
HAL Id: hal-04402286
https://hal.science/hal-04402286

Submitted on 18 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Report From The Trenches A Case Study In
Modernizing Software Development Practices

Mahugnon Honore Houekpetodji, Nicolas Anquetil, Stephane Ducasse, Fatiha
Djareddir, Jerome Sudich

To cite this version:
Mahugnon Honore Houekpetodji, Nicolas Anquetil, Stephane Ducasse, Fatiha Djareddir, Jerome Su-
dich. Report From The Trenches A Case Study In Modernizing Software Development Practices.
2021 IEEE International Conference on Software Maintenance and Evolution (ICSME), Sep 2021,
Luxembourg, Luxembourg. pp.515 - 524, �10.1109/ICSME52107.2021.00052�. �hal-04402286�

https://hal.science/hal-04402286
https://hal.archives-ouvertes.fr


Report From The Trenches
A Case Study In Modernizing Software Development Practices

Houékpétodji Mahugnon Honoré∗‡, Nicolas Anquetil†‡, Stéphane Ducasse‡,
Fatiha Djareddir∗, Jérôme Sudich∗

∗SA-CIM, Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, 59000 Lille, France
†Université de Lille, CNRS, Inria, Centrale Lille,UMR 9189 CRIStAL France,ORCID: 0000-0003-1486-8399
‡Université de Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL France,ORCID: 0000-0001-6070-6599

homahugnon@gmail.com, nicolas.anquetil@univ-lille.fr, stephane.ducasse@inria.fr

Abstract—One factor of success in software development com-
panies is their ability to deliver good quality products, fast. For
this, they need to improve their software development practices.
We work with a medium-sized company modernizing its de-
velopment practices. The company introduced several practices
recommended in agile development. If the benefits of these
practices are well documented, the impact of such changes on
the developers is less well known. We follow this modernization
before and during the COVID-19 outbreak. This paper presents
an empirical study of the perceived benefit and drawback of these
practices as well as the impact of COVID-19 on the company’s
employees. One of the conclusions, is the additional difficulties
created by obsolete technologies to adapt the technology itself and
the development practices it encourages to modern standards.

Index Terms—Grounded Theory, Agile development, COVID-
19, Exploratory case study

I. INTRODUCTION

Nowadays, software is developed in a demanding environ-
ment. The requirements change as business needs change; time
to market, budget, quality, or maintainability concerns increase
the level of challenge faced by software companies. To cope
with these challenges, companies turn to modern software de-
velopment processes such as agile development [2, 16]. These
processes are known to focus on managing time to market
constraints and the ability to accommodate changes during the
software development life cycle [3]. They also promote better
communication between the various stakeholders of a project.

If the benefits of such development processes are well
documented, the transition from old practices also presents
challenges [5]. We work with a medium-sized company trying
to modernize its development practices. The company intro-
duced several practices recommended in agile development,
hoping to improve its product quality and time to market.
At the same time, it faced the exceptional conditions linked
to the COVID-19 crisis with the generalization of remote
working. Many agilists advocate the importance of collocation,
face-to-face interaction, and physical artefacts incorporated in
the shared workspace, which the COVID-19 pandemic made
unavailable [17].

The aim of this work is to evaluate if all the practices intro-
duced bring the benefits expected, and how they are perceived
by the various stakeholders in the company. We aim to identify
the perceived benefits of these changes, and the challenges

professionals face with the practices’ modernization. We also
evaluate if the context of remote working due to COVID-19
had an influence on these practices.

We conducted an exploratory study by leveraging in depth,
semi-structured interviews with 17 participants in the develop-
ment process to understand how these changes impacted their
work. We adopted the grounded theory approach [9], a qual-
itative technique, to analyse interviews. When possible, the
findings of the interviews were validated with empirical data
(company internal issue database, source code management
commit history, emails).

Our study makes the following contributions:
1) We document the industrial perception of some agile

development practices;
2) We document perceived benefits and drawbacks of these

practices;
3) We identify the impact of remote working on some agile

practices.
In Section II, we describe the context of this study. In

Section III, we present the company and software develop-
ment practices before modernization. In Section IV we detail
changes in practices introduced in the company. In Section V
we describe our study methodology. Section VI presents the
results and Section VII discuss the threats to validity. Finally,
in Section VIII we conclude our research.

II. AGILE METHODOLOGIES

According to [18], an iterative software development pro-
cess is a process in which the software is built in several
successive sprints [11]. Each sprint is viewed as a mini project
including requirement analysis, programming and testing. At
the end of the sprint, a stable version of the project is released.

SCRUM appears to be the most popular agile methodology
in the industry [7]. It recommends sprints of 2 to 4 weeks [16].
It has 3 primary roles: Product Owner, SCRUM Master, and
team member. The lifecycle is composed of 4 meetings: Sprint
planning, Daily SCRUM, Sprint Review, and retrospective
meeting [12].

SCRUM implies tight communication (both formal and
informal) within a fully dedicated project team [15]. Tools
play an important role in tracking project progress, facilitating



communication and making decisions [13]. These tools are
also essential for source code management or code review.

III. PRACTICES IN INDUSTRIAL CASE STUDY

This research, is a case study on software practices mod-
ernization in a medium-sized company. It is important to
characterize precisely the context of a case study so that people
can understand whether the finding may apply elsewhere. Here
we present the industrial background of this study.

The leading software system of the company is over 20
years old. It is written in PowerBuilder1 programming lan-
guage. A so-called “Fourth Generation programming Lan-
guage”2, including a programming language, an Integrated
Development Environment, database management, report gen-
eration, and Graphical User Interface development. The system
has 3 MLOC, in 117 PowerBuilder libraries (packages). The
largest library is over 300 KLOC.

