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It is shown that very steep coastal profiles can give rise to unexpectedly large wave events at the coast. We conduct a statistical analysis of runs from a nearshore Boussinesq-type model to demonstrate that under certain wave conditions, which a casual observer would perceive as calm, the likelihood of large run-up events is uncharacteristically high. The data computed by the Boussinesq-type model show that sea states with lower overall wave steepness favor higher run-up. Under these wave conditions more of the available wave energy reaches the shore, since less wave breaking occurs, which can create a false sense of security for beach-goers.

Introduction

In the present work, we are interested in the interaction of ocean waves with steep coastal topography such as encountered in some rock coasts in the United States (Alaska and Maine), in Norway and in New Zealand. While steep rock coasts have been traditionally less studied due to the inherent challenges, they have recently moved into focus due to improved surveying technology and increasing pressure for commercial development [START_REF] Kennedy | Introduction to the rock coasts of the world[END_REF]. Since many of these coasts were formed be retreating glaciers during the close of the last ice age, they are generally located far in the north or south. If global warming is to continue, then many more of such steep rock coasts will be exposed and more accessible in the future.

Rock coasts generally pose a greater risk to humans than sand or pebble beaches due to slippery conditions and the danger of being smashed onto hard rock by the waves and currents or due to a fall. If in addition, the sea floor slopes steeply up towards the shore, this risk is compounded by the sudden and unexpected appearance of large waves which seem completely out of proportion when compared to sea conditions visible to an observer. Such waves may suddenly flood a good portion of the rocks, potentially knocking by-standers off their feet and washing them into the sea in the back rush.

It is well established in the local lore on the Norwegian west coast that sudden large run-up may occur, though the conditions are often mischaracterized as stormy or soon after a storm. While stormy conditions are always dangerous, outlier events may happen under any conditions, and some reports indicate sever weather conditions. the most dangerous waves are swell waves from distant storms which may occur when local weather conditions are benign. In particular, long waves of small steepness are able to penetrate the many shoals off the coast without significant energy loss through wave breaking. When these long swells hit the steeply sloping coastal bathymetry, very large run-up may occur without any warning (see [START_REF] Bjørnestad | Extreme wave runup on a steep coastal profile[END_REF] and references therein).

Indeed, periodically news stories appear about people being washed into the sea by large and unexpected waves. One case which made international headlines, was the perishing of two members of a film crew [START_REF] Roxborough | Wave washes away two crew members on norwegian film shoot[END_REF] in Egersund, Norway after being washed into the sea by a large wave. Investigating the bathymetry near the film set shows a steep 1.5:1 slope that is actually steepening towards the shore. An in-depth look at the bathymetry along the Norwegian coast reveals that similar geometries occur in many places.

Many reported occurrences of freak waves and in particular extreme run-up events similar to what happened in Egersund have been compiled in a recent work [START_REF] Didenkulova | Catalogue of rogue waves occurred in the world ocean from 2011 to 2018 reported by mass media sources[END_REF]. In a more recent work [START_REF] Didenkulova | Freak wave events in 2005-2021: statistics and analysis of favourable wave and wind conditions[END_REF], the authors have matched some of these events with meteorological background conditions.. In the recent study [START_REF] Bjørnestad | Extreme wave runup on a steep coastal profile[END_REF] focusing on the Norwegian coast near Haugesund, it was shown that uncharacteristically large run-up may occur in relatively calm conditions (see Figure 1). This study was based on observations and a mathematical formulation of an exact solution of the shallow-water equations near the shore. The physical mechanism behind these large run-up events is the extreme amplification of the waves on the steep bathymetry. The amplification is so swift that the wave does not break before the wavecrest reaches the shoreline, resulting in a large run-up event.

While the shallow-water model is able to capture the basic mechanism, in the present work we use a more versatile model, the Boussinesq Ocean & Surf Zone model, BOSZ Roeber and Cheung (2012b) which incorporates both a shallowwater model as well as a dispersive Boussinesq model, and is able to give more detailed information. Using a large number of numerical runs with the BOSZ model, we then analyze the data, and show that indeed the distribution of run-up heights has very heavy tails, indicating that outlying events are more likely to happen than in a traditional probability distribution.

There are many empirical run-up formulas for beaches and coastal structures. Many of the early attempts to devise run-up relations used the Iribarren number (also called surf-similarity parameter)

ξ f = tan(β) H/L , ( 1 
)
where β is the beach slope, H is a characteristic offshore waveheight and L is a characteristic wavelength. For example, Holman et al. [START_REF] Holman | Extreme value statistics for wave run-up on a natural beach[END_REF] defined a run-up model using the quantity R 2% which is the run-up height exceeded by 2% of the waves arriving at the beach. The most popular measure used on gentle beaches today is probably the Stockdon number [START_REF] Stockdon | Empirical parameterization of setup, swash, and runup[END_REF] which is a variation on the relation found in [START_REF] Holman | Extreme value statistics for wave run-up on a natural beach[END_REF].

These definitions are all based on the assumption that the beach is gently sloping. Some work has been done for steep beaches. In particular, Ahrens [START_REF] Ahrens | Irregular wave runup on smooth slopes[END_REF] did experiments with several steep slopes, and found the formula

R 2% H s = C 1 + C 2 ξ + C 3 ξ 2 , (2) 
where the constants C 1 , C 2 and C 3 need to be determined on a case-by-case basis. In several cases, the constant C 3 is zero, and the run-up height increases linearly with significant waveheight.

