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Abstract

Multi-marginal Optimal Transport (mOT), a generalization of OT, aims at min-
imizing the integral of a cost function with respect to a distribution with some
prescribed marginals. In this paper, we consider an entropic version of mOT with
a tree-structured quadratic cost, i.e., a function that can be written as a sum of
pairwise cost functions between the nodes of a tree. To address this problem, we
develop Tree-based Diffusion Schrodinger Bridge (TreeDSB), an extension of
the Diffusion Schrodinger Bridge (DSB) algorithm. TreeDSB corresponds to a
dynamic and continuous state-space counterpart of the multi-marginal Sinkhorn
algorithm. A notable use case of our methodology is to compute Wasserstein
barycenters which can be recast as the solution of a mOT problem on a star-shaped
tree. We demonstrate that our methodology can be applied in high-dimensional
settings such as image interpolation and Bayesian fusion.

1 Introduction

In the last decade, computational Optimal Transport (OT) has shown great success with applications
in various fields such as biology (Schiebinger et al., 2019; Bunne et al., 2022), shape correspondence
(Su et al., 2015; Feydy et al., 2017; Eisenberger et al., 2020), control theory (Bayraktar et al., 2018;
Acciaio et al., 2019) and computer vision (Schmitz et al., 2018; Carion et al., 2020). While OT
commonly seeks at computing the transport plan that minimizes the cost of moving between two
distributions, it can naturally be extended to the multi-marginal setting (mOT) when considering
several distributions. This extension of OT has notably been studied in quantum chemistry (Cotar
et al., 2013), clustering (Cuturi & Doucet, 2014) and statistical inference (Srivastava et al., 2018). In
particular, a popular application in unsupervised learning of mOT with Euclidean cost consists in
computing the Wasserstein barycenter of a set of probability distributions (Agueh & Carlier, 2011;
Benamou et al., 2015; Alvarez-Esteban et al., 2016; Peyré et al., 2019).

Interior point methods can be used to solve OT and mOT problems but they come with computational
challenges (Pele & Werman, 2009). In order to mitigate these limitations, one often considers an
entropic regularization of OT, known as Entropic OT (EOT). This regularized formulation can be
efficiently solved in discrete state-spaces using the celebrated Sinkhorn algorithm (Cuturi, 2013;
Knight, 2008; Sinkhorn & Knopp, 1967), which admits a continuous state-space counterpart referred
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to as the Iterative Proportional Fitting (IPF) procedure (Fortet, 1940; Kullback, 1968; Ruschendorf,
1995). In the case of a quadratic cost, EOT is equivalent to the static formulation of the Schrodinger
Bridge (SB) problem (Schrodinger, 1932). Given a reference diffusion with finite time horizon T'
and two probability measures, solving SB amounts to finding the closest diffusion to the reference
(in terms of Kullback—Leibler divergence on path spaces) with the given marginals at times ¢ = 0
and t = T'. This framework naturally arises in stochastic control (Dai Pra, 1991) where one aims at
controlling the marginal distribution of a stochastic process at a fixed time. Recently, De Bortoli et al.
(2021) introduced Diffusion Schrédinger Bridge (DSB), an approximation of a dynamic version of
the IPF scheme on path spaces, see also Vargas et al. (2021); Chen et al. (2022). This methodology
leverages advances in the field of denoising diffusion models (Song et al., 2021; Ho et al., 2020) in
order to derive a scalable and efficient scheme to solve SB, and thus EOT.

Similarly to OT, mOT admits an entropic regularization (EmOT), which can be solved via a multi-
marginal generalization of Sinkhorn/IPF algorithm (Benamou et al., 2015; Marino & Gerolin, 2020).
Recently, Haasler et al. (2021) proposed an extension of the static SB problem in discrete state-
space to any multi-marginal tree-based setting. They notably made the correspondence between this
formulation and EmOT, when the cost function writes as the sum of interaction energies onto the
given tree structure, and introduced an efficient version of Sinkhorn algorithm to solve it.

Motivations and contributions. In this work, we investigate the continuous and dynamic coun-
terpart of the tree-based framework from Haasler et al. (2021). To be more specific, we present an
extension of the static SB formulation in continuous state-space to any multi-marginal tree-based
setting, referred to as TreeSB. Then, we establish the equivalence between TreeSB and a formulation
of EmOT relying on a (quadratic) tree-structured cost function, analogously to Haasler et al. (2021).
Inspired by DSB, we develop TreeDSB, a dynamic counterpart of the multi-marginal IPF (mIPF)
to solve it, by operating on path spaces and using score-based diffusion techniques. To bridge gaps
in literature, we prove the convergence of mIPF iterations in a non-compact setting under mild
assumptions, by extending results on IPF convergence (Ruschendorf, 1995). Finally, we illustrate our
approach on examples of Wasserstein barycenters from statistical inference and image processing.

Although our approach can be applied to any tree, we focus on star-shaped trees. In this setting,
we show that TreeSB reduces to a regularized Wasserstein barycenter problem. Our method comes
with several benefits compared to existing works. First, it is out-of-sample, i.e., it does not require
re-running the full procedure when given a new data point. Second, our formulation of the Wasserstein
barycenter problem obtained from TreeSB allows us to avoid numerical issues of having to choose
the regularization too small, see Section 5. Finally, to the best of our knowledge, this is the
first methodology to extend ideas from diffusion-based models to the computation of Wasserstein
barycenters. In particular, we believe that the idea of iterative refinement, i.e., solving the dynamic
counterpart of a static problem, plays a key role in the efficiency and scalability of the method.

Notation. For any measurable space (X, X'), we denote by Z2(X) the space of probability measures
defined on (X, X'). Unless specified, X is defined as the Borel sets on X. For any ¢ € N, let
2O = 2((RHY); we denote (M) by Z2. Assume that X = (R?)’ for some ¢ € N. For any
x € Xand any m,n € {0,...,¢} such that m < n, let ., = (T, Tint1,-- -, Tn). Let Leb be
the Lebesgue measure. For any non-negative function f : X — R, such that fx fdLeb < o0,
define H(f) = — [, flog fdLeb € (—o00,+00]. For any distribution . € 2 (X), we define the
entropy of v as H(u) = H(dp/dLeb) if p < Leb and H(p) = +o00 otherwise. For any two arbitrary
measures p and v defined on (X, X'), define the Kullback-Leibler divergence between p and v as
KL(ulv) = [y log(dp/dv)dpu — [y dp+ [y dvif p < v and KL(j | ) = +o0 otherwise. For any
T > 0, we denote by C([0, 7], R?) the space of continuous functions from [0, 7] to R%. For any path
measure P € 2(C([0, T],R%)), we denote by Ext(P) € 2 the coupling between the extremal
distributions of P, i.e., Ext(P) = Py 7. Note that, for a given coupling 7o 1 € P2 there may exist
several path measures [P verifying Ext(IP) = mo . For any undirected tree T = (V, E) with vertices
V and edges E, we denote by {v, v} (or {v’,v}) the undirected edge between v € V and v’ € V,
if it exists. Given r € V, we denote by T,. = (V, E,.) the directed version of T rooted in r, where
the directed edges E,. are uniquely defined from the edges E, see Appendix B for further details. In
this case, the edge linking v € V to v' € V in T, is denoted by (v, v’). Finally, for any integers
(n, K) € N x N*, we define n mod(K) as the the remainder of the Euclidean division of n by K.



