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ABSTRACT As the railway domain progresses towards autonomy, maintaining safety at levels comparable
to human-operated systems is a crucial challenge. Autonomous trains require advanced systems capable
of real-time risk assessment and decision-making, a task traditionally managed by human situational
awareness. This paper introduces a novel risk-based decision-making approach for autonomous trains, using
Partially Observable Markov Decision Processes (POMDPs) for continuous monitoring and evaluation of
environmental collision risks. By consistently maintaining an acceptable risk level through ongoing risk
estimation (in terms of occurrence probability and severity degree), the approach supports the decision-
making capabilities of the autonomous driving system in autonomous trains, enabling safe and informed
decisions despite the uncertainties in the train’s operational state and environmental conditions. The ap-
proach’s relevance and effectiveness are illustrated through its application in an anti-collision function for
autonomous trains.

INDEX TERMS Autonomous train, dynamic risk assessment, Markov Decision Process, safety assurance

I. INTRODUCTION

THE emergence of autonomous trains is expected to in-
troduce significant changes in the transportation indus-

try [1]. The growing interest in this technology reflects its
potential to transform railway systems and operations. This
shift is not merely theoretical but is being actively pursued
in various parts of the world. In early 2016, the Direction
of Railway Systems1 (SNCF) in France initiated a techno-
logical program called Tech4Rail. This ambitious initiative
aimed to lay the foundation for future railway systems and to
prepare for the introduction of safe autonomous and semi-
autonomous train operations. Working collaboratively with
the Autonomous Train program of the Railenium Techno-
logical Research Institute2, alongside various industrial and
academic partners, two consortia have been formed. These
consortia have spearheaded three major projects, each with
distinct objectives [1, 2]: (1) the autonomous freight train; (2)
the autonomous passenger train and (3) the remote driving

1https://www.sncf.com/fr
2https://railenium.eu

train. While these projects encompass numerous engineering
research challenges, they primarily focus on the exploration
of Artificial Intelligence (AI) techniques [3, 4, 5] in percep-
tion [6, 7], control and decision-making functions [8]. Ad-
ditional focus areas include human-machine cooperation [9],
societal acceptance of autonomous technologies [10], as well
as risk assessment3 and safety demonstration [12, 13, 14].
The French initiative is part of a global movement to ad-

vance autonomous transportation systems. For example, the
Enable-S3 [15] project seeks to validate autonomous systems
across different sectors, including rail, through innovative
testing methodologies. Similarly, the SAFEDMI project [16]
is working to improve the safety of railway traffic manage-
ment by developing a more robust interface for train opera-
tors. In Germany, the SafeTrain project [17] is developing an
integrated safety concept for autonomous trains. This project
uses digital technologies and AI to enhance safety, including
the development of obstacle detection systems and decision-

3Risk assessment is the overall process comprising a risk analysis and a
risk evaluation [11]
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making algorithms. In the UK, the AutoDrive project [18] is
another important initiative. It aims to speed up the adoption
of automated train operations on the UK rail network, focus-
ing on how automation can enhance capacity, reliability, and
safety. Recently, the Europe’s Rail Joint Undertaking4 has
launched a 160M project, called R2DATO - Rail to Digital
automated up to autonomous train operation5. Gathering the
main European Railway companies, R2DATO aims to lever-
age digitalization and automation (up to full autonomous)
to enhance the capacity of existing rail networks, intending
to deliver Automated Train Operation (ATO) and advanced
digital technologies by 2025.

According to safety standards and regulations, the safety
level of emerging railway systems, such as autonomous trains,
should be maintained, and if possible improved [12]. In-
deed, the assurance of this safety level is intrinsically re-
lated to the train’s capacity to perform all the operational
tasks safely. Among these tasks, a key component function
is the train’s ability to understand its environment and react
accordingly. Concretely, the on-board Autonomous Driving
System (ADS) should continuously explore and interpret the
surrounding environment and operational conditions in order
to adapt its operation in real-time ensuring the avoidance of
any hazardous situation [19].

In conventional trains (operated by human drivers), safety
demonstration and risk assessment processes form integral
parts of the design and development phases. In fact, the
risk assessment process of such systems is carried out by
assuming the presence of a human operator on-board the train.
Indeed, in addition to driving tasks, the driver performs a
dynamic risk assessment during the train operations, informed
by the train’s state of health and capabilities. This dynamic
risk assessment6 (DRA) includes the detection and identifica-
tion of potential obstacles, followed by the human decision-
making that ensures, in case of unexpected obstacles, the
safety of the train and its passengers [20, 19]. When it comes
to autonomous trains, the ADS has to perform a similar
process. Concretely, the ADS must demonstrate the ability
to safely execute its functions across all situations and oper-
ational conditions. To assure this mission, the ADS should
incorporate real-time and dynamic risk assessment, while
the real-time risk assessment is defined as ‘‘the process of
assessing the current and immediate risk level.’’ capabilities
within its decision-making process. These capabilities play
a pivotal role in enhancing basic functions, such as obstacle
detection, while also providing a solid foundation for the
development of more advanced features, such as the anti-
collision system [21, 22]. Consequently, the ADS, endowed
with DRA and additional safety features, should ensure safer
and more efficient autonomous train operations [23].

4https://rail-research.europa.eu/
5https://www.uitp.org/projects/r2dato/
6Dynamic risk assessment is a method that continuously updates estimated

risk of a deteriorating process according to the performance of the control
system, safety barriers, inspection and maintenance activities, the human
factor and procedures [19].

One of the challenges so that the ADS to be able to realize
safety functions is the presence of potential uncertainties
related to the perception system (sensors, and AI algorithms)
and the environmental conditions [24, 25]. Indeed, the non-
reliable received information could lead to missed detection
and, at worst, to catastrophic consequences. Arising from
this challenge is the need for a comprehensive and robust
decision-making process capable of taking into account and
handling uncertainties. This process should be designed to ex-
amine sensors’ information, taking into account the potential
for inaccuracies, and react accordingly.
In response to these challenges, the contribution of the

paper consists in developing a risk-based7 decision-making
process for the anti-collision function of autonomous trains.
The proposed process is able to account for the inherent un-
certainty associated with the train state and the wide range of
operational and environmental conditions, by using Partially
Observable Markov Decision Processes (POMDPs).
The developed approach is based on continuously updated

system information, including those related to the risk of
collisions with potential obstacles. Notice that the risk is
defined as a combination of expected frequency of loss and
the expected degree of severity of that loss [11]. Handling
risk-related information in operational-related data can lead
to a well-balanced trade-off between the safety of the system
and its availability.
This work is organized as follows. Section II presents the

related works addressing uncertainties in decision-making
processes of autonomous systems. Additionally, the benefits
of integrating POMDPs in such processes for risk control are
discussed. In Section III, the problem statement related to the
anti-collision function for the autonomous train is detailed,
alongwith the way to structure the associated risk data needed
to complete the DRA task. Furthermore, the methodology of
the proposed solution is described in Section IV, including the
definition of the POMDPmodel, and the proposed riskmodel.
The results of the experiments are presented in Section V.
Finally, Section VI provides some concluding remarks and
highlights some perspectives for future research.

