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Abstract: 20 

Recruitment forecasting constitutes a major issue in population dynamics, especially in stock 21 

assessments. In many cases, high recruitment stochasticity thwarts the determination of a 22 
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stock-recruitment (SR) relationship. When no SR relationship is available, recruitments can 23 

be projected from past trends using methods such as the geometric means of the past 24 

recruitments. This approach implicitly assumes stability in upcoming years and might not be 25 

appropriate in the case of regime shifts. Recruitment forecasting is particularly critical when 26 

predicting fishing opportunities for recruitment fisheries. The fishery of glass European eels 27 

(Anguilla anguilla) is an example of a recruitment fishery. The French glass eel fishery, 28 

which is currently guided by two models to forecast upcoming recruitments and derive fishing 29 

opportunities, has failed to achieve management targets. This study develops new models that 30 

forecast glass eel recruitments without assumptions about the SR relationship, and with 31 

flexible assumptions about future recruitment evolutions. Tests based on multiple criteria 32 

found the best performance in a random slope model, which provides flexibility to track 33 

recruitment dynamics while balancing the interests of fisheries, management and 34 

conservation. This model has wide potential for trend projections in natural resource 35 

management, economics and other fields.  36 

Keywords: Recruitment forecasting, Bayesian stock assessment, random walk, multicriteria, 37 

European eel 38 

 39 

1 Introduction 40 

1.1 Recruitment: a key element in population dynamics 41 

 42 

Understanding and quantifying the renewal of populations is important, especially for 43 

exploited species, such as fish, for which renewal is a critical process in the sustainability of 44 

the fishery. Among the many ecological processes, such as mortality (both natural and 45 

anthropogenic) and biomass growth, the fishery population dynamics rely on recruitment, 46 



 
 

i.e., offspring resulting from reproduction that become harvestable by the fishery (Mangel et 47 

al., 2010). Fish recruitment is typically highly variable since it depends on both biotic (prey, 48 

predators) and abiotic factors (temperature, currents) (Maunder and Thorson, 2019; Miller et 49 

al., 2009; Myers, 1998; Subbey et al., 2014) and is sensitive to regime shifts (Ljunggren et 50 

al., 2010; Mueter et al., 2007; Perretti et al., 2017). In this context, recruitment modeling, 51 

and its temporal variation, plays a critical role in estimating future abundance and in setting 52 

biological reference points that guide sustainable harvesting (Cury et al., 2014; Maunder and 53 

Thorson, 2019; Subbey et al., 2014; Sydeman et al., 2018).  54 

 55 

1.2 Forecasting short-term recruitment 56 

 57 

Stock-recruitment (SR) relationships can be used to predict recruitments arising from 58 

a given spawning biomass (Beverton and Holt, 1993; Hilborn and Stokes, 2010; Ricker, 59 

1954). In practice, it is often difficult to discern the nature of an SR relationship and to 60 

estimate its parameters (Myers, 1998; Stocker and Noakes, 1988; Sydeman et al., 2018). 61 

Errors in the choice of such relationships can undermine the reliability of a fishery stock 62 

assessments (Hilborn and Walters, 2013; Maunder and Deriso, 2003; Myers, 2001; Plagányi 63 

et al., 2019).  64 

When no clear SR relationship has been established for a stock (ICES, 2003), 65 

forecasting recruitments generally requires making assumptions regarding recent and future 66 

trends. The geometric mean of recent recruitments is often used in such short-term 67 

recruitment forecasts (ICES, 2006; Needle, 2001). Environmental information (e.g., the use 68 

of an upwelling index) or the empirical coupling of environmental and biotic information 69 

can also improve forecasts (Needle, 2001). Since long-term temporal trends have been 70 



 
 

observed for many stocks (Gascuel et al., 2016; STECF, 2022), the use of methods not 71 

accounting for regime shifts could lead to potential biases in management recommendations. 72 

 73 

1.3 Recruitment fishery 74 

 75 

Assumptions about future recruitments are fundamental in the process of estimating 76 

fishing opportunities. They are even more crucial for a fishery exploiting the young of the 77 

year or juveniles, called a recruitment fishery, since fishing opportunity estimations directly 78 

depend on the reliability of these assumptions. 79 

 80 

1.4 Case study: the European eel (Anguilla anguilla) recruitment fishery 81 

 82 

The glass eel fishery of the European eel (Anguilla anguilla) is an example of a 83 

recruitment fishery (Briand et al., 2008; Dekker, 2003, 2002). The European eel is a 84 

facultatively catadromous species that reproduces in a unique spawning ground in the 85 

Sargasso Sea (Wright et al., 2022). European eel larvae are transported across the Atlantic 86 

Ocean through oceanic currents and metamorphose into glass eels as they reach the 87 

continental shelves from Norway to Morocco, including the Mediterranean and Baltic basins 88 

(Tesch, 2003). The arrival of glass eels in the continental waters compels recruitment. The 89 

eels enter the continental waters, turning into yellow eels, and colonize a large range of 90 

habitats from saline to fresh water (Arai and Chino, 2012; Daverat et al., 2006). After a 91 

growth phase, they metamorphose into silver eels and migrate back to the spawning ground 92 

(Righton et al., 2016). Despite its large distribution area, the European eel is panmictic (Als 93 

et al., 2011). The species is targeted by commercial and recreational fisheries throughout its 94 

continental life stages (Dekker, 2019).  95 



 
 

Glass eel recruitment declined by approximately 15% per year from 1980 to 2010, 96 

remaining at a low level (Dekker, 2019; ICES, 2022; Moriarty, 1990). In 2000, the fishery 97 

was declared outside safe biological limits due to impaired recruitment and threatened stock 98 

renewal (ICES, 2001). The European eel was added to Appendix II of the Convention on 99 

International Trade in Endangered Species of Wild Fauna and Flora in 2007 (CITES, 2007) 100 

and has been listed as critically endangered by the International Union for Conservation of 101 

Nature since 2008 (Freyhof and Kottelat, 2008). In 2007, the European Council adopted 102 

Regulation No. 1100/2007, known as the Eel Regulation, requiring member states to 103 

establish Eel Management Plans (EMPs) in their national waters that aimed at reducing 104 

anthropogenic mortalities at all life stages (EU, 2007). The French EMP goal was to reduce 105 

mortality by 40% (glass eel) or 30% (yellow and silver eels) in the first three years of the 106 

plan, and by 60% by 2015 for each stage mentioned previously (the harvest rate being used 107 

to quantify the mortality). To reduce the fishing mortality of glass eels, France enforced 108 

measures including a national glass eel Total Allowable Catch (TAC) system for commercial 109 

fisheries (Ministère de l’Ecologie, de l’Energie, du Développement durable et de 110 

l’Aménagement du Territoire et al., 2010). In the absence of an established SR relationship, 111 

the Scientific Committee uses two recruitment models based on past abundance indices to 112 

forecast upcoming recruitments to support the determination of a glass eel TAC that will 113 

produce the needed reduction in anthropogenic mortality (Beaulaton et al., 2020). However, 114 

the management target has not been achieved since 2015, questioning the quality of these 115 

short-term forecast models and their underlying assumptions.  116 

 117 

1.5 Devising and comparing short-term recruitment forecast models 118 

 119 



 
 