Some difficulties in the evolution of the system started to
appear, with increasing time to close issues and difficulty to
deliver new features to the clients in time. It was decided that
a change in development practices needed to be introduced.

In this section, we describe the state of practice in the
company before the introduction of changes. We divided the
practices into six categories: stand-up meeting, team organiza-
tion, development life cycle, code review, code quality, issue
management. We will discuss each of these in the following.

A. Stand-up meeting

The company used some kind of stand-up meetings for the
programming team. These meetings occurred twice a week
(Tuesdays and Thursdays). They took place in the morning.
Each programmer in turn would explain what he had done
the previous day, the problems encountered, and what he was
planning to do the following day.

These meetings allowed programmers to seek help from
their colleagues. But on the other hand, such help could turn
the stand-up meetings very lengthy as a particular issue was
discussed by two colleagues, leaving the others to wait.

B. Team organization

This study focuses on the people involved in the devel-
opment of the main product of the company, this includes a
customer management team, an analysis team, a programming
team, and a testing team.

The customer management team was in direct contact with
the clients, it received bug reports and enhancement request
from them. It formalized these demands in issues that are
called “tickets” in the company. It prioritized the tickets and
followed their development. Once a ticket was closed, the team
ensured the delivery of the product.

The analysis team totaled 4 analysts and was responsible
for analyzing tickets and writing specifications (functional or
non-functional) for the most complex ones (bug reports were

1https://www.appeon.com/products/powerbuilder
2https://en.wikipedia.org/wiki/Fourth-generation programming language

rarely analyzed by this team). The resulting specification was
formalized in a document attached to the ticket.

The programming team was product-oriented and totaled 15
programmers. They were responsible for implementing tickets
on a given product.

Finally, the testing team performed functional and non-
functional tests on the modified products. It included 8
testers. They performed functional tests on a product and
also specifically checked the tickets implemented against the
specifications from the analysis team.

This organization was the source of several difficulties:

• Programmers were reluctant to schedule meetings with
the analysis team to ask for more information (lacking
in the specification document) because of delays it intro-
duced. As a result, the solution proposed was not always
conform with the client expectations.

• The same issue occurred with the testing team that was
working on the ticket specification, thus sometimes testers
were unable to check what the client required. This would
result in corrections to the ticket requested from the client
and a lot of rework.

• Such corrections of a ticket by a client after delivery
meant coming back to a work done several weeks or
months before.

• Lack of communication between the teams caused ten-
sions and instances of the “blame game”.

• Tickets were estimated and assigned to specific program-
mers by the development manager. It came up in our
interviews that, as a result, programmers felt they were
dealing with one ticket after the other without a sense of
an overall direction or why the tickets were important.

• As new programmers were hired, it was more and more
difficult for the team manager to oversee the work of all
the members.

• Tickets had to be studied and re-scheduled at various
stages, first the analysis team, then the development team,
and the testing team. This resulted in delays (because
each team had its priorities) and work duplication.

C. Software development cycle

Development in the company was organized in cycles of
approximately three months. At the beginning of the cycle,
a set of tickets was selected to be resolved according to
their priorities and age. The tickets were assigned to available
programmers. At the end of each cycle, one major version
would be issued.

During the cycle, some urgent tickets (typically bugs, but
also small evolutions less than three man-days) would appear,
requiring a programmer to set aside his work to solve it. As
a consequence the planning was not respected, cycles did not
deliver all that was expected, causing frustration to the clients
and developers (who had to shift their focus from one ticket
to another). This would also introduce delays between a ticket
specification (analysis team), its implementation (development
team), and its testing (testing team).

2



D. Source code management

PowerBuilder imposes to store source code in a proprietary
format not easily handled by external tools. It supports version
control systems such as SVN or GIT only since 2017. For
these reasons, version control tools were never used on the
system studied. The source code was managed manually. The
product was versioned in patch-versions, major-versions, and
some client-specific versions. All versions were archived in
directories on the company intranet. There were a bit more
than 1000 versions when the study started. Versions before
2012 are completely lost.

Such practice resulted in several problems:
• Programmers relied on informal communication to avoid

working at the same time on the same parts of the code.
• Merging modifications was completely manual, often

using a generic file comparison tool like WinMerge.
• Changes were integrated into the “repository” by man-

ually copying code from the programmer version to the
“repository” version.

• When doing a change on several parts of the product,
programmers needed to keep a list of all impacted parts to
port them in the “repository” one by one later. Forgetting
one part would mean, the change was not completely
replicated in the “repository” and therefore the final
version was not correct.

• After a source code modification, the programmer had
to tag the modification with a special “property” in
PowerBuilder. Failing to do so could mean that somebody
else, unaware of the modification, would copy old source
code over the (untagged) new code in the “repository”.

• It was common practice to put a comment in the code to
describe the modification and the date and programmer
who did it. This could help debugging the code later.

E. Code quality

Periodic team code review meetings (in the development
teams) were organized to try to promote better code quality.
They occurred every two weeks and lasted about one hour.
Programmers were asked to prepare code snippets demon-
strating bad or good coding practices. They would then be
discussed to ensure homogeneity of coding.

The subjects discussed depended very much on what the
programmers had found and there would sometimes be very
little to discuss in a meeting, either due to lack of time, or
because programmers were not sure what would constitute a
“new and interesting” practice for their colleagues.

