ 1 and j 6= k by

〈Πj(Cj,kTk,n), Uj,ℓ−1〉L2(ηj ) =

Nj∑

h=1

d2j,hUj,ℓ−1(xj,h)(Cj,kTk,n)(xj,h)

for ℓ ≤ Nj , and by 0 if ℓ > Nj . As a consequence, we enter in the framework of Lemma 2.3
with K = FF ∗K and F and c = FF ∗c as in (2.7), but K differing from the one in
(2.7). Here, our approximate density ρ

k
is obtained as in (2.8) by solving the (finite

dimensional) system of Lemma 2.3, where each entry of the matrix F ∗KF is computed
using quadrature, and the right-hand side F ∗c using (2.4) and (2.5).

Remark 2.6. By multiplying the jth block of our finite-dimensional system by diag (1,Mj),
it is not too difficult to check that, at least for polynomial Qj , we may restate our poly-
nomial spectral method as a collocation method, where condition (D) is replaced by

∀j = 1, ..., m ∀h ∈ 1, ..., Nj : Hj(ρj)(xj,h) +
∑

k 6=j

Cj,k(ρk)(xj,h) +Q′(xj,h) = 0,

and conditions (M) and (C) are translated into additional m equations.

Turning to the error estimates of Lemma 2.3, we first observe that

‖c− c‖2 =
m∑

j=1

∞∑

ℓ=Nj+1

|ℓQj,ℓ|2 (2.9)

since we have replaced Q′
j by its partial orthogonal sum. Using a special case of Theo-

rem 3.6 with wj,n = 0 for all j, n we also may conclude on the Hilbert-Schmidt norm of
the error in the matrix.

2A direct proof makes use of the fast Fourier transform DST1.
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Corollary 2.7. Suppose without loss of generality that a1 < b1 < ... < am < bm. Provided
that the integers N1, ..., Nm are chosen such that

∀j = 1, ..., m− 1 :
bj − aj

2
√
2(aj+1 − bj)

|φj(aj+1)|−Nj ≤ ǫ,

∀j = 2, ..., m :
bj − aj

2
√
2(aj − bj−1)

|φj(bj−1)|−Nj ≤ ǫ,

we find that ‖Kj,k −Kj,k‖HS = ‖(I − Πj)Cj,k‖HS ≤ ǫ.
In particular, for our polynomial spectral method we have geometric convergence in

case of smooth right-hand sides Q1, ..., Qm.

We notice that the above error estimate is particularly interesting if both |φj(aj+1)|
and |φj(bj−1)| are ≫ 1, in other words, Ij is well separated both from Ij−1 and Ij+1. In the
considerations to follow we will improve the rate of convergence also in the cases where
consecutive intervals may be close.

Remark 2.8. We claim that, for j 6= k, the block Kj,k has a much smaller numerical
rank as the one predicted by Corollary 2.7. For this purpose, denote by X the (infinite)
matrix obtained from Kj,k by omitting the exceptional row of index 0. Let Bk denote
the Jacobi matrix associated to the polynomials Tk,n for n = 0, 1, ..., and Aj the Jacobi
matrix associated to the polynomials Uj,ℓ−1 for ℓ = 1, 2, ... Then, formally,

(xI − Aj)(Uj,0(x), Uj,1(x), ...)
T = 0, (Tk,0(y), Tk,1(y), ...)(yI − Bk) = 0,

with disjoint spectra σ(Aj) = Ij and σ(Bk) = Ik. As a consequence,

(AjX −XBk)ℓ,n =

∫ ∫
Uj,ℓ−1(x)Tk,n(y)dηj(x)dωk(y) =

δℓ,1δn,0
Uj,0Tk,0

= δℓ,1δn,0
bj − aj

2
√
2
,

in other words, X has a displacement rank given by rang (AjX − XBk) = 1. We may
therefore apply [3, Theorem 2.1] which expresses the decay of the singular values σ0(X) ≥
σ1(X)... of X in terms of the so-called Zolotarev numbers

Zℓ,n(E, F ) = min
R∈Rℓ,n

max
x∈E

|r(x)|max
y∈F

1

|r(y)| ,

where Rℓ,n = {P/Q : P,Q polynomials of degree ≤ ℓ, and ≤ n, respectively}. Namely,
for 0 ≤ n ≤ min{Nj − 1, Nk − 1} there holds that

σn(X)/σ0(X) ≤ Zn,n(Ij, Ik) ∈ [qn, 4qn], with q = exp(
−1

cap (Ij , Ik)
), (2.10)

cap (E, F ) being the logarithmic capacity of the condenser with the two disjoint and
compact plates E and F , se, e.g., [3]. In our particular case of two real intervals, according
to [3, Eqns. (3.7) and (3.8)] this capacity can be computed explicitly in terms of the
Gröetsch modulus µ(·) and the cross-ratio γ of the four endpoints

exp
( −1

cap (Ij , Ik)

)
= exp

( −π2

2µ(1/
√
γ)

)
≤ exp

( −π2

log(16γ)

)
, γ = |ak − aj

ak − bj

bk − bj
bk − aj

|. (2.11)
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A similar argument can be applied for each column block (Kj,k)j 6=k for fixed k, showing
that here the singular values decay like

Zn,n(I1 ∪ I2 ∪ ... ∪ Ik−1 ∪ Ik+1 ∪ ... ∪ Im, Ik). (2.12)

This has to be compared with the in general much larger quantity 3

Zn,0(Ij, Ik) ∈ [qn, 2qn], with q = max{ 1

|φj(ak)|
,

1

|φj(bk)|
}

occurring implicitly in Corollary 2.7. One may show that these rates are especially of
quite different magnitude if Ik is close to one of the other intervals.

It turns out that the proof of [3, Theorem 2.1] is constructive, a small rank matrix
can be explicitly constructed by orthogonal projection of each column block of K on
rational Krylov spaces, with poles related to optimal rational functions in (2.12). Another
possibility would be to use the formalism of H-matrices which are known to be powerful
in case of (systems of) integral equations. Here we will proceed differently, and define
different rational orthogonal bases of L2(ωk), and of L2(ηk), respectively.

3 A rational spectral method

In our polynomial spectral method in §2 we decided to project L2(ωk) onto the finite di-
mensional subset span{Tk,0, ..., Tk,Nk

}, and L2(ηj) onto span{Uj,0, ..., Uj,Nj−1}, respectively.
We now want to replace Chebyshev polynomials by Chebyshev orthogonal rational func-
tions (ORF), with the aim of getting higher precision with less degree of freedoms, by
carefully choosing the poles of these rational functions. Chebyshev ORF together with
rational Gauss quadrature will be discussed in §3.1. We then introduce in §3.2 our new
rational spectral method, and provide a complete error analysis in §3.3, showing how a
suitable choice of poles reduces the complexity.

3.1 Chebyshev orthogonal rational functions

We start by recalling orthonormal rational functions in L2(ωj) and L
2(ηj), both measures

being defined in (1.2), and then describe the action of Hj and Ck on these bases. Given
wj,0 = 0, wj,1, wj,2... ∈ (−1, 1) to be fixed later with

∑∞
n=0(1 − w2

j,n) = ∞, the Takenaka-
Malmquist rational functions [26] are given by

ϕj,n(w) =

√
1− w2

j,n

1− wwj,n

Bj,n(w), with Bj,n(w) =
n−1∏

ℓ=0

w − wj,ℓ

1− wwj,ℓ

,

they are known to be orthogonal in the Hardy space H2 [12]. Let as before w = φj(z)
be the Riemann conformal map from C \ Ij onto C \ D normalized at infinity. Then the
Faber-Dzhrbashyan rational functions for the interval Ij [11, 25] are obtained by taking
Faber transforms of the ϕj,n.