Devising recruitment models that are robust to departures from their underlying 120 

assumptions is a key challenge (here, we used “robustness” as defined by Box (1979), i.e., 121 

the property that makes model outcomes insensitive to departures from ideal assumptions). 122 

In the context of an undefined SR relationship and past recruitment knowledge, this paper 123 

proposes two new recruitment models with flexible recruitment evolution assumptions to 124 

produce robust short-term recruitment forecasts. Furthermore, this work presents a model 125 

comparison strategy based on new criteria for assessing the implications of model outcomes 126 

for conservation, management and exploitation. This work is undertaken through a 127 

recruitment fishery case study: the European eel (Anguilla anguilla) recruitment fishery. 128 

 129 

2 Material and Methods 130 

 131 

In this work, we considered ourselves to be in the position of the Scientific Committee 132 

of 2020, which met during summer 2020 and was in charge of providing advice for the 2020-133 

2021 fishing season. 134 

 135 

2.1 Glass eel fishery data 136 

 137 

2.1.1 Recruitment time series 138 

 139 

Using recruitment time series collected from widely distributed monitoring sites and 140 

due to varying regional time series trends in these series, the Working Group on Eels 141 

(WGEEL) uses a General Linear Model (GLM) to derive two glass eel recruitment indices, 142 



 
 

the “North Sea” and “Elsewhere Europe” (i.e., Europe excluding the North Sea and Baltic 143 

Sea) indices from 1980 to 2019 (ICES, 2022; ICES and EIFAC, 2010). The reconstructed 144 

values are given in reference to the geometric mean of the period 1960-1979. While these 145 

recruitment indices are considered to be good indicators of the population status, the complex 146 

ecology of the species hinders the derivation of abundance indices at later life stages, 147 

including spawning stock biomass (Drouineau et al., 2016; ICES, 2022). As such, while 148 

recruitment trends are well documented, attempts to fit SR relationships have not been 149 

successful (Dekker, 2004; ICES, 2013). Since the “Elsewhere Europe” index covers France 150 

and includes several French time series (ICES, 2022), it is thought to describe past evolution 151 

recruitments in France. Therefore, it was used as a recruitment estimate in this study (Fig. 1). 152 

Since the Scientific Committee focuses on the 1980-2019 recruitment period to make its 153 

forecast consistent with their model assumptions, the dataset is restricted to the post-1980 154 

time range. The 1980 recruitment value is taken as a reference value and set at 100, so 155 

upcoming annual recruitments are calculated as a percentage of this reference value. Since 156 

glass eels reach continental French waters between November and April (ICES, 2020), the 157 

annual recruitment is spread over two calendar years (e.g., glass eel arrivals between 158 

November 2018 and April 2019, also called season 2019). For simplicity, season “t” refers to 159 

the season spread over years t-1 and t.  160 

 161 



 
 

 162 

Fig. 1. Recruitment estimates used in this study: the “Elsewhere Europe” recruitment index 163 

from 1980 to 2019 (ICES WGEEL 2019); it uses base 100 for the 1980 season. 164 

 165 

2.1.2 Landing data 166 

 167 

French glass eel landing data reported to the WGEEL from 1980 to 2020 were used 168 

(catches from 2009 were missing). The harvest rate corresponds to the annual ratio between 169 

landings data and recruitment. Since recruitment is a relative index (i.e., a dimensionless 170 

variable rather than an absolute estimate of abundance or biomass), the ratio of the landings 171 

data and the recruitment index gives a relative harvest rate index, with a mean reference 172 

harvest rate index calculated over the period 2004-2008 and defined as the 100 baseline 173 

(Beaulaton et al., 2020). 174 

 175 

2.2 Recruitment forecasting models 176 

 177 



 
 

2.2.1 General principle 178 

 179 

In France, the Scientific Committee in charge of recommending TACs for the forthcoming 180 

t+1 fishing season generally meets in early summer t. At this point, recruitment data are 181 

available up to season t-1 (since fishing season t is not yet finished). Therefore, the Scientific 182 

Committee needs to forecast recruitments for seasons t and t+1 to support fishing 183 

opportunities for season t+1. To provide first insights on the recruitment level of the ongoing 184 

season t, the Scientific Committee collects qualitative feedback from professional fishermen, 185 

associations in charge of on-field scientific monitoring of diadromous fish, environmental 186 

inspectors, and foreign scientists. This qualitative information allows building minimum and 187 

maximum recruitment values for fishing season t as compared to the previous season, which 188 

are then used as a censor interval in Bayesian forecasting models. In accordance with the 189 

general pattern observed by the Scientific Committee, and since the 2020 season is 190 

uncompleted, recruitment in 2020 is equivalent to recruitment in 2019 (e.g., 5.3) but with a 191 

substantial uncertainty interval (e.g., 5.3 ± 3) (Beaulaton et al., 2020). Based on the WGEEL 192 

“Elsewhere Europe” recruitment index from 1980 to 2019, and on the qualitative expert 193 

feedback for 2020, the recruitment models are able to forecast the upcoming recruitment.  194 

 195 

2.2.2 Existing glass eel recruitment models: single-trend and two-trend models 196 

 197 

 Modeling framework  198 

 199 

To forecast glass eel recruitment, two models fitted in a Bayesian framework have been 200 

developed by the Scientific Committee and have been in use since 2014. Both models have a 201 



 
 

yearly time step (Beaulaton et al., 2020). They are fitted to the WGEEL “Elsewhere Europe” 202 

recruitment index from 1980 to 2019, considering the censor season for 2020.  203 

 204 

 Introduction of the two existing recruitment models 205 

 206 

This first recruitment model, called the single-trend (ST) model, postulates that 207 

recruitment changes exponentially at a constant rate. Thus, recruitment is assumed to vary 208 

linearly with a unique slope coefficient a in the log scale. Perturbations are autocorrelated in 209 

time to reflect the fact that recruitment above the decreasing central trend is generally 210 

followed by recruitment above the central trend (Beaulaton et al., 2020): 211 

 212 

1 For t in [1980; 2022], 𝐼𝑅𝑡 ∼ 𝐿𝑛(𝜇𝐼𝑅𝑡
, 𝜎𝐼𝑅

2 ) 213 

 𝜇𝐼𝑅𝑡
= 𝜇𝐼𝑅0

+ 𝑎. 𝑡 + 𝜌. 𝜀𝑡 214 

𝜀𝑡 = 𝑙𝑜𝑔(𝐼𝑅𝑡−1) − [𝜇𝐼𝑅0
+ 𝑎. (𝑡 − 1)] 

 215 

where IRt  is the recruitment index for year t that follows a lognormal distribution of mean 𝜇𝐼𝑅𝑡
 216 

and variance 𝜎𝐼𝑅
2  (log scale). 𝜇𝐼𝑅0

 is an initialization parameter, a is the recruitment slope, εt  is 217 

the annual autocorrelated random disturbance and ρ is its autocorrelation coefficient.  218 