2 Background and setting

Multi-marginal optimal transport. Let ¢ € N*. Given a cost function ¢ : (R?)**! — R, a subset
S c {0,..., ¢} and a family of probability measures {; }ics € 2!%|, mOT consists in solving

7 = arg min {f c(xo.0)dm(xo.e) : T € PN o= Vi€ S} , (mOT)

where 7; is the i-th marginal of 7, i.e., 7;(A) = m(proj; ' (A)) forany A € B(R?), with proj; : 2g.¢
;. Given some weights (w;);c(1,....0} € (R, )%, the Wasserstein barycenter between the measures

{pi}ies is given by 7§ in (mOT), in the case where S = {1, ..., ¢} and ¢(xg.0) = Zle w;l|zo—z4 |2
(Peyré et al., 2019). In particular, when w; = 1/¢, the distribution 7} can be regarded as the Fréchet
mean (Karcher, 2014) of the measures {; };¢s for the Wasserstein distance of order 2. Similarly to
OT, (mOT) can be relaxed using the following entropic regularization

7 = argmin { [ ¢(zo.¢)dm(20.) + eKL(n|v) : 7 € 2UHD 1 = p; Vi€ S},  (EmOT)

where € > 0 is a hyperparameter and v is an arbitrary measure defined on ((R?)*+1, B((R?)*+1)).

Link with Schrodinger Bridge. We first recall the relationship between Schrodinger Bridge and
EOT. Given T' > 0, Q a (reference) path measure, i.e., Q € Z2(C([0,T],R%)) and two measures

o, 1 € P (R%), solving the SB problem amounts to finding the path measure P* defined by
P* = argmin{KL(P|Q) : P € 2(C([0,T],R%), Py = po, Pr = p1} - (SB)

If Q is associated with a Stochastic Differential Equation (SDE)?, of the form dX, = —aX,dt+dB;,
with a > 0, then it can be shown, see (Léonard, 2014, Proposition 1) that ]PS,T verifies

Por= argmin{KL(7|Qo,r) : m € P 1o = pg, ™ = Hit - (static-SB)

This is called the static formulation of SB. It can be shown that solving (static-SB) is equivalent to
solving EOT with quadratic cost and regularization ¢ = 2sinh(aT")/aif a > 0,e = 2T if a = 0.
Moreover, since P* = P§ . ®@Qjo,7> where Qo 7 is the measure Q conditioned on initial and terminal
conditions, solving the dynamic problem (SB) is equivalent to solving (static-SB).

Similarly, (EmOT) can be easily rewritten in a sfatic multi-marginal SB fashion
7* = argmin{KL(n|7®) : 7 € 2D 7, = pu; Vi €S}, (mSB-like)

with (d7®/dLeb)(zq.¢) o< exp[—c(zo.¢)/€](dv/dLeb)(xq.¢), where 70 is the reference measure.

Diffusion Schrodinger Bridge. Recently, De Bortoli et al. (2021) introduced Diffusion Schrodinger
Bridge (DSB), a numerical scheme to solve (SB). It approximates the iterates of a dynamic version
of the Iterative Proportional Fitting (IPF) scheme (Sinkhorn & Knopp, 1967; Knight, 2008; Peyré
et al., 2019; Cuturi & Doucet, 2014), which can be described as follows: consider a sequence of path
measures (P"),cy such that P* = Q and for any n € N

P2 = argmin{KL(P|P?") : Py = 1}, P27 %2 = argmin{KL(P[P?" 1) : Py = po} .

This procedure alternatively projects between the measures with fixed initial distribution and the ones
with fixed terminal distribution. For the first iteration, we get that P! = 11, ® Q7. Assuming that
Q s given by dX; = f;(X;)dt + dBy, with £ : [0,7] x R? — R?, then P! is associated with the
time-reversal of this SDE initialized at ;1. The time-reversal of an SDE has been derived under mild
assumptions on the drift and diffusion coefficients (Haussmann & Pardoux, 1986; Cattiaux et al.,
2021). In this case, we have (Y7 _¢)sejo,7] ~ P* , with Yo ~ 111 and

dY = {—fr—«(Y:) + Viogpr—¢(Y)}dt + dBy,

where p; is the density of P w.r.t. the Lebesgue measure. The score V log p; is estimated using score
matching techniques (Hyvirinen, 2005; Vincent, 2011). The first iterate of DSB, P!, corresponds
to a denoising diffusion model (Ho et al., 2020; Song et al., 2021). DSB iterates further and not
only parameterizes the backward process but also the forward process. It can therefore be seen as a
refinement of diffusion models drawing a bridge between generative modeling and optimal transport.

>We refer to Appendix C for details on solutions of SDEs and associated measures.



Tree-based framework. Consider an undirected tree T = (V, E), with vertices V and edges E,
such that V is identified with {0, ..., ¢}. Inspired by Haasler et al. (2021), we restrict our study of
(EmOT), to the case where the cost function c is the tree-structured guadratic cost derived from T
0(370:@) = Z{v,v’}GE Wy v’ ||$v — Ty ||% y (D
where w, , is a weight on the edge {v, v'}, which links v to v’ (and v’ to v). Furthermore, as in
Haasler et al. (2021), we choose S, i.e., the set of vertices of T with constrained marginals, to coincide
with the leaves of T. This framework recovers important applications, from Wasserstein barycenters
to Wasserstein propagation, see Solomon et al. (2014, 2015). We emphasize that it differs from an OT
problem defined on the space of graphs (Chen et al., 2016). Here, each node represents a probability
measure (observed or to be inferred) and each edge represents a coupling between two distributions.

We consider an arbitrary vertex r € V and choose v in (EmOT) such that (dv/dLeb)(zq.¢) = or (),
where ¢, is a density defined on R?. Due to the form of v and ¢, the reference measure 7° in
(mSB-like) is therefore a probability distribution which factorizes along T,. = (V, E,.), the directed
version of T rooted in 7. We refer to Appendix B for more details on the notion of directed trees. In
this setting, (EmOT) is equivalent to the tree-based problem

7 = argmin{KL(r|7%) : 7 € PN =y Vie S}, (TreeSB)
with ﬂ.O = 7T10‘ ®(v,v’)€E,. 7TS’|U ? (2)
where 70, (- | 2y) = N(2y, /(2wy,r)1q) and 7 < Leb with density ¢,. In a manner akin to
Haasler et al. (2021), we thus establish, in continuous state-space, the correspondence between
(TreeSB), a static tree-based version of SB, and a version of EmOT with tree-structured cost (1). In
our work, we make the following assumption on the constrained marginals {; };es.
A0. Foranyi €S, u; < Leb and H(u;) < oo.
In what follows, we define K as the number of leaves of T , denoting S = {ig,...,ix—1}, and
define the horizon times T}, ,, = &/(2w, ) for any {v,v'} € E. For any i), € S, we will denote

by Tx = (V, Ex) the directed version of T rooted in the leaf i5. In the next section, we present our
dynamic method to solve (TreeSB), called Tree-based Diffusion Schrodinger Bridge.