In the present contribution, we use the Boussinesq Ocean and Surf Zone Model (BOSZ ) model, a phase-resolving nearshore wave model based on the [START_REF] Nwogu | Alternative form of Boussinesq equations for nearshore wave propagation[END_REF] equations to create a dataset of waves running up on a steel model slope. We use statistical analysis to identify the resulting distribution of wave-by-wave run-up height. We compare with both offshore distribution of waveheight and between steep and gently sloping shores. In order to deal with the steep bathymetry, we introduce some modifications regarding the treatment of breaking waves in the BOSZ model. The plan of the paper is as follows: In section 2, we outline the numerical method to be used for the shoaling and run-up computations. In section 3 the numerical experiments are described and the statistical analysis is detailed. Finally, section 4 contains an in-depth discussion of the results.

Numerical methods

Overview

The BOSZ model was introduced in Roeber et al ( 2010) and Roeber and Cheung (2012b) and has been under continuous development for the last ten years. Numerous modules with various boundary conditions, wave generation tools, and alternative numerical methods have been added on. The BOSZ model has been shown to yield accurate results in various situations. In particular, the model has been validated with both laboratory data Roeber and Cheung (2012a); [START_REF] Wong | Internal flow properties in a capillary bore[END_REF], data from field campaigns [START_REF] Li | Integration of coastal inundation modeling from storm tides to individual waves[END_REF]; [START_REF] Pinault | Estimation of Irregular Wave Runup on Intermediate and Reflective Beaches Using a Phase-Resolving Numerical Model[END_REF]; [START_REF] Varing | Spatial distribution of wave energy over complex coastal bathymetries: development of methodologies for comparing modeled wave fields with satellite observations[END_REF]; [START_REF] Pinault | Field observations and numerical modeling of swash motions at an engineered embayed beach under moderate to energetic conditions[END_REF], with other models Roeber and Bricker (2015); [START_REF] Lynett | Inter-model analysis of tsunamiinduced coastal currents[END_REF], and even for ship waves [START_REF] David | Generation and propagation of ship-borne waves -Solutions from a Boussinesq-type model[END_REF]. The basic idea behind the BOSZ model is the combination of the shockcapturing capabilities of the conserved nonlinear shallow-water equations with the qualities of Boussinesq-type equations to provide an accurate and stable solution of wave-by-wave propagation, transformation, breaking and run-up. The BOSZ model is based on a set of Boussinesq-type equations, of which the classical shallow-water equations are a subset, with additional terms accounting for pressure correction due to frequency dispersion. This enables the model to handle short (dispersive) waves and transitions between sub-and supercritical flow (wave breaking).

The governing equations of the model are intentionally kept as simple as possible with focus on the terms which govern the dominant processes of nearshore waves.

Wave breaking

Wave breaking in Boussinesq-type models has been an open debate for many years. As most governing equations are not catering to flow discontinuities due to their parabolic structure, the correctly converged solution over a refined grid would be a singularity (blowup). Obviously, the mathematically correct solution is not the desired solution from the user perspective -especially, since Boussinesq-type equations can provide reasonable answers across the entire surf zone and even for wave run-up (see for example [START_REF] Pinault | Estimation of Irregular Wave Runup on Intermediate and Reflective Beaches Using a Phase-Resolving Numerical Model[END_REF]). Multiple methods have been proposed to handle this problem. In general, they utilize two opposing strategies: (a) addressing the potentially arising singularity through a diffusive term based on the eddy viscosity concept; (b) eliminating the singularity by locally recovering a hyperbolic solution through deactivation of the dispersion terms in the governing equations. Both approaches alter the governing equations temporarily and locally, with the former method adding terms and the latter one removing terms.

Option (b) has become a standard procedure in several operational models (e.g. [START_REF] Shi | A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[END_REF], Roeber and Cheung (2012b)). However, the locally sudden change between dispersive and non-dispersive solutions can pose problems and instabilities when the grid size is small and a breaking wave is described over multiple grid cells (see [START_REF] Kazolea | On wave breaking for Boussinesq-type models[END_REF]. Stable solutions therefore often rely on some degree of grid diffusion; hence, it is difficult to obtain converging results with a refined mesh.

The eddy viscosity concept (a), on the other hand, is based on applying an additional diffusion term to the cells across the wave breaking zone. This procedure is attractive, since the governing equations remain intact and no incompatibility arises from local deactivation of dispersion terms. The eddy viscosity term counter-balances the potentially arising instability along the wave front. It can be seen as a way to overcome the problem of the lack of 3D turbulence effects in the depth-integrated governing equation which naturally only allow for discontinuities and not for overturning of the free surface. While the diffusion terms are relatively straightforward to understand, the assessment of the magnitude of dissipation remains a challenge.

It is important to notice that without any interference the solution of the Boussinesq-type equations approach a singularity at a discontinuity if the numerical solution does not clip or diffuse the local values. Obviously, in this case the mathematically correct solution is neither realistic nor it it the desired solution from the user perspective, especially since Boussinesq-type equations normally provide reasonable answers across the entire surf zone.

