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Abstract
Motivation: The reproducibility crisis has highlighted the importance of improving the way bioinformatics data analyses are implemented,
executed, and shared. To address this, various tools such as content versioning systems, workflow management systems, and software
environment management systems have been developed. While these tools are becoming more widely used, there is still much work to be
done to increase their adoption. The most effective way to ensure reproducibility becomes a standard part of most bioinformatics data analysis
projects is to integrate it into the curriculum of bioinformatics Master’s programs.

Results: In this article, we present the Reprohackathon, a Master’s course that we have been running for the last 3 years at Université Paris-
Saclay (France), and that has been attended by a total of 123 students. The course is divided into two parts. The first part includes lessons on the
challenges related to reproducibility, content versioning systems, container management, and workflow systems. In the second part, students
work on a data analysis project for 3–4months, reanalyzing data from a previously published study. The Reprohackaton has taught us many valu-
able lessons, such as the fact that implementing reproducible analyses is a complex and challenging task that requires significant effort.
However, providing in-depth teaching of the concepts and the tools during a Master’s degree program greatly improves students’ understanding
and abilities in this area.

1 Introduction

In the past two decades, reproducibility has become a major
concern in many disciplines, starting with social and psycho-
logical sciences (Open Science Collaboration 2015) and
spreading to other domains such as pre-clinical research
(Freedman et al. 2015), and computational and life sciences
(Baker 2016; Cohen-Boulakia et al. 2017).

In wet biological experiments, there is generally an inherent
variability due to the nature of the phenomena being exam-
ined, the methods of measurements, and the samples used.
Conversely, it is common to assume that analyses in computa-
tional biology and bioinformatics are inherently reproducible
due to the automated nature of their execution by machines.
However, there are several factors that can hinder the repro-
ducibility of analyses in computational biology and bioinfor-
matics, including scientific obstacles like insufficient method
documentation and data accessibility lacking the FAIR princi-
ples (Wilkinson et al. 2016) as well as technical challenges
such as differences in operating systems and hardware (e.g.
scheduler on HPC), disparate software environments (e.g.
tools and libraries versions), and random algorithms.

To highlight the importance of reproducibility—and espe-
cially code sharing in this case—we can cite the discussions
about BLOSUM matrices (Henikoff and Henikoff 1992) that
were developed in 1992 to help for protein homology search
and sequence alignments. Sixteen years later, Styczynski et al.

(2008) corrected an issue in the BLOSUM source code, which
performed worse than the original code. Eight years later,
Hess et al. (2016) made new updates and showed that the
new matrices performed better for homology search.

Over the last decade, several key scientific and technical
advancements have been made. They have enabled computa-
tional biologists and bioinformaticians to design and imple-
ment highly complex data analyses with a higher degree of
reproducibility [as defined in Cohen-Boulakia et al. (2017)]
while also simplifying implementation and enabling easier
maintenance and sharing of analysis code and results.

One notable example of these advancements is the develop-
ment of workflow management systems such as Taverna
(Oinn et al. 2004), the pioneer workflow system (which is no
longer maintained) and more importantly Nextflow (Di
Tommaso et al. 2017), Snakemake (Köster and Rahmann
2012), and Galaxy (Afgan et al. 2022) which are increasingly
popular. These systems represent data analyses as
“workflows,” in which the steps of the analysis are wrapped
into processes that are connected to each other by data depen-
dencies. Workflows have several benefits over traditional
bash scripts. They allow analyses to be independent of the ex-
ecution machine by removing the need for developers to im-
plement code related to HPC schedulers. This makes the code
more modular and easier to share and reuse. Additionally,
workflow systems improve efficiency by implementing task
parallelization. Overall, they facilitate the organization and
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coordination of the various components necessary for imple-
menting and executing data analyses.

We can also emphasize the advancements made by virtuali-
zation technologies like Docker (Merkel et al. 2014) and
Singularity (Kurtzer et al. 2017), which has recently been
renamed Apptainer. For simplicity, we will continue to refer
to it as Singularity hereafter. Docker and Singularity are soft-
ware designed to make programs, daemons, servers, etc. exe-
cutable on a large diversity of systems, and therefore to make
the software environment more independent, shareable, easily
executable, and maintainable. These two containerization
engines thus made possible to encapsulate, share, install and
execute any bioinformatics tools in an easy and lightweight
way. When used in conjunction with workflow management
systems, these container technologies facilitate the sharing
and execution of complex data analyses.

Last, but not least, the use of code repositories such as
GitHub and GitLab has greatly facilitated the collaborations
and sharing of software and workflows. These platforms
made possible the storage and sharing of large volumes of
code, supporting the development and adoption of these
technologies.

As an illustration of the evolution of workflow usage in
bioinformatic data analyses, an increasing number of publica-
tions are associated with newly implemented workflows
(Haag et al. 2022), existing workflows (Grant et al. 2021), or
at least public code (Tang et al. 2020) hence ensuring an eas-
ier way to reproduce the described results. For example, as
shown in Fig. 1, searching for “Nextflow” or “Snakemake”
in PubMed Central, in Science and Nature journals (therefore
not specifically methodological journals) shows that: (i) work-
flows are more and more used (the number of papers is clearly
increasing over the years), and (ii) there is still room for
improvements (the maximum in 2022 is slightly over 15,
which is still low). As more and more biological experiments
are data intensive, we expect a continuous increase of data
analyses in published papers, and hopefully an increase in us-
age of tools facilitating reproducibility.