These meetings were often an occasion to remind all pro-
grammers of some basic programming rules in the company:
naming conventions for variables, use of a special “infinity”
constant, . . . However, many violations of these rules could
be found in the code. Programmers were supposed to correct
them when they found such violations, but it was rarely done
for lack of time.

Another action promoting code quality was set up for young
programmers: individual code review. They were systematic

when a new programmer joined the team, or when a seasoned
programmer worked on a new domain for the first time.

It must be noted that no unit testing tool or practice was in
place. Testing was performed manually by each programmer
on the code just developed.

F. Issue management

To perform any change on the system, a ticket is cre-
ated. It represents a unit of work. Tickets are stored in the
tickets’ database since 2000. The ticket database drives the
entire software process: assignment of work to programmers,
management of the workflow to answer a client request,
billing information about each task. There are tickets for fixing
defects, writing documentation, adding new features, etc.

Some data stored on tickets are: creation date; closing date;
time estimation to work on the ticket; time actually spent on
the ticket (to analyse it, to implement a solution, to test the
solution); programmer in charge, whether there was a follow-
up ticket, etc.

IV. PRACTICES MODERNIZATION ACTIONS

The management in the company understood that the sit-
uation was sub-optimal. Mainly, there were concerns about
the rhythm of deliveries (too slow), the predictability of new
features delivered, the adequacy of the delivery with the
clients’ needs, and the general quality of the code.

To improve the situation and resolve some of these issues,
in 2019 until now, the company started to introduce changes
in its practices. These actions tackle different aspects from
human resource to source code management: (1) daily stand-
up meetings, (2) development team re-organization, (3) better-
organized software development cycles, (4) source code man-
agement, (5) more systematic checking of code quality, and
(6) dashboard of tickets.

A. Stand-up meetings

At the beginning of 2020, the pre-existing stand-up meeting
practice was made more in accordance to recommendations
in agile development with daily meetings instead of twice a
week. It happens at the beginning of the day. Participants are
not only programmers (as before), but also some testers and
requirement analysts (see Section IV-B). The meeting is re-
focused to treat only the three questions (for everyone): what
was done the previous day; what problems were encountered;
and what were the plans for the present day. To keep the
meeting short (15 to 20 minutes), if a participant has an issue
that someone could help him solve, both are encouraged to
discuss it after the meeting.

The CTO would like to go further by relating the stand-
up meetings (micro perspective) to the objectives of the
development cycle (broader perspective, Section IV-C) thus
being able to check daily whether the team is still on track to
realize this objective. This was not implemented yet.

3



B. Team organizational change

A fundamental change was in the team structuring. This is
a normal consequence of modernizing software development
practices as stated by [1]. In the end of 2020, the company
reorganized the developers according to business domains, and
an additional team was created (the “run team”) to handle
small urgent issues.

As proposed in [6], teams are reorganized so that all
stakeholders in the company for a given business line are
grouped in one team including programmers, a Product Owner,
and a product QA. Two such teams were created.

Product Owner: the Product Owner responsibility is to
analyse and dispatch tickets to programmers. This includes
making sure that developments meet the clients’ requirements.

Product QA: The product QA main task is to perform
functional testing on new developments. He validates the
developments or reports regressions. This approach is qualified
as ”you build it, you run it” [6].

This reorganization allows programmers to be better inte-
grated to the source of evolutions (the Product Owner) and
the tester. It avoids misunderstandings and blame gaming.

“Run team”: This third team was created to handle
urgent demands. It handles only demands up to two man-days
work (bug fixing or evolution). This ensures that such demands
do not break the workflow of the other teams. To speed up
things, demands are not specified formally, but interactively
by a programmer and a customer manager.

The “run team” is composed of programmers, customer
managers, and a technical expert. Programmers rotate between
the “run team” and the two other teams. At first, they rotated
at each development cycle (see Section IV-C), but this made it
difficult to plan developments. Now, programmers rotate every
three development cycles.

C. Software development cycle

As explained in Section III-C, the company used develop-
ment cycles, but they were not formalized as recommended by
agile approaches. The main change introduced, at the begining
of 2020, was to have shorter cycles, of two weeks (10 working
days) instead of three months. This allowed the company to
better plan the cycles: 8 days are devoted to the development
and 2 days are kept to deal with the unexpected.

On the eve of each cycle, a planning meeting, lasting
about 1.5 hour, decides what tickets should be considered
for this cycle. Participants in the decision are the Product
Owner (for a given team), the customer manager, CTO and
the development manager. The decision is based on tickets
priority, and estimated working time.

Starting the cycle, there is a launch meeting, where the
tickets are discussed in the development team and assigned
to programmers. At the end of this launch meeting, each
programmer has a schedule of tasks for the cycle.

Closing a cycle, there is a retrospective meeting with the
development team, the CTO and the development manager.
The meeting lasts one hour and analyses the problems and
delays of the cycle and proposes solutions to them. The team

reorganization described in Section IV-B actually came as a
result of these retrospective meetings.

Differently from recommended agile practices, releases do
not occur at the end of each development cycle but keep the
old schedule: patch-release every week and “major” release
every three months.

D. Source code management

Another step in modernizing practices in the company was
the introduction of a version control system at the end of 2019.
This introduction faced two major challenges. The first one is
due to PowerBuilder, the programming language environment.
As explained in Section III-D, this technology did not have
software version management until relatively recently. And
this management still has some quirks. The second challenge
was that, as a natural consequence, programmers were not
familiar with the practice itself.