Here we present one possible solution for closure of the eddy viscosity term through the calculation of an additional governing equation for turbulent kinetic energy. The temporal adjustment of the diffusion terms over the entire surf zone leads to converging results even with fine grids and enables the use of small grid sizes for accurate tracking of wave run-up over wet/dry slopes. Wave Flooding on Steep Rock Shores

Identification of wave breaking onset

It is notoriously difficult to identify the onset of wave breaking in depthintegrated models since the free surface cannot overturn. Due to the constant balance of nonlinearity and dispersion, the numerical solution does not accurately describe the free surface near the wave breaking front. Recent advances based on potential flow models have shown that kinematic and dynamic criteria work more reliably to identify the breaking onset than formerly used geometric criteria, which mostly use the free surface slope as indicator for wave breaking (e.g. [START_REF] Varing | A new definition of the kinematic breaking onset criterion validated with solitary and quasi-regular waves in shallow water[END_REF], [START_REF] Barthelemy | On a unified breaking onset threshold for gravity waves in deep and intermediate depth water[END_REF]).

It should also be noted that stability along the breaking front is of priority in depth-integrated models, where wave breaking always remains an approximation.

Here, we introduce an approach of how to address the potentially arising instabilities along the wave front inspired by the preliminary work of [START_REF] Nwogu | Numerical prediction of breaking waves and currents with Boussinesq model[END_REF]. The strategy is based on the free surface Froude-Number, which can be determined from the flow velocities in the equation of [START_REF] Nwogu | Alternative form of Boussinesq equations for nearshore wave propagation[END_REF]. The quadratic assumption of the velocity profile is inherent to the governing equations and allows for calculation of the flow velocity at any position in the water column as

u| η = u zα + 1 2 z 2 α -z 2 (u zα ) xx + (v zα ) xy + (z α -z) (hu zα ) xx + (hv zα ) xy , v| η = v zα + 1 2 z 2 α -z 2 (u zα ) xy + (v zα ) yy + (z α -z) (hu zα ) xy + (hv zα ) yy .
(3)

In one spatial dimension, the equation obviously reduces to

u| η = u zα + 1 2 z 2 α -z 2 (u zα ) xx + (z α -z) (hu zα ) xx . (4) 
Here, u zα is the horizontal flow speed at the reference depth z α (around mid depth), and h is the local water depth. With z = η, we obtain the horizontal flow velocity at the free surface based on the approximations in Nwogu's equation. This approximation is reasonably valid as long as the waves are not strongly nonlinear and dispersive.

In general, the more dispersive the problem, the more the terms with second-order derivatives differ from zero. In contrast, for long-wave problems and near-hydrostatic solutions, the additional correction terms are not very significant and the velocity values at z α are representative throughout the entire water column. It should also be noted that (3) and ( 4) involve secondorder derivatives, which can potentially lead to numerically noisy solutions over variable terrain and for irregular wave fields.

The free surface Froude number can then easily determined from

F r| η = u| η √ gh . (5) 
We know that for F r| η > 1 the flow becomes super-critical, i.e. the particle speed overtakes the wave's celerity and wave breaking commences. Several authors have explored use of various wave breaking criteria in practical situations [START_REF] Bacigaluppi | Implementation and evaluation of breaking detection criteria for a hybrid boussinesq model[END_REF]; [START_REF] Wu | Breaking criteria and energy losses for threedimensional wave breaking[END_REF]). Recently, it was shown in [START_REF] Varing | A new definition of the kinematic breaking onset criterion validated with solitary and quasi-regular waves in shallow water[END_REF] that for F r| η > 0.85, waves are inevitably approaching the stage of breaking; i.e. a point of no return is passed and the wave will sooner or later break. However, it should be noted that the celerity refers to the shallow water celerity under hydrostatic conditions. In a single space dimension the fluid particle velocity may be found in a straighforward manner in Boussinesq systems [START_REF] Bjørkavåg | Wave breaking in Boussinesq models for undular bores[END_REF], and it can be used to pinpoint wave breaking quite accurately [START_REF] Hatland | Wave breaking in undular bores generated by a moving weir[END_REF]. In two spatial dimensions, the actual celerity under moderately dispersive waves is difficult to find and usually requires a Lagrangian post-processing method. Hence, the use of C = √ gh is not a perfect but still a very reasonable estimate.

Closure of wave breaking

It is possible to use the well known concept of an eddy viscosity scheme for extension of Boussinesq-type equations. While some codes deactivate the dispersive terms in order to avoid the blowup of the solution, we follow a different approach. If active wave breaking is detected, an eddy viscosity (diffusive) term is added to the governing equations where it diffuses the wave breaking front so that the slope of the free surface cannot develop a sharp shock-front. This, in turn, prevents the dispersion terms from pumping excessive amounts of energy into the wave face and causing a blow-up. This closure approach goes back to the work by [START_REF] Zelt | Statistics of extreme waves in coastal waters: large scale experiments and advanced numerical simulations[END_REF] and [START_REF] Kennedy | Boussinesq modelling of wave transformation, breaking, and runup[END_REF] who applied the following diffusive term to the momentum equations

⃗ R b =   0 2(ν t Hu α x ) x + [ν t H(u α y + v α x )] y 2(ν t Hv α y ) y + [ν t H(u α y + v α x )] x   . (6) 
In one spatial dimension, the mixed-derivatives, xy-terms disappear, and the diffusive term in the x-momentum equation reduces to

⃗ R b = 2 [ν t Hu α x ] x . (7) 
The diffusion terms in the momentum equations of ( 6) and ( 7) involve the time-varying quantity of eddy viscosity ν t , which sets the magnitude or strength of the diffusion term. However, the magnitude of the dissipative term not only depends on the local variables (H, u, v) but also on the entire flow Wave Flooding on Steep Rock Shores field which is evolving over time. It is therefore necessary to provide a physical basis for ν t to better estimate its magnitude.