3Peut-etre un dessin pour les différents taux?
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Definition 3.1. Define tj,0(z) = 1, and for n ≥ 1 with w = φj(z),

tj,n(z) =
1√
2
(ϕj,n(w) + ϕj,n(

1

w
)), uj,n−1(z) =

2

bj − aj

√
2
ϕj,n(w)− ϕj,n(

1
w
)

w − 1
w

.

In the particular case wj,0 = wj,1 = ... = 0, it is not difficult to check that ϕj,n(y) = yn,
and thus tj,n = Tj,n and uj,n = Uj,n of the previous chapter. Else, setting zj,n 6∈ Ij with
φj(zj,n) = 1/wj,n, one may check that tj,n ∈ Rn,n with finite poles zj,1, ..., zj,n, whereas
uj,n−1 ∈ Rn−1,n with finite poles zj,1, ..., zj,n. with obvious generalizations if some of the
poles are ∞.

The following result shows why Bultheel et al in [6] refer to tj,n and uj,n as Chebyshev
orthogonal rational functions (Chebyshev ORF) of the first kind and of the second kind.
For uj,n, these authors only consider the particular case wj,1 = 0. 4

Lemma 3.2. For j = 1, .., m, the functions {tj,n : n = 0, 1, ...} form an orthonormal and
complete system of L2(ωj), and the functions {uj,n : n = 0, 1, ...} form an orthonormal
and complete system of L2(ηj).

The proof of this and the next result is presented in Appendix A.1. It seems to
be an original observation that Lemma 2.1 on the Cauchy and the Hilbert transform
for Chebyshev polynomials remains true after replacing (Tj,n, Uj,n, w

−n) by the triplet
(tj,n, uj,n, ϕj,n(1/w)), that is, for Chebyshev ORF.

Lemma 3.3. For all n ≥ 1,

Cj(tj,n)(x) = −
√
2
φ′
j(x)

φj(x)
ϕj,n(

1

φj(x)
), Cj(tj,0)(x) = −

φ′
j(x)

φj(x)
.

Hj(tj,n)(x) = uj,n−1(x), Hj(tj,0)(x) = 0.

Since we have to introduce rational counterparts, let us write more explicitly Πj = Πpol
j

and Nj = Npol
j . An essential ingredient in our polynomial spectral method of §2 was to

approach the L2(ηj) scalar product by some Gauss quadrature rule, integrating correctly

polynomials of degree < Npol
j . Rational Gauss quadrature for general ORF with respect

to a measure on the real line have been discussed by Van Deun, Bultheel and González-
Vera in [6, Theorem 2.4], here we will need rational Gauss quadrature both for ηj and
ωk.

Proposition 3.4. Let N rat
j > 0 be some integer such that wj,Nrat

j +1 = 0

(a) The Chebyshev ORF uj,Nrat
j

has distinct roots xratj,1 , ..., x
rat
j,Nrat

j
∈ Ij. Furthermore, there

exist positive real numbers dratj,1 , ..., d
rat
j,Nrat

j
such that, for all f, g ∈ span{uj,0, ..., uj,Nrat

j
−1},

∫
f(x)g(x) dηj(x) =

Nrat
j∑

n=1

(dratj,n)
2f(xratj,n)g(x

rat
j,n).

4Ici et avant il manquent des references precises, avec numero de theoreme etc... dans [6, 12, 11].
Est-ce que [12] a aussi seulement le cas wj,1 = 0?
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(b) The Chebyshev ORF tj,Nrat
j +1 has distinct roots x̃

rat
j,0 , ..., x̃

rat
j,Nrat

j
∈ Ij. Furthermore, there

exist positive real numbers d̃ratj,0 , ..., d̃
rat
j,Nrat

j
such that, for all f, g ∈ span{tj,0, ..., tj,Nrat

j
},

∫
f(x)g(x) dωj(x) =

Nrat
j∑

n=0

(d̃ratj,n)
2f(x̃ratj,n)g(x̃

rat
j,n).

Taking Chebyshev ORF f, g, we may conclude from Proposition 3.4 that, again, the
matrix

M rat
j =

[
dratj,huj,ℓ−1(x

rat
j,h)

]
h,ℓ=1,...,Nrat

j

(3.1)

is orthogonal, which by the way allows to compute the weights dratj,h in terms of the values
uj,0(x

rat
j,h), as mentioned in [6, Theorem 2.4]. Following §2, it will be useful to consider

the rational interpolation operator Πrat
j (g) ∈ span{uj,0, ..., uj,Nrat

j −1} with Πrat
j (g)(xratj,h) =

g(xratj,h) for h = 1, ..., N rat
j , and thus

Πrat
j (g) = (uj,0, ..., uj,Nrat

j −1)
(
M rat

j

)∗[
dratj,hg(x

rat
j,h)

]
h=1,...,Nrat

j

.

In particular, as before, 〈uj,ℓ−1,Π
rat
j g〉L2(ηj ) is zero for ℓ > N rat

j , and else coincides with
the rational quadrature approximation of 〈uj,ℓ−1, g〉L2(ηj).

Notice that, since wj,Nrat
j +1 = 0, Definition 3.1 tells us that

uj,Nrat
j

(z) =
2

bj − aj

√
2
Bj,Nrat

j
+1(w)−Bj,Nrat

j
+1(

1
w
)

w − 1
w

, w = φj(z).

Recalling that Bj,Nrat
j +1(1/w) = 1/Bj,Nrat

j +1(w), we conclude that φj(x
rat
j,h ) are exactly the

points on the unit circle different from ±1 where the Blaschke product Bj,Nrat
j

+1 takes

the value ±1. The authors in [6, Theorem 4.4] give a Weierstrass type method of com-
plexity O((N rat

j )2) for computing these zeros, the weights being computable by the same
complexity. Alternately, we can use linear algebra techniques, by finding the nodes as
eigenvalues of some tridiagonal matrix pencil, and the weights as the first components
of the corresponding normalized eigenvector. This is explained in more details in Ap-
pendix A.2.

Most what is said for rational Gaussian quadrature in L2(ηj) is also true in L2(ωj), in
particular, we can introduce the orthogonal matrix

M̃ rat
j =

[
d̃ratj,h tj,ℓ(x̃

rat
j,h)

]
h,ℓ=0,...,Nrat

j

together with the rational interpolation operator Π̃rat
j (g) ∈ span{tj,0, ..., tj,Nrat

j
} with

Π̃rat
j (g)(x̃ratj,h) = g(x̃ratj,h) for h = 0, ..., N rat

j , and thus

Π̃rat
j (g) = (tj,0, ..., tj,Nrat

j
)
(
M̃ rat

j

)∗[
d̃ratj,hg(x̃

rat
j,h)

]
h=0,...,Nrat

j

.