However, despite their importance, these technologies are
not always easy for researchers to learn and apply in their
data analysis projects.

We strongly believe that bioinformaticians have to be sys-
tematically trained to reproducibility technologies and practi-
ces. In 2017, we started experimenting reproducibility

hackathons in which groups of researchers (including PhD
students, postdoctoral fellows, and more senior colleagues)
were given an article published in a major place and had to
try to understand how the main result of the article was
obtained by reproducing it. A large variety of tools were used
by participants including Python notebooks, workflow sys-
tems, or regular python scripts. These reproducibility hacka-
thons took place from 2017 to 2019. They gathered between
10 and 15 participants each, around three different themes,
namely next-generation sequencing, phylogenetics, and plant
phenotyping. More information can be found at https://ifb-
elixirfr.github.io/ReproHackathon/index-en.html.

This experience demonstrated how difficult it was to repro-
duce a published result, underlying how reproducibility is as-
sociated with various factors (choice of tools to implement a
step of the analysis, choice of thresholds involved in statistical
methods, environment of execution. . .), and how important it
was to train a larger number of bioinformaticians.

We then leveraged this experience and created in 2020 the
Reprohackathon class, in the Bioinformatics Master of scien-
ces at Université Paris-Saclay (https://www.universite-paris-
saclay.fr/en/education/master/bioinformatics/computational-
biology/m2-biologie-computationnelle-analyse-modelisation-
et-ingenierie-de-linformation-biologique-et-medicale) (France).
The class has been running for 3 years now and has been
attended by a total of 123 students (42 in 2020, 40 in 2021,
and 41 in 2022). We designed it by including first lessons intro-
ducing the principles and tools necessary for applying the best
practices in terms of reproducibility, followed by hands-on ex-
perience with these concepts and tools through a 3–4 months
project.

Interestingly, in the meantime, several similar initiatives to
promote reproducibility have been launched. Karathanasis
et al. (2022) report feedback on a dedicated project involving
seven students trained to reproduce a given scientific result
(from a publication) using R/Python scripts. Millman et al.
(2018) report one class of statistics where students were
trained to reproduce Neuro-imaging results. Ostblom and
Timbers (2022) describe how reproducibility has been in-
cluded into a regular class to increase awareness on reproduc-
ibility. Last but not least, Ball et al. (2022) describe a
Symposium of 10 lessons organized by the “UK reproducibil-
ity network” (https://www.ukrn.org/) on computational re-
producibility with participants from various disciplines
(linguists, political scientists, statisticians. . .).

Such initiatives are all complementary and globally con-
clude in the need to mix theoretical lessons and more hands-
on projects. The challenge lies in coordinating the training
effort and be able to systematically train the current and fu-
ture generations of bioinformaticians to reproducibility.
While coordination can be better achieved by the develop-
ment of National networks on reproducibility [e.g. UK,
Switzerland (https://www.swissrn.org/), Finland (https://
www.finnish-rn.org/), Italy (https://www.itrn.org/)], we
strongly believe that massively training students and col-
leagues means developing mandatory courses dedicated to re-
producibility, involving full student classes, making explicit
the reasons of lack of reproducibility, introducing major
tools and technologies for computational reproducibility,
mixing theoretical lessons, and large practical projects. The
Reprohackathon course was designed to meet these needs and
is the central focus of this publication.

Figure 1. Number of articles in Nature or Science journals mentioning

Nextflow and Snakemake, between 2017 and 2022, according to

PubMedCentral search (10 January 2023).
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This article is divided in three sections. The first section
“Approach” describes in detail our ReproHackathon course
from different perspectives: the profile of the students, the
structure of the course, the expected difficulties, the content
covered, the progress, and the evaluation. The second section,
“Results”, describes students work and presents some student
results in terms of reproducibility. The third section lists
potential future directions in terms of scope, content,
and audience and establishes guidelines for organizing
Reprohackathons.

2 Approach

The objective of the Reprohackathon is 2-fold. First, it aims
at introducing the concepts and tools the students need to cre-
ate reproducible data analyses. The second goal is to give the
students the opportunity to apply these skills through a
hands-on project involving a RNA-seq data analysis pipeline.

2.1 Profile of the students

The Reprohackaton course was attended by 123 students
enrolled in a Bioinformatics Master’s degree at Université
Paris-Saclay. They graduated from various Bachelor degrees
including computer science, statistics, and biology. They usu-
ally had no prior knowledge of high throughput technologies
nor on reproducibility concepts and tools. They had varying
levels of expertise, including students with no background in
computer science and limited experience with Unix command
line tools, to students with advanced knowledge of program-
ming languages and command line tools. Similarly, their
background in biology ranged from basic high school level
understanding to current, advanced studies in the field. The
diverse and interdisciplinary skills were valuable and
exploited extensively during the class.

2.2 Lessons

The structure of the Reprohackathon was organized into two
time periods. This subsection is focused on the first period
which consists of lessons that provide a thorough introduc-
tion to the concepts, tools and technologies involved in repro-
ducibility followed by 2 h slots of practical sessions where
students were trained to use each of them in isolation.