3 Tree-based Diffusion Schrodinger Bridge

In this section, we present a method to solve (TreeSB) in the case where r € S, i.e., ris aleaf of T.
We refer to Appendix E for the extension to the case where r € V\S. Without loss of generality, see
Appendix E, we assume that r = i1 and choose o, = dp;,_, /dLeb, such that w?}(ﬁl = Wiy,

Dynamic approach to mIPF. In order to approximate solutions of (TreeSB), we consider the
multi-marginal extension of the IPF algorithm, denoted by mIPF. Namely, we define a sequence of
probability distributions (7™),cn such that for any n € N

7t = argmin{KL(r|7") : 7€ 2N 7 =, ), (mIPF)

where k,, = (n — 1) mod(K) and (k,, + 1) is identified with n mod(K). We define a mIPF cycle
as a sequence of K consecutive mIPF updates. In particular, each marginal constraint is considered
exactly once during one mIPF cycle. In a practical setting, our main aim is to sample from the (mIPF)
iterates at the lowest cost. Although these updates can be made explicit, see Marino & Gerolin (2020)
for instance, direct sampling is unfeasible in practice when d is large. To overcome this limitation,
we suggest to compute these iterates in a dynamic fashion with equivalent path measures.

Since 7V factorizes along T, see (2), one can show that the iterates of (mIPF) also factorize along
T, see Section 4. Since these iterates all have a constrained marginal, we obtain the following
decomposition for any n € N: 7" = p;,  Q(y,0)cE,, 7717},‘” where Ej,, denotes the set of edges of

the directed tree Ty, . Then, our approach consists in computing dynamic iterates, i.e., path measures,
along the edges of T that coincide on their extremal times with the static iterates (7™ ), en. Namely,
for any n € N, for any edge (v, v’) € Eg, , we define a path measure P, n € 2(C([0, Ty ], RY))

(v,

such that Ext(]P’E‘U v,)) =, ,» Where Ext(IP(, U,)) stands for the joint distribution of P? . at times

(v,0')
0 and T}, ,v. In particular, it comes that 7', = IP’?U W), T, /]0" Using the tree-based form of the

v’ v

n?’

(mIPF) iterates, we can thus sample from 7™ by (i) following the directed edges of Ty, (ii) diffusing
along them the corresponding path measures (]P?v.v'))(v,v’)eEkn and (iii) picking the samples on the
vertices. When T is a bridge-shaped tree (2 vertices, 1 edge), it simply reduces to the dynamic
reformulation of the IPF scheme. In what follows, we explain how to obtain our dynamic sequence.



Definition of the dynamic iterates. We first compute the iterate PV, corresponding to the dynamic
version of ¥ defined (2), in Proposition 1. Then, we build the following iterates by recursion on
n € N and prove their well-posedness in Proposition 2.

Proposition 1. Let Ti 1 = (V,Ex_1), the directed tree associated with T = (V, E) and root iy 1.
Then, for any (v,v') € Ex_1, there exists P ) € P2(C([0, Ty 0], RY)) with EXt(]P?vm/)) =

(v,v’

W?ﬂﬂm and such that IF’?

.01y(0 18 the distribution of (Bi)iejor, ) recalling that Ty, = €/(2wy o).

Before deriving the dynamic counterpart of the (mIPF) iterates, we introduce several definitions. For
R . .

any path measure P, we denote by P** the time-reversal of P. For any directed tree and any vertex v

of this tree, p(v) refers to the (unique) parent of v, and ¢(v) to the unique child of v when it exists,

see Appendix B for more details.

Let n € N Assume that we have de- @
fined the sequence of our dynamic iterates Edges Ej
(IP’?;U,))(1,7,U/)6EM7m§n up to stage n. ]}E)gtg}?SPEkJrl

Consider the path P, = {(v;,v;41)}/—, in the di-
rected tree Ty, such that v; = 4, and vy =
ik,+1. In particular, for any (v,v") € Eg, 41, ei-
ther (v,v) € P, or (v,v") € Ei, \P,. This is
illustrated in Figure 1 when V. = {0,1,2,3,4}, 3 4
S = {2,3,4}, i, = 3 and ix+1 = 4: in this case, ) )
P ={(3,1),(1,0),(0,4)} and (1,2) is the only edge Figure I: Ill'ustratlon.of the change of root in
common to Ej, and Ej, 1. a toy tree with 5 vertices.

Consider now the directed tree Ty, . ,. We define the (n + 1)-th iterate of our dynamic sequence by
recursion on the edges of this tree, following the breadth-first order. In this order, (ix,, 41, ¢(ik,+1)) =
(vyt1,vy) is the first edge considered.

First, we define P?vtihw) = Wijy 1y @ (PZ‘U‘W\IH))S. In the case of a bridge-shaped tree, this is

exactly the (n + 1)-th update described in DSB. Then, for any (v, v’) € Ep +1\{(vs+1,v)},
: / n+1 _ mpn+l n
(a) either (v,v") € E, \P.,, and we define Ploony = P(p(v),v),Tp(v)J, P, 00

(b) or (v',v) € Py, and we define P?ﬂ‘f&,) = P?P—‘(_i),v)yTp(u),v ® (PZJ',U))IRE)'

Proposition 2. Consider the sequence of dynamic iterates defined by (a) and (b). Then, for any
n € Nand any (v,v') € Ey,., P, ., € Z(C([0, Ty, R?)) and we have Ext(P? ) = T 00

n’ (v,0')

Proposition 2 highlights the equivalence between the (mIPF) iterates and our dynamic iterates. These
path measures are defined iteratively, by following the updates (a) and (b) along the edges of T.
The key observation here is that the computation of each dynamic iterate reduces to a sequence of
updates (b) on a path linking two leaves of T. We emphasize that our iterates could be similarly
obtained by directly considering a dynamic formulation of (TreeSB) and introducing the formalism
of deterministic time branching processes. We leave the study of this problem for future work. We
now get into the details of our practical implementation, which relies on score-based methods.