In particular, 〈tj,ℓ, Π̃rat
j g〉L2(ωj) is zero for ℓ > N rat

j , and else coincides with the rational
quadrature approximation of 〈tj,ℓ, g〉L2(ωj).
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indices ((I +K)j,k)ℓ,n ((I +K)j,k)ℓ,n
j = 1, ℓ = 0 δn,0 δn,0
j > 1, ℓ = 0, k = j χj(bj)δn,0 χj(bj)δn,0
j > 1, ℓ = 0, k = j − 1 χj(bj−1)δn,0 χj(bj−1)δn,0
j > 1, ℓ = 0, k 6= j − 1, j 〈χj, tk,n〉L2(ωk) 〈Π̃rat

k (χj), tk,n〉L2(ωk)

j 6= k, ℓ > 0 〈Cj,ktk,n, uj,ℓ−1〉L2(ηj) 〈Πrat
j (Cj,ktk,n), uj,ℓ−1〉L2(ηj)

j = k, ℓ > 0 δℓ,n δℓ,n

Table 1: Elements ((I +K)j,k)ℓ,n versus the discretized counterpart ((I +K)j,k)ℓ,n. The
indices ℓ, n = 0, 1, ... give the position in the block j, k = 1, ..., m.

indices ((c)j)ℓ ((c)j)ℓ
j = 1, ℓ = 0 1 1
j > 1, ℓ = 0 −

∫
Qdωj−1,j +

∫
Qdωj,j−1 expansions in Tj−1,n or Tj,n

ℓ > 0 −〈Q′, uj,ℓ−1〉L2(ηj ) −〈Πrat
j (Q′), uj,ℓ−1〉L2(ηj )

Table 2: Elements ((c)j)ℓ versus the discretized counterpart ((c)j)ℓ. The index ℓ = 0, 1, ...
give the position in the block j = 1, ..., m.

3.2 Formulation of the new spectral method using ORF

In our polynomial spectral method in §2 we decided to project L2(ωk) onto the finite
dimensional subset span{Tk,0, ..., Tk,Npol

k

}, and L2(ηj) onto span{Uj,0, ..., Uj,N
pol
j −1}, respec-

tively. We now present a new spectral method where we project onto span{tk,0, ..., tk,Nrat
k

},
and span{uj,0, ..., uj,Nrat

j
−1}, respectively. Here we will follow very closely the polyno-

mial spectral method in §2: we may reformulate our continuous problem (I + K)x = c
of (2.1) roughly by replacing in (2.2), (2.3), and (2.4) all Tk,n by tk,n and all Uj,ℓ by
uj,ℓ, respectively. This is done in Table 1 and Table 2. We then obtain our discretized
problem (I + K)x = c of (2.6) with a matrix K and c where all non-explicit scalar
products are replaced by a quadrature rule. The link with the finite-dimensional system
(I + F ∗KF )y = F ∗c with x = Fy described in Lemma 2.3 is then obtained by using the
matrix

F ∗ = diag

[[
INrat

j +1 0
]
j=1,...,m

]

for some integers N rat
j to be fixed later.

There are however two essential modifications in our approach. The first one concerns
the computation of the entries of the right-hand side c. In the polynomial case we took
c = FF ∗c, where we supposed that we know explicitly the Chebyshev orthogonal series
(2.5) of the external field Q on each interval Ij . This is no longer true for ORF since the
coefficients in this orthogonal series depend on the choice of the poles. In addition, we
have used the fact that Uj,ℓ−1 is proportional to the derivative of Tj,ℓ, a property which
is completely lost if we work with ORF. We will therefore approximate a typical entry
−〈Q′, uj,ℓ−1〉L2(ηj) in c by −〈Πrat

j (Q′), uj,ℓ−1〉L2(ηj) in c, in other words, we use rational
Gauss quadrature.

The second more important modification concerns the discretization of condition (C)
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in Problem 1.4, that is, the equation of index 0 in the row blocks j = 2, ..., m. Remember
that condition (D) in Problem 1.4 insures that Uµ + Q is equal to some constant Cj on
the interval Ij for j = 1, ..., m, and condition (C) insures that Cj = Cj−1 for j = 2, ..., m.
The formulation given in Problem 1.4 is suitable for a polynomial spectral method since,
as shown in Lemma 2.1, here we have explicit formulas for the primitive of the Cauchy
transform Cj,k(Tk,n). Of course, using the partial fraction decomposition of ϕj,n(1/y)/y,
we could derive an explicit formula for the primitive of Cj,k(tk,n) in Lemma 3.3, and
evaluate the integral over the interval [bj−1, aj ]. However, it turns out that, in finite
precision, computing the partial fraction decomposition of ϕj,n(1/y)/y is highly unstable,
and we quickly loose precision even for modest values of n. Another attempt could consist
of evaluating the integral in condition (C) by some quadrature rule, again a delicate
procedure due to the end-point singularities of Cj,k(tk,n) at ak and bk.

We finally decided to work with equilibrium measures of the condenser formed by the
two plates Ij−1 and Ij : according to, e.g., [24, Theorem VIII.2.6 and the computations
after Theorem VIII.5.1] there exist probability measures ωj−1,j on Ij−1 and ωj,j−1 on Ij
such that the potential

χj := Uωj−1,j−ωj,j−1

is equal to the constant χj(bj−1) on Ij−1, equal to the constant χj(bj) on Ij, and else
strictly between these two constants. There are explicit formulas for the density

dωj−1,j

dx
=

γj√
|(x− aj−1)(x− bj−1)(x− aj)(x− bj)|

|Ij−1
,

dωj,j−1

dx
=

γj√
|(x− aj−1)(x− bj−1)(x− aj)(x− bj)|

|Ij ,

with a suitable normalization constant γj . It is known that the corresponding complex
potential is analytic in C \ (Ij−1 ∪ Ij) but multi-valued, and its composition with the
exponential function is known to be related to the conformal map sending the doubly
connected domain C \ (Ij−1∪ Ij) onto some ring domain [24, Chapter VIII.6]. Notice that
there are explicit formulas in terms of elliptic functions in order to evaluate χj on the
real axis. Our implementation for evaluating χj on the real axis is to evaluate separately
the potential of ωj−1,j (and similarly for ωj,j−1) by computing a polynomial Chebyshev
expansion in L2(ωj−1) of

1√
(x− aj)(x− bj)

= γ̃j
dωj−1,j

dωj−1
(3.2)

(either by some exact formula or simply by the matlab package chebfun), normalize in
order to get a probability measure, and then use Example 1.2 in order to express Uωj−1,j

in arbitrary precision as a polynomial Chebyshev series on Ij−1, or a power series in
1/φj−1(x) outside of Ij−1.

Using Fubini, we find that

0 = Cj−1 − Cj =

∫
(Uµ +Q)d(ωj−1,j − ωj,j−1) =

∫
χjdµ+

∫
Qdωj−1,j −

∫
Qdωj,j−1.

The last two integrals on the right can be easily computed from a Chebyshev expansion
(2.5) of the external field Q on Ij and Ij−1 together with the Chebyshev expansion of
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(3.2), giving up to a sign the entry of index 0 in the jth row block of the right-hand side
c. Similarly, the corresponding row in K has the entries

〈χj, tk,n〉L2(ωk) =

{
χj(bj−1)δn,0 if k = j − 1,
χj(bj)δn,0 if k = j,

and for k 6∈ {j − 1, j}, we can safely use a quadrature formula in order to approach
〈χj, tk,n〉L2(ωk) since χj is very regular in a neighborhood of Ik (in fact the corresponding
complex potential is analytic in C \ [aj−1, bj]). We choose the rational Gauss quadrature
rule for L2(ωk) given in Proposition 3.4(b).