 219 

Due to a possible change in trends in recent years (ICES, 2019), the Scientific Committee 220 

proposed an alternative recruitment model in 2014. This model postulates a change in the 221 

recruitment trend in 2012, as it is the first year in which the implementation of EMPs could 222 

have had an effect on recruitment (Beaulaton et al., 2020). Two recruitment slopes a1 (before 223 

2012) and a2 (since 2012) are considered. The two-trend (TT) model is defined as follows: 224 

 225 



 
 

2 For t in [1980; 2022], 𝐼𝑅𝑡 ∼ 𝐿𝑛(𝜇𝐼𝑅𝑡
, 𝜎𝐼𝑅

2 ) 226 

For t < 2012 (time period 1), 𝜇𝐼𝑅𝑡
= 𝜇𝐼𝑅0

+ 𝑎1. 𝑡 + 𝜌. 𝜀𝑡1
 227 

 𝜀𝑡1
= 𝑙𝑜𝑔(𝐼𝑅𝑡−1) − [𝜇𝐼𝑅0

+ 𝑎1. (𝑡 − 1)] 228 

 229 

For t ≥ 2012 (time period 2), 𝜇𝐼𝑅𝑡
= 𝜇𝐼𝑅2011

+ 𝑎2. (𝑡 − 2011) + 𝜌. 𝜀𝑡2
 230 

𝜀𝑡2
= 𝑙𝑜𝑔(𝐼𝑅𝑡−1) − [𝜇𝐼𝑅2011

+ 𝑎2. (𝑡 − 2011)] 

 231 

 232 

The variables are similar to the ones in the ST model (Equation 1). Then, 𝜀𝑡1
and 𝜀𝑡2

 233 

represent annual autocorrelated random disturbances depending on time periods (before or 234 

after 2012), and ρ is the common autocorrelation coefficient. Models currently used to support 235 

glass eel TAC recommendations are innovative because of their integration of a long-term 236 

trend and a possible regime shift with the TT model. However, because of their rigid 237 

underlying assumptions on recruitment future evolution, both model outcomes critically 238 

depend on whether a regime shift occurred and whether it took place in 2012. Moreover, the 239 

TT model is open only to a regime shift in a specific year and not to any other regime shift. 240 

 241 

2.2.3 Development of alternative glass eel recruitment models: the spike and slab model 242 

and the random slope model 243 

 244 

Two new models were developed to address the limitations of the existing models.  245 

 246 

2.2.3.1 Spike and slab model 247 

 248 



 
 

In contrast to the TT model, the spike and slab (SS) model aims to objectively test for the 249 

existence of a change in slope in 2012. 250 

 251 

 The spike and slab method 252 

The spike and slab method is a Bayesian selection technique to identify the most 253 

relevant predictors of interest (George and McCulloch, 1993; Ishwaran and Rao, 2005; Titsias 254 

and Lázaro-Gredilla, 2011). It relies on a specific mixture of priors based on a binary 255 

indicator called 𝛾, which quantifies, a posteriori, whether the variable of interest should be 256 

included in the model (George and McCulloch, 1993). 257 

 258 

 Spike and slab model formulation 259 

The spike and slab prior appears suitable for objectively assessing the existence of a 260 

change in the recruitment slope: it provides insights into whether a slope change actually took 261 

place in 2012. Similarly to the TT model (Beaulaton et al., 2020), a potential slope change is 262 

assumed to occur in 2012 in the SS model. A new variable diffa was introduced as the 263 

difference between the two slopes a2 and a1:  264 

 265 

3 𝑑𝑖𝑓𝑓𝑎 = 𝑎2 − 𝑎1  266 

 267 

Instead of setting the priors to a1 and a2 (as in the TT model), we set the priors to a1 and 268 

diffa:  269 

  270 

4 𝑑𝑖𝑓𝑓𝑎 ~ 𝑁(0, 𝜎𝑑𝑖𝑓𝑓𝑎

2 )  271 

 𝜎𝑑𝑖𝑓𝑓𝑎

2 = 𝑐. (1 − 𝛾) + 𝑑. 𝛾 with c = 1.10
-4

 and d = 3.10
-2

 272 

 𝛾 ~ 𝐵𝑒𝑟(0.5) 273 



 
 

 274 

𝛾 is a binary value; when set to 0, the diffa prior is narrow at approximately 0, so a2 is 275 

constrained to be similar to a1; when set to 1, the resulting prior promotes diffa distinct from 0, 276 

so a2 is distinct from a1. Parameters c and d tune the mixture of the two normal distributions 277 

of the different priors. Following Ishwaran and Rao (2005), they were chosen to provide 278 

sufficiently distinct probability distributions to distinguish slope changes from slope 279 

conservation. A sensitivity analysis is provided in the Supplementary Material. Posterior 280 

distributions of 𝛾 and diffa indicate whether the slope change should be included (mean of the 281 

𝛾 posterior distribution ≃1 and diffa ≠ 0) or not (majority of 𝛾 = 0 and diffa close to 0). With 282 

such priors, the SS model is the combination of the a posteriori distribution relative weights 283 

of situations where γ = 0 (equivalent to the ST model) or γ = 1 (equivalent to the TT model), 284 

and the ST and TT models are two subcases of the SS model. 285 

 286 

2.2.3.2 The random slope recruitment model 287 

 288 

The TT and SS models allow a change in the recruitment trend in a single specific year 289 

or no changes at all. An alternative option is to consider the recruitment slope as a time-290 

varying random variable. Local linear trend models are widely used to model and predict 291 

macroeconomic time series (Delle Monache and Harvey, 2012). In such models, the slope is 292 

itself a time-varying random variable following a random walk. Therefore, the random slope 293 

(RS) model is defined as follows: 294 

 295 

5 For t in [1980;2022] , 𝐼𝑅𝑡  ~ 𝐿𝑛(𝜇𝐼𝑅𝑡
, 𝜎𝐼𝑅

2 ) 296 

 𝜇𝐼𝑅𝑡
= 𝜇𝐼𝑅𝑡−1

+ 𝑎𝑡 + 𝜂𝑡 with 𝜂𝑡  ~ 𝑁(0, 𝜎𝜂
2) 297 

 𝑎𝑡 = 𝑎𝑡−1 + 𝛿𝑡 with 𝛿𝑡  ~ 𝑁(0, 𝜎𝛿
2) 298 



 
 

 299 

where IRt  is still the recruitment index for year t that follows a log normal distribution of 300 

parameters  𝜇𝐼𝑅𝑡
 (mean in the log scale) and 𝜎𝐼𝑅

2  (variance in the log scale). Then, 𝜇𝐼𝑅𝑡
 is 301 

assumed to be centered around its previous value, plus a slope 𝑎𝑡 and a random noise ηt. The 302 

slope 𝑎𝑡 itself follows a random walk, with random noise 𝛿𝑡. It can be demonstrated that 𝜎𝛿 303 

(variance of the noise of the mean changes) and 𝜎𝜂 (variance of the noise of the slope random 304 

walk) are redundant, and as such, estimating both parameters can lead to idenfiability issues 305 