Approximation of the dynamic iterates. The time-reversal operated in the update (b) can be
computed explicitly, see Haussmann & Pardoux (1986) for instance. Indeed, assuming that IP’ELU, »)

is associated with dX; = f; , ,(X;)dt + dB, with Xy ~ 77, then, under mild conditions, its
time-reversal (}P’?v,qv))R is associated with dY; = {—fr—_¢ v v + V1ogpy o 17— }(Y¢)dt + dB;

with Yo ~ WZH, where p,- , ¢ is the density of ]P’E‘U, o)t w.r.t. the Lebesgue measure. The score

V log py ., 7—¢ can then be approximated using score-matching techniques (Hyvirinen, 2005; Vin-
cent, 2011) which are now ubiquitous in diffusion models (Song et al., 2021) and used in DSB
De Bortoli et al. (2021). Therefore, at iteration (n + 1), the update (b) is similar to the one of DSB
for each edge on the path joining %5, and iy 1. In practice, we parameterize the drifts f; ,, ,» for any
{v,v'} € E with neural networks f; ¢, and use the mean-matching loss introduced by De Bortoli
et al. (2021). Note that doing so, we obtain 2|E| neural networks. The whole procedure consisting in
computing our dynamic iterates using the DSB framework is called Tree-based Diffusion Schrodinger
Bridge (TreeDSB) and is summarized in Algorithm 1.



Algorithm 1 TreeDSB (Training) "J{he algor(i)tlflcr)rr1 ails {;niiﬁiliéeg %vtlltllsl
t,ekul = ) .

L Input: T = (V,E), {ii}ies, {0u,0 fo.oryee N €N corresponds to Brownian motion dy-

2 foan ; 0:' N {lo WK namics when sampling at the first iter-
3: ethy = (n — )_mo ( ) ; ation of TreeDSB, see Proposition 1.
4 Getpath between iy, and ik, +1, Pn = {0j,vj+1}7-1 Note that in Algorithm 1, when we
Z: Wl}lle not clo nverg}:dddo sample from P, = . we update

: ory=1,..., 0 NG .
7: Sample from ]P’Z}] R (Euler-Maruyama) f B0v; 4105 ‘ZECh Wﬂ‘l be used to‘sam
8: Compute mean matching 10ss (0, v,) Ple from P ) in the next itera-
9: Ov; 1 ,0; < Gradient Step(£(0., ., v;)) tions. In order to sample from the
10: Update frqg, . ' dynamics IP”(’,U]_ vie1) WE consider its
11: end for T Euler—Maruyama discretization, see
12:  end while Appendix F for more details. We de-
13: end for scribe the different steps of the algo-
14: Output: {0, '} {y,0/1cE rithm in the case of a toy example

below, see Figure 2 for an illustration.

TreeDSB on a toy tree. We consider a star-shaped tree with three leaves denoted {1, 2,3} and
its central node {0}. Following (2), we define 7° with r = 3 and ¢, = (dus/dLeb). During the
first iteration of TreeDSB, T is rooted at vertex 3 and we compute samples from the forward path
Po = {(3,0),(0,1)} with Brownian motions, see Proposition 1, in order to learn the backward path
{(1,0), (0, 3)}. In the next iteration, we re-root the tree T at vertex 1 and consider the forward path
P, = {(1,0),(0,2)}, where the edges (1,0) and (0, 2) are respectively given by the first iteration
and the initialisation. This highlights that TreeDSB does not require to update the whole tree. The
following iterations are done similarly. At each iteration n € N, we sample from 7™ by first sampling
from p,, at leaf 75, and then following the parameterized SDEs on the directed edges of Ty, .

1 1 1
T r
o

o

m 3 m 3

Figure 2: Illustration of one mIPF cycle solved by TreeDSB for a toy star-shaped tree. At each
iteration, our method learns the backward stochastic process (dotted arrows) that goes from the
target leaf (green-circled), corresponding to the constrained marginal, to the current root of the tree
(red-circled) by using samples from the forward stochastic process (solid arrows).

4 Theoretical properties of mIPF

In this section, we study some of the theoretical properties of the static iterates (7™),cn, that are
equivalent to our dynamic iterates according to Proposition 2. In the case where the cost function c is
bounded in (EmOT), results of convergence of (mIPF) exist (Marino & Gerolin, 2020; Carlier, 2022).
However, our setting does not satisfy their assumptions, since our transport cost is quadratic and
the measures are defined on R?. In what follows, we provide the first non-quantitative convergence
results for (mIPF) in a non-compact setting.

For the rest of the section, we consider a static formulation of the multi-marginal Schrodinger bridge
problem which is more general than (TreeSB), defined as

7 = argmin{KL(7|7%) : 7 € 2+ 7, = p; Vi€ S}, (static-mSB)
where S C {0,..., ¢}, 7° € P, {j; }ies € 25|, We consider the following set of assumptions.
Al. There exists a family of measures {V; }ico,...,e} defined on (R?, B(R?)) such that n° < ®f:0 v;
with density h = d=°/(d ®f:0 v;) and p; < v; with density r; = du; /dv; for any i € S.

A2, {r e 2D KL(r | 7°) < 00, m; = pi, Vi €S} #D.
A3. There exists a family of probability measures {fi;};c{o,....e}\s such that 70 ~ 70, where
7 = ®ies i ®je{0,...,é}\s fj-



In particular, (static-mSB) recovers (TreeSB) by considering v; = Leb for any i € {0,...,¢} and
h(zo.0) = @r(zr) exp[—c(x0.¢)/€] in Al. We detail in Appendix D how A2 and A3 can be met in
(TreeSB). Under these assumptions, the multi-marginal Schrodinger Bridge exists.

Proposition 3. Assume Al and A2. Then, there exists a unique solution 7 to (static-mSB). In
addition, assume A3. Then, there exists a family {1} }ics of measurable functions 1} : R - R
such that

(dr*/dn°) = exp[@,;cs ;] 7 -as.

In order to establish the existence and uniqueness result of Proposition 3, we extend results from Nutz
(2021) to the multi-marginal setting. A consequence of Proposition 3 is that the iterates of (mIPF)
can be described using potentials.

Corollary 4. Assume A1, A2 and A3. Let ("), en be the sequence given by (mIPF). Then, for any
n € N* with k, = (n — 1) mod(K) and q,, € N such that n = g, K + ky, + 1, there exists a family
of measurable functions {?/JZ)"H, . ,ngjl, wg;nﬂ soe i} such that
n kn o dn K-1 n
(dx"/dn®) (z0.0) = eXp[@j:o g_,» i (i) @j:kn+1 f_,. (zi;)] m0-a.s.

In the tree-based setting, Corollary 4 explains why the (mIPF) iterations preserve the tree-based
Markovian nature of 7°. We now prove that the marginal 7!* converges to ; for any i € S, as n goes
to infinity, i.e., we have marginal convergence on the leaves of T.

Proposition 5. Assume Al and A2. Let (1™),en be the sequence given by (mIPF). Then, we have
limy, o0 |7 — pillov = 0 foranyi € S.

The previous result does not ensure the convergence of (7™),,¢cy to the solution to (static-mSB). In
particular, Proposition 5 does not provide the convergence of the marginals on the nodes v € V\S,
which is key to compute regularized Wasserstein barycenters with TreeDSB. Relying on additional
assumptions, we now derive the convergence of (mIPF).

Ad. @, L' (ui) C L(n*) is closed.
AS. There exist ¢ € (0, 00) such that exp(¢) — ) < ¢ foranyn € N, any k € {0,..., K —2}.