Remark 3.5. If we ignore for the moment the exceptional5 rows ℓ = 0 for j = 2, ..., m,
we see that for constructing the finite dimensional system (I + F ∗KF )y = F ∗c we have
to construct the elements at the position (ℓ, n) of the off-diagonal blocks of index j 6= k of
size (N rat

j +1)×(N rat
k +1), each of them asking at most O(N rat

j ) operations (and similarly
for the right-hand side). In addition, the construction of the rational Gauss quadrature
rules requires O((N rat

j )2) operations for each j = 1, ..., m.

In the next section we will show that N rat
j ≪ Npol

j for all j, that is, our rational
spectral method is much cheaper than the polynomial spectral method suggested in §2.

3.3 Error estimates

According to Lemma 2.3, we have to give upper bounds for K − K coming from two
sources, namely (I −Πrat

j )Cj,k and, in the exceptional rows, (I − Π̃rat
k )(χj). Subsequently,

we have to estimate the error c−c in the right-hand side where a third term (I−Πrat
j )(Q′

j)
occurs.

Theorem 3.6. For fixed j, k ∈ {1, ..., m} with j 6= k, let N = N rat
j , wj,N+1 = 0, and

consider the Blaschke product B̃j,N(w) = Bj,N+1(w)/w =
∏N

ℓ=1
w−wj,ℓ

1−wwj,ℓ
. Then we have the

following upper bound for the Hilbert-Schmidt norm

‖(I −Πrat
j )Cj,k‖HS ≤ 1

2
√
2

bj − aj
dist(Ij , Ik)

max
x∈Ik

|B̃j,N(
1

φj(x)
)|.

Proof. We start by applying the Hermite representation in order to obtain a compact
representation of the interpolation error. Since

y 7→ 1

x− y

(
1− uj,N(y)

uj,N(x)

)
∈ span{uj,0(y), ...., uj,N−1(y)}

coincides with 1/(x− y) for y being one of the roots of uj,N , we find for y ∈ Ij that

(I − Πrat
j )Cj,k(tk,n)(y) =

∫

Ik

uj,N(y)

uj,N(x)

tk,n(x)

x− y
dωk(x).

5These m− 1 exceptional rows ask for each entry at most O(Npol
k ) operations. This slight increase in

cost is required for the sake of numerical stability.
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Applying Parseval, we deduce that

‖(I − Πrat
j )Cj,k‖2HS =

∞∑

n=0

‖(I −Πrat
j )Cj,k(tk,n)‖2L2(ηj)

=

∫

Ij

∞∑

n=0

(∫

Ik

uj,N(y)

uj,N(x)

tk,n(x)

x− y
dωk(x)

)2

dηj(y)

=

∫

Ij

∫

Ik

(uj,N(y)
uj,N(x)

)2 dωk(x)

(x− y)2
dηj(y)

≤ 1

dist(Ij , Ik)2
max
x∈Ik

1

|uj,N(x)|2
.

Hence the result follows by observing that, with w = φj(x) ∈ R \ [−1, 1] and thus

B̃j,N(w)
2 > 1,

|uj,N(x)| =
2
√
2

bj − aj
|Bj,N+1(w)− Bj,N+1(

1
w
)

w − 1
w

|

=
2
√
2|B̃j,N(w)|
bj − aj

∣∣∣
1− 1

w2B̃j,N (w)2

1− 1
w2

∣∣∣ ≥ 2
√
2|B̃j,N(w)|
bj − aj

.

Theorem 3.7. For fixed k ∈ {1, ..., m}, j ∈ {2, ..., m} \ {k, k + 1}, let N = N rat
k ,

wk,N+1 = 0, and consider the Blaschke product B̃k,N as in Theorem 3.6. Then we have
the following upper bound

‖(I − Π̃rat
k )(χj)‖L2(ωk) ≤

√
2max

{∣∣∣∣log
(
ak − aj−1

ak − bj

)∣∣∣∣ ,
∣∣∣∣log

(
bk − aj−1

bk − bj

)∣∣∣∣
}

× max
y∈[aj−1,bj

]

1

|φk(y)|
max

y∈[aj−1,bj
]
|B̃k,N(

1

φk(y)
)|.

Proof. Consider the complex potential

χ̃j(z) =

∫
log

(
1

z − x

)
d(ωj−1,j − ωj,j−1)(x),

which can be shown to be analytic (and single-valued) in C \ [aj−1, bj ] including at ∞
where χ̃j(z) = O(1/z)z→∞. Denoting by Γ a contour encircling once in mathematically
positive direction the interval Ik, we get from the Cauchy formula

∀x ∈ Ik : χj(x) = Re(χ̃j(x)) = χ̃j(x) =
1

2πi

∫

Γ

χ̃j(y)
dy

y − x
,

and, by the Hermite formula,

∀x ∈ Ik : ((I − Π̃rat
k )(χj))(x) =

1

2πi

∫

Γ

tk,N+1(x)

tk,N+1(y)
χ̃j(y)

dy

y − x
.
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We now deform Γ to encircling once in the mathematically negative direction the interval
[aj−1, bj ]. Since 1/tj,N+1 is single-valued around [aj−1, bj ], we obtain with the boundary
values χ̃(y + i0) the expression

∀x ∈ Ik : ((I − Π̃rat
k )(χj))(x) =

1

π

∫ bj

aj−1

tk,N+1(x)

tk,N+1(y)
Im(χ̃j)(y + i0)

dy

y − x
.

Using our explicit formula for tk,N+1 we find for w = φk(y) ∈ R \ [−1, 1] that

1

|tk,N+1(y)|
=

√
2

|Bk,N+1(w) + 1/Bk,N+1(w)|
≤

√
2 |Bk,N+1(

1

φk(y)
)|,

and

|Im(χ̃j)(y + i0)| =
∣∣∣
∫ bj

aj−1

arg(y + i0− x)d(ωj−1,j − ωj,j−1)(x)
∣∣∣

=





0 for y ≤ aj−1 and y ≥ bj ,
π for y ∈ [bj−1, aj ],

π
∣∣∣
∫ y

aj−1
dωj−1,j(x)

∣∣∣ ∈ [0, π] for y ∈ [aj−1, bj−1],

π
∣∣∣
∫ bj

y
dωj,j−1(x)

∣∣∣ ∈ [0, π] for y ∈ [aj , bj ].

Thus for x ∈ Ik
∣∣∣((I − Π̃rat

k )(χj))(x)
∣∣∣ ≤

√
2

∣∣∣∣log(
x− aj−1

x− bj
)

∣∣∣∣ |tk,N+1(x)| max
y∈[aj−1,bj

]
|Bk,N+1(

1

φk(y)
)|,

and the result follows by recalling that Bk,N+1(
1

φk(y)
) = B̃k,N(

1
φk(y)

)/φk(y).