(Cole, 2020; Schnute, 1994). Here, we assumed that  𝑞𝛿 = (𝑞𝜂 / 2) 2. By doing so, the model 306 

is then equivalent to a commonly used double exponential smoothing (Harvey, 1986) and 307 

yields robust predictions (Delle Monache and Harvey, 2012). The ST, TT and SS models are 308 

special cases of this more generic RS model.  309 

 310 

2.3 Bayesian inference and priors  311 

 312 

The Bayesian models were fitted using JAGS (Plummer, 2003). We used the runjags 313 

package as an interface between R and JAGS (Denwood, 2016). Uninformative priors were 314 

used for most parameters (Table 1). Three chains were run in parallel for 200,000 iterations 315 

with a thinning period of ten after a burn-in period of 200,000 iterations. Model convergence 316 

was checked using Gelman tests (Gelman and Rubin, 1992) and with graphical verifications 317 

by traceplots.  318 

 319 

Table 1. Priors on the models (“ST”: Single-trend; “TT”: Two-trend; “SS”: Spike and slab; 320 

“RS”: Random slope) parameters and the number of associated equations (“Eq.”). 321 



 
 

 
Variables 

ST 

(Eq. 1) 

TT 

(Eq. 2) 

SS 

(Eq. 4) 

RS 

(Eq. 5) 

1 𝝁𝑰𝑹𝟎
 N(0,0.01) 

2 𝝈𝑰𝑹 Gamma(0.01,0.01) 

3 ρ U(-1,1)  

4 η N(0,1) 

For t in [1980 ;2022], 

ηt ~ N(0,𝜎𝜂
2) 

2 𝝈𝜼    Gamma(0.01,0.01) 

6 a N(0,0.01)   N(0,0.01) 

7 a1  N(0,0.01)  

8 a2  N(0,0.01)   

9 diffa   N(0, 𝜎𝑑𝑖𝑓𝑓𝑎

 2
)  

10 γ   Ber(0.5)  

11 δt    
For t in [1980 ;2022], 

δt ~ N(0, 𝜎𝛿
2) 

12 𝝈𝜹    𝜎𝛿 = (𝜎𝜂
2 / 𝜎𝐼𝑅) ∗ 0.5 

 322 

2.4 Model comparison strategy 323 

 324 

2.4.1 Deviance Information Criterion to assess model fitting quality 325 

 326 

The Deviance Information Criterion (DIC), a Bayesian version or generalization of the 327 

Akaike Information Criterion, quantifies the trade-off between goodness of fit and model 328 

complexity (Spiegelhalter et al., 2002). The DIC is one of the most widely used criteria to 329 

assess the performance of Bayesian models (Gelman et al., 2014). The DIC was calculated 330 

through 200,000 iterations with a thinning period of ten for each model. Like the AIC, the 331 



 
 

DIC assesses the capacity of the model to predict observed data and, as such, quantifies the 332 

hindcasting capacity of the model. However, it does not assess the forecasting ability of a 333 

model, which is necessary to underpin robust stock management advice (Kell et al., 2021). 334 

 335 

2.4.2 Assessing model forecasting performance through a simulation exercise 336 

 337 

Assessing the predictive capacity of the models requires a dataset in which the “true” 338 

recruitment is known and can be compared to model forecasts. In this context, we carried out 339 

a simulation exercise to generate artificial “surrogate” datasets. 340 

 341 

 Generating surrogate recruitment time series 342 

 343 

Three scenarios were used to simulate surrogate recruitment time series from 2020 to 344 

2030. To simulate the declining recruitment in Scenario 1, we used the ST model to construct 345 

a forward recruitment index series from 2020 to 2030. The TT model enabled the generation 346 

of a forward recruitment time series for Scenario 3 to replicate an increasing recruitment trend 347 

since 2012. Finally, Scenario 2 was an intermediate situation between Scenarios 1 and 3. The 348 

future recruitment of Scenario 2 was simulated by the TT model with diffa set as the 349 

difference between the median(a2) and median(a1) (both estimated by the TT model), which 350 

equates to diffa close to 0. Thus, Scenario 2 roughly assumes stable recruitment. For each 351 

scenario, 2,000 “observed” recruitment time series were generated (Fig. 2, Part 1). 352 

 353 

 Fitting the model to the simulated recruitment time series 354 



 
 

Each model was fitted to the simulated recruitment time series up to season t according to 355 

the following iterative algorithm, mimicking the process of the Scientific Committee (Fig. 2, 356 

Parts 2 and 3): 357 

 For each Scenario s from 1 to 3 358 

 For each time series i from 1 to 2,000 359 

 For each model m from 1 to 4 360 

 For each year t from 2020 to 2029 361 

o The combination of the WGEEL time series (from 1980 to 2019) and the 362 

simulated recruitment from 2020 to t-1 is used as input data (for t = 363 

2020, only the WGEEL time series is used). 364 

o The censor interval for recruitment t is set as the value at time t-1 ± 3 (to 365 

reproduce the management task). 366 

o The model m forecasts recruitment in t+1, and this forecasted value is 367 

compared with the corresponding “observed” value (i.e., from the 368 

simulated recruitment time series). 369 

 370 

This process generates recruitment forecasts from 2021 to 2030. All the recruitment 371 

models were fitted to the three recruitment scenarios. For this prospective analysis, one chain 372 

was run with 5,000 iterations with a thinning period of ten, resulting in 500 samples (after a 373 

burn-in period of 10,000 iterations for the ST, TT and SS models, and 200,000 iterations for 374 

the RS model to ensure convergence, since it has many more parameters). These parameters 375 

were applied to the three scenarios.  376 

 377 

 Quantifying model forecasting performances  378 

 379 



 
 

The forecasting performance of each model was evaluated by calculating Percent BIAS 380 

(PBIAS) (Gupta et al., 1999). The PBIAS indicates whether the model tends to overestimate 381 

(negative PBIAS) or underestimate (positive PBIAS) compared to “observed” recruitment 382 

indices, where 0 is the optimal PBIAS value.  383 

For a Scenario s (1:3), a simulated recruitment index series i (1: 2,000), a model m (1:4), 384 

and a year t (2021:2030), an annual PBIAS is calculated by comparing the yearly “observed” 385 

recruitment IRobs with the median of the posterior distribution estimated by the forecasting 386 

model q50(IRsampled). We therefore obtain 20,000 PBIAS values (2,000 simulated recruitment 387 

trajectories*10 years) per model for each scenario (i.e., 20,000*4*3 PBIAS values in fine) 388 

(Fig. 2). Therefore, PBIAS is calculated as follows: 389 

 390 

𝑃𝐵𝐼𝐴𝑆𝑠,𝑚,𝑖,𝑡 =
 𝐼𝑅𝑜𝑏𝑠 𝑠,𝑖,𝑡 −  𝑞50(𝐼𝑅𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑠,𝑖,𝑚,𝑡)

𝐼𝑅𝑜𝑏𝑠 𝑠,𝑖,𝑡
 × 100 

 391 

 392 



 
 

 393 

Fig. 2. Diagram showing the quantification of the forecasting performance through the 394 

calculation of PBIAS and its different steps (from 1 to 4). 395 

 396 

 Quantification of the risk for exploitation, resource and management: three 397 

comparison criteria 398 

 399 



 
 