With these constraints, the company elected to introduce
the Subversion (SVN) version control system in 2019. For
programmers who had no previous knowledge of version
control management, SVN, with its central repository and local
working copies, was deemed easier to understand than more
recent (decentralised) tools like Git. Otte [14] does conclude
that SVN has a better user interface.

The company organised 8 hours of training for the devel-
opment team. Introducing SVN was not without difficulties:

• As must be expected, programmers were wary and reluc-
tant of changing their working habits. The Programmer
5 that had previous knowledge of SVN, acted as a
champion of the technology by helping his colleagues;

• Powerbuilder stores the source code in a binary format
(PBL files) whereas version control tools need text. This
forces programmers to commit both the binary (PBL) and
textual forms of the project in SVN. The binary form is
needed to be able to re-import a version in the IDE. The
textual form is needed for merging capabilities.

After 18 months of use there are 4639 commits in the SVN
repository and programmers are now convinced of its utility.

E. Code quality

Two actions were set up to promote code quality: manual
code reviews (see Section III-E), and automated code reviews
(static code analysis tool or “linter”).

Automated unit testing is seen as an other important practice
to introduce, but again the PowerBuilder technology creates
some roadblocks for this. To prepare programmers for this
next disrupting change, a linter (static code analysis tool)
was designed, in the begining of 2021, to check some simple
code quality rules. The idea was to accustom programmers to
have an automated tool checking their commits and warning
them of potential problems in their code. The hope is that
they will be more willing to adopt a testing tool and the
changes it will impose in their programming habit, once they
understand better the benefit they could get from it. At the
same time, a linter will also allow improving the source code

4



progressively, something that the existing manual code reviews
have difficulties to ensure.

At first, a simple rule checker was implemented with
nine in-house rules: five rules checking variable naming con-
ventions, rules on the maximum number of parameters of
functions, mandatory ElseCase in all ChooseCase (i.e.
switch) etc. This simple tool checks each commit and sends
an email to the committer for every new violation introduced
or every old violation removed.

F. Dashboard of tickets

To try to better monitor the development activity and the
possible gains resulting from the new practices, an analysis of
the tickets’ database is computed monthly and displayed in a
dashboard since the outset of the changes (2019).

The analysis collects information on:
• average time between opening and closing dates;
• average working hours spent on a ticket;
• average testing hours for programmers spent on a ticket;
• average testing hours for testers spent on a ticket;
• average difference between time estimated and spent on

a ticket.
The results of the analysis are presented in several graphs

on a web page on the intranet. Figure 1 presents some graphs
of the dashboard. Plots in red represent bug tickets (fix,
regression, etc.), plots in blue represent evolution tickets (new
features). Figure 1a shows average development time spent
on closed tickets, Figure 1b shows average time for closing
tickets. These figures will be commented in Section VI-B, they
are presented here as examples. This dashboard is updated
monthly, allowing to track the system changes over time.

G. COVID

As everywhere else, the COVID-19 pandemic imposed
drastic working changes on the company. Developers are
encouraged to work remotely, and most communication occurs
through video conferencing. This had consequences on the
practices described above. An important one being that the
stand-up meetings that were held in-person have switched to
remote meetings (see Section VI-B).

V. STUDY DESIGN

This paper presents an empirical study of modernizing soft-
ware development practices in a medium-sized company. The
study is conducted using two different research techniques:
interviews of stakeholders and data collection from the ticket
database or the commit history.

We conducted semi-structured in-depth interviews to iden-
tify how software development practices and their modernizing
are perceived by the people in the company. We conducted 17
interviews with people of varied responsibilities:

• Ten software programmers;
• A tester;
• The testing manager;
• A customer manager;
• Two analysts who are also Product Owners;

(a) programmer work time on closed tickets

(b) Lifetime of closed tickets (from opening date to closing
date)

Fig. 1: Tickets Dashboard

TABLE I: List of people affected by practices modernization.
Total work experience an seniority in the company in years.
Last column indicate participants in the interviews.

Team members Experience Seniority
Programmer 1 1 y. of Powerbuilder 1 y. 3
Programmer 2 12 y. of PowerBuilder 7 y. 3
Programmer 3 6 y. of Powerbuilder 6 y. 3
Programmer 4 10 y. of Powerbuilder 10 y. 3
Programmer 5 20 y. including Powerbuilder 3 y. 3
Programmer 6 22 y. of Powerbuilder 22 y. 3
Programmer 7 20 y. of Cobol & PLSQL 2.5 y. 3
Programmer 8 1 y. of PowerBuilder 1 y. 3
Programmer 9 2 y. of PowerBuilder 2 y. -
Programmer 10 1.5 y. of Powerbuilder 1.5 y. 3
Programmer 11 7 y. of PowerBuilder 7 y. 3
Programmer 12 11 y. 11 y. -
Dev. manager 7 y. as development manager 18 y. 3
CTO 19 y. of project management 2 y. 3
Tester 1 1 y. 1 y. 3
Tester 2 9 y. 9 y. -
Tester 3 15 y. 7 y. -

Testing manager 13 y. analysis & developments 3 y. 37 y. testing manager
Analyst 1 17 y. analysis & developments 9 y. 3
Analyst 2 23 y. analysis & developments 3 y. 3
Analyst 3 7 y. 6 y. -
Analyst 4 11 y. 11 y. -
Customer mangr 1 17 y. 17 y. 3
Customer mangr 2 9 y. 2.5 y. -
Customer mangr 3 2 y. 2 y. -

5



TABLE II: List of interview questions

Categories Members Practices Questions

Non-
Technical

A customer manager Software development cycle Are you aware of the introduction of this practice?
A Tester Team organization What does this practice consist of?
The testing manager Dashboard of tickets What was the situation before the introduction of this practice?
Analysts What is the situation now with the practice in place?