The initial lesson consists in a comprehensive overview of
the principles of reproducibility, as well as an introduction to
the issue of the reproducibility crisis and its growing signifi-
cance in the field of bioinformatics. In addition, we provide
an overview of best practices for implementing reproducible
bioinformatics workflows within the framework we have de-
fined (see Fig. 2).

The second lesson covers the importance of content ver-
sioning systems, with a focus on “Git”. The aim is to empha-
size the importance of using “Git” or a similar system in any
analysis, software, or script development, as it allows for
more secure code development and the potential to share and
collaborate with scientists worldwide. We then propose prac-
tical exercises using Git based on simple examples.

The third lesson focuses on the environment layer (see
Fig. 2). It discusses the various existing systems for managing
software environments, with a specific focus on Docker and
Singularity [we also introduce other systems such as Conda
with Bioconda (Grüning et al. 2018)]. Hands-on exercises are
provided to help students build and run Docker and
Singularity images for use with bioinformatic tools.

The fourth lesson is centered on the use of workflow man-
agement systems. We introduce them as orchestrators of the
whole analysis, which make all layers work together, includ-
ing execution, environment, workflow and data. In this les-
son, we provide extensive instruction on Nextflow and
Snakemake, as well as hands-on exercices for students to
build basic workflows using these tools.

During the fifth and last lesson, we present the scientific
project that will be the main focus of the second period (the
Reprohackathon per se). The students form small groups of
three or four individuals exploiting pluri-disciplinary skills
and are given the choice of which workflow management sys-
tem to use for the project, either Nextflow or Snakemake.

2.3 Subject of the project

During the second period, the Reprohackathon starts, during
which the students apply the concepts and tools learned in the
first period to a long-term project, which typically lasts for
3–4 months. During this project, the students work on a pub-
lished dataset and attempt to analyze the data provided in the
article. The goal is not to obtain exactly the same figures or
results as the article, but rather to analyze the same dataset us-
ing similar, potentially more up to date methods, and deter-
mine the factors that are important for implementing a highly
reproducible data analysis. In small groups, the students first
have to read the papers and understand the methodology
employed, the datasets, and the results. Then, they have to im-
plement a reproducible workflow using either Nextflow or
Snakemake for the workflow layer, Singularity or Docker for
the environment layer, and Git for versioning and collabora-
tion. Finally, they have to interpret the results obtained.

The datasets we proposed the students to work on were
published in the two articles from Harbour et al. (2013) and
Furney et al. (2013). In these papers, the authors are inter-
ested in the genetic determinants of uveal melanoma, a pri-
mary cancer of the eye that can result in fatal metastasis. We
selected these two papers for three main reasons. First, pub-
licly available datasets are provided in SRA (https://www.
ncbi.nlm.nih.gov/sra) and ENA (https://www.ebi.ac.uk/ena/
browser/), which allows easy reanalysis even almost 10 years

Figure 2. Outline of the analysis framework for achieving good

reproducibility. From bottom to top, we define (i) the execution layer

where the analysis steps will be executed, (ii) the environment layer, for

managing software environment (i.e. bioinformatics tools, software,

libraries, and operating systems), (iii) the workflow layer, for structuring

the analysis as steps that call tools and consume and produce data, and

(iv) the data layer, for handling the input and output data.
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after the publication. Second, these papers are adapted to our
needs in terms of topic (RNA-Seq data analysis) and the ex-
perimental design is not too complex for the students (a sim-
ple comparison between two groups). Third, the data are
large enough so that download and management is not
straightforward and necessitate to think about implementa-
tion, but also not too large to be manipulated on the given
machines (see Section 2.4) in terms of disk storage, memory
and CPU usage, and computing time.

More precisely, Harbour et al. (2013) searched for specific
mutations in uveal melanoma by exome sequencing of 18 pri-
mary tumors of class I (less invasive) and II (frequently meta-
stasizes), and found deleterious mutations in two genes:
GNAQ and SF3B1 (Arginine to Cysteine in codon 626). The
mutation in SF3B1 was suggested to be associated with better
prognosis. SF3B1 encodes subunit 1 of the splicing factor 3b
protein complex, which participates in splicing of pre-
mRNAs. To analyze the effect of a mutation in this splicing
involved protein, the authors analyzed samples in two ways:
(i) they searched for differentially expressed transcripts be-
tween five mutants SF3B1 and six wild-type SF3B1 tumors
using Illumina BeadArray platform and (ii) they analyzed 3
tumors with mutant SF3B1 and 5 tumors with wild-type
SF3B1 using RNA sequencing. In (i) they found a few (10) dif-
ferentially expressed genes, and in (ii) they found no signal for
differential splicing. The second study, Furney et al. (2013)
reanalyzed (among others) the RNA sequencing dataset of
Harbour et al. (2013) and found that SF3B1 mutations were
associated with differential alternative splicing of protein cod-
ing genes such as ABCC5 and UQCC, and of the long non-
coding RNA CRNDE.