II. TOWARD THE USE OF POMDPS IN ADS
First of all, the objectives of functions and tasks of the au-
tonomous train ADS, especially those related to its decision-
making process, are reminded. Then, some research works
dealing with uncertainties in decision-making processes,
whatever the terrestrial transportation system, are reviewed,
including the different existing techniques. The focus is
placed on one of them, POMDPs, given their proven benefits
and their possible adaptation to dynamic risk assessment, as
demonstrated in this section. The principles of POMDPs are
not detailed here, as they will be presented in Section IV.

7A risk-based approach is the process of ensuring the safety of products,
processes and systems through consideration of the hazards and their conse-
quent risks [11]
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A. OBJECTIVES OF FUNCTIONS AND TASKS OF THE ADS
To ensure safe train operations in an open environment, the
autonomous train must perform a variety of functions, includ-
ing managing train states, avoiding collisions with obstacles
on the track, and other critical functions. All of these func-
tions are carried out by the ADS [1], which refers to the set
of hardware and software capable of performing the entire
Dynamic Driving Task (DDT) on a sustained basis, according
to [26].

In the case of autonomous trains, the DDT has to include
traditional train driver tasks such as environment percep-
tion, situation awareness, dynamic risk assessment, decision-
making, and control tasks. In this subsection, among these
tasks, we focus on the decision-making processes in au-
tonomous trains.

Figure 1 depicts the essential components of the ADS
in an autonomous train. In fact, the decision-making unit
receives all the necessary information from the perception
unit, computes main (operational and safety) indicators, and
takes adequate actions The dynamic risk assessment task has
to form the safety basis (via risk model) of the train decision-
making process. Depending on the evaluated risk level, the
ADS should then decide on an action plan. It could choose,
for example, to accelerate or maintain speed to meet the speed
profile of the train when no obstacle is present on the horizon,
decelerate if a potential obstacle is detected at a safe distance,
or initiate an emergency braking procedure if an immediate
collision risk is identified.

Notice that, in railway standards, particularly as outlined
in EN 50126, a ‘risk model’ is the comprehensive framework
designed for the systematic identification, assessment, and
management of risks in railway operations. The risk model’s
main objective is quantifying the likelihood and severity of
potential hazardous events, evaluating the effectiveness of
existing safety measures, and determining the need for addi-
tional risk mitigations. The model typically (for conventional
railway systems) encompasses the identification of hazards,
the risk analysis (including frequency and consequences of
hazardous events), and the evaluation of risk against prede-
fined acceptability criteria. On the other hand, risk models for
autonomous trains should incorporate real-time information.
This allows for an adaptive response to changing environ-
mental conditions and operational scenarios. Using advanced
algorithms, the model evaluates risk levels continuously, con-
sidering both historical data and real-time sensory inputs.

B. HANDLING UNCERTAINTIES IN DECISION-MAKING
PROCESSES
Addressing uncertainties in decision-making for autonomous
systems had emerged as central research focus, identifying
key problematics such as sensor fusion [27, 28], perception
under varying environmental conditions [29, 30], and dy-
namic system state evaluation [31, 32]. These challenges are
critical as they directly impact the safety and reliability of
autonomous operations. Sensor fusion is particularly essential
for ensuring comprehensive perception [33], as it integrates

data from multiple sensors to form a coherent understanding
of the environment, compensating for the limitations of indi-
vidual sensors [34]. The literature reveals that environmental
conditions significantly affect the perception accuracy [35],
where factors such as lighting, weather, and obstructions can
lead to uncertainties in detecting and classifying objects [36].
Moreover, maintaining an accurate system state is imperative,
as it forms the basis for all subsequent decisions [37]. Vari-
ability in operational conditions and the need for real-time
responsiveness necessitate robust frameworks and method-
ologies capable of adapting to sudden changes and predicting
future states.
In fact, several research works in the literature focus on

robust decision-making methodologies capable of taking into
account various types of uncertainties. For instance, Bayesian
Networks (BN) provides a graphical model to comprehend
the probabilistic relationship among a set of variables and
manage uncertain information [38], while Dynamic Bayesian
Networks (DBN) extend this capability by handling tempo-
ral dependencies between variables [39]. Moreover, decision
trees offer a simple and intuitive method to model decisions
and their possible consequences, including outcomes, re-
source costs, and utility [40]. Lastly, Reinforcement Learning
(RL) offers an interactive approach to learning an optimal pol-
icy for direct trial-and-error interaction with a dynamic envi-
ronment [41, 42, 43]. However, among these methodologies,
Partially Observable Markov Decision Processes (POMDPs)
have gained significant attention in the realm of autonomous
systems as described below.

C. BENEFITS OF POMDP IN DECISION-MAKING
PROCESSES
POMDPs have several advantages when dealing with the
decision-making process. Firstly, POMDPs explicitly account
for the uncertainty in both the systems state and the observa-
tions. This feature is essential in autonomous systems where
sensor readings may not always be reliable or complete,
and the actual state of the environment is hard-to-specify
and hard-to-predict. Secondly, unlike methodologies such as
decision trees that operate on discrete models, POMDPs can
handle continuous states, actions, and observation spaces.
This is particularly useful for autonomous systems where the
environment is often better represented as a continuous space,
such as the relative positions and speeds of vehicles [44].
Finally, while the RL is also a powerful tool for decision-
making under uncertainty, it typically requires a large number
of trials to learn the optimal policy, which may not always be
feasible or safe in critical applications like autonomous trains.
On the other hand, POMDPs offer a model-based approach
that allows efficient policy computation based on the system’s
model.
In addition to their capability to address uncertainty,

POMDPs can also model both the stochasticity in environ-
ment transitions and imperfect sensory information [45]. This
dual capability becomes vital when dealing with real-time
sensor data that inherently contains observational noise and
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FIGURE 1: A simplified architecture of the ADS with a main focus on the DRA layer strengthening the decision-making task

varying environmental states [46].
A number of studies have focused on the use of POMDPs

for various tasks related to the decision-making process, in-
cluding dynamic probabilistic risk assessment [47], cruise
control of high-speed trains [48], collision avoidance in un-
certain environments [49], and behavior planning for au-
tonomous vehicles [45]. In the field of robotics, POMDPs
have also been applied for fault management in autonomous
underwater vehicles [50]. A survey by [51] provided a com-
prehensive overview of the use of POMDPs in robotics.

The literature also provides a range of algorithms and tech-
niques for solving POMDPs, including online solvers [52],
Monte-Carlo planning [53], and regularization methods [54].
In addition, various tools and frameworks have been devel-
oped to aid in the modeling and analysis of autonomous sys-
tem behavior using POMDPs, such as TAPIR [55], an online
approximating and adapting software toolkit [56], and the
Expandable-Partially Observable Markov Decision-Process
Framework [45]. Equivalently, the use of Deep Reinforce-
ment Learning (DRL) in combination with POMDPs has
been gaining popularity in recent years. For example, [57]
explored the recent advances in DRL applications for solving
POMDP problems in various fields, including transportation,
industries, communication, and networking.