1k - 1k
These assumptions can be seen as multi-marginal extensions of the ones of Ruschendorf (1995), see
Appendix D for a discussion and examples.

Proposition 6. Assume Al, A2, A3, A4 and AS5. Let (1"),en be the sequence given by (mIPF).
Then, we have lim,,_, ||7™ — 7*||Tv = 0, where ©* is given in Proposition 3.

To the best of our knowledge, Proposition 6 is the first convergence result of (mIPF) without assuming
that the space is compact or that the cost is bounded. We highlight that traditional techniques to prove
the convergence of IPF cannot be easily extended to the multi-marginal setting as pointed by Carlier
(2022). In the case of bounded cost, quantitative results exist (Marino & Gerolin, 2020; Carlier, 2022).
We leave the study of such results in the unbounded cost setting for future work.

S Application to Wasserstein barycenters

Although Algorithm 1 can be applied to trees T with fixed marginals on the leaves, one case of
particular interest is star-shaped trees, i.e., trees with a central node, denoted by index 0, and such that
S =1{1,...,¢} (see Figure 2 for an illustration with £ = 3). In this section, we draw a link between
(TreeSB) and regularized Wasserstein barycenters. We recall the definition of the Wasserstein distance
of order 2 with e-entropic regularization between p and v (Peyré et al., 2019, Chapter 4)

Wis(u,l/) = inf{[ ||z1 — xo||?dn(x0, x1) — eH(7) : 7 € P qg = p,m =v}. 3)

In this work, we consider the (¢z, (¢ — 1)e)-doubly-regularized Wasserstein-2 barycenter problem
(Chizat, 2023) defined as follows

ut = arg min{Zf:1 wiWQQ,s/w,; (i) + (0= 1)eH(p) : p € 2}, (regWB)

where (w;)ieq1,....0y € (0, +00)*. The following proposition shows the equivalence between the
barycenter problem (regWB) and the multi-marginal Schrédinger bridge problem (TreeSB) over T.
In particular, it allows us to use TreeDSB to estimate the solution p} of (regWB).



Proposition 7. Let ¢ > 0. Assume AO. Also assume that T is a star-shaped tree with central node
indexed by 0, and that the reference measure of (TreeSB) defined in (2) verifies r = 11 and
©r = dpi,_, /dLeb > 0. Under A2, (regWB) has a unique solution 7, where 7 solves (TreeSB).

The proof of this result is postponed to Appendix D. More generally, we show in Appendix D that, for
any tree T, (TreeSB) is equivalent to a regularized version of the Wasserstein propagation problem
(Solomon et al., 2014, 2015). Moreover, we present in Appendix E an extension of Proposition 7
in the case where the chosen root 7 is not a leaf of T. We finally emphasize that the formulation
of (regWB) leads to a minimization of the entropy of the barycenter. In particular, this allows us to
choose ¢ reasonably large in TreeDSB, which is a stability advantage compared to other regularized
methods which do not consider this further regularization.

6 Related work

Diffusion Schrodinger Bridge. Schrodinger Bridges (Schrodinger, 1932) have been extensively
studied using tools from stochastic control and probability theory (Léonard, 2014; Dai Pra, 1991;
Chen et al., 2021). More recently, algorithms were proposed to efficiently approximate such bridges
in the context of machine learning. In particular, De Bortoli et al. (2021) proposed DSB while Vargas
et al. (2021); Chen et al. (2022) developed related algorithms. In Chen et al. (2023), the authors
study a multi-marginal version of DSB in a linear tree-based setting, where the set of observed
nodes is the whole set of vertices. However, contrary to our setting, Chen et al. (2023) introduced
a momentum variable. This allows for smoother trajectories which are desirable for single-cell
trajectories applications and correspond to some spline interpolation in the space of probability
measures (Chen et al., 2018). A general framework for tree-based static Schrodinger Bridges on
discrete state-spaces was given in Haasler et al. (2021). In this work, we extend their formulation to a
dynamic and continuous setting, see Appendix D for more a thorough comparison.

Wasserstein barycenters. The notion of Wasserstein barycenter was first introduced in Rabin
et al. (2012) and then later studied in Agueh & Carlier (2011). The algorithms to solve this problem
can be split into two families: the in-sample based approaches and the parametric ones. In-sample
approaches require access to all the measures p; which are assumed to be empirical measures (Cuturi
& Doucet, 2014; Benamou et al., 2015; Solomon et al., 2015). Related to this class of algorithms is
the semi-discrete approach, which aims at computing a Wasserstein barycenter between continuous
distribution but rely on a discretization of the barycenter (Claici et al., 2018; Staib et al., 2017; Mi
et al., 2020). Most recent approaches do not rely on a discrete representation of the barycenter,
but instead parameterize it using neural networks. These approaches can be further split into two
categories. First, measure-based optimization approaches parameterize the measures using a neural
network. This is the case of Cohen et al. (2020), where the barycenter is given by a generative model,
which is then optimized . Fan et al. (2020) introduce an optimization procedure which relies on a
min-max-min problem using the framework of Makkuva et al. (2020). More recently, Korotin et al.
(2022) considered a fixed point-based algorithm introduced in Alvarez-Esteban et al. (2016) to update
a generative model parametrizing the barycenter. On the one hand, potential-based methods rely on a
dual formulation of the barycenter. Korotin et al. (2021) parameterized the dual potentials using Input
Convex Neural Network and considered regularizing losses imposing conjugacy and congruency. On
the other hand, Li et al. (2020) consider a dual version of the regularized Wasserstein barycenter
problem contrary to other works. Our approach applied to start-shaped trees also approximates
a regularized Wasserstein barycenter. However, contrary to Li et al. (2020), we do not consider
a parameterization of the potentials in the static setting but instead, parameterize the drift of an
associated dynamic formulation using Schrodinger bridges. To the best of our knowledge TreeDSB is
the first approach leveraging DSB-like algorithms to compute Wasserstein barycenters.

7 Experiments

In our experiments’, we illustrate the performance of TreeDSB to compute entropic regularized
Wasserstein barycenters for various tasks . We choose to compare our method with state-of-the-art
regularized algorithms: fast free-support Wasserstein barycenter (fsWB) (Cuturi & Doucet, 2014) ,
and continuous regularized Wasserstein barycenter (crWB) (Li et al., 2020). In all of our settings,
we consider a star-shaped tree with K leaves and edge weights that are equal to 1/ K, resulting in a

3Code available at https://github.com/maxencenoble/tree-diffusion-schrodinger-bridge.
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sequential training procedure over 2K neural networks. The initial diffusion is always a Brownian
motion parameterized as explained in Proposition 1. Hence, the time horizon on each edge is
defined by T' = Ke/2. The order of the leaves is randomly shuffled between the mIPF cycles. We
consider 50 steps for the time discretization on [0, T]. We refer to Appendix G for details on the
choice of the schedule, the architecture of the neural networks and the settings of our experiments.