In our Reprohackathon, the students had to reanalyze this
RNA sequencing dataset in order to look for (i) differentially
expressed genes and (ii) differentially spliced genes (if they
had time). The point (ii) was not a requirement, and was a bo-
nus if they managed to get the point (i) done. To do so, they
had to write a reproducible workflow using either Nextflow
or Snakemake, with tools running either on Docker or
Singularity containers. In the two first sessions (2020 and
2021), they did not have to build their own container images,
and could use images already available on repositories such as
DockerHub (https://hub.docker.com). In the last session
(2022), they had to build their own container images.

For differential gene expression, a skeleton workflow is
provided to the students (shown in Fig. 3). It includes steps
such as (i) downloads of the RNA sequencing data with sra-
toolkit (https://github.com/ncbi/sra-tools) or equivalent soft-
ware, (ii) download of reference genome sequence and anno-
tations, (iii) creation of the genome index with STAR (Dobin
et al. 2013), (iv) mapping reads onto the reference genome
with STAR as well, (v) counting reads per gene using
featureCounts (Liao et al. 2014), and (vi) analysis of differen-
tially expressed genes with DESeq2 (Love et al. 2014). If time
permits, students have also the possibility to analyze differen-
tially spliced genes.

2.4 Computing resources

To develop and execute each workflow, the French Institute
of Bioinformatics (IFB (https://www.france-bioinformatique.
fr/)) provided us with a very large quota of CPU.hours on
Biosphere (https://biosphere.france-bioinformatique.fr/), the
federated cloud infrastructure maintained by IFB.

Biosphere proposes a large infrastructure (about 10 000
CPUs, 1.5Pb disk, and 40Tb cumulated RAM), distributed on
many sites in France (Lyon, Clermont-Ferrand, Rennes,
Nantes, Strasbourg and Lille), through a single interface. It
comes with a large catalog of “Appliances” (already config-
ured systems) that can be turned on with a chosen configura-
tion ranging from small virtual machines (e.g. 1CPU, 8GB
RAM, 20GB disk) to very large virtual machines (124CPUs,
3Tb RAM, 3Tb disk), the choice being dependent on the exe-
cution site.

For the Reprohackathon, students were given the possibil-
ity to turn on a virtual machine with an appliance already
configured with the minimal requirements for running the
project: conda (to install Singularity and Snakemake), Java
(to install Nextflow), and Docker. From this minimal set of
tools, everything can be executed.

2.5 Expected difficulties

We anticipated many technical and scientific challenges dur-
ing the course, as the students have to get familiar with several
concepts:

• Understanding the biology of the papers they were analyz-
ing, which is more difficult for those with a computer sci-
ence background.

• Rapidly becoming familiar with high throughput technol-
ogies, including the characteristics of RNA sequencing
data and its biological meaning.

• Familiarizing themselves with common bioinformatic
tools and concepts, such as public databases (SRA,
Ensembl) and tools like STAR and DESeq2.

• Learning the basics of the Unix command line, including
using SSH keys concepts to access remote computers and
GitHub repositories.

• Managing the volume of sequencing data.
• Working with various programming languages and tech-

nologies, including Python, bash, R.

Also, even if the workflow is rather linear, there are several
technical difficulties that are unavoidable in such workflows,
such as the management of the paired-end FASTQ files to-
gether, or the meta data associated to each sample (mutated
or wild-type) to be tracked throughout the workflow.

Last but not least, we expected technical difficulties inher-
ent to any bioinformatics development, such as connection to

Figure 3. Workflow skeleton proposed to the students. It is made of

about seven steps, from data download (reference þ fastq) to read

mapping and statistical analysis.
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distant linux machines, transfer of the files between local and
distant machines (via Git or other means), installation of the
required software, parameterizing the CPU, memory and disk
quota requirements.

2.6 Progress

The Reprohackathon takes place over a period of three to
four months. During this time, the students are expected to
develop a high level of independence in their project
management.

From the beginning of the Reprohackathon (in the second
period, after the lessons), we meet with each group for 30 min
on a weekly basis to offer guidance and support, similarly as
if they were conducting a research project in a research unit.
These meetings are initially focused on evaluating their under-
standing of the papers, troubleshooting technical issues, and
helping the students to get started on their projects. As the stu-
dents gain more autonomy, the meetings become less fre-
quent. Overall, the goal is to provide the students with the
opportunity to work independently, while still having support
available when needed.

2.7 Evaluation

The expected learning outcomes are that students should be
aware of the difficulty of building a reproducible and share-
able data analysis, and they should know in theory and in
practice the current concepts and tools they can apply to do
so. Therefore, the students are evaluated on three aspects:

• The code. The code produced by a group must have been
collaboratively developed using Git and a central reposi-
tory (e.g. GitHub). It must be easily executable (by any-
one), fully reproducible, and well documented. If they
managed to get to the second part (alternative splicing), a
bonus is granted.

• The report. It should describe the context of the project
(biological: the published studies, and computational: the
goal in terms of reproducibility), presenting the workflow
they developed, providing the results they obtained by ex-
ecuting their workflow, and interpreting their results with
regard to the given publications.

• An oral presentation during which they present the work
of their group.

Since our goal is to put an emphasis on reproducibility, the
code aspect had more weight in the final evaluation, as we es-
timated that these criteria were very important for the stu-
dents to understand the benefits of writing code that is
understandable and easily shareable.