One way to determine the quantity ν t is by using the turbulent kinetic energy (TKE) as a proxy. The following relation between TKE and ν t was suggested by [START_REF] Prandtl | Ueber ein neues formelsystem fur die ausgebildete turbulenz[END_REF] and [START_REF] Kolmogorov | The equations of turbulent motion in an incompressible flow[END_REF] as

ν t = C ν √ k ℓ t (8)
where C ν = 0.55 and ℓ t is the mixing length and chosen as ℓ t = h.

In the works [START_REF] Nwogu | Numerical prediction of breaking waves and currents with Boussinesq model[END_REF], [START_REF] Zhang | Rotational surf zone modeling for O(µ 4 ) Boussinesq-Green-Naghdi systems[END_REF], and Kazolea and Ricchiuto (2018), a transport equation for turbulent kinetic energy given by [START_REF] Pope | Turbulent flows[END_REF] was used to determine its spatial and temporal variation, which is then used for (8) and subsequently in (6). Even though TKE is produced locally where the wave breaking criterion (e.g. the one presented in section 2.3) is exceeded, the term ( 8) is applied over the entire computational domain. In contrast to previous studies such as [START_REF] Kennedy | Boussinesq modelling of wave transformation, breaking, and runup[END_REF], the expression (8) can take on non-zero values even when the wave breaking criterion is locally not exceeded. It is possible that TKE remains in the system for some time or that it is advected outside the surf zone. The term can be seen as modeling the whitewater region which is intense and very turbulent at the location of wave breaking but not outside of the region of active breaking.

The governing equation, first used by [START_REF] Nwogu | Numerical prediction of breaking waves and currents with Boussinesq model[END_REF], goes back to a singleequation turbulence closure model for TKE given as

k t = -A -E + P + D, (9) 
where A , E , P, D denote advection, elimination/destruction, production, and diffusion of TKE, denoted by k. The TKE term has units of energy [m 2 /s 2 ].

The model assumes the rate of production of turbulent kinetic energy to be proportional to the vertical gradient of the horizontal water particle velocity at the wave crest.

The turbulence is produced only in a cell where the horizontal velocity at the wave crest exceeds a particular criterion such as the one detailed in section 2.3. Therefore, only P is calculated locally, whereas the other terms in Eq. ( 9) are computed throughout the entire domain.

The terms of Eq. ( 9) are below:

The TKE advection term is defined as

A = [uk x + vk y ] . (10) 
The derivatives k x and vk y are approximated with a one-sided upwind approach. The TKE elimination/destruction terms is denoted as

E = C D k 3/2 ℓ t . ( 11 
)
The TKE diffusion term is small and based on the kinematic viscosity of water, ν. Here we use

C D = C 3 ν , and ν = µ ρ ≈ 0.001 [m 2 /s]. D = ν(k xx + k yy ), (12) 
The last term is the production of TKE. Since it is only computed in a cell where the criterion in Eq. ( 5) is exceeded. The parameter B works as a flag and takes on values of either 0 or 1. We use the formulation used by [START_REF] Nwogu | Numerical prediction of breaking waves and currents with Boussinesq model[END_REF] with a modification consistent with the fundamental derivation of the production term of TKE as

P = B l 2 t √ C d u z | 2 η + v z | 2 η 3 2 , ( 13 
)
where the vertical gradients of the horizontal flow velocities u and v are taken at the free surface η. The vertical gradients of the horizontal velocities can be computed from the truncated Taylor series expansion in combination with the irrotationality condition (w x = u z , w y = v z ) as

u z | η = -η [u xx + v xy ] -[(hu) xx + (hv) xy ] v z | η = -η [u xy + v yy ] -[(hu) xy + (hv) yy ] (14) 
Once the wave breaking criterion is flagged, the vertical gradients of the horizontal velocities in Eq. ( 14) are the primary contributors to the magnitude of P. Energetic breaking, such as encountered in plunging breakers, leads to an increase in the vertical gradient of the horizontal velocities under the wave crest and consequently to an increase in u z and v z .

Numerical experiments and statistical analysis

The BOSZ model was used to create 4-hour data sets of wave and run-up conditions for altogether 36 scenarios, including 18 sea-states and two different slopes. The sea states were constructed using time-series realizations of appropriate spectra, and applying these as boundary conditions through boundary forcing of the equations. The 18 sea states include three different peak periods (T p = 12s, T p = 15s and T p = 18s), and six different values of significant waveheight H s , ranging from 0.5m to 3.0m. Finally, two different coastal slopes (1 : 20 and 1 : 2) were tested (see Figure 2). Bottom friction is intentionally omitted to avoid unnecessary decay of the waves over the gentle slope. This ensures that the results are rather on the conservative side, since friction has a more significant effect on gentle slopes than on steep ones. The zero friction assumption is also realistic with respect to an application to a site such as the Norwegian coast where the exposed steep-sloping bedrock is naturally rather smooth and often even overgrown by algae which makes it very slippery. Fig. 3 This figure shows a 400-second data burst of the run-up time series for the steep 1 : 2 slope (left panel) and 200-second data burst of the run-up time series for the gentle 1 : 20 slope (right panel). In both panels, the sea-state parameters are Hs = 1.0m and Tp = 15s. The blue dots indicate the high watermark for each individual run-up. In the left panel, it can be seen that the maximum of each run-up is higher, and peaks are more frequent. On the other hand, on the gentle slope in the right panel, run-up peaks are less frequent and take more time to build up. The near 5m run-up at ∼ 13316 seconds appears exceptional and unexpected given the otherwise lower maximum run-ups of about 2 meters in the time series on the left. Time series were recorded for both off-shore location and for run-up height. For the offshore signal, a standard zero-crossing segmentation was applied while for the run-up signal, each time series was reduced to a series of runup heights by determining maximum elevation of the waterline. The off-shore time series yielded a Rayleigh distribution in waveheight as expected. The runup height for the gentle slope also followed a Rayleigh distribution although less accurately than the offshore values. The run-up height on the steep slope featured heavy tails as already intimated in the introduction.