The above-mentioned papers highlight the variousmethods
and techniques that have been developed to solve POMDPs
in real-time and address the challenges of uncertain en-
vironments and dynamic parameters. Therefore, by using
POMDPs, autonomous systems can make informed deci-
sions that balance the trade-off between safety and efficiency
(or even comfort), providing an important step toward the
widespread adoption of autonomous systems.

We will now emphasize the central role that decision-
making plays in ensuring the safety of autonomous trains by
focusing in the following on one of its main functions: the
anti-collision function.

III. PROBLEM STATEMENT RELATED TO ANTI-COLLISION
FUNCTION
This section first provides a description of the anti-collision
function, which is the focal point of the works described

in this paper. Then, as explained before, the dynamic risk
assessment (DRA) task has to be performed interdependently
with the decision-making task. However, for assessing risk,
having risk profile information is a prerequisite. Structuring
such information is the output of the DRA framework pro-
posed by the authors in [8]. This framework is revisited in
this section, along with its application to the anti-collision
function. In fact, obtaining structured risk informationmake it
possible to provide inputs of our risk-based decision-making
methodology using POMDP, which is described in the next
section.

A. OBJECTIVES OF THE ANTI-COLLISION FUNCTION
The anti-collision function represents the train capacity to
detect and react appropriately and safely to any potential
obstacles that could instigate a collision. Notice that the ob-
stacles to be considered are physical entities, such as other
trains, vehicles, individuals, trees, and so on. It is essential for
an autonomous train to be outfitted with the necessary sensors
and algorithms to accurately identify the nature of an obstacle,
and estimate its distance from the train and its trajectory, in
order to compute and evaluate the associated risk. To realize
the anti-collision function, the ADS monitors the operational
state of the train and its surrounding environment, constantly
scanning for potential obstacles.
Figure 28 illustrates a scenario where an autonomous train

is approaching an intersection point in its track where the rail
of another train merges. This is a potential area of conflict that
the train’s ADS recognizes and reacts to in a safer manner.
Furthermore, on the horizon, a car road intersects the railway
track, indicating a level-crossing scenario. A few individuals,
along with their animals, are seen near the crossing, preparing
to cross or possibly cross the railway track. This adds another
layer of complexity to the scene, and the train’s ADS must
be capable of reacting to any potential obstacle and making
decisions ensuring an acceptable safety level.
Moreover, the presence of trees alongside the rails is not

merely an environmental feature in the figure. It signifies
another set of potential risks such as the danger of a fire,

8This figure was generated using an AI-based image generation tool
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or the possibility of animals wandering onto the tracks from
the forested areas. In such complex and unpredictable sce-
narios, the train’s anti-collision function serves as the back-
bone ensuring the safety of the autonomous train. It needs
to efficiently process the potential risks arising from differ-
ent aspects of the scenario (e.g., another train, humans and
animals near the level crossing, cars, potential forest threats;
etc.). The anti-collision function objective is not just to detect
and identify these threats but also to measure the level of risk
associated with each one so that the decision can be made
based on the most updated and accurate risk information.

Figure 2 serves as a reminder of the vast array of potential
risks that an autonomous train might face, and how a robust,
dynamic, and real-time risk assessment based on the anti-
collision function can play a critical role in ensuring the safe
operation of the train.

FIGURE 2: Generic illustration of the anti-collision function

B. DRA TASK INHERENT TO THE ANTI-COLLISION
FUNCTION
Given the uncertainties associated with real-world environ-
ments and sensor information, the observations help to form
an uncertainty estimation. This estimation is a probabilistic
representation of the current situation of the train, summa-
rizing possible states of the train and its surroundings. Once
the uncertainty estimation is established, the risk assessment
inherent to the anti-collision function should be carried out.
This refers to the DRA task, which has to be performed by
the ADS to evaluate and update the risks associated with the
current state of the train, the environment, and the available
actions the train might take. This assessment is based on
uncertainty estimation, considering both the likelihood and
potential consequences of a collision. In addition, the uncer-

tainty estimation plays an important role in establishing the
risk profile, as it provides the probabilistic basis from which
potential hazardous scenarios and their associated risks are
assessed, and classified within the risk profile.
Figure 3 shows an illustrative scenario involving an au-

tonomous train and a potential obstacle in its track. Different
control actions are available for the train, in response to
the surroundings and with respect to the criticality of the
evaluated risks, namely, accelerating, maintaining the current
speed, and various types of braking. In Figure 3, the obstacle
is located at a certain distance on the track of the train. With
respect to the distance from the train, three zones are consid-
ered: warning, emergency, and critical zones. The warning
zone (in yellow color) indicates a distance from where no
immediate action is needed (i.e., the obstacle is so far or not
detected yet). The emergency zone (in orange color) signifies
a cautionary distance from where the train may need to adjust
its speed or brake in order to avoid a collision. Finally, the
critical zone (in red color) signifies that the presence of an
obstacle can lead to a collision (i.e., in this zone, the obstacle
is considered close to the train, and even with an emergency
braking the risk of collision is high). The associated risk
level represented on the vertical axis with a scale between 0
and 1, is estimated according to the distance to the obstacle.
Obviously, the closer the obstacle is to the train, the higher
the risk level is. The threshold to reach the unacceptable risk
level (visualized in the figure by the intersection between the
blue dashed line with the vertical axis) is crossed when the
train crosses the critical zone.
Note that, the DRA task must not only lead to a safety

reaction of the ADSwhen a collision risk is identified but also
learn from every decision made. The consequences of each
decision have to be monitored and analyzed to understand the
effectiveness of the actions taken. This feedback loop allows
the system to continuously adapt and evolve, improving its
performance over time. Therefore, the anti-collision function,
performed by the DRA, acts as a dynamic learning and pro-
tection layer, ensuring a higher level of safety in the operation
of autonomous trains.
For structuring the risk profile needed in the DRA, the

framework described in [8] is now presented and applied to
the anti-collision function.

C. STRUCTURING RISK PROFILES WITH THE DRA
FRAMEWORK
The proposed framework provides a structured approach to
decision-making, taking into account the train state uncer-
tainty and the perception of the environment. The DRA
framework is designed to take into account the various factors
that influence the decision-making process (cf. Figure 4).
This includes the train’s speed, the distance to the obstacle,
and the perception of the environment, among other internal
and external factors.
This framework enables the ADS to perform a real-time

evaluation and prediction of potentially hazardous situations
by estimating their occurrence probabilities and severity. It
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FIGURE 3: Illustrative representation of the anti-collision function

exploits not only the information collected from the per-
ception module but also translates this information into an
actionable risk profile9. This profile then guides the decision-
making process to efficiently determine the appropriate and
safe actions necessary to avoid or mitigate the impact of
hazards. Therefore, the integration of risk profiles into a
DRA framework for autonomous trains allows for the real-
time management and mitigation of risks, thereby improving
overall safety in autonomous train operations.