3 Results and discussion
3.1 Workflow implementations
3.1.1 Content versioning system

Workflows were implemented in a collaborative way, using
Git and a central repository per group created by the students
on GitHub.

On average, students used Git effectively (see Fig. 4), with
241, 74, and 84 commits per group on average and 562, 627,
and 680 lines of codes per group on average for the 2020,
2021, and 2022 sessions, respectively. The minimum and
maximum number of commits were 4 and 1118, with 4 indi-
cating an improper use of Git and 1118 indicating a

potentially excessive use of commits and a too fine level of
granularity.

Moreover, a few groups used the GitHub issues system in
order to manage the progress of their projects, demonstrating
an understanding of the usefulness of an online distributed
content versioning system.

3.1.2 Workflow languages

In the Reprohackathon course, students were given the free-
dom to choose which workflow system they wanted to use for
their project. The distribution of students choosing either
Nextflow or Snakemake was generally well-balanced, with
around 50% of students choosing each system (see Fig. 5A).
Groups that chose Snakemake tended to do so because they
were already comfortable with Python development, and thus
thinking it would be advantageous. There was a slight in-
crease in the percentage of groups choosing Snakemake over
the years, which may be due to students having more training
in Python during their university studies (web development,
statistics, etc.).

Starting in 2022, we required to implement the workflows
in DSL2 (https://www.nextflow.io/docs/latest/dsl2.html) (the
latest Nextflow language) for Nextflow implementations.
This led some groups to create highly modular Nextflow
workflows, while Snakemake had already the mechanism
implemented and was also used by some groups.

3.1.3 Containers

The students had the choice of using either Singularity or Docker
to build and execute container images to run their workflows.

Approximately half of the groups chose Docker over
Singularity for running containers, as shown in Fig. 5B. This
suggests that there is no clear advantage to using one technol-
ogy over the other once the container is available (e.g. in
DockerHub). It is important to note that the containers used in
the first two sessions (2020 and 2021) were available on
DockerHub, making it equally easy to use either Docker or
Singularity. Both Snakemake and Nextflow support the ability
to execute Singularity or Docker images from DockerHub
through the use of Singularity command, which allows for a
transparent conversion from DockerHub image to Singularity
images.

Figure 5C shows that students preferred Docker for build-
ing containers in the 2022 session, during which students
were asked to build their own images rather than use public

Figure 4. (A) Distribution of the number of commits per group and per

year. The average number or commits is 241 for 2020, 74 for 2021, and

84 for 2022. There is 1 group in 2020 which is largely higher than the

others, with more than 1000 commits. (B) Distribution of the number of

lines of code by group. The average ranges from 562 to 680 between

2020 and 2022.
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ones. In a reproducibility perspective, it makes sense, since
Docker images, once built, can be uploaded on DockerHub
with almost no effort, and then be shared and executed by
any instance of the developed workflow. This promotes re-
producibility by ensuring that the workflow can be run consis-
tently on any machine (provided that the DockerHub image
retention policy allows for sufficient long-term storage).

In the 2022 session, students had to put a lot of effort into
creating Docker and Singularity image recipes, which was a
new challenge compared to previous sessions (2020 and
2021). This process involved learning the basics of installing
Linux system packages, building packages from source, and
understanding the concepts and syntax of image recipes. It
took many attempts to get some of the images ready to run,
especially for students with no computer science background.
Overall, this was a valuable learning experience that gave stu-
dents an insight into the work required to develop a project
such as the Reprohackathon.

3.2 Workflow execution and re-execution

All the groups succeeded to execute their workflow on
Biosphere (the IFB cloud), and when testing students imple-
mentations (re-execution), we tried to run their workflows on
Institut Pasteur HPC cluster. This tested the ability of the de-
veloped workflow to run on a different environment (other
hardware, operating system, file system, HPC task manager
such as SLURM, etc.). After a few straightforward modifica-
tions of the workflow configurations (e.g. fix hard-coded file-
name, adapt to local SLURM executor), we managed to
execute all the workflows. Re-execution times ranged from
approximately 2–6 h, equivalent to approximately 25–98
CPU hours.

This large range in execution time may be due to a variety
of factors, such as the differences in the configurations of the
workflow in terms of CPU usage and memory (e.g. bad ade-
quacy between CPU requirements and CPU allocated), more
than the code itself. For example, some groups have used
fasterqdump to download and convert FastQ data from
SRA, while others used wget software to download the SRA
files and fastqdump to convert them, which could be less ef-
ficient. Additionally, if the memory allocated for indexing the
reference genome with STAR was insufficient, or if the refer-
ence genome was incomplete, the process could take longer to
complete.

3.3 Workflow results

The execution of all student workflows was successful, and
we were able to re-execute all of them. The results of these
executions included lists of differentially expressed genes and
various figures displaying the analysis of RNA-seq data (MA-
Plots, PCAs, volcano plots). While we did not expect the
results of the differential gene expression analysis to match
those in the original papers due to variations in the analysis
methods (e.g. software and annotations), we did expect the
results across groups to be consistent. However, we were sur-
prised to find that the results varied significantly.

As a result, in the 2022 session, no differentially expressed
genes were found in common between groups (see Fig. 6A). It
is not surprising since at least one group took non-matching
reference genome and annotations. Even though we exclude
this group, the majority of the differentially expressed genes
were common to only a few groups.