What improvement can you propose to this practice?

Technical

Developers Stand-up meeting Are you aware of the introduction of this practice?
The development manager Team organization What does this practice consist of?

Software development cycle What was the situation before the introduction of this practice?
Source code management What is the situation now with the practice in place?
Dashboard of tickets What improvement can you propose to this practice?
Code review
Linter

CTO

Stand-up meeting What does this practice consist of?
Team organization What was the situation before the introduction of this practice?
Software development cycle Why was it a problem?
Source code management How was the practice chosen?
Dashboard of tickets What were the implementation difficulties?
Code review What is the situation now with the practice in place?
Linter What changes did it bring better/less good?

What improvement can you propose to this practice?

• The development manager;
• The CTO.
Table I gives some data on all people impacted by the

practices modernization: their overall experience (in software
development related activities), their seniority in the company,
and whether they participated in the interviews.

Due to the COVID-19 pandemic and remote working,
some interviews were performed remotely. All interviews were
recorded to ease analysis and we asked consent of the partici-
pants for that. We also reassured participants on the anonymity
of their answers. Note that to promote this anonymity, all
interviewees are refereed to as “he” in the paper, even women.
Depending on participants, interviews lasted from 30 minutes
to 2 hours. The interviews followed a questionnaire were five
questions were asked for each of the practice considered.
Table II shows the questions and the practice considered for
each category of participants: CTO, technical personnel (pro-
grammers and the development manager), and non-technical
personnel (all other personnel). The CTO questionnaire was
different because, first, he is the initiator of many of the
practice changes (he knows the why) and, second, he is less
directly impacted by the changes since he does not take part in
the concrete development activities (analysis, coding, testing)
Interviewees were also asked how COVID-19 pandemic and
remote working impacted their work.

For analyzing the 17 semi-structured interviews, we fol-
lowed the Grounded Theory approach, a qualitative technique,
inspired by [9]. Grounded Theory is an exploratory research
method that aims at discovering new perspectives and insights,
rather than confirming existing ones [4].

After recording, interviews were transcribed and
anonymized. The transcripts were analyzed, with MAXQDA
[10], through coding (or labeling). Each transcript was broken
into a code database by assigning a label to the main idea
of sentences until saturation. Next we iteratively grouped
codes into concepts which are then organized by interview
questions.

Apart from the interviews, we also used factual data from
the tickets’ database, and commit history, to corroborate the
perception of the participants.

In the next section, we present the results of our study.

VI. RESULTS

In this section, we present the interviewees’ point of view
on the modernization actions initiated by the company.

A. Stand-up meeting

With meetings every other day (as it was before the
changes), there was less pressure to analyze the root cause
for delays. People used to answer the question “What did I
do?”, but did not always reflect on “What held me back?”.
Having the stand-up meetings every day forces to self-reflect
on the issues and their solutions. The Programmer 3 reports
that “Before, there was less pressure. We were supposed to say
what we were working on, and that was it. But now everyone
is forced to think about what him back. Because every day he
has to analyze his issues”

Some view it as a good way to organize their work (or
their day). It also creates an extra motivation to finish during
the day what was planned in the morning. This is a known
advantage of the daily meetings that meetings every two days
didn’t seem to bring.

The meetings are now more focused, the Programmer 5
states that they are no longer trying to solve technical problems
during the meeting, but focus on the three questions “What
did I do?”, “What held me back?”, “What will I do today?”.
Yet, several note that the meetings don’t always end after the
planned 15 to 20 minutes and are still not focused enough.
Another regrets that remarks are not always constructive.

In the old version, people tended to help each other during
the stand-up meeting, thus the time of the entire team was
“wasted” while two people might discuss a particular issue.
With more focused discussions, solving specific issues is left
to be discussed after the stand-up meeting.

6



One sole programmer expressed a strong negative feeling
about the former stand-up meetings (every other day), going
as far as saying he could feel humiliated. His opinion about
the new organization (every day) has improved in the sense
that it is now neutral.

Two programmers said that when working on big tickets,
telling every day the same thing is a bit redundant.

Impact of COVID-19: The meetings are now held re-
motely, using a kanban board collaborative tool (Trello for the
moment). But programmers note that these virtual meetings are
not as good, making informal communication more difficult
and leading to “a lack of motivation”. The Programmer 4 adds
that “we cannot know whether people are listening or not”.
Also, “at stand-up meetings where everyone has to talk, we
sometimes feel a lack of motivation due to the isolation of the
employees. This has a [negative] impact on the productivity
of the team.”

B. Team organizational change

The new organization in business-oriented teams is gener-
ally appreciated by the participants. The improved communi-
cation between programmers, testers, and analysts is perceived
as speeding up the feedback loops between them thus making
it easier for the programmers and testers to achieve their
goals. The Programmer 5 reports that “Now we have better
relationships with the analysts and testers. The advantage is
that the developers better understand the requirements and
that the tester knows what to test.”. The testing manager added
that “We deliver faster to the customer.”. The perceived result
is that tickets are closed faster and with more quality. We tested
this perception against actual data. This new organization is
only effective since the beginning of 2020, so it is too early
to have strong data on its effects. Figure 1 (part (a)) does
show a significant drop in the working time per ticket in
2020 and 2021, but 2019 was an especially bad year in this
sense. The lifetime of tickets (Figure 1, part(b)) did drop in
2020, but it went slightly up again for the first four months
of 2021. These data do not provide a clear confirmation. The
average number of tickets closed per programmer, Figure 2,
does show a rise from a low point of 42 in 2019 to 60 in
2020. Partial data on the first four months of 2021 (37 closed
tickets per programmer) are also very encouraging. Finally,
Figure 3 shows slightly higher percentage of return (rework)
on closed ticket in 2020 (17.6%) than in 2019 (14.4%).
That number then drops on the first four months of 2021
(9.9%). This data in encouraging for the quality of the closed
tickets. These numbers cannot be attributed solely to the new
team organization. All new practices may have impacted the
productivity of the programmers.