For each model fit (i.e., a combination of a simulated time series and a recruitment 400 

model), we set the annual TAC by multiplying the target harvest rate by the median of the 401 

posterior distribution of the forecasted recruitment q50(IRsampled). Tests were also carried out 402 

with quantiles of 25% and 75% and are presented in the Supplementary Material. We also 403 

calculated the corresponding catch at the management target (i.e., the target harvest rate 404 

multiplied by the “observed” recruitment IRobs) (Fig. 3, Step 4a). 405 

The application of recruitment forecasting models affects species conservation, the glass 406 

eel fishery, and compliance with management objectives. We developed quantitative criteria 407 

to compare model performance with respect to these effects (Fig. 3, Step 4b). For each 408 

scenario, each model and each simulated recruitment time series, we computed the annual 409 

average predicted catch TAC over the period 2021-2030, representing the Fishery criterion. 410 

Then, the proportion of years in which the management target was met from 2021 to 2030 411 

(years with predicted catch TAC < catch at the management target) was used as the 412 

Management criterion. The quantity of glass eels saved if a given model is chosen, 413 

representing the Conservation criterion, is computed as the annual mean of the difference 414 

between the highest predicted TAC among the models and the predicted TAC of the 415 

considered model over the period 2021-2030.  416 

 417 



 
 

 418 

Fig. 3. Diagram showing the quantification of the forecasting performance through the 419 

simulation exercise: Total Allowable Catch calculation (Step 4a) and comparison criteria 420 

calculation (Step 4b) (see Fig. 2 for previous steps). 421 

 422 

3 Results 423 

 424 



 
 

3.1 Evolution of the recruitment slope over time depending on models 425 

 426 

When comparing strictly declining recruitment slopes (i.e., coefficient distributions < 427 

1), the ST model tends to estimate the lightest declining trend compared to the TT and SS 428 

declining trends (the ST median recruitment slope is superior to other medians; Fig. 4). For 429 

both the TT and SS models, recruitment declines during the first period (a1 strictly inferior to 430 

1), while the recruitment trend evolution during the second period is unclear (since 1 is within 431 

the 95% credibility interval of a2 and corresponds to stable recruitment). Recruitment slopes 432 

a1 and a2 are distinct for the TT model, while the 95% confidence intervals of the two time 433 

periods overlap for the SS model. The TT and SS models also differ by a larger amplitude of 434 

the 95% credibility interval for the SS model compared to the TT model during time period 2. 435 

These results arise from the fact that the SS model is constructed as a mixture of cases 436 

rejecting or considering a change in slope between the two time periods, with 7.6% of cases 437 

not considering a change in the recruitment slope (according to δ posterior distribution). 438 

 439 



 
 

Fig. 4. Annual recruitment slope coefficients a (in linear scale). The letters and colors account 440 

for the recruitment models. The numbers “1” and “2” account for time periods (1: 1980-2011; 441 

2: 2012-2022; when no time period is assigned, the value is estimated through the entire time 442 

period, i.e., 1980 to 2022). Dashes represent q2.5, q50 and q97.5. 443 

 444 

For the RS model, the yearly varying random slope posterior distributions are mainly 445 

(q50 and q75) below 1 (and strictly below 1 in 2001) until the mid-2000s, suggesting a 446 

declining trend (Fig. 5). After a q50 increase between 2005 and 2013 in favor of an increase 447 

in recruitment, there is no clear trend in the most recent years, with later posterior 448 

distributions approximately 1. The mean and median recruitment slopes over the time series 449 

are 0.9, representing a decrease of 8% in recruitment each year (on a linear scale). 450 

Unsurprisingly, the forecasted slopes (for the 2020, 2021 and 2022 seasons) have larger 451 

credibility intervals than the other models. 452 

 453 

Fig. 5. Evolution of the annual recruitment slope over time according to the RS model. Black 454 

line and dots: q50; the darker ribbon: the 50% credibility interval; the lighter ribbon: the 95% 455 

credibility interval. 456 



 
 

 457 

3.2 Model performance 458 

 459 

3.2.1 Deviance Information Criterion  460 

 461 

According to the DIC, the TT and SS models outperform the ST model (Table 2). 462 

However, the RS model outperforms them despite its greater complexity.  463 

 464 

Table 2. The Deviance Indicator Criterion value according to the recruitment model (“ST”: 465 

Single-trend; “TT”: Two-trend; “SS”: Spike and slab; “RS”: Random slope) 466 

Recruitment model ST TT SS RS 

DIC 249.9 251.0 255.1 238.9 

 467 

 468 

3.2.2 Error in recruitment estimations depending on model and scenario 469 

 470 

The models mainly overestimate recruitment in Scenario 1 (The PBIAS values are 471 

mostly negative) and underestimate recruitment in Scenario 3 (The PBIAS values are mostly 472 

positive) (Fig. 6). The results are less obvious for Scenario 2; the ST and RS models 473 

underestimate recruitment, while the TT and SS models overestimate recruitment. 474 

Unsurprisingly, the ST and TT models perform particularly well in scenarios in which they 475 

were used to simulate the data. 476 

Interestingly, while the PBIAS distributions vary among models, and for each model 477 

among the scenarios, the boxplot distribution pattern remains similar across the scenarios, 478 

namely the ST model, the RS model, the SS model and the TT model in order of decreasing 479 



 
 

PBIAS values. Across scenarios, the RS model appears to be the least biased model (The 480 

PBIAS oscillating by approximately 0) (Fig. 6A) and underestimates recruitment by 6.7% 481 

(median(PBIAS) over all the scenarios; closest value to 0 among models) (Fig. 6B).  482 

 483 

 484 

Fig. 6. Boxplots presenting the PBIAS for the four models through the three scenarios (A) or 485 

combining all scenarios (B) (“ST”: Single-trend; “TT”: Two-trend; “SS”: Spike and slab; 486 

“RS”: Random slope). The outliers are not displayed for better readability but are considered 487 

in the calculation of values (such as median) (strategy q50). 488 

 489 

The RS model behaves in a similar way regardless of the scenarios during this 10-year 490 

period, suggesting that the model is robust to varying recruitment patterns.  491 

 492 

3.2.3 Quantification of the risk for fisheries, management and conservation 493 

 494 



 
 

Fig. 7 displays the distributions of the Fishery, Conservation and Management criteria 495 

depending on the scenario and the model.  496 

 497 

Fig. 7. Boxplots presenting the three criteria “Fishery”, “Management” and “Conservation” 498 

across scenarios (“sce”) and among models (“ST”: Single-trend; “TT”: Two-trend; “SS”: 499 

Spike and slab; “RS”: Random slope) over the 10 years of simulation. The outliers are not 500 

displayed for better readability but are considered for building the graph and the calculated 501 

values (such as the median) (strategy q50).  502 

 503 

Unsurprisingly, since the ST model was used to simulate the recruitment series of 504 

Scenario 1, it performs well (i.e., limited potential catch loss when comparing mean annual 505 



 
 

TAC to others, very good compliance to the management rule and many eels saved) in this 506 

scenario. For Scenarios 2 and 3, the ST model reaches the management target with a high 507 

frequency and provides a high quantity of glass eels saved at the cost of large reductions in 508 

catches, resulting in the lowest mean annual catch.  509 

Across scenarios and criteria, the TT and SS models have similar results when estimating 510 

recruitment, and regarding the criteria comparison strategy. These models frequently miss the 511 

management target and result in the lowest glass eel escapement, except for Scenario 3 (the 512 

one in which the TT model was used to simulate the time series). On the other hand, these 513 

models lead to the highest TAC (slightly higher for the TT model than for the SS model).  514 