To understand the low reproducibility among groups, we
divided the workflows into two parts: (i) The part from data
download to read counting, and (ii) the part using read counts
to perform statistical analysis with DESeq2. This allowed us
to identify several factors contributing to this variability.
Firstly, the factors related to the first part of the workflow,
such as workflow code errors, were found to be a significant
source of variability. For example, we observed groups with
consistent read counts, but associated with the incorrect sam-
ples (mislabeled columns). Secondly, factors linked to tools
and data usage like not using the same version, not having the
same tool parameters, not using the same reference genome,
or using the wrong data, can also contribute to variability de-
spite using container technologies. An example of this is a
group that downloaded a version of the human genome anno-
tations that was not compatible with the version of the human
genome they were using. Also, several groups did not down-
load all the chromosomes (in particular, mitochondrial ge-
nome was sometimes missing). Third, other factors linked to
the statistical analysis (second part of the workflow consisting
of a R script) were more important: (i) The choice of thresh-
olds such as p.value, fold change, (ii) filtering of lowly
expressed genes, (iii) the implementation of the experimental
design (which sample to assign to which condition, etc.), and
(iv) the choice to exclude a sample based on quality control.
Default parameters of the statistical analysis were also tuned
differently in some groups as summarized in Table 1.

We then looked at the reproducibility of the first part of the
workflow by taking read count matrices from all groups
results, and apply the same analysis (our own). In that case,
we managed to obtain a very high number of differentially
expressed genes in common across the groups. On Figure 6B,
we can see that two groups stand out from the others. The
first one (10) outputs a huge number of differentially
expressed genes compared to the others, and hence a lot of
them are found only by this group. However, group 10 finds
many genes in common with the other groups. The second
group (9) is also very different from the others, because they
found very few differentially expressed genes, all being spe-
cific to that group. If we take these two groups apart, (9 and
10), most of the genes are found in common, which shows
that most of the variability comes from the second part of the
workflow.

After the differential gene expression, over the past 3 years,
two groups (in 2020) managed to get to the alternative splic-
ing analysis (unintuitively, lockdowns may have been

Figure 5. (A) Number of groups that chose Nextflow or Snakemake, per

year. (B) Number of groups that chose Docker or Singularity for running

the workflow, by year. (C) Number of groups that chose Docker or

Singularity for building the containers (only asked in 2022).
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beneficial for projects in autonomy). One group used
DEXSeq (Anders et al. 2012) to count reads on exons and to
extract genes that have a differential exon usage between both
conditions, and the other group simply counted reads on all
exons and then applied a classical differential gene expression

analysis. As a result, they did not find genes in common. This
case shows again that studies are always hard to reproduce,
and that many factors may make the results variable.

3.4 Student feedbacks

We sent the students a survey to collect their feedbacks from
all three sessions of this program. We obtained a total of 47
respondents (39%). About 80% of the respondents followed
the class in the last 2 years. Students registered in 2020–2021
constituted only 20% of the answers. This survey shows that
they generally enjoyed the course: 77% enjoyed it or enjoyed
it a lot, 12% of the students enjoyed it only a little and 8%
not at all, 4% have no opinion. Students expressed positive
feedback about the reproducibility awareness, 85% of
respondents estimate that this program made them aware of
reproducibility issues, 89% reported that they may apply the
concepts they have learned during the program in their future
activity. Regarding the difficulty, 47% estimate that the pro-
gram is difficult and another 47% estimate it has an expected
difficulty. The most difficult part seems to be the usage of
workflows (49%), followed by containers (25%). Regarding
the skills, 71% (resp. 47%) declared that they acquired (very)
strong knowledge in workflow systems (resp. Git).

Some points were raised in a free text feedback form: (i) Git
and Linux commands could be taught and be exploited more
deeply, (ii) too many technologies were introduced and the
practical sessions before the project could be longer, and (iii)
the project was a little too ambitious. Some of these points
were already raised before the survey and have been taken
into account to adapt the course over the years.

3.5 Faced challenges and main messages

To summarize students feedback and our own, students essen-
tially faced three different types of challenges during the
Reprohackathons (see Section 2.5 for details): technical, scien-
tific, and project management.

For the technical challenges, students had to learn various
technological stacks, such as Unix Shell and workflow man-
agement, which sometimes led to unexpected confusion or
misunderstandings. For example, errors in CPU or memory
allocation occurred when students tried to determine the
number of CPUs on the execution machine by reading system
files (/proc/cpuinfo).

For the scientific challenges, for some students it was the
first time that they had to work on such a multi-disciplinary
project, in which they had to be proficient in biology, bioin-
formatics, and statistics. Moreover, from a reproducibility
perspective, students encountered a real challenge, and real-
ized the importance of containerization but also choices to be
made on filtering the data, parameters, software versions, etc.

For the project management challenges, students had to or-
ganize their time during a long period (�3 months), without
necessarily initially realizing the amount of work the project
would necessitate.

The main messages we tried to convey during these
Reprohackathons are the following:

1. Developing a reproducible data analysis workflow is
hard. First, many choices are (often not explicitly) made
during the course of a project. Then, it is difficult to im-
plement the reproducible analysis using available tools.