Remark 3.8. Up to some technical constants which will be included in Corollary 3.10 be-
low, we may summarize the preceding two Theorems as follows: K−K will be ”small” if for
j = 1, 2, ..., m we may construct Blaschke products of degree N rat

j such that B̃j,Nrat
j

(1/φj)
is ”small” on other intervals Ik for all k 6= j in Theorem 3.6, and small on all intervals
[ak−1, bk] for all k 6∈ {j, j + 1} in Theorem 3.7 (after interchanging the roles of j and k).
Notice that the second set includes both Ik−1 and Ik, but also the gap (bk−1, ak) between
these two intervals. In what follows, we include all the gaps in our set where the above
Blaschke products should be small, that is, with the notation of Remark 2.8, we want to
make the link with the Zolotarev quantities

∀j = 1, ..., m : ZNrat
j ,Nrat

j
(Ij , [aj+1, bj−1]), am+1 := a1, b0 := bm, (3.3)

an upper bound for the Zolotarev quantities mentioned before in equation (2.12) of Re-
mark 2.8 which has been much less studied in the literature.6

The following well-known result tells us how to choose our free parameters wj,n for
n = 1, 2, ..., N rat

j .

6Notice that Theorem 3.6 only requires to monitor (2.12). We leave for further research to investigate
a different discretization of our exceptional rows which treats differently the gaps between our m intervals
and thus only requires to monitor (2.12) instead of (3.3).
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Lemma 3.9. Let j ∈ {1, 2, ..., m}, N = N rat
j , and γj := |aj+1−aj

aj+1−bj

bj−1−bj
bj−1−aj

|, then

min
wj,1,...,wj,N∈C

max
x∈[aj+1,bj−1]

|B̃j,N(
1

φj(x)
)| ≤ 2 exp

( −N
cap ([aj+1, bj−1], Ij)

)
≤ 2 exp

( −π2N

log(16γj)

)
,

(3.4)
the minimum being attained for some wj,1, ..., wj,N ∈ E := [1/φj(bj−1), 1/φj(aj+1)] ⊂
(−1, 1), and expressible explicitly in terms of elliptic functions as follows: if we denote by
w = T (u) the Blaschke factor with E = T ([−λ, λ]) for some λ ∈ (0, 1), then

for ℓ = 1, ..., N : wj,ℓ = T (λsn(K(λ2)(−1 +
2ℓ− 1

N
);λ2)). (3.5)

Proof. We first observe that a composition of a Blaschke product with a Blaschke factor
is again a Blaschke product. Hence the change of variables w = T (u) implies that

min
B Blaschke of order N

max
w∈E

|B(w)| = min
B Blaschke of order N

max
u∈[−λ,λ]

|B(u)|.

The problem of minimal Blaschke products of order N on a symmetric interval [−λ, λ]
with modulus k = λ2 ∈ (0, 1) has been reviewed by many authors, see for instance [21].
We cite from [21, Section 3.2] an explicit formula of such a minimal Blaschke product BN

for a symmetric interval [−
√
k,
√
k], in terms of Jacobian elliptic functions [22, §22]

BN(u) =
√
kNcd(2NK(kN)v; kN), u =

√
kcd(2K(k)v; k), cd(x; k) =

cn(x; k)

dn(x; k)
,

where K(k) denotes the complete elliptic integral of modulus k [22, (19.2.8)], K ′(k) =
K(

√
1− k2), and kN ∈ (0, 1) is uniquely defined7 by K ′(kN)/K(kN) = NK ′(k)/K(k).

In particular [21, Section 3.2], the roots of BN are given by uℓ =
√
kcd(K(k)2ℓ−1

N
; k) =

−
√
ksn(K(k)(−1 + 2ℓ−1

N
); k) for ℓ = 1, 2, ..., N , where in the last equality we have used a

quarter-period shift of variables of [22, Table 22.4.3]. Recalling that sn is a odd function,
formula (3.5) follows after change of variables w = T (u). In [21, Proposition 4.1(a)], the
authors give the following link with a Zolotarev problem on two real intervals

min
B Blaschke of order N

max
u∈[−λ,λ]

|B(u)| =
√
ZN,N([−λ, λ], [1/λ,−1/λ]),

and a combination with [3, Eqns. (3.7) and (3.8)] gives
√
ZN,N([−λ, λ], [1/λ,−1/λ]) ≤ 2 exp

(
− −N
2cap ([−λ, λ], [1/λ,−1/λ])

)
.

Recall that, for a doubly connected set C\(E∪F ), there exists a conformal map mapping
C \ (E ∪ F ) onto the ring domain {w ∈ C : c < |w| < 1}, with the conformal invariant
c = exp(−1/cap (E, F )). Hence, by conformal invariance,

2cap (([−λ, λ], [ 1
λ
,
−1

λ
]) = 2cap (E, 1/E) = cap (1/E,D) = cap ([aj+1, bj−1], Ij),

showing the first inequality in (3.4), the second one following from (2.10) and (2.11).

7Contrary to [22], the Jacobian elliptic functions c̃d(·; τ) of [21] use a purely imaginary second ar-

gument τ ∈ i(0,+∞). Comparing the periods 2ω1(τ) and τω1(τ) of c̃d(·; τ) and 4K(k) and 2iK ′(k)

of cd(·; k), we may conclude that c̃d(·; τ) = cd(·; k) with τ = iK ′(k)/K(z), in particular the quantities
ω1(τ), k(τ), k(Nτ), ω1(Nτ) in [21] have to be replaced by 2K(k), k, kN , 2K(kN) in the terminology of
[22].
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Comparing with (2.10) and (2.11), we see that the minimum in Lemma 3.9 is at
most twice as large as the Zolotarev quantity of (3.3) (and in fact can be shown to be
asymptotically sharper by a factor 2).

Corollary 3.10. Given ǫ > 0, provided that the integers N rat
1 , ..., N rat

m are chosen such
that for j = 1, ..., m and k ∈ {1, ..., m} \ {j}

1√
2

bj − aj
dist(Ij , Ik)

exp
(
−

π2N rat
j

log(16γj)

)
≤ ǫ,

and for k ∈ {1, ..., m}, j ∈ {2, ..., m} \ {k, k + 1}

2
√
2max

{∣∣∣∣log
ak − aj−1

ak − bj

∣∣∣∣ ,
∣∣∣∣log

bk − aj−1

bk − bj

∣∣∣∣
}

max
y∈[aj−1,bj

]

1

|φk(y)|
exp

(
− π2N rat

k

log(16γk)

)
≤ ǫ,

and the parameters wj,n for j = 1, ..., m and n = 1, ..., N rat
j are chosen as in Lemma 3.9,

then for all j 6= k there holds ‖Kj,k −Kj,k‖HS ≤
√
2 ǫ.

We still have to discuss the error ‖c − c‖ introduced by using a quadrature formula.
In the next two statements we suggest two different approaches.

Remark 3.11. If Q′|Ij is an element of Rℓ−1,ℓ (including a polynomial of degree ℓ − 1)
with real poles8 out of Ij , then we may choose the parameters wj,1, ..., wj,ℓ ∈ (−1, 1) such
that Q′|Ij ∈ span(uj,0, ..., uj,ℓ−1), and thus for N rat

j ≥ ℓj and the jth row block of the
right-hand side we find that

‖cj − cj‖ = ‖(I −Πrat
j )(Q′)‖L2(ηj ) = 0.