As an example, we take a close look at the results for a relatively benign sea state with significant waveheight H s = 1m and peak period T p = 15s. Fig. 4 Full 4-hour time series of run-up heights for the steep 1 : 2 slope (left panel) and for the gentle 1 : 20 slope (right panel). The sea-state parameters are the same as in Figure 3: Hs = 1.0m and Tp = 15s. In the left panel, it can be seen that maximum run-up is higher, and peaks are more frequent. On the other hand, on the gentle slope in the right panel, runup peaks are less frequent, and much lower. Figure 3 shows the sea elevation at the point where the free surface meets the sloping beach (i.e. the waterline). The figure shows 300-second data bursts of the vertical position of the waterline for the two slopes considered. From this figure, it can be seen that run-up peaks appear in rapid succession on the steep beach (left panel). On the other hand, for the gentle beach shown in the right panel, run-up peaks are much less frequent and take more time to build-up. It can also be seen that large run-up can appear unexpectedly on the steep slope. Indeed, as can be seen in the left panel of Figure 3, after a sequence of relatively low run-ups (less than 2.2m) for about three minutes Wave Flooding on Steep Rock Shores (between 13050s and 13350s), a large run-up of almost 5 meters appears at about 13316s. It is exactly this largely unexpected change in behavior which makes steep slopes so treacherous.

Figure 4 displays the full 4-hour time series of the run-up elevation. The mean run-up across all run-up highs during this 4-hour dataset is 1.52 meters for the 1 : 2 slope, only slightly higher than the mean of 1.02 for the gentle 1 : 20 slope. The third quartile is 2.08 meters for the steep 1 : 2 slope, also higher but only slightly so than then the 1.40-meter third quartile of the gentle 1 : 20 slope. Outliers however deserve special attention. Here and through the paper, an observation is referred to as an outlier if it is beyond 1.5 times the inter-quartile range of the distribution (Tukey's rule; see, for instance [START_REF] Gather | Outlier identification and robust methods[END_REF]). Specifically, the steep slope has 10 outliers versus 0 outliers for the gentle slope Most of the outliers for the steep slope are in the 4 meter range, but one run-up reaches 5 meters. In contrast, the maximum for the gentle beach is 2.54 meters. The data are summarized for this and several other cases in Table 1. (significant wave height H s = 1 m and period T = 18 s) and under H s = 2m, when the slope is gentle (1 : 20) or steep (1 : 2). When H s = 1m, on a 1:2 slope, the inter-quartile range is about 0.2m larger than for the 1 : 20 slope (1.15 versus 0.90) and the difference between the 98% percentile and the median is about 0.5m larger (1.88 versus 1.35). This also indicates that a steeper slope is associated with a greater probability of extreme events (right-tail elongation).

Such differences are even more pronounced when H s = 2m. On the 1 : 2 slope, the inter-quartile range is about 1 m larger than for the 1 : 20 slope (2.6 versus 1.5), and the difference between the 98% percentile and the median is about 2.2 m larger (3.70 versus 1.52). Indeed, even for agitated sea states, the steep slope can be dangerous because the highest highs of the run-up can be unexpectedly much higher than surrounding large events. In fact, considering again Figure 5, the highest run-ups for the 2-meter sea state are over 8 meters, much higher than the 3rd quartile of 4.48 meters. In contrast, the same sea state on the gentle 1 : 20 slope has no outliers at all.

Figures 5 and7 systematically compare the quantiles of the empirical runup distributions, under different values of H s and peak periods T , with the quantiles expected under a Rayleigh distribution with parameter 1/H s . In the case of a steep slope (1 : 2), higher-order quantiles are increasingly underestimated by the quantiles expected under a Rayleigh assumption. In other words, the probability of the occurrence of extreme events is systematically under-estimated, with a bias that increases with H s and (at a moderate extend) T . In contrast, under the case of a gentle slope (1 : 20), observed quantiles are well approximated by their Rayleigh counterparts, regardless of level reached by H s .

Discussion

In the present work we have focused on wave shoaling on a steep 1 : 2 slope where the steep bathymetry has a decisive effect on the evolution of the incoming ocean waves and on the resulting run-up. 36 scenarios were simulated, resulting in a 4-hour time series of waterline movement for each case. The time series were analyzed statistically, and the main results are shown in figures 5 and 7. These figures show that on gentle slopes, the run-up distribution is close to a Rayleigh distribution (similar to the Rayleigh distribution of waveheights in a wave spectrum). On the other hand, the run-up distribution on steep slopes deviates significantly from the Rayleigh distribution with a bias that increases with the sea severity (increasing H s ). Similar results have been obtained under shorter computational times (1 and 2 hours), but are not shown here.