2. Documentation is key: with the same initial informa-
tion, different interpretations were made, leading to

Table 1. Main differences between groups.

Group Ref DeSeq2 filters and

options

padj l2FC Paired (fc)

1 hg38 Gene-count based 0.05 0 Yes
2 hg38 LRT 0.01 0 Yes
3 hg38 Default 0.05 0 No
4 hg38 Default 0.05 1.5 Yes
5 hg38 Gene-count based,

shrinkage
0.1 0 No

6 hg38 Gene-count based 0.05 0 Yes
7 hg38 Gene-count based 0.05 1 No
8 hg38 Gene-count based 0.05 0 No
9 hg38 Gene-count based,

LRT
0.05 1.5 Yes

10 hg37 Default 0.05 0 No
11 hg38 betaPrior, outlier

removed
0.1 0 Yes

The column ref indicates whether hg37 or hg38 was used as reference. The
column DeSeq2 indicates specific options or filters applied before statistical
analysis; gene-count based means that a filter was applied to exclude genes
(e.g. minimal number of reads across all conditions was required) LRT (log
likelihood test) and shrinkage are options related to DeSeq2 analysis. The
padj and l2FC columns gives the adjusted P-value and log2 fold change
thresholds used to select the final list of differentially expressed genes. The
last columns indicates whether the paired option was added in the option at
the feature count level.

Figure 6. Comparison of differentially expressed genes among 2022

groups using upset plots. Histograms on the top of each upset plot

represent the number of differentially expressed genes in common (and

specific) to the groups indicated by circles below. Below the histograms,

each row corresponds to a group. (A) Upset plot representing the number

of differentially expressed genes in common between groups using

students own statistical analysis. (B) Upset plot representing the number

of differentially expressed genes in common between groups using

homogeneous statistical analysis.
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different results. For example: (i) one sample was am-
biguous in its assignment as a mutated or wild-type. (ii)
some groups filtered low counts differently. (iii) groups
did not take the same (adjusted) P-value threshold. Put
together, PCA plots, and gene lists varied significantly.

4 Future of the Reprohackathons and
guidelines

In this section, we describe the next improvements planned
for the Reprohackathon course in the next years and we then
list a set of lessons learned from this project, hoping to pro-
vide useful guidelines to anyone aiming to run a similar
course.

4.1 Future directions

We have already run Reprohackathons for 3 years and we
will continue to do so. On a pure organization point of view,
our setting appears to be really satisfying in particular (i) the
time span (3–4 months at a rate of once a week) which is well
adapted to the mix of lessons and project, and gives time for
student to practice a lot; (ii) the format with several hours of
work for students outside the course sessions and regular
meetings providing autonomy to the students and favorable
to learning by practice.

We plan to make four changes in the next year. First, on an
organizational point of view, we will have two periods in the
project: a competitive phase (between groups) as usual, fol-
lowed by a collaborative phase, allowing students to compare
their results and better understand the factors of variability of
the study. Second, on a technical point of view, we will ex-
plore other ways of using virtual machines (based on remote
desktops for example). This will circumvent classical issues
for students (e.g. connect to the virtual machines, make file
transfer for execution, configuration of SSH and GitHub keys
in the integrated development environments, etc.). Third, on
an evaluation point of view, we will add more stringent crite-
ria to compare the results obtained by students with the
results of the papers and to compare results of students.
Fourth, on a content point of view, we will consider new stud-
ies both because results of the previous Reprohachathons are
available on GitHub (and we want to avoid cheating) and be-
cause we aim to explore other domains and other data types
to analyze. We are investigating a study of viral sequencing
data (e.g. SARS-CoV-2), from sequence data analysis to phy-
logenetics, as another nice example of the importance of
reproducibility.

Looking further ahead, we plan to help in setting up the
Reprohackathons in other Master’s programs. In this regard,
we already discussed with colleagues from Université Paris
Cité who participated to the defenses of the 2022 session. We
are convinced that a course such as our Reprohackathon
should be mandatory in any Master of science curriculum.
More generally, we are working on setting-up a website to
collect and share training material on reproducibility. We are
currently also working on providing a set of videos on the key
tools and technologies identified and addressed during the les-
sons part of the Reprohackathon.

4.2 Guidelines

We identified several points that form the basics of the organi-
zation of Reprohackathons, important for a successful
implementation.

Take enough time for lessons. Initial lessons and practices
about the importance of reproducibility and the tools and
technologies that will be used in the project (git, Conda,
Docker, Snakemake, Nextflow, etc.) are fundamental. It gives
the students a basic knowledge that will allow them to dig fur-
ther autonomously when needed.

Choose appropriate papers. The analysis we ask the stu-
dents to work on is a major part of the project. First of all, the
paper should focus on a scientific problem involving bioinfor-
matics data processing. It may be sequencing data analysis,
methodological developments, tool benchmarks, etc. It should
present a structured bioinformatics analysis with clear results,
and feasible according to the available computational resour-
ces. Last but not least, the analyzed data must be publicly and
easily accessible, with unique identifiers (close to the FAIR
principles). Contacting authors is also an important point of
the process: the aim of a Reprohackathon is not to blame and
shame studies’ authors but rather to promote the need for
more reproducibility by showing how easy it is to have vari-
ability in the results of a study.