The parameters wj,ℓ+1, ..., wj,Nrat
j

will then be chosen to minimize the Blaschke product
∏Nrat

j

n=ℓ+1 |
w−wj,n

1−wwj,n
|. Formulated differently, our conclusions of Corollary 3.10 remains valid

if we shift N rat
j and the index n of the corresponding parameters wj,n by ℓ.

For introducing our second approach, recall that (cj)ℓ = 0 for ℓ ≥ Nj , and hence

‖(I − Πrat
j )(Q′)‖L2(ηj) ≥ ‖(I − Rj,Nrat

j
)(Q′)‖L2(ηj )

Rj,N(g) denoting the orthogonal projection of g ∈ L2(ηj) onto span(uj,0, ..., uj,N−1). For
real analytic Q′, we can show that both terms have approximately the same magnitude.

Theorem 3.12. Let N = N rat
j , and suppose that g is real analytic on Ij and more

precisely has an analytic continuation in the open set Ω ⊃ Ij, and is continuous up to the
boundary. Then

‖(I −Rj,N)(g)‖L2(ηj ) ≤ C q, (3.6)

‖(I −Rj,N)(g)‖L2(ηj ) ≤ ‖(I − Πrat
j )(g)‖L2(ηj) ≤ (3.7)

≤ 2 ‖(I −Rj,N)(g)‖L2(ηj ) +
Cq2

1− q
, (3.8)

8We believe that a similar approach works for non-real poles though this is not studied in the present
manuscript.
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with the two constants9

C :=
1√
2π

∫

∂Ω

|g(ζ)| |dζ |√
1− 1/|φj(ζ)|2

, q := max
z∈∂Ω

|Bj,N+1(
1

φj(z)
)| ∈ (0, 1).

Proof. Let

g(x) =
∞∑

ℓ=0

gℓuj,ℓ(x), gℓ = 〈g, uj,ℓ〉L2(ηj).

We begin by proving (3.6). Using the Cauchy formula for g and the change of variables
x = ψj(w) (where ψj is the inverse of the conformal mapping φj) we get

gn−1 =
1

2πi

∫

∂Ω

g(ζ)

∫

|w|=1

ϕjn(w)

ζ − ψj(w)
(w − 1

w
)
i

w
dwdζ

=
1

2πi

∫

∂Ω

g(ζ)
4i

bj − aj

∫

|w|=1

ϕj,n(w)(w
2 − 1)

φj(ζ)− w

1

w − 1
φj(ζ)

1

w
dwdζ

Observing that
ϕj,n(w)(w2−1)

φj(ζ)−w
is analytic on the unit disk and using the residue theorem we

finally get

gn−1 = 〈g, uj,n−1〉L2(ηj ) =

√
2

2πi

∫

∂Ω

ϕj,n(
1

φj(ζ)
)g(ζ)dζ, (3.9)

We easily show that

Bj,n+1(u)Bj,n+1(v)− Bj,n(u)Bj,n(v) = ϕj,n(u)ϕj,n(v)(uv − 1)

and so
n∑

ℓ=0

ϕjℓ(u)ϕjℓ(v) =
1

1− uv
(1−Bj,n+1(u)Bj,n+1(v)) (3.10)

As
1

2πi

∫

|v|=1

1

1− uv
ϕj,n(v)

dv

v
= ϕj,n(u)

we get the expansion
1

1− uv
=

∞∑

ℓ=0

ϕj,n(u)ϕj,ℓ(v) (3.11)

Combining (3.10) and (3.11) and replacing in the expression of the error of the orthogonal
projection we get

‖(I − Rj,N)g‖2L2(ωj)
=

∞∑

n=N

|gj|2 =
1

2π2

∫

∂Ω

∫

∂Ω

Bj,N+1(
1

φj(z)
)Bj,N+1(

1
φj(ζ)

)

1− 1
φj(z)

1

φj(ζ)

g(z) dz g(ζ) dζ.

9If for instance Ω is an ellipse of parameter ρ > 1 with foci given by the endpoints aj and bj (or,
in other words, C \ Ω = {z ∈ C \ Ij : |φj(z)| ≥ ρ}), then q is the maximum of the Blaschke product
Bj,N+1 on the circle |w| = 1/ρ < 1, which is strictly less than 1, and in general (depending on the choice
of N and the roots of Bj,N+1) much smaller than 1, so that terms of order O(q2) can be ignored. We
conclude from (3.6)–(3.8) that we expect ‖(I − Rj,N )(g)‖L2(ηj) and ‖(I − Πrat

j )(g)‖L2(ηj) to be of the
same magnitude, at most O(q).
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Observing that

| 1

1− 1
φj(z)

1

φj(ζ)

| ≤ 1√
1− 1

|φj(z)|2

1√
1− 1

|φj(ζ)|2

,

we arrive at (3.6).
Let us now prove (3.8). First we choose carefully the parameters wj,ℓ for ℓ > N + 1,

N = N rat
j , such that via some aliasing we may explicitly compute Πrat

j (g) in (3.12). Let
for each integer ν > 0, and ℓ ∈ {0, ..., N + 1}

wν(2N+2)+ℓ = wν(2N+2)−ℓ = wℓ,

then Bj,ν(2N+2)(w) =
(
Bj,N+1(w)

)2ν

, and

ϕj,ν(2N+2)+ℓ(w) = Bj,ν(2N+2)(w)ϕj,ℓ(w), ϕj,ν(2N+2)−ℓ(
1

w
) = Bj,ν(2N+2)(

1

w
)ϕj,ℓ(w).

Since the quadrature nodes xratj,h satisfy (Bj,N+1(φj(x
rat
j,h)))

2 = 1, we conclude that, for
ℓ = 1, ..., N ,

uj,ν(2N+2)+ℓ−1(x
rat
j,h ) = uj,ℓ−1(x

rat
j,h) = −uj,ν(2N+2)−ℓ−1(x

rat
j,h), uj,ν(N+1)−1(x

rat
j,h) = 0,

implying that

Πrat
j (uj,ν(2N+2)+ℓ−1) = −Πrat

j (uj,ν(2N+2)−ℓ−1) = uj,ℓ−1, Πrat
j (uj,ν(N+1)−1) = 0,

and thus

‖(Rj,N −Πrat
j )g‖2L2(ηj)

=
N∑

ℓ=1

( ∞∑

ν=1

(gν(2N+2)+ℓ−1 − gν(2N+2)−ℓ−1)
)2

. (3.12)

We may write

(Πrat
j − Rj,N)(g) = (Πrat

j − Rj,N)(I − Rj,N)(g)

=
∞∑

ν=1

(Πrat
j − Rj,N)(Rj,(ν+1)(N+1)−1 − Rj,(ν)(N+1)−1)(g)

=

∞∑

ν=1

(Πrat
j − Rj,N)(

N+1∑

ℓ=1

gν(N+1)−1+ℓuj,ν(N+1)−1+ℓ)

Equation (3.12) allows us to conclude that

‖(Πrat
j − Rj,N)(

N+1∑

ℓ=1

gν(N+1)−1+ℓuj,ν(N+1)−1+ℓ)‖2L2(ηj)
=

N∑

ℓ=1

g2ν(N+1)+ℓ ≤

≤ ‖(Rj,(ν+1)(N+1)−1 − Rj,(ν)(N+1)−1)(g)‖2L2(ηj)

≤ ‖(I − Rj,ν(N+1)−1)(g)‖2L2(ηj )

. Then

‖(Πrat
j − Rj,N)(g)‖L2(ηj ) ≤

∞∑

ν=1

‖(I − Rj,ν(N+1)−1)(g)‖L2(ηj ),

and we conclude using (3.6).
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As a consequence of Theorem 3.12 and Corollary 3.10, we may conclude that our
rational spectral method has geometric convergence in case of a real analytic external
field. Notice that the rate of convergence for the right-hand side depends on the shape of
Ω. Choosing level sets for the conformal mapping sending the doubly connected domain
C \ (Ij ∪ [aj+1, bj−1]) onto a ring domain would allow to compare the rate in these two
statements, and it can be shown that we obtain the same rate if the restriction of Q′ on
Ij has an analytic continuation outside [aj+1, bj−1].