On the team new organization two problems were men-
tioned. First, the analysts ended up with more work, now
having to handle development cycle management (planning,
monitoring). Second, one of the two business teams sometimes
ends up being the team for “anything not for the first team” and
this makes it more difficult to manage. Yet the general opinion
remains that the advantages out-weight these two points.

Fig. 2: Number of closed tickets per programmer

Fig. 3: Return on closed tickets

“Run team”: It also received positive and negative per-
ceptions from the interviewees.

On the positive side, an analyst (not working on this team)
expresses that it eases the planning of the development cycles
(for the two other teams): “We have an entry point which
[. . . ] can handle [an urgent ticket] and it does not go to the
business teams. Therefore, planning [of the business teams] is
less impacted.” Two programmers feel that “[the run] team
won its spurs [. . . ] we see a lot of tickets solved. Even if it’s
small tickets, we can’t leave them out. And that satisfies the
clients.” Test management has a similarly good impression:
“programmers work more smoothly and have less change in
priorities.” Finally, the Programmer 1 says that “it allows one
to vary the work, which is interesting”.

However, programmers that actually work on this team
mention the difficulty, the stress, or even “a bit of a fear”,
to be on it (participation to the run team is rotating, see
Section IV-B). The main drawbacks mentioned are that (1)
the rotation implies programmers may not always have the
required competency to deal with an urgent ticket; (2) when
there is a ticket return, the original programmer may be back
on his business team and another one needs to take the ticket
and re-analyse it. Such problems rarely occur in the business
teams which have more permanent personnel.

There are also difficulties with the management of this
team: For example, the customer manager 1 reports that “the

7



difficulty right now is that, as programmers rotate every three
iterations, I don’t necessarily have the same skill levels [avail-
able]. So, I can’t give some tickets to some programmers due to
a lack of skills. This impacts my weekly goal.” Note, however,
that although it makes life more difficult for programmers,
this is intended by management as a strategy tending to global
ownership of the code.

Among possible improvements, people suggest that this
team should have permanent staffing (not rotating), but it is not
clear whether they actually meant that they would prefer being
permanently affected to their business team (which is seen as
preferable). Other programmers wished the “run team” would
be organized as the two other ones, with formals analysis of
the tickets, better planning of the development cycle.

Impact of COVID-19: With remote working, it can be
difficult for the programmers to get in touch with the customer
manager, and they sometimes end up having to do all the
analysis work alone. This is mostly felt for the run team where
no formal analysis is done on tickets and the intended setup
is that tickets are solved jointly between the programmer and
the customer manager. Remote working made this part more
difficult. Some programmers reports that“The benefits of the
“run team” is reduced because of slowness of communications
due to the COVID-19.”

C. Software development cycle
The change in the development cycle (from cycles of three

months to two weeks) is unanimously perceived as positive.
The benefits announced by interviewees are: client requests are
better managed; clients and developers have a better visibility
on the ongoing work and the feature to be delivered; planning
is better managed.

Despite all the positive aspects reported by participants,
some difficulties or drawbacks were reported as well: Time
pressure is still strong, Programmer 3 and 4 regret that with
short cycles there is no time for reflection or to apply good
practices. “The approach in cycles is not well-fitted for [the
company’s main product]. We have difficulties predicting how
long a ticket will take”. According to the Programmer 3, this
generates frustration “in relation to the announced goals at
the start of the cycle and what we actually achieve”. Another
point is that deliveries are not tied to cycles, so programmers
and analysts regret that “we have no visibility on the release
for which a ticket given should be treated”.

Impact of COVID-19: Interviewees did not raise any
special issue on development cycle due to remote working.

D. Source code management
The introduction of SVN for source code management is

almost unanimously perceived as a positive step. “It’s more
reassuring”.

But the change in working habits was difficult to put in
place: “It generated frustration, some people were reluctant
[. . . ] it did not ease the transition”.

The main drawback was and remains conflict resolution. As
explained in Section IV-D, PowerBuilder is not well suited for
file based version control systems.

Branching management in SVN is not considered as ad-
vanced as in other version control system such as Git. The
current organisation is to have only one branch (per delivered
version of the product). This implies that all commits are
pushed to the same branch and need sometimes to be later
removed if the commit is not part of a delivery. This causes
extra manual work. The solution envisioned to this problem is
to switch to Git version control management soon. This will
allow isolating tickets in specific branches and should ease the
integration work.

Impact of COVID-19: Interviewees did not see any
specific contribution of SVN to remote working. It would
seem natural that not having SVN would have made it more
difficult to synchronize work between the programmers, but
they explicitly stated that they did not see it that way.

E. Code quality

Upper management sees team code review (see Section
III-E) as a way to achieve team ownership of the entire
codebase (as opposed to author ownership on one’s code).