In the present paper, our focus is on the Understanding
& Prediction and Decision-making modules in the case of
the anti-collision function. The Understanding & Prediction
module utilizes the information provided by the Percep-
tion module to create and continually update an integrated
real-time model that represents the system environment and
its states. This model is subsequently utilized for run-time
decision-making. From the perspective of DRA, this module
enables the computation of a current risk estimate and the
prediction of potential railway hazards. Subsequently, this
risk estimate is evaluated through the risk model. This risk
model for anti-collision purposes integrates both historical
data, which reflects past system performance and incidents,
with real-time sensor information to enhance the accuracy of
potential collision predictions. Moreover, it evaluates several
parameters, such as the train’s current speed, position, and
braking capabilities as well as the positions and velocities of
detected obstacles. By continuously updating these parame-
ters in real-time the model is able to adjust and update the
risk estimates associated with each potential action and thus
assists in selecting the safest action for the autonomous train.
Based on a comprehensive evaluation of the risk assessment
parameters, the following section outlines the POMPD-based
methodology developed to effectively address the safety chal-
lenges of autonomous train operations.

9According to [58], ‘‘outcome, likelihood, significance, causal scenario,
and population affected [are factors that] determine the risk profile.’’

IV. METHODOLOGY
In this section, we first recall the preliminary definitions and
notions of POMDP, and then, we describe the different com-
ponents of the POMDP model for the train’s anti-collision
decision-making process.

A. POMDP DEFINITION
A POMDP is a probabilistic method that models the sequen-
tial process of a system under uncertainty. It is a general-
ization of Markov Decision Process to situations where the
system state is partially unknown. Formally, a POMDP is
a tuple ⟨S,A,O,T ,Z ,R, γ⟩, where S and A are the sets of
states and actions, T is the transition function that defines the
conditional probability P of moving from one state s ∈ S to
another state s′ ∈ S as a result of executing an action a ∈ A,
i.e., T (s, a, s′) = P(s′ | s, a). O is the observation space
that defines the information received (from sensors) after the
execution of an action. Z is the corresponding observation
function that defines the conditional probability of observing
a particular outcome o ∈ O after executing an action a ∈ A
to reach to state s′ ∈ S, i.e., Z(o, a, s′) = P(o | s′, a). R is
the reward function R(s, a) that defines the immediate reward
received for being in a particular state s ∈ S and taking a
particular action a ∈ A. Finally, γ ∈ [0, 1] is the discount
factor that determines the relevance (or not) of future rewards.
In a POMDP, only partial and noisy knowledge of the

system and its environment is considered; thus, a belief about
the model states, known as a belief state b(s), is continually
inferred. The belief state is a probability distribution over the
state space that reflects the degree of certainty maintained
by the POMDP model about the current state of the system.
Accordingly, a policy π : B → A is used as a mapping from
the set of possible belief states to the set of actions, in order
to determine the adequate action that should be taken.
Solving a POMDP involves finding the optimal policy π∗

in terms of current action or finite sequence of actions to
be executed in order to maximize (or optimize) the expected
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FIGURE 4: The autonomous train dynamic risk assessment framework

cumulative reward over time, taking into account the belief
state. Formally,

π∗(b) = argmaxa∈A{
∑
s′

P(s′ | b, a)[R(b, a, s′) + γ.E[V ∗(b′)]]}

(1)
To evaluate the potential reward of taking an action a and

transitioning to state s′, equation 1 considers the probability
P(s′ | b, a) of transitioning to state s′ given the current belief
state b and the action a taken. It also accounts for the immedi-
ate reward R(b, a, s′) obtained from the action a in the belief
state b and transitioning to state s′. Moreover, the equation
considers the expected value (i.e., expected reward) of the
optimal value function, E [V ∗(b′)] for the next belief state
b′ resulting from the transition to state s′. This component
accounts for the potential future rewards and outcomes taking
action a.
The optimal policy in a POMDP can be computed using

two main categories of solvers: online and offline solvers.
These solvers differ in the way they find the optimal policy
and the computational resources they require. Online solvers
are designed to run in real-time and make decisions based
on the current state of the system, while offline solvers are
designed to run offline andmake decisions based on historical
data. The choice of the solver depends on the specific use case
and the computational resources available.

B. POMDP MODELING OF THE TRAIN ANTI-COLLISION
SYSTEM
1) Train anti-collision system modeling
The anti-collision system takes as input internal information
regarding the train state, and external information about the
environment. As explained in subsection III-C presenting the
DRA framework, the internal inputs encompass sensor infor-
mation about the train position and velocity (generally, pro-
vided by the localization and the speed measuring modules),

as well as nominal and emergency braking (i.e., deceleration)
capabilities, which can be transformed into the nominal and
emergency distances to stop the train. On the other hand,
external inputs refer to information about the surrounding ob-
stacles (coming from the perception module), including their
positions, dimensions, velocity, and intentions (for moving
obstacles). The output of the system is the adequate control
action (or sequence of actions) to be taken in order to avoid
(when possible) any collision with the detected obstacle.
Figure 5 presents a general view of the POMDP input-output
structure used to implement the anti-collision function.

The continuous state-space of the POMDP model includes
the state of the train and the states of the (eventually) sur-
rounding obstacles. The state of the train sT contains its posi-
tion (xT , yT ), its velocity vT , and its orientation θT . Similarly,
the state of each obstacle si is composed of its position (xi, yi),
its dimension Di, its instantaneous speed (vxi, vyi), and its
orientation θi. It is worth noticing that such a formulation
of the state space is performed on a global (or earth) co-
ordinate system. An arbitrary point on the track is chosen
as the origin of the coordinate system. Notice that several
coordinate systems can be considered, as local and relative
systems (See [59, 60] for more details).

While the continuous formulation of the state space is a
faithful representation of the real system, it remains a very
high-dimensional continuous space, which requires signif-
icant computation time and space to solve the model and
find the adequate policy. Moreover, the existing algorithms to
solve the continuous POMDP do not scale well when it comes
to high-dimension continuous models. In order to remedy
this issue, we consider in this paper a discrete POMDP with
a discrete representation of state space, action space, and
observation space.
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FIGURE 5: A generic illustration of the POMDP model

FIGURE 6: A generic spatial discretization of Cartesian plan into adaptive grid map for autonomous train navigation

2) Modeling the discrete state space

The discretization of the state space is performed using a
two-dimensional adaptive grid fixed to the head of the train.
Thus, a local coordinate (ego-centric) system with the head
of the train as system origin is considered. This means that
instead of explicitly representing the positions of the obstacles
as continuous variables within the model states, they are
represented implicitly through several variables indicating the
occupancy or not of the grid cells.

The positive x-axis is in the direction of train driving and
the positive y-axis is directed to the left of the train head.
Notice that the adaptive grid cell size is dependent on the
tangible braking capabilities of the train, the presence of
obstacles in (or alongside) the track, and the gauge of the train.