4 Conclusion

We have suggested a new numerical method for solving the signed equilibrium with exter-
nal field in logarithmic potential theory on a union of distinct real intervals. A reformu-
lation of our problem did lead us to a system of integral equations with a weakly singular
Cauchy kernel. We then recalled a polynomial spectral method and its error analysis, and
suggest a new spectral method using orthogonal rational functions in order to solve our
problem.

Choosing appropriate and explicitly given poles depending only on the intervals al-
lowed us to speed up computation, in particular in the delicate situation where two in-
tervals are close to each other. We still need more numerical evidence that our method is
superior to polynomial spectral methods which have been used before. A particular issue
is how to implement the evaluation of orthogonal rational functions and rational Gaussian
quadrature formulas in order to insure numerical stability of our approach. Also, for an
optimized choice of poles it might be interesting to consider condensers with the two (non
convex) plates Ij and I \ Ij.

Also, on a long term, we also want to solve extremal problems for positive measures,
which in addition requires to consider iterative balayage and F -functionals. Finally, we
hope to be able to generalize some of our findings to the case of a union of curves and
arcs instead of intervals.
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A Some complements on Chebyshev Orthogonal ra-

tional functions

A.1 Proof of Lemma 3.2 and Lemma 3.3

We start by showing the orthonormality as claimed in Lemma 3.2.

Proof of Lemma 3.2. With w = φj(z), consider the reciprocal conformal map

z = ψj(w) =
aj + bj

2
+
bj − aj

4

(
w +

1

w

)
.

Then the change of variable x = ψ(w) gives for n, k ≥ 1
∫

Ij

tj,n(x)tj,k(x)dωj(x)

=

∫

|w|=1,Im(w)<0

tj,n(ψj(w))tj,k(ψj(w))
ψ′
j(w)dw

π
√
(ψj(w)− aj)(bj − ψj(w))

=
1

2πi

∫

|w|=1,Im(w)<0

[ϕj,n(w) + ϕj,n(1/w)] [ϕj,k(w) + ϕj,k(1/w)]
dw

w

=
1

2πi

∫

|w|=1

ϕj,n(w)ϕj,k(w)
w

w
+

1

2πi

∫

|w|=1

ϕj,n(w)ϕj,k(1/w)
dw

w

= ϕj,n(0)ϕj,k(0) + δj,k = δj,k,
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where in the last equality we used the Cauchy formula and the fact that wj,0 = 0, as well
as the orthonormality of the ϕj,n. In the cases k = 0 and/or n = 0 one has a slightly
different normalization, but a proof of orthonormality follows the same lines. Finally,
as cited from Achieser by Meinardus [19, Thm???], the density of {tj,n : n = 0, 1, ...}
in L2(ηj) follows from

∑
j(1 − wj) = ∞. A proof for the system {uj,n : n = 0, 1, ...} is

similar, we omit details.

Now we present a proof of Lemma 3.3.

Proof of Lemma 3.3. We have for n ≥ 1 and x = ψ(v) 6∈ Ij ,

Cj(tj,n)(x) =

=

∫

|w|=1,Im(w)<0

tj,n(ψj(w))

ψj(w)− x

ψ′
j(w)dw

π
√

′ψj(w)− aj)((bj − ψj(w))

=
1√
2πi

∫

|w|=1,Im(w)<0

ϕj,n(w) + ϕj,n(1/w)

ψj(w)− x

dw

w

=
1√
2πi

∫

|w|=1

ϕj,n(w)

ψj(w)− x

dw

w

=
4
√
2

bj − aj

1

v − 1/v

[
1

2πi

∫

|w|=1

ϕj,n(w)

w − v
dw − 1

2πi

∫

|w|=1

ϕj,n(w)

w − 1/v
dw

]

= − 4
√
2

bj − aj

1

v − 1/v
ϕj,n(1/v),

where in the last equality we used the Cauchy formula and the fact that |v| > 1. Thus
our claim for Cj(tj,n) for n ≥ 1 follows by observing that

v − 1

v
=

4

bj − aj

√
(x− bj)(x− aj) =

4

bj − aj

φj(x)

φ′
j(x)

.

For n = 0, the above computations remain valid if the result is divided by
√
2, as claimed

in Lemma 3.3 for the Cauchy transform. The Hilbert transform can be obtained as a
limiting process. Let

y ∈ [aj , bj ], ǫ > 0, x+ = y + ǫi, x− = y − ǫi, w± = φj(x
±).

Then for ǫ→ 0 we have that (
√

(x− bj)(x− aj))
+ = −(

√
(x− bj)(x− aj))

− and

Hj(tj,n)(y) = − 1√
2
lim
ǫ→0

ϕj,n(1/φj(x
+))− ϕj,n(1/φj(x

−))

(
√

(x− bj)(x− aj))+

=
1√
2

ϕj,n(w)− ϕj,n(1/w)

(w − 1/w)
bj−aj

4

= uj,n−1(y).

For n = 0 we trivially get Hj(tj,n)(y) = Hj(Tj,0)(y) = 0.
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A.2 Three-term recurrences and rational Gauss quadrature rules

for Chebyshev ORF

According to [5, p. 261] and [6, Theorem 2.1], ORF (pℓ)ℓ≥0 with respect to a measure
σ on the real line with pℓ having real poles z1, z2, ..zℓ outside the support of σ verify a
three-term recurrence relation

αn+1 (1−
z

zn+1

)pn+1(z) + αn(1−
z

zn−1

)pn−1(z) + βm (1− z

zn
)pn(z) = zpn(z)

for m ≥ 0 ≥ 0, with initial conditions p0(x) = 1/
√
σ(R) and p−1(x) = 0. Though the

authors in [6] give explicit formulas for the αn and βn in terms of suitable residuals, we
prefer to give a direct proof revealing that our recurrence in fact is based on a similar
recurrence for the Takenaka-Malmquist rational functions ϕj,n. Using the change of vari-

ables z = ψj(w), zj,n = ψj(1/wj,n), and shifting the variable z by
aj+bj

2
, we observe that

2z−aj−bj
bj−aj

= 1
2
(w + 1

w
), and

1− z − aj+bj
2

zj,n − aj+bj
2

=
(wj,n +

1
wj,n

)− (w + 1
w
)

wj,n +
1

wj,n

=
(w − wj,n)(1− wwj,n)

w(1 + w2
j,n)

. (A.1)

Applied to our Chebyshev ORF we obtain the following generalization of [6, Theorem 3.5]
who consider a shifted sequence of poles for the uj,n.