mIPF cycle: 50, from vertex 1 to 0

Synthetic two dimensional datasets. We first il-
lustrate TreeDSB in a synthetic two dimensional
setting. We consider three different datasets Swiss-
roll (vertex 0, starting node r), Circle (vertex 2)
and Moons (vertex 3) and compute their Wasser-
stein barycenter (vertex 1) by running TreeDSB

-15 -10 -5 0 5 10 15

for 50 mIPF cycles with e = 0.1. In Figure 3, mIPF cycle: 50, from vertex 1 to 2 mIPF cycle: 50, from vertex 1 to 3
we show the estimated densities of the datasets on

the leaves of the tree (we emphasize that the dis- ~
tributions plotted on each leaf are generated from

the central barycenter measure). In Figure 4, we ~
observe the consistency between the barycenters

generated from the different leaves. In Appendix G, e s 0 s om0 s s
we present additional results for this setting. Figure 3: Estimated densities on the leaves.

mIPF cycle: 50, from vertex 0 to 1 mIPF cycle: 50, from vertex 2 to 1 mIPF cycle: 50, from vertex 3 to 1

"
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-15 -15 -15
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-15 -10 -5 0 5 10 15

Figure 4: From left to right: barycenter estimated from the leaves Swiss-roll, Circle and Moons.

Synthetic Gaussian datasets. Next, we consider three independent Gaussian distributions with
zero mean and random non-diagonal covariance matrices whose conditional number is less than 10,
following Fan et al. (2020). In this case, the non-regularized barycenter can be exactly computed.
To evaluate the performance of the algorithms, we use the Bures-Wasserstein Unexplained Variance
Percentage (UVP), following (Korotin et al., 2021, Section 5). Given a target distribution p* € &
and some approximation p € £, we define

BW3-UVP (g, p*) = 100 - 2BW3 (1, p*) / Var(u*)% ,
where BW3 (u, p1*) = W3 (N(E[u], Cov (), N(E[u*], Cov(p*)).

Method d=2 d=16 d=64 d=128 d = 256

fsWB (Cuturi & Doucet, 2014) 0.06i0,01 2.86i0,06 11~12i0.06 14-47i0.07 17-41i0405
crWB (Ll et al., 2020) 0.02i0,01 1.52i0,11 11.41:‘:0,73 5.75:‘:0,02 18.27:&0,54
Tree DSB 0-63i0426 1-07:|:0.58 1.39;&0,07 1.92:|:0,02 2.62:‘:0.07

Table 1: Gaussian setting: comparison with the regularized methods crWB and fsWB.

In this setting, we choose p* to be the non-regularized barycenter and assess the dependency w.r.t.
the dimension of the algorithms using the BW3-UVP metric. In Table 1, we compare ourselves with
the two regularized methods Li et al. (2020) (Ly-reg. equal to 10~%) and Cuturi & Doucet (2014).
We run TreeDSB for 10 mIPF cycles with € = 0.1. Bold numbers represent the best values up to
statistical significance. While Li et al. (2020) and Cuturi & Doucet (2014) enjoy better performance
in low dimensions (d = 2), TreeDSB outperforms these methods as the dimension increases.

MNIST Wasserstein barycenter. We then turn to an image experiment using MNIST dataset
(LeCun, 1998). Here, an image is not considered as a 2D-dimensional distribution as in Cuturi &
Doucet (2014) and Li et al. (2020), but as a sample from a high-dimensional probability measure
(d = 784). We aim at computing a Wasserstein barycenter between the digits 2,4 and 6. To do so, we



run TreeDSB for 10 mIPF cycles with r that corresponds to the digit 6 and € = 0.5. In Figure 5, we
display samples from the estimated marginals on the leaves, to assess the reconstruction of the digits
2, 4 and 6, and samples from the barycenter, obtained by diffusing from the leaf corresponding to the
digit 6. Our results prove the scalability of TreeDSB to the high-dimensional setting, compared to
state-of-the-art regularized methods. Additional results on MNIST dataset are given in Appendix G.

Figure 5: Samples from the estimated MNIST 2-4-6 marginals and from their Wasserstein barycenter.

Subset posterior aggregation. Finally,

we evaluate TreeDSB in the context of  pfethod Without het.  With het.

Bayesian fusion (Srivastava et al., 2018),
also called posterior aggregation. Given
a Bayesian model and a dataset parti-
tioned into several shards, this task aims

fsWB (Cuturi & Doucet, 2014) 12.951¢.35 14.4310.51
crWB (Li et al., 2020) 20.66+0.71 23.064+0.12
Tree DSB 8.6940.12 8.9040.68

at recovering the full data posterior dis- Typle 2: Bayesian fusion setting: comparison with the

tribution from the posterior distributions regularized methods crWB and fsWB.
computed on each shard.

In particular, it has been proved that the barycenter of the subdataset posteriors is close to the full data
posterior under mild assumptions (Srivastava et al., 2018). Here, we consider a logistic regression
model applied to the wine dataset* (d = 42) and proceed as follows. We first split this dataset into 3
subsets, with or without heterogeneity, and estimate the posterior parameters on each shard. Then,
we draw samples from the obtained logistic distributions to define 1, po, 3. Then, we compute
the Wasserstein barycenter of these measures, and compare it to the posterior computed on the full
dataset. As in the synthetic Gaussian experiment, we run TreeDSB for 10 mIPF cycles € = 0.1 and
we compare ourselves with Li et al. (2020) (Lp-reg. equal to 10~%) and Cuturi & Doucet (2014).
We evaluate the methods using the BW32-UVP metric, where p* is the estimated full data posterior,
and report the results in Table 2. In both settings, we observe that our method outperforms existing
regularized methods to compute Wasserstein barycenters.

Limitations. One of the main limitation of entropic regularized OT approach is that their behavior
is usually badly conditioned as € — 0. In our setting, we observe that if ¢, or equivalently 7', is too
low then the algorithm becomes less stable as the training of the models slows down. In the future,
we plan to mitigate this issue by incorporating fixed point techniques like the one used in Korotin
et al. (2022). Finally, since our algorithm is based on DSB (De Bortoli et al., 2021), it suffers from
the same limitations. In particular, training different neural networks iteratively incurs some bias in
the SDE which is harmful for large number of mIPF iterations.

8 Discussion

In this paper, we introduced Tree-based Diffusion Schrodinger Bridge (TreeDSB) a scalable scheme
to approximate solutions of entropic-regularized multi-marginal Optimal Transport (mOT) prob-
lems. Our methodology leverages tools from the diffusion model literature and extends Diffusion
Schrodinger Bridge (De Bortoli et al., 2021). In particular, it approximates the iterates of the multi-
marginal Iterative Proportional Fitting (mIPF) algorithm, for which we prove its convergence under
mild assumptions. We illustrate the efficiency of TreeDSB for image processing and Bayesian fusion,
using the link between mOT and Wasserstein barycenters. In future work, we would like to study
quantitative convergence bounds for mIPF in the unbounded cost setting. Another line of work would
be to scale TreeDSB to higher dimensional problems building on recent developments in the diffusion
model and flow matching community (Lipman et al., 2023; Peluchetti, 2023; Shi et al., 2023).