As an example, we have analyzed the particular case of a sea state with significant waveheight H s = 1m and peak period T p = 15s. Considering Figure 3, we see that on the steep slope, a single run-up of 5 meters occurs during a 4-hour period. The 3rd quartile is 2.58 meters, and there are several outliers of about 4 meters run-up height. observer may position herself in a location convenient for viewing, but above the ca. 4 meter highest run-up observed during a one-hour assessment period.

The 5-meter run-up will then be completely unexpected, and may pose an imminent threat to the life and safety of the observer. As already discussed in the introduction, such incidents have happened, and are still happening for example in Norway [START_REF] Roxborough | Wave washes away two crew members on norwegian film shoot[END_REF].

In many previous studies of extreme wave events in shallow waters, the bathymetry is not the decisive factor in the development of the event. Large waves in the nearshore zone are the subject of [START_REF] Soomere | Weakly two-dimensional interaction of solitons in shallow water[END_REF]; [START_REF] Soomere | Rogue waves in shallow water[END_REF], where the authors cite wave interactions as a possible mechanism for freak wave development. In Zhang et al (2019), both laboratory experiments and numerical computations are leveraged to study the development of unusually large waves. A list of freak wave events in shallow waters, but not necessarily at beaches is given in [START_REF] Didenkulova | Freak waves in 2005[END_REF]; [START_REF] Nikolkina | Rogue waves in 2006-2011[END_REF]. At gentle beaches, large run-up may occur due to a confluence of large swell and an infra-gravity wave signal. Such wave are sometimes called sneaker waves [START_REF] García-Medina | Analysis and catalogue of sneaker waves in the US pacific northwest between 2005 and 2017[END_REF]; [START_REF] Nikolkina | Rogue waves in 2006-2011[END_REF]; [START_REF] Didenkulova | Freak waves in 2005[END_REF]. One previous work where strong influence of the bed topography on the wave conditions was found was the in-depth study of [START_REF] Stefanakis | Local run-up amplification by resonant wave interactions[END_REF]. The authors discovered resonant conditions due to irregular bathymetry, but the overall slope used was still much less steep than the 1 : 2 slope considered here.

Comparing run-up behavior at a steep slope to a gentle slope, one can conclude that steeper slope generally feature higher run-up than gentle slopes for the same sea state. This is clearly brought out in Figure 5 for two special cases, and also in Figure 8 using R 2% across all test cases. One interesting aspect of the data shown in Figure 8 is that run-up is generally higher for sea states with lower overall wave steepness. One possible explanation for this feature is that steeper waves tend to break before they reach the shore so that the waves arriving at the beach are already tempered by wave breaking. Such behavior could be even more pronounced in the case of a reef or large shoals in front of the coast. For example, it was stated in [START_REF] Pelinovsky | Preface to "sea hazards[END_REF] that reefs can act as natural shore protection as the steepest waves are prone to break at the reef, and before reaching the shore. On the other hand, steep bathymetries such as reefs can also trigger large wave events in shallow water [START_REF] Kharif | Rogue waves in the ocean[END_REF]. If large wave do reach the shore, large run-up is of course also possible, and for slopes steeper than 1 : 2, the run-up may be even more extreme [START_REF] Kharif | Rogue waves in the ocean[END_REF].

Conclusion

The numerical phase-resolving nearshore wave model BOSZ has been used to provide several hours of wave and run-up data on a gentle slope (1:20) and on a steep slope (1:2). Sea states ranging from 0.5m significant waveheight to 3.0m significant waveheight were applied as an offshore condition. Statistical analysis was used to discern the distribution of run-up heights (i.e. the highest level of the waterline at at the shore during one wave event) for a given sea state. The main findings are as follows. First, it is clear that on average, the steeper slope features higher run-up for all conditions investigated here. This can be observed visually such as for example in figures 3 and 4, but it can also be understood by comparing the 98 percentile R 2% as shown in Figure 8. While the 98 percentile R 2% is commonly used in coastal engineering, it does not tell a complete story for the steep slope as it can be seen from Figure that higher quantiles diverge rapidly from the usual Rayleigh distribution, and outliers are much more common than in the standard theory. It follows that large run-ups can always be expected at a steep coast. Since observers are not usually aware of the large preponderance of extreme events, they are prone to be caught by surprise. Dangerous and unforeseen run-up events may happen both during calm seas or during agitated seas since an extreme run-up height is large mainly when compared to the mean of the preceding events.

Since the current work is of a theoretical nature, a natural next step would be to investigate what happens under actual conditions at the coast. Indeed, further work may be directed towards the conduction of field measurements in particular of run-up conditions at a test site with a steep slope and ocean swell arriving on a regular basis. Such measurements could be taken in a similar fashion as the campaign reported in [START_REF] Dodet | Wave runup over steep rocky cliffs[END_REF] where pressure gauges were deployed at a rock coast. However the cited study was conducted at a coast with a rather gentle slope. At sites with 1 : 2 or steeper slopes such as the west coast of Norway, obtaining accurate measurements would be a major With the use of Eq. ( 9), converging results can be obtained up to 0.01m grid spacing, which is 10 times as fine as the original bathymetry used in [START_REF] Suzuki | Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH[END_REF]. The results vary very little with most of the variations induced by small variations in wave input as a result of the changes in grid spacing. This supports the point that the TKE formulation works consistently and helps to reduce mesh dependence.