Proposition A.1. We have for n ≥ 0 (which defines ϕj,−1)

αj,n+1
(w − wj,n+1)(1− wwj,n+1)

w(1 + w2
j,n+1)

ϕj,n+1(w) + βj,n
(w − wj,n)(1− wwj,n)

w(1 + w2
j,n)

ϕj,n(w)

+αj,n

(w − wj,n−1)(1− wwj,n−1)

w(1 + w2
j,n−1)

ϕj,n−1(w) =
1

2
(w + 1

w
)ϕj,n(w)

with

αj,n =
1

2

(1 + w2
j,n−1)(1 + w2

j,n)√
(1− w2

j,n−1)(1− w2
j,n)

1

1− wj,n−1wj,n

,

βj,n =
1

2

1 + w2
j,n

1− w2
j,n

(1− w2
j,n)(wj,n−1 + wj,n+1) + 2wj,n(1− wj,n−1wj,n+1)

(1− wj,n−1wj,n)(1− wj,nwj,n+1)
.

Also, we have for n ≥ 1 with uj,−1(z) = 0

αj,n+1 (1−
z − aj+bj

2

zj,n+1 − aj+bj
2

)uj,n(z) + βj,n (1−
z − aj+bj

2

zj,n − aj+bj
2

)uj,n−1(z)

+αj,n (1−
z − aj+bj

2

zj,n−1 − aj+bj
2

)uj,n−2(z) =
2z − aj − bj
bj − aj

uj,n−1(z).
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Finally setting β ′
j,0 = wj,1, α

′
j,0 = 0, α′

j,1 =
√
2αj,1 and for n ≥ 1 setting β ′

j,n = βj,n, α
′
j,n+1 =

αj,n+1 we have for all n ≥ 1,

α′
j,n+1 (1−

z − aj+bj
2

zj,n+1 − aj+bj
2

)tj,n+1(z) + β ′
j,n (1−

z − aj+bj
2

zj,n − aj+bj
2

)tj,n(z)

+α′
j,n (1−

z − aj+bj
2

zj,n−1 − aj+bj
2

)tj,n−1(z) =
2z − aj − bj
bj − aj

tj,n(z).

Proof. Notice that

αj,n+1
(w − wj,n+1)(1− wwj,n+1)

w(1 + w2
j,n+1)

ϕj,n+1(w)

ϕj,n(w)

= αj,n+1
(w − wj,n+1)(1− wwj,n+1)

w(1 + w2
j,n+1)

√
1− w2

j,n+1

1− w2
j,n

w − wj,n

1− wwj,n+1

=
1

2

1 + w2
j,n

1− w2
j,n

(w − wj,n+1)(w − wj,n)

w(1− wj,nwj,n+1)
.

Similarly,

αj,n

(w − wj,n−1)(1− wwj,n−1)

w(1 + w2
j,n−1)

ϕj,n−1(w)

ϕj,n(w)
=

= αj,n

(w − wj,n−1)(1− wwj,n−1)

w(1 + w2
j,n−1)

√
1− w2

j,n−1

1− w2
j,n

1− wwj,n

w − wj,n−1

=
1

2

1 + w2
j,n

1− w2
j,n

(1− wwj,n−1)(1− wwj,n)

w(1− wj,n−1wj,n)
.

Adding both terms gives with c =
1+w2

j,n

1−x2
j,n

1−wj,n−1w
2
j,nwj,n+1

(1−wj,n−1wj,n)(1−wj,nwj,n+1)

h(w) =
1 + w2

j,n

2wj,n

+
c

2

(
(w +

1

w
)− (wj,n +

1

wj,n

)
)

=
1

2
(w +

1

w
) +

c− 1

2

(
(w +

1

w
)− (wj,n +

1

wj,n

)
)

=
1

2
(w +

1

w
)− βj,n

(w − wj,n)(1− wwj,n)

w(1 + w2
j,n)

,

with

βj,n =
c− 1

2

1 + w2
j,n

wj,n

=
1

2

1 + w2
j,n

1− w2
j,n

(1− w2
j,n)(wj,n−1 + wj,n+1) + 2wj,n(1− wj,n−1wj,n+1)

(1− wj,n−1wj,n)(1− wj,nwj,n+1)

as claimed above. Notice that the recurrence for the ϕj,n(w) is also true for the ϕj,n(1/w)
and thus for ϕj,n(w)− ϕj,n(1/w) and the uj,n−1 with uj,−1 = 0. The same observation is
true for ϕj,n(w) + ϕj,n(1/w) and thus the tj,n, at but we have to take care that there is a
different normalization factor for tj,0 (and n ≥ 1), leading to a modified factor αj,1. The
coefficient β ′

j,0 has to be computed such that the claimed recurrence is also true for n = 0
with Tj,−1 = 0, we omit details.
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We are now prepared to state the well-known link between Gauss quadrature rules for
the measure ηj and eigenelements of a tridiagonal matrix pencil. For simplifying writing,
it will be suitable to consider the change of variables

y =
2z − aj − bj
bj − aj

, yj,n =
2zj,n − aj − bj

bj − aj

so that our recurrence for the uj,n of Proposition A.1 becomes

αj,n+1 (1−
y

yj,n+1
)uj,n(z) + βj,n (1−

y

yj,n
)uj,n−1(z) + αj,n (1−

y

yj,n−1
)uj,n−2(z) = yuj,n−1(z)

for all n ≥ 1. In the setting of Proposition 3.4 and thus wj,Nrat
j +1 = 0 implying that

zj,Nrat
j +1 = ∞ = yj,Nrat

j +1, we obtain

(
uj,0(z), ..., uj,Nrat

j −1(z)
)
(yJj −Hj) =

(
0, ...., 0, αj,Nrat

j +1uj,Nrat
j

(z)
)

with tridiagonal matrices

Hj =




βj,1 αj,2 0 · · · 0

αj,2 βj,2 αj,3
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . αj,Nrat

j

0 · · · 0 αj,Nrat
j

βj,Nrat
j



, Jj = I + diag (

1

yj,1
, ...,

1

yj,Nrat
j

)Hj ,

which allows us to conclude as in [7, Theorem 3.1, §4 & §5] that the zeros xratj,h of uj,Nrat
j

and the eigenvalues λh of the symmetric (but in general full) matrix HjJ
−1
j are related

through

λh =
2xratj,h − aj − bj

bj − aj
, (A.2)

with the matrix of corresponding left eigenvectors given by the orthogonal matrix M rat
j

defined in (3.1).
Similarly, for the rational Gauss quadrature in L2(ωj), we have to consider the tridi-

agonal pencil

(
tj,0(z), ..., tj,Nrat

j
(z)

)
(yJj −Hj) =

(
0, ...., 0, αj,Nrat

j +1tj,Nrat
j +1(z)

)

with tridiagonal matrices

Hj =




β ′
j,0 α′

j,1 0 · · · 0

α′
j,1 βj,1 αj,2

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . αj,Nrat

j

0 · · · 0 αj,Nrat
j

βj,Nrat
j




, Jj = I + diag (0,
1

yj,1
, ...,

1

yj,Nrat
j

)Hj.
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