*https://archive.ics.uci.edu/ml/datasets/wine
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Appendix organization

First, additional notation is introduced in Appendix A. Then, we briefly recall some notions on
undirected and directed trees in Appendix B. Similarly, martingale problems are introduced in
Appendix C. The proofs of the main manuscript and additional theoretical results on Tree Schrodinger
Bridges are given in Appendix D. Additional details on our consideration of the tree-based static
SB problem are described in Appendix E. Details on the implementation of TreeDSB are given in
Appendix F and the experiments are investigated in Appendix G.

A Additional notation

For any finite set E, we equivalently refer to the cardinal of E as card(E) or |E|. Let (X,X)
be a measurable space. For any x € (R and any m € {0,...,¢}, let z_,, =
(%0, .+, T—1, Ty, ..., T¢). For any family of measures {v;};cyo,....,y defined on (X, &X) and
any i € {0,..., 0} letv_; = @ cq0, iy V- Let L = {ir, ..., i} C{1,....¢}and pu € P
such that 1 < Leb. We define I¢ = {1,...,£}\I and denote it by {if,...,i;} where § = £ — q.

We denote the marginal of ;1 along I by pz, i.e., up € 29 and we have for any A € B((R%)),
11 (A) = [y p(@) 1=, 0, (A;j)dz. In addition, note that yi; < Leb. We denote the conditional

distribution of y given I by p;(-|-), i.e., 7 (-]-) € 2@ x (R%)? and we have for any y € (R%)?
and any A € B(RY)7). w1 (Aly) = [ u(w)/nr(y) I 8(2i; = 95) TTjioo Os.c, (Ajr)da. Remark
that for any y € (R%)%, y;(-|ly) < Leb. For any subset J C I° with card(J) = ¢j, we also
define yuyi(-|-) € 2@ x (R?)4 such that for any y € (R")?, py;(-ly) = {p(-|y)}s. For a col-
lection of functions {f;}ic;, with | C {1,...,n} and n € N such that f; : R? — R, we define
®ic1fi : (RY)™ — R such that for any z = (21,...,2,) € (RN, G f(x) = X ,¢ filzi).

B Introduction to trees

Undirected tree. An undirected graph T = (V, E), with vertices V and edges E, is said to be an
undirected tree if it is acyclic and connected (Valiente, 2002, Definition 1.19.). In particular, we have
card(E) = card(V) — 1. The undirected edge between two nodes v; and vs is similarly denoted by
{v1,v2} or {vg,v1}. We say that T' = (V' E’) is a sub-tree of T if T’ is an undirected tree with
vertices V/ C V and edges E’ C E. For any vertex v € V, we define the set of its neighbours N,, as
the set of vertices v/ € V such that {v, v’} € E. The integer card(N,) is referred to as the degree of v.
The vertices with degree 1 are called leaves, and we denote the set of leaves by V| C V. The (unique)
path in T between two vertices v and v’ is the sequence of two-by-two distinct edges {{v;, vi+1}}7
(with n > 1) such that vy, = v for any & € {1,...,n} such that ¥ = 0 mod(2), v; = v and
vna1 = v'. This path can be seen as a linear sub-tree of T, and we define n as the length of this
path. We say that T is weighted if there exists a map w : E — R ; in this case, w({v1,v2}), or
equivalently w({ve,v1}) (also denoted by wy, 4, OF Wa, 4, ) is called the weight of the edge {vy, va}.
The tree T is said to be rooted in r € V if r defines a partial ordering <t ,C V x V such that for any
v1,v2 € V, v1 <1, vy if the node v, lies on the unique path between r and vs.

Directed tree. Consider a directed graph T, = (V, E,.) rooted in r € V. Any directed edge e € E,.
from vy € V to vo € V is denoted by (v1, v3). T, is a said to be a directed tree rooted in r if (i) the
underlying undirected graph T = (V, E) is an undirected tree rooted in r and (ii) any (v1, v2) € E, is
directed according to the partial ordering <t ,, i.e., {v1,v2} € E and v; <1, vy. For any vertices
(v,v") € V x V such that v <t v/, the (unique) path in T, from v to v’, denoted by path, (v,v’),
is defined as the directed version of the path in T between v and v’ (viewed as a sub-tree of T),
which is rooted in v. We say that T, is weighted, if T is weighted and the edges of T, have the same
weights as the corresponding undirected edges of T. For any (v1,v2) € E,., we denote this weight
by wy, »,. We say that T, is the (unique) directed version of T rooted in r. It is endowed with a
canonical vertex numbering ¢ : V — {0, ..., card(V) — 1}, corresponding to a depth-first traversal
of its nodes, starting from the root r (Valiente, 2002, Definition 3.1.). This numbering is consistent
with the partial ordering on T, i.e., if v1 <7, v2, ((v1) < {(v2), and satisfies {(r) = 0. In the rest
of the paper, we will write in an equivalent manner v or (v).
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For any vertices (v1,v2) € E X E such that v; <t vs, pathy (v1, v2) corresponds to the ordered
set of edges in E,. which define the ordered path between two vertices v, and vs. For any vertex
v €V, we define:

(a) the set of its children C, as the set of vertices v’ € V such that (v, v") € E,.. In particular, for any
v € V|, the set of leaves, one has C,, = ().

(b) its parent as the unique vertex p(v) such that (p(v),v) € E,, if v # r (the parent of the root is
not defined).

Note that N, = C,. and, for any vertex v € V\{r}, N, = {p(v)} UC,.

Definition 8 (Tree-structured directed Probabilistic Graphical Model (PGM)). Consider a directed
tree T, = (V,E,.). The directed PGM induced by T, (Koller & Friedman, 2009, Definition 3.4.),

denoted by P, is the family of distributions m € & (VD which have a Markovian factorization
along T,, i.e,

gZTr = {ﬂ— € ‘@(‘VD F =T ®(v,v’)€ET ﬂ—v/h)} :
Lemma 9. Consider an undirected tree T = (V,E). Let (r,7') € V x V. Let T' be a sub-tree of T

with vertices V' such that v’ € V. Denote by T/, the directed version of T' rooted in v'. Then, for
any m € X1, we have ny: € Py .