Figure 6 presents a two-part illustration from a real-world
scenario of the adaptive grid map. The first part (on the
left of the figure) shows a train moving along its track with
an obstacle appearing in its path, visualized using a global

coordinate system. The second part of the illustration (on the
right of the figure) depicts the adaptive grid map resulting
from this discretization process. Furthermore, On the right
side, the concept of discretization is shown. This is repre-
sented by a grid overlay on the track, with the grid cells
numbered in parentheses. The cells are color-coded consistent
with the zones described on the left: green for the free zone,
yellow for the warning zone, orange for the emergency zone,
and red for the critical zone. This grid represents a method
for discretizing the continuous space around the train into
manageable sections for the anti-collision system to evaluate
risk more effectively. This discretization allows the transfer
from the global coordinate system to an adaptive grid map.
The lengths of each zone in this adaptive grid map are indi-
cated on the right side of the grid as lengthfree , lengthwarning,
lengthemergnecy, and lengthcritical . The train’s gauge, which is
the width of the train or the tracks, is also noted at the bottom
of the grid. In fact, figure 6 illustrates our approach to risk
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quantification, which, at first glance, emphasizes proximity
and braking distances. However, the model’s architecture
inherently accommodates additional critical parameters. Lat-
eral position is factored into the discretized grid map where
each cell corresponds to a specific lateral and longitudinal
zone relative to the train, allowing us to account for the lateral
positioning of obstacles. Moreover, obstacle velocity is incor-
porated into the risk assessment though dynamic cell updates
that reflect the changing positions of obstacles over time. This
enables the system to anticipate and react to moving obstacles
with a higher risk attribution for those with significant relative
velocity towards the train.

The adaptive grid map is structured as a 12-cells grid,
where each cell is defined based on the relative position of
the obstacle (gx , gy), and its relative discrete orientation θd .
Notice that the orientation of the obstacle is determined based
on its velocity projections (vx , vy) (or its angular velocity ωo),
and represents the possible transitions to the eight surround-
ing grid cells.

Thus, the state set S can be expressed as follows:

S =


gx , with gx ∈ {1, 2, 3, 4}
gy, with gy ∈ {1, 2, 3}
θd , with θd ∈ {0, 2π

8 , 4π
8 , 6π

8 , π, 10π
8 , 12π

8 , 14π
8 }

(2)
The variable gx represents the discretization of the ob-

stacle’s position in the x-axis and can take four values
{1, 2, 3, 4}, corresponding to the number of lines in the grid.
The variable gy represents the discretization of the obstacle’s
position in the y-axis and can take three values {1, 2, 3},
corresponding to the number of columns in the grid. Ad-
ditionally, the variable θd represents the orientation of the
obstacle and is discretized from a continuous space (from 0 to
2π) to eight discrete values {0, 2π

8 , 4π
8 , 6π

8 , π, 10π
8 , 12π

8 , 14π
8 },

representing the possible transitions to the eight surrounding
cells. In fact, each unique combination of gx , gy, and θd

represents a distinct state in the adaptive grid map, indicating
the position and orientation of the obstacle (see Figure 6).
With four possible values for gx , three possible values for gy,
and eight possible values for θd , the total number of possible
states in the adaptive grid map is NS = 4 × 3 × 8 = 96.
These 96 states capture all the possible configurations of an
obstacle within the adaptive grid map, enabling the POMDP
model to effectively reason about its movement and potential
interactions with the train in real-world scenarios.

In order to establish the size of each cell in the adaptive grid
map, the next step of the discretization process is the defini-
tion of different zones (Free, Warning, Emergency and Crit-
ical zones). The boundaries of each zone are determined as
functions of the nominal and emergency braking distances α1

and α2. In fact, the length of the cells in Critical, Emergency,
and Warning zones are respectively equal to the emergency
braking distance (lengthcritical = α2), the nominal braking
distance (lengthemergency = α1 − α2), the distance to the
obstacle (lengthwarning = dw−α1). Additionally, the length of
the free zone cells is determined by the maximal perception

distance (or the perception range) dp of the autonomous train
(lengthfree = dp − dw)). On the other hand, the width of all
cells in the adaptive grid map is equal to the gauge of the train.
Equation 3 shows the boundaries of each zone :


Freezone = {(gx , gy, θd) ∈ S | dw < gx ≤ dp}
Warningzone = {(gx , gy, θd) ∈ S | α1 < gx ≤ dw}
Emergencyzone = {(gx , gy, θd) ∈ S | α2 < gx ≤ α1}
Criticalzone = {(gx , gy, θd) ∈ S | gx ≤ α2}

(3)
These zones include the Free zone where no obstacle is

detected, the Warning zone where an obstacle is present but
can be avoided by a nominal braking, the Emergency zone
where an obstacle can only be avoided by an emergency
braking, and the Critical zone where an obstacle cannot be
avoided and a collision is imminent. In fact, in the adaptive
grid map, each zone consists of three cells, resulting in a total
of 12 cells.

From a safety perspective, if an obstacle is in one of
the three cells within each zone, whatever the speed of the
obstacle compared to the speed of the train, and knowing that
its orientation is toward a lateral direction (i.e., θd = 0 or
π, meaning that the next obstacle state will remain in the
same zone), the associated level of risks can be considered
to be similar for the autonomous operation. If the obstacle
orientation is forward (i.e., θd = 2π

8 or 4π
8 or 6π

8 ) or backward
(i.e., θd = 10π

8 or 12π
8 or 14π

8 ), the risk will respectively
decreases (only if vo ≥ vT ) or increases (only if vo > 0).
In order to define POMDP states with comprehensible risk
levels, we adopt the following assumptions.

3) Assumptions for defining risk levels
It can be observed that most of the 96 states from the adaptive
grid map can exhibit similar safety implications. In particular,
the three cells within each zone can be related to a similar
level of risk. In other words, multiple states might present
an analogous level of risk for autonomous train operations.
Such similarities across various states can be attributed to
factors such as the immediate threat an obstacle can raise, the
available reaction time for the train, and the potential conse-
quences of inaction. Rather than distinguishing among these
numerous states, which might only offer marginal differences
in the actual risk, it appears to bemore pragmatic and efficient
to aggregate them based on their overall risk level. This not
only streamlines the decision-making process but also ensures
clarity in defining distinct risk levels.
Moreover, in the initial simulation setup described herein, it

is assumed that obstacles detected by the autonomous train’s
perception unit are static (i.e., vo = 0) in the immediate
environment. This assumption simplifies the predictive aspect
of obstacle movement and trajectory, allowing the decision-
making process to forgo consideration of these dynamics.
Consequently, the orientation (θd ) of the obstacles is not taken
into account when transitioning to discrete safety states. The
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focus is primarily on identifying obstacles and gauging their
proximity to the train (i.e., the distance to obstacle do). In
contrast, the second simulation setup advances this model
by integrating the velocity of obstacles and their nature (i.e.,
static or dynamic). This not only reflects amore realistic oper-
ational scenario but also challenges the system to account for
the additional complexity in its risk assessment and decision-
making algorithms. Furthermore, developing two simulation
setups highlights the adaptability of the approach, showcasing
its capacity to integrate multiple factors, whether they are ex-
ternal factors related to obstacles or internal factors associated
with the train itself.

Based on the outlined considerations, we have identified
four discrete states. This delineation is not just a reduction,
but a methodical classification and categorization based on
the risk levels that several states in the adaptive grid map
might be associated with. This structured approach provides a
clear representation of collision risks, facilitating an efficient
response by the autonomous train system to safety-critical
situations. The specifics of these four states are detailed in
Equation 4.