It should be noted that the performance of the wave breaking closure approach outlined in (2.4) is not very sensitive to the threshold chosen for the onset of TKE production. As detailed in (2.3), a threshold of F r| η > 0.85 was chosen based on suggestions from previous work. However, sensitivity tests have shown that slightly larger or smaller values hardly influence the results in terms of spectral energy distribution and run-up statistics. The wavemaker builds on the theoretical concept presented in [START_REF] Wei | Generation of waves in Boussinesq models using a source function method[END_REF]. The idea behind this approach is to decompose an amplitude spectrum into multiple individual monochromatic waves and then generate them periodically, each with a random phase. We start off with the definition of the empirical Pierson-Moskowitz spectrum, for which only H s and T p have to be known. The lowest frequency is 1/30 Hz which is commonly used as limiting frequency of the gravity wave spectrum. The highest frequency depends essentially on the dispersion properties of the numerical model and its governing equation.

Appendix B Wavemaker and model setup Wave Flooding on Steep Rock Shores

Many Boussinesq-type equation such as the one from [START_REF] Nwogu | Alternative form of Boussinesq equations for nearshore wave propagation[END_REF], are suitable for wave numbers up to around π. The solution does not break down for shorter waves but starts developing errors in the wave celerity. To ensure a proper representation of the spectrum and to avoid errors in the dispersion, we truncate the spectrum at kh = π, which corresponds to a frequency of 1/8 Hz. The spectrum is then divided into equally-spaced frequency bins between 1/30 Hz and 1/8 Hz.

The width of the frequency bins depends essentially on the computed time in the model run. It is crucial that the time series resulting from the superposed monochromatic waves does not repeat (recycle) over the course of the computation. Otherwise artificial wave groups can contaminate the solution. With four hours of computed time, ∆f is 0.0000694 Hz. Subdivision of the spectrum between to defined lower and upper frequency limit results in 1317 frequency bins. Logically, a longer or shorter computed time would not affect the range of frequencies but the frequency bin width and consequently the total number of waves in the generation. The wave phases are initially set as random; however, the set of random phases is kept constant over all model runs to ensure repeatability of the computations. Once the waves are generated, they move away from the center of the source in both directions. The offshore propagating waves are immediately absorbed by a sponge layer that mimics an open ocean boundary condition and that would also absorb reflected waves from the slope, if there were any. The use of an empirical spectrum is convenient for this study as it allows for the simulation of a wide range of sea states in a controlled manner that would otherwise be difficult to obtain from buoy measurements. The long computed time of 4 hours rules out any phase-related effects on the statistics. It is understood that the seed of the random number generator for the draw of the wave phases influences the spatial and temporal superposition of the waves within the domain. However, statistically the dependence of high run-up values is ruled out by the 4-hour long scenarios. Any distribution of phase angles would result in very similar statistical findings.

The model runs were carried out over a regular Cartesian grid with ∆x = ∆y = 0.5 m. The offshore water depth is of uniform 50 m depth until the toe of the slopes at 350 m from the left boundary. The left boundary also includes a sponge with an extent of 150 m (300 grid cells), up to the center location of the wavemaker. Due to the different slopes, the numerical domain are of different length and hence, the computations of the scenarios with the 1/20 slope take longer than the model runs for the 1/2 slope. The wet/dry boundary is handled by the TVD-Riemann solution where a minimum water depth of 10E-4 m is used as threshold. As suggested in other studies (e.g. [START_REF] Pinault | Estimation of Irregular Wave Runup on Intermediate and Reflective Beaches Using a Phase-Resolving Numerical Model[END_REF]) a larger threshold than the one for the numerical differentiation between wet and dry cells should be applied to the run-up limit. Here, the run-up limit is identified where the flow depth drops below 0.05 m.

Fig. 1

 1 Fig.1Photographs of wave conditions at the Norwegian coast near Haugesund at 59.48 • N, 5.23 • E on Jan. 29th, 2020 around 12:00pm CET. Significant waveheheight was estimated at 1m. As seen in the left panel, conditions were rather calm. However, 20 seconds later significant run-up with nearly complete flooding of the top of the rock occurred (see[START_REF] Bjørnestad | Extreme wave runup on a steep coastal profile[END_REF]).

Fig. 2

 2 Fig.2Experiments were run on two slopes. The steep slope had a 1 : 2 aspect ratio, while the gentle slope had a 1 : 20 aspect ratio. The left boundary includes a sponge with an extent of 150m, up to the location of the wavemaker at a distance of 150m from the left boundary. In both cases, the slope starts at a distance of 350m from the left boundary.

Fig. 5

 5 Fig.5Box-and-whisker diagrams of the distribution of run-up heights at a 1 : 20 coastal slope (left) and a 1 : 2 coastal slope (right) for two specific sea states: significant waveheight Hs = 1m and peak period Tp = 18s (left) and Hs = 2, Tp = 18s (right). Boxes are drawn from the first to the third quartile of the distribution, with a bold horizontal line indicating the median. Dots indicate outliers, that is observations beyond 1.5 times the inter-quartile range.