Considering a time period of 10 years, the RS model behaves in a similar way regardless 515 

of the scenarios (i.e., intermediate mean TAC, proportion of years with target achievement 516 

oscillating approximately 50%, and stable amount of glass eels saved), confirming its 517 

robustness to different recruitment trends.  518 

 519 

4 Discussion  520 

 521 

Recruitment is a key question in population dynamics, especially for short-term 522 

forecasting (Maunder and Thorson, 2019). This article provides insights into building and 523 

comparing forecasting models. The RS model stands apart as the more robust method to 524 

forecast short-term recruitment indices based on its bias quantification results and its 525 

implications for management, exploitation and conservation. 526 

 527 

4.1 Innovative recruitment forecasting models  528 

 529 



 
 

 Model rationales 530 

 531 

Spike and slab priors are widely used in Bayesian variable selection (Ishwaran and Rao, 532 

2005; Titsias and Lázaro-Gredilla, 2011). The inclusion, or not, of a predictor is estimated 533 

internally in the model, and the resulting predictions are a weighted average of the model with 534 

and without the predictor (Titsias and Lázaro-Gredilla, 2011). As such, this approach appears 535 

appropriate for testing the existence of a regime shift, objectively balancing the predictions of 536 

the ST and TT models. However, the parametrization of a spike and slab prior remains 537 

partially subjective (tuning the coefficients c and d in the expression of the variance) and 538 

based on expertise to separate plausible values from impossible ones (George and McCulloch, 539 

1993). A sensitivity analysis (see the Supplementary Material) demonstrated that our results 540 

are not overly sensitive to the parameter values (this is not surprising, as situations with a 541 

slope change largely dominate). However, this could change in the future, especially if 542 

recruitment starts decreasing again and the weight of the ST model (i.e., the frequency of γ = 543 

0) increases. Therefore, it would seem necessary to repeat the sensitivity analysis regularly 544 

and update the parametrization of the prior in any future use of the SS model. Various slight 545 

modifications have been proposed to help in the parametrization of the spike and slab priors 546 

and to reduce the resultant uncertainty (George and McCulloch, 1993; Ishwaran and Rao, 547 

2005). However, these modifications would not entirely remove the subjectivity of the 548 

resulting model and the need to check its sensitivity.  549 

 550 

The SS model imposes a change in the recruitment trend at a fixed and unique year. 551 

This could be challenged by future data. One could imagine adding other years of trend 552 

change, or at least modeling the year of the change as a random variable. However, 553 

preliminary tests have shown that the resulting models fail to converge. In this framework, the 554 



 
 

RS model is much more flexible. A random slope model appears suitable for resolving the 555 

debate between a model with either a single or two slopes, and determining the year in which 556 

a potential regime shift occurs. Indeed, random slope models have proven to provide robust 557 

predictions, even in the presence of cyclic patterns or trend changes (Delle Monache and 558 

Harvey, 2012).  559 

 560 

 Model and data uncertainty handling 561 

Following the Scientific Committee, we used the EIFAAC-ICES-GFCM WGEEL 562 

“Elsewhere Europe” index as an indicator of French recruitment in our analysis. The use of 563 

this indicator was needed given the limited number of ongoing French recruitment time series 564 

(ICES, 2014). Since the index is partly derived from time series collected in regions other 565 

than France, this might lead to bias (ICES, 2022). More importantly, the WGEEL data were 566 

taken to be accurate and were known to be without error in the ST, TT and SS models. We 567 

considered an estimation error in the RS model (Equation 5), which is an improvement. 568 

However, the variance is assumed to be constant over time. The use of year-specific 569 

estimation errors generated by the GLM would probably be more realistic. 570 

 571 

4.2 Model comparison strategy 572 

 573 

Inspired by the Management Strategy Evaluation approach (Smith, 1999), we developed 574 

a multicriteria strategy to compare the performance of models. 575 

 576 

 Bias in model estimation 577 

First, we explored biases in recruitment forecasts, since systematic biases would result 578 

in systematic overestimations or underestimations of fishing opportunities. In our simulations, 579 



 
 

the ST model tends to underestimate recruitment, while the TT and SS models tend to 580 

overestimate recruitment. Due to its enhanced flexibility, the RS model provides the least 581 

biased recruitment estimates across the three recruitment scenarios. As the RS model behaves 582 

the same way across scenarios, it appears to be the least sensitive to possible changes in future 583 

recruitment trends and the most robust, as defined by Box (1979). 584 

 585 

 Model implications for European eel fishery, management and conservation  586 

Inspired by the work of Lebot (2021) and Bevacqua (2007), we developed three criteria 587 

to assess and illustrate the trade-off between mean annual catch, management target 588 

achievement and quantity of glass eel saved. The ST model favors conservation by frequently 589 

achieving the management target but at the cost of lower TACs. On the other hand, both the 590 

TT and SS models promote the highest TACs but with a high risk of overshooting the 591 

management target and compromising conservation. The RS model provides the best trade-off 592 

since it shows intermediate responses for all considered sectors compared to other models. 593 

Moreover, the outcomes of the RS model are minimally sensitive to the scenarios, unlike 594 

other models.  595 

 596 

4.3 Application to glass eel fishing opportunity evaluation 597 

 598 

The current French evaluation of glass eel fishing opportunities relies on two 599 

recruitment models (ST and TT) with constrasting recruitment forecasts (Beaulaton et al., 600 

2020). The Scientific Committee lacks a method for choosing between the two models, which 601 

leads to some misunderstanding from stakeholders. The RS model appears to be a good 602 

candidate for estimating glass eel fishing opportunities in France. Its use could overcome the 603 

difficulty of having two recruitment models by providing a single recruitment forecast. By 604 



 
 

doing so, it could improve the reliability of the assessment and make the decision-making 605 

process more understandable to stakeholders. Moreover, the simulation strategy can be used 606 

to carry out a long-term risk analysis that would support science-based management. 607 

 608 

4.4 A generic approach 609 

 610 

 Comparing abundance forecast outcomes 611 

 612 

As scientific results can be difficult to convey (Lehuta et al., 2016; Pita et al., 2016), we 613 

have proposed three explicit quantitative criteria with the aim of providing accessible 614 

information to those who make management decisions. The model selection method presented 615 

herein is not based on traditional statistical criteria, but on socioeconomic and environmental 616 

criteria. Since managers generally have to deal with trade-offs among competing interests, the 617 

multicriteria assessment appears to be an attractive decision-aiding tool that provides trade-off 618 

overviews across multiple sectors of interest (exploitation, management and conservation in 619 

this study) (Antunes et al., 2006; Röckmann et al., 2012). We do not pretend that the criteria 620 

we propose here are the only ones possible; however, we aim to demonstrate our trade-off 621 

exploration strategy. Indeed, implementing more relevant criteria, as well as adding a relative 622 

weight to each criterion to obtain a final score per model could arise from a co-construction 623 

involving all stakeholders (e.g., managers, fishers, scientists, NGOs) involved in the 624 

management of the European eel (Drouineau et al., 2021). This collaboration, as part of 625 

participatory modeling, could help to enhance the involvement of each stakeholder in fishery 626 

management, strengthening mutual trust and understanding (Drouineau et al., 2021; 627 