All programmers do not seem to entirely share that un-
derstanding. Newcomers do acknowledge this, a junior pro-
grammer regrets that “sometimes global code reviews are
cancelled when there is an urgent delivery to ensure” and that
“there should be more of them” (weekly). But more seasoned
programmers propose to have less of them (monthly). Their
point is that it is difficult to find something interesting to show
to the team every two weeks. Programmers reporte that “We
don’t always think to look piece code for code review when
we are coding, because we are often in a hurry.” Even if a
seasoned programmer acknowledges that it “allowed [him] to
reuse a function instead of recreating it” on one occasion.

Another critic is that these reviews are oral and people
forget the information shared after a while. One programmer
suggested keeping a written trace of these reviews.

Another proposal to renew the interest would be to organize
the team code reviews by business domain or software quality
domains (optimization, readability, ...), or to have exercise on
which everybody would work together (coding dojo).

The CTO is happy with the current practice, feeling that
“The overall code quality is improving.”.

Another action was taken to improve code quality: an in-
house “linter” for some rules (see Section IV-E). The linter
runs on every commit and reports, by email, added and
removed violations. Since its installation at the beginning of
2021, 178 commits resulted in an email with 48 positives
(violations removed) and 130 negatives (violations added).
On the main development branch, there were 76 emails, and
the number of rule violations went from 1113 to 669 (60%).
The tool was well-received both by programmers and the
development manager: “These emails force to fix the reported
errors little by little. Everyone does a small part, and it is less
burdensome. The positive emails after fixing errors are good”.

One aspect of this good perception might be that the rules
checked are in-house rules that are well known to all but
still with many violations. Past research [8] showed that

8



specific rules are better accepted than more generic ones. The
company is now considering switching to an external tool
(Visual Expert3) that would be more robust. Whether it will
be able to check the in-house rules should be an important
point in the decision.

Impact of COVID-19: Here again, the main impact was
that global code review meetings are held remotely. This is
generally seen as a drawback, but no special issue was raised
during the interviews.

COVID-19 had no impact on the in-house “linter”, first
because this action was initiated in 2021, and second, because
it is fully automated (upon commit to the SVN repository)
and communicates violations added or removed to the pro-
grammers by email.

F. Dashboard of tickets

The “dashboard of tickets” presents graphs similar to the
Figure 1. It was initially printed on a sheet of paper and
exposed in the open-floor office.

People feel that there is a lack of communication around this
tool. Some added that having better access to the dashboard
would improve their involvement in the new work processes as
it will give constant feedback. A developer proposed that the
dashboard should generate a report every three development
cycle (i.e., six weeks), and a report each year for evaluating
the impact of the new practices on productivity.

A slightly negative feeling was from a developer saying that
it is not a tool for developers but managers, and he does not
see any utility in it.

Impact of COVID-19: As noted above, the dashboard
used to be printed on a sheet of paper and exposed in the
open-floor office. When switching to remote work, no action
was taken to make this dashboard available from the intranet.
That may be an explanation for the lack of communication
that many noted.

VII. THREATS TO VALIDITY

This research is a case study aiming at raising questions
for future research. This has an impact on the kind of threats
to validity we faced. For example, we do not aim at offering
conclusions that would be easily generalized to other contexts.

To discuss the possible threats, we followed the four
perspectives of validity threats presented by [19]: construct
validity, internal validity, external validity and reliability.

Construct validity: Are we asking the right questions?
The questionnaire was built iteratively by two of the authors,
one making successive proposals and the other commenting
on it. The questionnaire consists in a series of questions (see
Table II) asked successively for each identified point of interest
(the practices). The CTO interview differed because he has a
very specific role, first as the main initiator of several of the
new practices, second as he does not take part in the concrete
development tasks.

3https://www.visual-expert.com/

Internal validity: Is there something inherent to how we
collect and analyze the data that could skew our findings? For
case studies, this kind of threat is a bit different than usual
because the goal is not to offer generalizable conclusions, but
to raise points of interest for possible future research.

We did aim to get a balanced view by including many dif-
ferent profiles in the interviews (CTO, development manager,
customer manager, analyst, programmer, tester). This covers
all the stakeholder roles in the development of software in
the company. We do acknowledge that our participants are in
majority programmers which could constitute a bias. But this
seems justified as it is a reflect of the actual demography of
the company and many development teams.

The interviews were semi-structured with open questions
to let participants come up with whatever comments they
felt relevant. We ensured participants of anonymity of their
answers. The interviews were conducted by the first author
which is known by all participants as he has been doing
research in the company for two years.

This author participated directly in the introduction of some
of the practices reviewed. He gave the 8 hours training on
SVN, implemented the ticket dashboard and the in-house lin-
ter. This could introduce a bias as people may have been wary
of expressing negative opinions on these practices. However,
we estimated that the trust relationship established with the
participants during these two years was enough to counter-
balance the possible bias while being important to get more
detailed answers.

We adopted the grounded theory approach to analyze the
interviews and refine our analysis iteratively to lessen potential
biases. When possible, we validated the impressions of the
participants (our findings) with empirical data.

External validity: Are our results generalizable for prac-
tices modernization? Our data collection is limited to one case
study and does not aim at being readily generalized.

Reliability: Can others replicate our results? Our inter-
view questions are available in Table II and we describe our
study design in Section V

VIII. CONCLUSION

This paper reports on an empirical study of the introduction
of several practices recommended in agile development in a
medium-sized company. Our study consists of semi-structured
interviews of 17 participants with different perspectives on
the development process: CTO, customer manager, analyst,
programmer, tester. The changes coincided with the COVID-
19 outbreak and the need to resort to remote working. We
attempt to empirically identify perceived benefits and draw-
back of agile practices introduced by the company. We also
validated some of these perceptions with hard data. Finally,
we identified the impact of COVID-19 on these practices.