Finally, the state Safe indicates that no obstacle is detected
in the train’s surroundings. This situation applies to the Free
zone, where the distance to obstacle dO → ∞. Conversely, the
ObstacleDetected state signifies that an obstacle is located in
theWarning zone. In this zone, the obstacle can be avoided by
nominal braking. However, if the obstacle breaches the Emer-
gency zone, the state switches to AboutToCrash. This state
represents a significant risk that necessitates the immediate
application of emergency braking to prevent a collision. Fi-
nally, the Crash state denotes the situation where the obstacle
is located in the Critical zone, and a collision is inevitable
despite any measures.

4) Modeling the action space
The dynamic behavior of the train is mainly controlled by the
continuous action of acceleration (and intrinsic deceleration
and braking). To simplify the model, we consider a dis-
cretization of the acceleration space into three discrete values
A = {a1, a2, a3}, which represent respectively: maintaining
the speed, nominal braking, and emergency braking.

It is worthwhile noticing that, in the context of obstacle
avoidance, the (positive) acceleration action can also be con-
sidered. This action is generally taken in the case of hazardous
situations related to fires in the track or the presence of
smoke in tunnels. In this study, such a kind of situation is not
considered.

5) Modeling the observation space
The observation space, denoted O, is defined as the set of
possible observations that the autonomous train can make at
each time step. In fact, all observable variables constructing
the observation space, such as train position and velocity, can
be updated directly from sensor measurements. Noise in these
sensor measurements can also be taken into account during
observation and belief updates. In our case, the observation

space comprises the obstacle’s position in the adaptive grid
map, represented by the variables gx and gy. This representa-
tion captures the relative location of the obstacle with respect
to the train’s position and enables the assessment of potential
collision risks. Thus, two observations are defined in the
following set :

O =

{
gx , with gx ∈ {1, 2, 3, 4}
gy, with gy ∈ {1, 2, 3}

(5)

6) Modeling the transition function
Based on the probability distribution of the initial (or current)
state of the model, at each step time δt , an action is taken and
probability distribution over the state space is updated accord-
ing to the transition function model T (s, a, s′) = P(s′ | s, a).
The transition function depicts the dynamic behavior of the
train and obstacles after each step time δt . We consider vT ,
xT , and aTcc being the train velocity, position, and acceleration
respectively, with the time sample δt . The following equation
shows the train’s transition model (i.e., train’s dynamics) in
the global (or earth) coordinate system:

[
vT (t + δt)
xT (t + δt)

]
=

[
1 0
δt 1

]
.

[
vT (t)
xT (t)

]
+

[
δt
δt2

2

]
.aTcc(t) (6)

Similarly, the obstacle’s transition model (i.e., obstacle’s
dynamics) in the global coordinate system is described as
follows: [

vo(t + δt)
xo(t + δt)

]
=

[
1 0
δt 1

]
.

[
vo(t)
xo(t)

]
(7)

Notice that in the case of the obstacle’s transition model,
the acceleration is not considered. In addition, we assume
that the transitions are deterministic and the obstacle remains
static in time. The new distance to obstacle do after a time step
(i.e., the obstacle’s transition model) in the global coordinate
system is represented by the following equation:

do(t + δt) = do(t)− vT (t).δt − aTcc(t).
δt2

2
(8)

However, the distance to the obstacle in the local coordinate
system (adaptive grid map) is defined as follows:

do(t) = gxo(t) (9)

7) Modeling Observation function
The main objective of the observation function Z(o|s, a), in
this case, is to calculate the distance traveled by the train after
a time step, in the global coordinate system. This distance
allows keeping track of the new distance to the obstacle in
each action selected from the action space.

d traveledT (t + δt) = vT (t).δt + aTcc(t).
δt2

2
(10)
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S =


s1
s2
s3
s4

 =


Safe = {(gx , gy, θd) | gx = 4,∀ gy, θd},
ObstacleDetected = {(gx , gy, θd) | gx = 3,∀ gy, θd},
AboutToCrash = {(gx , gy, θd) | gx = 2,∀ gy, θd},
Crash = {(gx , gy, θd) | gx = 1,∀ gy, θd}

(4)

The new distance to the obstacle, after a time step, becomes :

d0(t + δt) = d0(t)− (vT (t).δt + aTcc(t).
δt2

2
) (11)

Similarly, the orientation of the obstacle can be updated,
at each time step δt , based on the obstacle’s orientation at
the previous time step and the obstacle’s angular velocity ωo.
Thus:

θdt+δt = θd(t) + ωo.δt (12)

Notice that equation 12 assumes that the obstacle’s angular
velocity (ωo) remains constant over the time step δt . This
fits the assumption made previously that the obstacle remains
static in the global coordinate system. In fact, the static obsta-
cle’s position in the global coordinate system corresponds to
a constant angular velocity in the local (or relative) coordinate
system (i.e., adaptive grid map).

8) Reward function
The reward function is in the form of costs (or negative
rewards), assigned to each decision (action) made by the
model within a specified state [59]. The role of the reward
function is to encourage decisions that advance the system’s
goals while imposing penalties on those that do not. Whilst
the primary objective of the anti-collision system is to prevent
train collisions, it remains desirable to consider other sec-
ondary objectives, such as respecting the timetable schedule,
maintaining a smooth velocity, etc.

For the primary objective, negative rewards (i.e., penalties)
are assigned to states that are considered unsafe, such as those
that have a high probability of collision with an obstacle (e.g.,
the Crash state). By assigning higher negative rewards to
riskier states, the ADS can be incentivized to take safer ac-
tions and avoid collisions. This reward adaptation according
to risk embodies the riskmodelmentioned in section III. It can
be updated in real-time as new information about the environ-
ment becomes available, allowing the system to continuously
adapt to changing conditions and maintain a safe operation.
Moreover, the reward function assigns numerical values to
each state-action pair to simulate the desired behavior. In
our case, the main objective of the system is to avoid when
possible (i.e., minimize the risk of) the train collisions. Hence,
we define an important penalty to the train to be in the Crash
state (s4), another penalty for theAboutToCrash state (s3), and
a reward for being in the Safe state (s1). The reward function
is represented by equation 13 :

R(s) =


10, if state s = s1 (Positive Reward)
−10, if state s = s2 (Minor Penalty)
−100, if state s = s3 (Moderate Penalty)
−1000, if state s = s4 (Severe Penalty)

(13)
One important consideration when designing the risk

model for the ADS is the trade-off between safety and effi-
ciency. In particular, for states such as ObstacleDetected and
AboutToCrash (i.e., s2 and s3), the reward function should
balance the desire to avoid collisions with the need to main-
tain efficient driving behavior. Assigning overly negative
rewards/penalties to these states may cause the system to
become overly cautious and overly slow, which can lead to
inefficient or impractical driving behavior. On the other hand,
assigning insufficiently negative rewards (i.e., penalties) may
lead to unsafe driving behavior, where the system takes risky
actions in order to maintain high efficiency. Finding the right
balance between safety and efficiency is a key challenge in
designing the risk model for the autonomous driving system.
For instance, we established the reward function as follows:
The method described in this section serves as the basic

framework for conducting simulations and presenting the
results in Section V.