Define the goals. As it may be their first long term project
requiring such an autonomy, the goals of the
Reprohackathon are not always clear for the students in the
beginning. It is important to clarify quickly what is expected
from the students in terms of reproducibility and code. To do
so, it is important to delineate the subject in terms of work-
flow (what is the expected kind of workflow output), but also
in terms of tools (what kind of tools should be integrated in
the workflow). In the three last sessions, we decided to pro-
pose two milestones: (i) differential gene expression, and (ii)
differential splicing, for which we defined the tools students
may use. The second milestone was optional, and considered
as a bonus.

Test the workflow in advance. It is important to implement
and test the workflow before the session starts, to be sure that
(i) datasets are effectively available, (ii) the workflow is realiz-
able, and (iii) results are interpretable and reproducible. It will
limit the number of surprises during the project.

Define the evaluation criteria. The evaluation criteria,
linked to the previous point, are very important to clearly de-
fine. For the three last sessions, we focused on the code, the
documentation, the repeatability of the produced workflows
on a different environment, and the results. For the next ses-
sions, we may add more stringent criteria on the proximity of
the results with the results of the papers.

Form diverse multidisciplinary working groups. Groups of
students should be as diverse as possible in terms of skills.
Groups mixing students with biology background with com-
puter science and/or statistical background have proved to be
very efficient.

Be aware of simultaneous running of complementary
courses. The 2022 session of the Reprohackahton took place
in the same period than other complementary courses, such as
“Next Generation Sequencing data analysis”. This helped the
students a lot to integrate the many concepts they needed to
advance the project. In addition, students took advantage of
the situation by asking many questions to other course profes-
sors (statistical questions or RNA-Seq related questions, etc.),
thus serving as mentors for these parts.

Access to computational resources. Computational/IT
resources constitute another critical aspect. First of all, their
sizing must correspond to the needs of the analysis to repro-
duce. In addition, they must be flexible enough to allow to
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start and stop the machines as necessary based on need. In the
last three sessions, we chose not to use a proper cluster (with
a scheduler such as SLURM for example), as it would have
added an additional technological stack to introduce.
However, many possibilities are offered nowadays: public
clouds (e.g. Biosphere), private clouds, clusters, or even local
machines if the study to reproduce in not too memory or CPU
intensive. In the case of institutional clouds or clusters, it may
be subjected to a request for support, which may take some
time and possibly dedicated funding.

Encourage collaborative work between groups. We noticed
that many groups collaborated with each others during the
project. It was generally about sharing their difficulties and
their solutions, but rarely to share large part of their code. We
realized these collaborations were highly fruitful, since it
helped them avoid a few traps. On this matter, next sessions
of Reprohackathon will have two periods in course of the
project: competitive as usual and collaborative, allowing stu-
dents to compare their results and better understand the fac-
tors of variability.

Regular meetings. We observed that organizing small indi-
vidual meetings with each group individually on a weekly ba-
sis was very efficient and appreciated by the students. On the
one hand, it gave the students the autonomy to organize their
work as they wanted, and in the other hand, the meetings
were the occasion to be focused on groups individually, and
to discuss clear progress reports.

Clear deliverables. We think that, as usual with university
projects, the main deliverables should be: the code, a report
manuscript, and a final presentation. A noteworthy outcome
that we reported in the preceding sections was the disparities
in results observed across the groups. We think that it would
be valuable to organize a last feedback session after the final
presentation, where students can share their results and try to
understand the origin of the disparities.

Evaluation committee. Inviting external members to the de-
fense adds a lot to the final oral presentations. They usually
have complementary questions that give good ideas for future
sessions.

5 Conclusion

In this article, we presented the Reprohackathon, a Master’s
course we have been running at Université Paris-Saclay since
2020. The goal of the Reprohackathon is to make students
aware of major reproducibility difficulties, and to promote
good practices for designing and executing bioinformatics
data analyses.

The originality of our approach lies in developing a manda-
tory course dedicated to reproducibility, involving a full class
of students, making explicit the reasons of lack of reproduc-
ibility, introducing major tools and technologies for computa-
tional reproducibility defined through different layers, and
mixing theoretical lessons and a large practical project. The
Reprohackathon takes the form of a 3- to 4-month project
during which students (in groups) work on a scientific article
involving a bioinformatic data analysis. They have to (i) un-
derstand the paper, (ii) understand and implement the data
analysis workflow, and (iii) analyze the data provided in the
paper. The implemented workflow must be reproducible and
shareable, such that we can easily reproduce the results on a
different environment.

As a result, the comparison of project outputs across groups
showed a high variability caused by several factors: alternative
version of the reference dataset, alternative tools used to imple-
ment a given step of the analysis, various choices of cutoffs, im-
pact of the execution environment to make the various tools
orchestrate correctly. This allowed us to make explicit for stu-
dents all the factors playing a role in reproducibility.

More generally speaking, our aim is to promote reproduc-
ibility and provide assistance to colleagues who would be in-
terested in running the same kind of course. Based on our
experience, we established a set of guidelines to help organize
Reprohackathons in the best conditions. As future work, we
plan to set-up a website to collect and share training material
on reproducibility. We are currently working on a set of vid-
eos to make available for the bioinformatics community to
support training on the key tools and technologies identified
and addressed during our lessons.
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