Röckmann et al., 2012). The same applies to the scenarios (here, we used three contrasting 628 

scenarios to simulate future recruitment time series, but these scenarios could be co-629 



 
 

constructed with stakeholders) and to quantiles of the posterior distribution of the forecasted 630 

recruitment used to calculate TACs (here, we used strategies q25, q50 and q75).  631 

 632 

 Index-based abundance short-term forecasts 633 

 634 

Analytical stock assessments of European (Anguilla anguilla) and American (Anguilla 635 

rostrata) eel have not been achieved despite much effort (ASMFC, 2023; ICES, 2019). As an 636 

alternative to analytic stock assessment, abundance index methods are being looked at as a 637 

means to generate harvest rules (e.g., the ITarget method, trend indicators) (ICES, 2023; 638 

Legault et al., 2023). With eel abundance indices playing a central role in supporting 639 

management advice and no viable alternative in sight, eel assessment scientists ought to be 640 

looking carefully at the best options to use abundance time series to guide harvest 641 

management. Of the modeling approaches tested here, the RS model best accounts for the 642 

recruitment variability. We therefore recommend its use for recruitment modeling and 643 

forecasting to guide European glass eel management advice.  644 

The index-based methods presented in this paper could be applied to other eel life 645 

stages, and to other species. More generally, these methods could be easily implemented to 646 

support management advice when an analytical stock assessment cannot be conducted (e.g., 647 

rejected assessments, data-limited stock) (NEFSC, 2020; Punt et al., 2020) and could also be 648 

used in artisanal and traditional coastal recruitment fisheries (e.g., the sardine fry fishery in 649 

Italy) (STECF, 2023a, 2023b). Although this work is conducted at the recruitment fishery 650 

scale, these index-based forecasting methods could conceivably be applied to a wide range of 651 

scientific and economic fields. 652 
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1 The spike and slab model  
 

1.1 Density of probability for diffa 

 

As recommended by Georges and McCulloch (1993), we check that the intersection of 

the median value of diffa with the a priori distributions of diffa for γ = 0 and γ = 1 ensures an 

important difference (Fig. 1). Fig 1 confirms that the posterior distribution is different from 

the prior distribution and that the conditional posterior distribution of diffa with γ = 1 and γ = 0 

are distinct. 

 

 

Fig. 1. - Density of probability of the the two normal distributions that define the prior of diffa 

(A) - marginal posterior distributions of diffa depending on the value of γ B 

 

1.2 Sensitivity analysis to variance parameters c and d  
 

1.2.1 Setting c and d parameters 
 

Tuning the coefficients c and d in the expression of the variance 𝜎𝑑𝑖𝑓𝑓𝑎

2  (Eq. 4) can be 

considered subjective (George and McCulloch, 1993). As mentioned earlier, the prior for diffa 

is bivariate with a narrow normal prior around 0 if the change of slope is rejected, and a wide 

normal prior (large variance) if the change of slope is accepted. Parameters c and d tune these 

two normal distributions. As such c (variance of the narrow normal) should be chosen so that 

the prior is restricted to values that are small enough to be considered as an insignificant 

change. Conversely, d (variance of the wide normal) should be large enough to allow 

significant change of slope (i.e. large diffa) but small enough to eliminate impossible values 

(otherwise, the prior would be too flat leading to too small differences of density of 

probabilities between the two normal distributions). These priors will allow the model to 

select the relevant explanatory variables in a model in an autonomous way. 
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Remind that exp(diffa) can be interpreted as a rate of change between time periods 1 

and 2. If there is no change in the recruitment trend, the multiplicative coefficient between 

exp(a1) and exp(a2) should be close to 1. As a first guess, we assumed that a variation of less 

than 2% around 1 is considered as a non-significant change in the recruitment trend. Just as an 

illustration, Dekker (2019) estimated that the recruitment dropped consistently by 

approximately 15% per year. This would correspond to exp(a1) = 0.85 and to reject a shift for 

0.85*0.98 = 0.83 ≤ exp(a2) ≤ 0.85*1.02 = 0.87. Restricting a change of less than 2% between 

time periods 1 and 2 implies that diffa is restricted between log(0.98) = -0.02 and log(1.02) = 

0.02. A normal distribution with standard deviation 0.02/1.96 = 0.01 would mean that 95% of 

diffa values are between -0.02 and 0.02. We therefore chose c = (0.01)
2
 = 1.10

-4
. 

 

In recent years, the rate of decrease may have changed and the recruitment tends to be 

stable or slightly increasing according to the WGEEL. If the recruitment decreased by about 

15% in the first period (Dekker, 2019), stabilising the trend would correspond to a change of 

1/0.85 = 1.17. It is very unlikely that recruitment is now increasing as a rate similar to the 

former rate of decrease, so 1.15/0.85 = 1.35 appears to be a reasonable upper bound for a 

situation of significant change in the recruitment trend. This corresponds to a diffa of log(1.35) 

= 0.30. A normal distribution with standard deviation 0.30/1.96 = 0.15 means that 95% of 

diffa  values are ranging from -0.30 to 0.30. As a result, we chose d = (0.15)
2  

= 3.10
-2

. 

 

The values of parameters c and d have been chosen to provide sufficiently distinct 

probability distributions in order to distinguish situations of change in slope from situations of 

previous slope conservation. Indeed, situations where γ = 0 should not be accepted as a 

change of slope, and reciprocally. In order to evaluate model sensitivity to diffa prior, several 

pairs of values of c and d have been tested looking at the proportion of γ = 1 depending on 

these values.  

 

1.2.2 Sensitivity assessment 
 

Since the tuning of parameters c and d of the bimodal variance are partly subjective, we 

check the sensitivity of the model to these parameters by fitting the spike and slab model with 

different pairs of c and d values (Table 1).  

 

Table 1. Values chosen and their meaning in terms of recruitment evolution to evaluate model 

sensibility to c and d choices. 
 

Tested values for c 
Percent of maximum decrease and maximum increase tolerated 

between two consecutive years 

4.10
-8

 0.1% 

5.10
-6

 0.5% 

2.10
-5

 1% 

1.10
-4

 2% 

2.10
-4

 3% 
 

Tested values for d 
Percent of maximum decrease and maximum increase tolerated 

between two consecutive years 

1.10
-2

 20% 

3.10
-2

 35% 

5.10
-2

 55% 
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We compared the proportion of γ = 1 in the γ posterior distribution (Fig. 2). For the 

tested c and d values, the frequency of γ = 1 is greater than 90%. As such, the sensitivity of 

the model to c and d appears limited. 

 

 

 

Fig. 2. Sensitivity matrix to values of c and d represented by the proportion of cases where γ 

is 1 (in percent). 

 

2 Multi-criteria comparison approach 
 

2.1 Retrospective exercise 
 

The metrics to quantify models forecasting performances and the risk for exploitation, 

resource presented hereby are the initial versions of the ones presented in the article.  
 