V. SIMULATION AND RESULTS
In this section, we provide a detailed description of the exper-
imental set-up, elaborate on the process of variable initializa-
tion, and present the simulation results.
The simulations established in this paper provide insights

into the decision-making processes of the autonomous train,
with a particular emphasis on ensuring safety and an effective
anti-collision function. We present two simulation scenarios:
the original, based on the POMDP model that takes only the
distance to an obstacle as input, and an advanced setup that
integrates the velocities and the nature of obstacles (i.e., static
or dynamic obstacles). These simulations collectively offer a
way to evaluate the system’s performance under controlled
yet realistic conditions, negating the risk and financial im-
plications associated with real-world testing. This process’
practical use includes essential components each with an
important role in the simulation process:

A. PERCEIVED STATE
The perceived state is crucial for connecting the real and sim-
ulated environments. In fact, observed distance and perceived
obstacles in this simulation are subject to Gaussian noise,
emulating uncertainties inherent to real-world sensing. The
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train’s next action is decided based on the perceived state,
derived from these noisy observations and not from the actual
state.

B. OBSTACLE GENERATION FUNCTION
In the simulation model used in this paper, obstacles are
generated stochastically in the train’s path. The appearance
of an obstacle is determined by a random function, occurring
approximately 20% of the time, with the distance to a new
obstacle drawn from a uniform distribution. This obstacle-
generation process introduces diversity into the simulation
and allows testing of the reliability of the train’s decision-
making in various situations. Moreover, obstacles are gener-
ated, following a uniform distribution, between the mean of
the nominal and emergency braking distances (α1 andα2) and
50meters beyond this mean respectively. This ensures that the
obstacles are generated within a reasonable range of distances
where the autonomous train could have a fair chance to detect
them and react appropriately.

This choice of obstacle generation provides a balance be-
tween the extremes of having all obstacles too close, which
might not provide sufficient reaction time for the train, and
having them too far, which might not pose any real danger or
challenge to the train’s ADS.

C. BELIEF UPDATER
The belief updater is a critical component of the model. It
retains a distribution over potential states the autonomous
train may occupy, integrating the actual state, perceived state,
and actions taken. The belief state is generated for each time
step, playing an essential role in handling uncertainties in the
system and enabling more robust decision-making. The belief
update equation is given by:

b′(s′) = η · P(o|s′, a) ·
∑
s∈S

P(s′|s, a) · b(s) (14)

In equation 14, η is the normalization constant to ensure
that the updated belief state b′ is a valid probability distri-
bution (i.e., sums to 1 over all states). b(s) and b′(s) are the
probability of being, respectively, in the current state belief
state s and the updated belief state s′.
This equation updates the belief about the current state after

taking an action a and observing an outcome o. The new belief
b′(s′) is proportional to the likelihood of the observation
o given that we end up in state s′, times the sum of the
probabilities of reaching s′ from all possible states s under
an action a, weighted by the current belief about being in the
state s.

D. SOLVER CHOICE:
For this problem, a Point-Based Value Iteration (PBVI) algo-
rithm [61, 62] is employed as the solver due to its efficiency
and compatibility with problems possessing small, finite dis-
crete state and action spaces. The PBVI solver iteratively op-
timizes the value function, updating the maximum expected

reward for each state-action pair over a number of iterations.
The resulting policy, which assigns actions to states, is ex-
tracted from this optimal value function. Equation 15 shows
how the PBVI works:

Vn+1(b) = max
a∈A

[
R(b, a) + γ

∑
o∈O

P(o|b, a)max
α∈Γn

∑
s∈S

α(s)b′(s)

]
(15)

In this equation,Vn+1(b) represents the value of belief state
b at the n + 1 iteration. R(b, a) is the expected immediate
reward for taking an action a in belief state b. In addition,α(s)
represents the value of state s for α-vector (defined below).
Finally, themaxα∈Γn operation selects theα-vector that yields
the highest value for the updated belief state b′.
The aim of PBVI is to find an approximate solution of

the POMDP by computing a set of α-vectors. Each α-vector
corresponds to a specific action and provides a mapping from
the state space to real numbers. In each iteration, the α-
vectors are updated according to the equation 15 to improve
the value function approximation. The algorithm continues
until a termination condition is met, such as a maximum
number of iterations or a minimal improvement threshold.
In the simulation established in this paper, the condition is
related to the maximum number of iterations.

E. VARIABLES INITIALIZATION
Before the simulation is run, all necessary variables associ-
ated with the states, actions, and policy are initialized. Initial
settings for the train’s position, speed, and distance from the
obstacle are also established. As the simulation progresses,
the position and speed are continuously updated according to
the chosen action and the train’s current state. These initial
values provide a baseline from which the train learns to make
optimal decisions (see Table 1).

Variable Initial Value Unit

Initial train speed 40 m.s−1

Initial train position 0 m
Nominal braking distance (α1) 300 m
Emergency braking distance (α2) 100 m
Time sample 0.1 s
Rewards [rs1 , rs2 , rs3 , rs4 ] [10,−10,−100,−1000] -
Actions forces [a1, a2, a3] [0, −1, −3] m.s−2

Discount factor (γ) 0.95 -

TABLE 1: Variables initialization

F. RISK FORMULATION
Once the environment is perceived, the next step is the risk
estimation. Here, possible scenarios that can lead to unsafe
conditions/collisions are identified and their probability is
estimated based on current and predicted states. This involves
the identification of potential hazards, assessment of their
possible impact, and the calculation of the risk associatedwith
each hazard. To this end, the risk is calculated in twomanners,
as described in the following equations :

R1 = 1− 1

1 + exp(−5. doα1
)

(16)
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R2 =
α1 − do
α1 − α2

(17)

Equation 16 utilizes a logistic function to present the sce-
nario where risk is relatively low when the train is far from
the obstacle (do > α1). The use of the logistic function offers
a smooth and sigmoidal transition from a low-risk state to a
high-risk state. This feature is ideal for representing scenarios
where risk is initially low but increases as the train approaches
the obstacle, and eventually saturates as the obstacle gets very
close. Additionally, this characteristic caters to the fact that
when the obstacle is far enough, the train has enough time
to react, and the risk is low. On the other hand, when the
obstacle is very close (do < α2) the train could have already
engaged its emergency braking, implying that it has already
acknowledged the risk and is attempting to mitigate it.

Equation 17 linearly increases the risk as the train gets
closer to the obstacle, from the nominal braking distance (α1)
to the emergency braking distance (α2). This is logical as
when the train is within its nominal braking distance, it should
ideally start decelerating to avoid a collision, and failure to do
so progressively increases the risk. The risk reaches its peak
when the train is at its emergency braking distance, signifying
that if the train does not stop immediately, the collision is
inevitable.

In summary, both equations are established as a probability
(R1, R2 ∈ [0, 1]2) to collectively encapsulate the two critical
regions of autonomous train operations from a safety per-
spective: the proactive safety measures (equation 16) and the
reactive safety measures (equation 17).