Proof. Let (r,r') € V x V. We denote by T, = (V, E,.), respectively T,» = (V, E,), the directed
version of T rooted in r, respectively r’. We define the paths P, ,» = pathy (r,") C E, and
P, = pathy ,(1',7) C E,v. Itis easy to see that

@ E\Py = Ep\Pp .,
(b) Pr,r’ - {(027'01) : (Ulan) S Pr’,r},
(C) PT’,T' - {(U2>U1) : (Ula U2) S PT,T’}'
Let 7 € &7, . First note that for any (v1,v2) € E,, we have by Bayes decomposition 7, 7y, |, =
Tus Ty |va = Tw1,v,+ LNEN it COMeS
=Ty ®(v1,v2)EET Mg vy
=Tr ®(’U1,U2)EPT1T/ ’/T'UQ‘UI ®(U17U2)EET‘\PT,T’ ﬂ-Uz"Ul

= Tr ®(v2,v1)€P /

s
rlr ,UQ‘,UI

7TU2|171 ®(’L}1,712)€E7./\PT/

= Ty ®(U1,v2)epr,yr Mg |y ®(U1,v2)eEr,\PN, Tz |1
= Ty ®(v1,v2)€Er/ Tzlvr >
and therefore, we have m € Pt ,.
Let T” be a sub-tree of T with vertices V’ such that 7’ € V’. First note that E/, C E,,. Using the
previous computation, we have for any A € B((R%) V'l ),
Ty (A) = f(]Rd)M s () ®(v1,v2)€Er/ Tuafor (Tog [T0,) [Ty evr Oe, (Av )da
= f(Rd)m—\v’l {me (Ar) ®(U1,v2)€E’T, Toalvr (Avy [T, )} ®(v1,w)eE,,,,\E'T, T oy (Tog [T, )Ty v/
= {m ®(z;17v2)eE;‘, Tslor H(A)

which proves that 1y € P . O

Discretized undirected tree. Let N > 1. Consider an undirected tree T = (V, E) with weights
w. We say that TV) = (V™) E(V)) is a N-discretized version of T if it is an undirected tree with
weights w") such that

@ VW =V[JUu e {vF},
ke{l,...,N—1}
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(b) E™) = Ueeg Up—o,....n—1 {{vF, v5¥1}} with the convention that the vertices v)Y and v} are
defined such that {v?, 0N} = e,

er) e

(©) X cepathy () 1w = 1/w, . if {v,v'} € E.

Remark that the leaves of T(V) are exactly the original leaves of T and that T(Y) = T. The non-
uniqueness of T(N) comes from the freedom of choice on the weights of its edges.

Discretized directed tree. Let N > 1. Consider a directed tree T,, = (V, E,.) rooted in r € V with

weights w. We say that TgN) = (V(N )7 EgN)) is a IN-discretized version of T,. if it is the directed

version of T(N) rooted in r, where T(N) is a N-discretized version of the underlying undirected tree
of T,.

C Background on martingale problems

In this section, we introduce the background on Stochastic Differential Equations (SDEs) and weak
solutions of SDEs following the framework of (Stroock & Varadhan, 1997, Section 10.1, page 249).
We recall that C3°(R?) is the space of infinitely differentiable real-valued functions which vanish at
infinity. In addition, we have that Si is the space of d x d, symmetric, non-negative matrices.
Definition 10. Let T > 00rT = +oc, 0 : [0,T) x R — 8% andb: [0,T) x R? — RY, locally
bounded measurable functions. We define the infinitesimal generator, A, given for any f € C3°(R%),
t €[0,T) and x € R by

Ai(f) (@) = (be(2), V() + 5 {ou(2)oe(x) T, V2 f(2)). “)

We say that a probability measure P satisfies the martingale problem for A if for any t € [0,T) and
f € CF(RY), we have that (f(X;) — fot As(f)(Xs)ds)sepo,) is a P-martingale.

In the main document, see Section 2, we say that “a path measure P is associated with dX; =
b(t,X)dt+o(t, X;)dB; with (B,);>0 a d-dimensional Brownian motion” if P solves the martingale
problem associated with 4 given by (4). Unless specified, we always assume that such a path
measure exists and is unique. Below, we recall the following theorem, see (Stroock & Varadhan, 1997,
Theorem 10.2.2), which gives sufficient conditions for the existence and uniqueness of solutions to
the martingale problem.

Theorem 11. Assume that for any x € R? we have
inf{(0,00 " (s,2)0) : 0 € R, ||0]| =1, s €[0,T]} >0,
li_r>n sup{|lo(s,z) —o(s,y)|| : s€[0,T]} =0.
Yy—x

In addition, assume that there exists C' > 0 such that for any x € R?
sup{|loa T (t,z)|| : s € [0,T]} + sup{{z,b(t,x)) : s €[0,T]} < C(1+ |z|?).

Then, there exists a unique solution to the martingale problem with initialization xo € R

D Theoretical results on Tree Schrodinger Bridges

We respectively provide in Appendix D.1, Appendix D.2 and Appendix D.3 the proofs of the results
of the main manuscript presented in Section 3, Section 4 and Section 5. Finally, we make a detailed
comparison between our setting and the framework of Haasler et al. (2021) in Appendix D.4. In the
rest of this section, we consider an undirected tree T = (V, E), where |V| = £ + 1, and some subset
S C V which we denote by S = {io, ...,ix_1}. We define S = V\S.

D.1 Proofs of Section 3
Proposition 1 is straightforward to obtain by combining the definition of the Brownian motion with

the definition of 7¥ given in (2). The following lemma details the recursion relation between the
(mIPF) iterates, which is key to prove Proposition 2.
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Lemma 12. Let (7™),ecn be the sequence given by (mIPF). Letn € N, k, = (n — 1) mod(K),
kn + 1 =n mod(K). Denote by Ty, , respectively Ty, 1 with edges Ey, 11, the directed version of
T rooted in iy, respectively in iy, 1. We have:

n’

(i) ™" € Pr,,.,

.. 1 _ . ! n+l _
(i) 7" = g, ®(’U,’U/)€Ekn+1 WS,‘U. In particular, for any (v,v") € Eg, 41, Ty = ﬂﬁ,‘v.

Proof. We show the result (i) by recursion on n € N, and will deduce (ii) from the proof. Using (2),
we first have 70 € Pr,., where r is chosen as i x_1, see Section 3. Thus, we obtain the result (i) at
step n = 0. Assume now that 7" € 1, for some n € N.

Consider the paths P,, = pathy, (i, ,ik,+1) and Pny1 = pathr, . (ik,+1, ik, ). Note that these
two paths have the same length, denoted by J, and contain the same vertices, denoted by V,,. Let
7 € 2+ guch that KL(7r|7™) < 400. We have the following decomposition

KL(7|x") = KL(7v, |7, ) + f(Rd)JJrl KL(mv, |7T|7i/n)d7TVn (2v,) -
Hence, the (n + 1)-th iterate of (mIPF) is given by 7"+ = 71'(}:1 ® w"(,n , with

77\7;:_1 = argmin{KL(ﬂw\’}n) T mTe :@(‘Hl), Ty 1 = uik_”H} .

1 n 3 n —_ n 11 n
Since 7" € P71, , we have (i) T, = ®('Ugv,)€Ekn\Pn Torlo and (i) mj € Pp, ., by Lemma 9,
where P, is viewed as a directed tree rooted in iy, 1. Defining V11 = V,,\{ir, 11}, we thus
n _ n n —
have ryy = ® my where 7y ;=

,n.n
1 iy +1 (v,0")EPpy1 0! |v”

Let 7 € 2+ such that m;, ,, = p;, ., and KL(r|mj ) < +oc. Similarly to the previous
computation, we have the foll