Our findings include:
• Introduction of a version management tool (SVN) is

positively perceived, but the migration was difficult and
required more efforts than the other new practices;

9



• It must be noted that the technology used (PowerBuilder)
creates extra difficulties as the source code is stored in a
proprietary format and does not easily interact with, file
oriented, version control managers;

• Although unit testing has not yet been introduced, it is
planned for the near future and some initial experiments
(not reported here) were conducted. The first impres-
sion is again that PowerBuilder will impose additional
constraints with a difficulty to create viable context for
the tests without launching a full blown application. We
conclude that there are obsolete technologies, still very
much in use for legacy software, that makes it difficult
to adopt up-to-date recommended practices. Solutions
adapted to these technologies must be proposed to help
migrate to modern practices;

• Although the daily stand-up meetings are perceived as a
good practice, remote working had a negative impact on
it and lowered its advantages;

• It is important that daily stand-up meetings do occur
daily. Every other day meetings do not have the same
positive effects;

• Shorter software development cycles and team organiza-
tional changes are positive even during the COVID-19;

• The “run team” (specialized in answering short term
issues) received mixed opinions. It is acknowledged as
facilitating planning but programmers do not like being
part of it (membership is rotating);

• Management would like to introduce some level of team
ownership of the code as opposed to individual program-
mers owning their code. Actions like the “run team”
or team code reviews intend to achieve this. But these
actions are those least well-received by the developers.
We have no insight whether this is because they don’t
adhere to the long term goal, they don’t see how the
practices contribute to the goal, or some other reason;

• A “linter” was introduced to email programmers when
they commit code violating some in-house rule. It was
well-received by all. It is hoped that it will ease the
future introduction of unit testing and better continuous
integration. The positive reaction might be linked to the
fact that it checks in-house rules as opposed to generic
code quality rules [8].

REFERENCES

[1] Sarita Bassil and Rudolf K. Keller. Software visualization
tools: Survey and analysis. In Proceedings IWPC 2001,
pages 7–17, 2001.

[2] Kent Beck and Cynthia Andres. Extreme Programming
Explained: Embrace Change (2Nd Edition). Addison-
Wesley Professional, 2004.

[3] Lan Cao, Kannan Mohan, Peng Xu, and Balasubrama-
niam Ramesh. A framework for adapting agile develop-
ment methodologies. European Journal of Information
Systems, 18(4):332–343, 2009.

[4] Kathy Charmaz. Constructing grounded theory. sage,
2014.

[5] Roger Chen, Ramya Ravichandar, and Donald Proctor.
Managing the transition to agile product development —
-lessons from cisco systems. Academy of Management
Proceedings, 2015(1):11327, 2015.

[6] E. Dörnenburg. The path to devops. IEEE Software,
35(5):71–75, 2018.

[7] R. Hanslo and E. Mnkandla. Scrum adoption challenges
detection model: Sacdm. In 2018 Federated Conference
on Computer Science and Information Systems (FedC-
SIS), pages 949–957, 2018.

[8] Andre Hora, Nicolas Anquetil, Stéphane Ducasse, and
Simon Allier. Domain specific warnings: Are they any
better? In Proceedings of the 28th IEEE International
Conference on Software Maintenance (ICSM’12), pages
441–450, 2012.

[9] Ravi Khadka, Belfrit V Batlajery, Amir M Saeidi, Slinger
Jansen, and Jurriaan Hage. How do professionals per-
ceive legacy systems and software modernization? In
Proceedings of the 36th International Conference on
Software Engineering, pages 36–47, 2014.

[10] Udo Kuckartz and Stefan Rädiker. Analyzing qualitative
data with MAXQDA. Springer, 2019.

[11] Craig Larman. Agile and iterative development: a man-
ager’s guide. Addison-Wesley Professional, 2004.

[12] M Mahalakshmi and Mukund Sundararajan. Traditional
sdlc vs scrum methodology–a comparative study. Inter-
national Journal of Emerging Technology and Advanced
Engineering, 3(6):192–196, 2013.

[13] Sridhar Nerur, RadhaKanta Mahapatra, and George Man-
galaraj. Challenges of migrating to agile methodologies.
Commun. ACM, 48(5):72–78, May 2005.

[14] Stefan Otte. Version control systems. Computer Systems
and Telematics, pages 11–13, 2009.

[15] Cristiano Sadun. Scrum and Global Delivery: Pitfalls
and Lessons Learned. In Darja Šmite, Nils Brede
Moe, and Pär J. \Agerfalk, editors, Agility Across Time
and Space: Implementing Agile Methods in Global Soft-
ware Projects, pages 71–89. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[16] Ken Schwaber. Agile Project Management With Scrum.
Microsoft Press, USA, 2004.

[17] Darja Smite, Marius Mikalsen, Nils B. Moe, Viktoria
Stray, and Eriks Klotins. From collaboration to solitude
and back: Remote pair programming during covid-19,
2021.

[18] Pankaj Vohra and Ashima Singh. A contrast and compar-
ison of modern software process models. In International
Conference on Advances in Management and Technology
(iCAMT-2013), pages 23–27. Citeseer, 2013.

[19] Claes Wohlin, Per Runeson, Martin Höst, Magnus C
Ohlsson, Björn Regnell, and Anders Wesslén. Experi-
mentation in software engineering. Springer Science &
Business Media, 2012.

10