G. RESULTS
The following figures illustrate the system’s performance in
a dynamic railway environment, providing valuable insights
into its ability to detect and respond to obstacles, estimate risk
levels, and ensure safe and efficient operations. In concluding
our discussion on the simulation setups, it is important to note
that by presenting two distinct scenarios, we demonstrate the
inherent advantages of our approach in terms of adaptability
and the ease with which new elements or factors can be
integrated. The original scenario establishes a baseline, while
the enhanced simulation scenario takes a leap forward by
incorporating dynamic elements such as obstacle velocities
and behaviors.

1) Actual state, perceived state, and chosen action
Figure 7a shows the evolution of the actual state (in blue
color), perceived state (in red color), and the chosen action
(in green color) over time. The actual state represents the
ground truth state of the train, while the perceived state is
based on the observations made by the train’s sensors. The
chosen action is the decision made by the POMDP model
based on the perceived state. The plot provides valuable
insights into how the perception process impacts decision-
making, and it showcases the effectiveness of the model in
adapting to the dynamic environment. Moreover, the x-axis
in the figure represents the different time steps during the

simulation, capturing the sequential evolution of the system’s
decision-making process. On the y-axis (on the left), the
values s1, s2, s3, and s4 correspond to the different states the
system can be in. On the other hand, the y-axis (on the right)
represents also the available actions that the system can take
in response to its perceived state. These actions are depicted
as a1, a2, and a3.
The perceived state follows the trajectory of the actual

state, underscoring the system’s ability to accurately perceive
its environment. However, some occasional divergences be-
tween the two trajectories (perceived and actual state) are
present at specific time steps. These divergences are inter-
preted as false positives (perceiving an obstacle that is not
present/false alert) and false negatives (falling to detect an
obstacle/missed detection).
Similarly, Figure 8a provides a visualization of the au-

tonomous train’s state transitions alongside the corresponding
actions taken over the simulation period. The graph displays
perceived states in red, actual states in blue, and chosen ac-
tions are highlighted in green for clear differentiation and easy
interpretation. The plot shows the model’s responsiveness
to changes in risk levels, transitioning to more conservative
actions as the perceived risk increases (i.e., state s4). Notably,
the shift from s1 to s4 prompts an immediate action change to
a3, demonstrating the system’s capacity for rapid reaction to
imminent collision risks.

2) Rewards over time
Figure 7b displays the immediate rewards (and penalties)
obtained by the system over time. The rewards are directly
linked to the perceived state and the chosen action. Posi-
tive rewards indicate safety (Safe state), while negative re-
wards represent potential risks (ObstacleDetected, About-
ToCrash, and Crash states). The scatter plots in the fig-
ure also highlight false positives (in green points) and false
negatives (in red points) in the decision-making process,
showing instances where the model’s perception deviates
from the actual state. Notable false positives occur at times
40, 101, 134, 135, 145, 169, 190, 191, while false negatives
occur at times 20, 30, 119, 149.

Correspondingly, Figure 8b shows the dynamics of the
rewards function for the second setup of simulation. The
figure clearly denotes the penalty incurred as the system ap-
proaches a high-risk state, highlighting the impact of strategic
decision-making on the train’s overall safety. In the rewards
function of the second simulation setup, the concentration
is oriented towards the model’s ability to integrate dynamic
properties of obstacles, such as their velocities and nature.
As such, the delineation of false positives and negatives was
deemed less pertinent for this particular analysis, given that
the primary interest was to observe how the integration of
obstacle dynamics affects the overall reward structure and
safety performance of the autonomous system.
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3) Risk estimation over time
Figure 7c illustrates two risk estimation methods: risk esti-
mation 1 (equation 16) and risk estimation 2 (equation 17)
employed in the model. These estimations assess the risk
level associated with the observed distance to the obstacle.
Higher risk values indicate a higher likelihood of collision.
The plot enables a comprehensive understanding of the risk
assessment process and its role in determining appropriate
actions.
Risk estimation 1 (depicted in magenta color) mainly de-

scribes low-risk scenarios across most states (i.e., states s1,
s2 and s3, except for the Crash state (i.e., state s4), where
risk is high. This approach seems cautious, as it maintains
a conservative risk assessment. In contrast, risk estimation
2 (illustrated in cyan color) describes a more dynamic risk
evaluation. As the model navigates from the Safe state to
AboutToCrash state, risk steadily increases, reaching approxi-
mately 0.5, indicating a heightened state of caution. However,
once the model enters the Crash state, risk reaches its max-
imum value of 1, underscoring the severe consequences of
this state. These differing risk estimation strategies shed light
on the adaptability of the model, reveal the ability to respond
to different levels of risk, and provide valuable insights into
decision-making process.

Equally, Figure 8c illustrates the fluctuating risk levels as
perceived by each method over time, with Risk Estimation 1
and Risk Estimation 2 plotted on the same graph for direct
comparison. The divergence two methods underscores the
variability in risk perception and the importance of selecting
a robust model that accurately reflects the operational condi-
tions inherent uncertainties.

4) Observed distance to obstacle
Figure 7d depicts the observed distance to the obstacle over
time. It tracks how the perceived distance fluctuates as the
train’s sensors detect and interact with the environment. The
red and blue dashed lines represent the thresholds for the
nominal and emergency braking distances (α1 andα2, respec-
tively). When the observed distance crosses these thresholds,
the model may initiate braking actions accordingly to prevent
potential collisions.

On the other hand, Figure 8d showcases the observed
distance to the nearest obstacle throughout the simulation
timeline. In this second simulation setup, the model considers
multiple obstacles, both static and dynamic, and calculates the
distance to the nearest obstacle (i.e., the distance to obstacle
variable). The plot is a testament to the system’s ability to
maintain situational awareness and adapt its responses based
on real-time assessments.

The results of the simulation demonstrate the effective-
ness of the proposed risk-based POMDP process for the au-
tonomous train anti-collision function. The results show that
the proposed model is able to provide a safe and efficient so-
lution for the anti-collision function which takes into account
the uncertainties related to the train’s state and its perception
of the environment. Moreover, this highlights the potential of

the proposed process to be applied to real-world scenarios and
provides a basis for further research to improve and extend the
process to handle more complex environments. Finally, the
dual-scenario structure not only showcases the robustness of
our model but also represents the initial steps towards a more
generic and comprehensive approach. In future iterations, the
model could evolve to include additional complexities such
as the precise dimensions of obstacles, their predicted trajec-
tories, and other environmental factors. These advancements
will allow for a more detailed and far-reaching application of
the POMDP model, pushing the boundaries of autonomous
train safety and operational efficiency.

VI. CONCLUSION & PERSPECTIVES
In this paper, we proposed a risk-based decision-making ap-
proach for autonomous trains, leveraging the capabilities of
Partially Observable Markov Decision Processes (POMDPs)
to facilitate effective and real-time environmental monitor-
ing of trains. The core contribution of this study lies in the
ongoing monitoring and risk estimation, which is crucial
for ensuring the safe operation of autonomous trains. This
approach integrates dynamic risk assessment into the core
of decision-making process, enabling the train to proactively
manage potential collision hazards. It effectively addresses
uncertainties in both the train’s operational state and its in-
teraction with the environment. By doing so, the approach
enhances the autonomous train’s ability tomake informed and
safe decisions.
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