Figure 5

 5 Figure5displays the distribution of two further examplary cases: the distribution of run-up heights under calm-sea conditions with distant swell arriving

Fig. 6

 6 Fig.6Slope 1 : 2. Empirical quantiles of run-up heights versus Rayleigh quantiles (theoretical quantiles assuming a Rayleigh model) for 6 × 3 different sea states, obtained from 6 different values of significant waveheight Hs and 3 different values of peak period Tp. Quantiles are of order p from 5% to 99.9% in increments of 5% plus 98%, 99%, 99.5%, 99.9%. Departures from the diagonal (indicated by a black line) indicate that higher empirical quantiles are increasingly larger than expected.

Fig. 7

 7 Fig.7Slope 1 : 20. Empirical quantiles of run-up heights versus Rayleigh quantiles (theoretical quantiles in a Rayleigh model) for 6 × 3 different sea states, obtained from 6 different values of significant waveheight Hs and 3 different values of peak period T . Quantiles are of order p from 5% to 99.9% in increments of 5% plus 98%, 99%, 99.5%, 99.9%. Departures from diagonal (the black line) are insignificant.

Fig. A1

 A1 Fig. A1 Wave spectra from the Suzuki test with ∆x = 0.1m.

Fig. A2

 A2 Fig. A2 Wave spectra from the Suzuki et al (2017) test with ∆x = 0.05m.

Fig. A3

 A3 Fig. A3 Wave spectra from the Suzuki et al (2017) test with ∆x = 0.01m.

Fig. A4

 A4 Fig. A4 Significant wave heights and energy periods from the Suzuki et al (2017) test with ∆x = 0.05m (∆x = 0.1m and ∆x = 0.01m not shown).

Table 1

 1 Run-up height during a four-hour simulation. This table shows the median, mean 3rd quartile, maximum and number of outliers for a number of sea states.

	Slope Tp	Hs	Median Mean 3rd Quartile Maximum # Outliers
	1/2	12s 0.5m	0.81	0.78	1.06	2.12	7.00
			1.0m	1.49	1.38	1.93	4.59	21.00
			1.5m	2.22	2.02	2.94	6.70	16.00
			2.0m	2.98	2.72	4.04	9.31	10.00
	1/2	15s 0.5m	0.86	0.84	1.12	2.32	4.00
			1.0m	1.58	1.52	2.08	5.06	10.00
			1.5m	2.35	2.23	3.18	7.16	9.00
			2.0m	3.15	3.01	4.31	9.89	7.00
	1/2	18s 0.5m	0.90	0.88	1.15	2.19	7.00
			1.0m	1.66	1.61	2.18	4.53	6.00
			1.5m	2.45	2.34	3.31	6.83	3.00
			2.0m	3.28	3.17	4.48	9.38	5.00
	1/20	12s 0.5m	0.36	0.35	0.51	1.04	2.00
			1.0m	0.76	0.78	1.06	1.90	0.00
			1.5m	1.21	1.27	1.67	2.73	0.00
			2.0m	1.69	1.80	2.30	3.51	0.00
	1/20	15s 0.5m	0.50	0.49	0.70	1.40	2.00
			1.0m	1.01	1.03	1.40	2.54	0.00
			1.5m	1.56	1.62	2.15	3.43	0.00
			2.0m	2.05	2.18	2.79	4.22	0.00
	1/20	18s 0.5m	0.65	0.61	0.88	1.79	2.00
			1.0m	1.22	1.22	1.73	2.96	0.00
			1.5m	1.90	1.99	2.56	4.43	0.00
			2.0m	2.49	2.73	3.36	5.51	0.00

  After observing the wave action for an hour, an Wave Flooding on Steep Rock Shores Plot and fit of 98 percentile R 2% , normalized by significant wave height Hs vs. wave steepness Hs/Tp normalized by gTp, where g = 9.81m/s is the gravitational acceleration, using the formula (2). The black dots and the red squares are respectively the data under a 1/2 and a 1/20 slope, respectively fitted by two least squares curve, with coefficients displayed in the left-hand side table. Both steep slope (1 : 2, left panel) and gentle slope (1 : 20, right panel) feature higher values of R 2% for smaller wave steepness (contrary to what one might expect). It is also clear that the steeper slope features higher overall run-up (by a factor of more than 2) than the gentle slope.
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Wave Flooding on Steep Rock Shores challenge due to the extreme slope and small tidal range making it difficult to deploy in-situ devices.
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Appendix A Validation of the TKE model

The performance of the TKE formulation for the wave breaking closure has been examined with various benchmarking tests. Here, we replicate numerically the laboratory experiment by [START_REF] Suzuki | Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH[END_REF] with irregular waves breaking over a gentle slope. The original bathymetry was given with 0.1 m grid spacing, which posed no problem to any of the wave breaking criteria used so far. Deactivation of the dispersion terms works almost equally well as applying an eddy viscosity term with constant ν t . However, this is mostly due to the rather coarse grid, which acts as a filter itself and prevents the development of instabilities even without particular treatment. This implies that comparable results can be obtained without any wave breaking criteria or treatment by only relying on the stability of the numerical solution and the inherent grid diffusion.

The performance of the TKE model in Eq. ( 9) can be best seen by refining the grid that would automatically force the solution into eventual instabilities along the wave fronts. Inappropriate treatment of wave breaking would lead at least to variations in the results among different grid spacing and, eventually, even to instabilities.