In this exercise, we fitted all models (ST, TT, SS and RS) on the WGEEL recruitment 

index up to season t, assuming that recruitment in season t+1 falls in an interval ranging from 

-3 to +3 around recruitment of season t (interval censorship). This mimicked the strategy used 

by the Scientific Council (Beaulaton et al., 2020). Then, we compared the model predictions 

for season t+2 with the time-corresponding « true » WGEEL value. We carried out this 

exercise for t ranging from 2013 to 2017, since the regime shift is supposed to take place in 

2012 and the last WGEEL index is in 2019. Three chains were run in parallel with 60,000 

iterations with a thinning period of ten after a burn-in period of 200,000 iterations. 

 

2.1.1 Material and methods 
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2.1.1.1 Recruitment prediction error formulation 
 

We compared models forecasting performance by quantifying the discrepancy between 

recruitment forecasts and “true” values (the WGEEL time series) through a variable called the 

“Recruitment prediction error”. The difference between each predicted recruitment value and 

the WGEEL of the corresponding year value was calculated and named as the “prediction 

error”. If the prediction error was negative, the recruitment was underestimated (respectively, 

positive prediction error translated recruitment overestimation).  

 

2.1.1.2 Evaluation of risks for both exploitation and resource: development of two criteria 

 

 

We developed two quantitative criteria to lead a quantitative risk assessment (Aven and 

Renn, 2009). We formulated these criteria thanks to the two following answers.  

 

 If recruitment is overestimated in year t+2, how often is it overestimated it if a 

certain model (among the four) is used to predict recruitment index? 

 

For each year and model, we computed the frequency of samples from the posterior 

distribution of recruitment that were greater than the corresponding WGEEL index value. 

This frequency of recruitment overestimation represents how often recruitment is 

overestimated when using a certain model to predict it. It quantifies the risk of not achieving 

the management target. Therefore, we called this frequency of recruitment overestimation the 

“Conservation Risk Indicator” (CRI).  

 

Let Si(t,m) be a logical indicator with i ranging from 1 to the number of iterations (60,000 

in this study) for the year t for one model m. If the difference between a recruitment 

prediction and the value of the WGEEL was positive, then the indicator Si(t,m) took the value 

1, indicating a situation of overestimation of recruitment. Respectively, when the difference 

was negative, Si(t,m) took the value 0 and represented a situation of recruitment 

underestimation. We thus obtained a series of 1 and 0 of length 60,000. The following 

formula was then applied to obtain the frequency of overestimation of recruitment for one 

year t for one model m: 

(1) Overestimation frequency(𝑡, 𝑚) =  
∑ Si(𝑡,𝑚)number of iterations

1

number of iterations
  

where number of iterations = 60,000. 

Therefore, we obtained five frequencies of recruitment overestimation for each model for the 

retrospective analysis.  

 

 What is the potential loss of catches if a certain model (among the four) is used to 

predict recruitment in year t+2? 

 

Underestimating recruitment would lead to implement too restrictive quotas and therefore 

generate potential catches losses for the fishery. Using the same approach as for the 

calculation of the recruitment prediction error, we computed the difference between predicted 

recruitment and the “true” value, except that if this difference was positive, we set the value at 

0. Indeed, with a positive difference (i.e. an overestimated recruitment), there was no risk for 
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the fishery to loose potential catches. This new indicator is called the “Fish Risk Indicator” 

(FRI).   

 

We assessed the Conservation Risk Indicator (CRI) and the Fishery Risk Indicator (FRI) 

for each model to analyse the trade-offs between conservation and exploitation. 

 

2.1.2 Results 
 

2.1.2.1 Recruitment prediction error 
 

 

Fig. 3. Boxplots presenting recruitment prediction error for the four recruitment models 

through the retrospective analysis from 2015 to 2019 (m1: “ST” single-trend model; m2: 

“TT” two-trend model; m3: “SS” spike and slab model; m4: “RS” random slope model).  

 

According to Figure 3, the ST model mainly underestimates recruitment compared to 

the ICES WGEEL recruitment index (median prediction error = -1.64 < 0). This is consistent 

with previous observations of the decreasing exponential trend in the model slope. On the 

other hand, the TT model tends to be over-optimistic compared to WGEEL recruitment index 

(median = 3.92 > 0). With a median prediction error of 1.85, the SS model is the intermediate 
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between the ST model and the TT model. This result is consistent with the structure of the 

model, which is a mixture of the two models. Nevertheless, Figure 3 shows that the SS model 

mainly overestimates recruitment. The RS model appears to be the least biased model 

(median prediction error = 0.96).  

 

2.1.2.2 CRI and FRI 
 

Since the Conservation Risk Indicator (CRI) represents compliance or non-compliance 

with the conservation rule and the Fishery Risk Indicator (FRI) traduces the potential loss of 

catches for the commercial fishery, Figure 4 illustrates the trade-off between conservation and 

fishery objectives. 

 

 

Fig. 4. Position of the four recruitment models when considering simultaneously the Fishery 

Risk Indicator (FRI) and the Conservation Risk Indicator (CRI) during the retrospective 

analysis from 2015 to 2019 (m1: “ST” single-trend model; m2: “TT” two-trend model; m3: 

“SS” spike and slab model; m4: “RS” random slope model).  

 

A model with a CRI of about 0.5 would randomly alternates between over- and under-

estimation situations (since CRI is the recruitment overestimation frequency), as expected for 
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a non-biased model. Ideally, a model should also have a FRI as small as possible (i.e. limiting 

too strong underestimation of recruitment and therefore restricting potential loss of catch). As 

such, the model that comes closest to this CRI = 0.5 and FRI = 0 point is the RS model 

(Figure 4). Indeed, points relative to the RS model are always close to the 50% overestimation 

frequency threshold and minimize catches loss compared to the ST model. Indeed, the ST 

model favours compliance with the conservation rule, but at the expense of catches loss for 

the fishery. On the other hand, the TT and SS models ensure limited catch losses but at the 

cost of a systematic recruitment overestimation. 

 

2.2 Simulation exercice 
 

2.2.1 Evolution of simulated recruitment series  
 

 

Fig. 5. Evolution of the simulated recruitment index over time according to the three 

scenarios (Scenario 1: decrease in recruitment; Scenario 2: stabilization of recruitment: 

Scenario 3: increase in recruitment). The coloured lines represent four time series of 

recruitment (of the total 2,000 simulated recruitment series) in order to highlight the 

heterogeneity among individual trajectories.  

 

As expected, the 3 scenarios provide different trends in recruitment over time: a 

decreasing trend (i.e., scenario 1), a stable trend (i.e., scenario 2), and an increasing trend (i.e., 

scenario 3) (Figure above). However, it should be noted that the boxplots hide a great deal of 

heterogeneity between individual simulated time series. By testing the model on such 
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contrasted trajectories relying on different assumptions, it is possible to assess the robustness 

of forecasting models as defined by Box (1979). 

 

2.2.2 Other strategies when calculating quotas 
 

In the main document, we assumed that the quota was set based on the median of the 

posterior prediction of predicted recruitment (strategy q50). Here, we show how the fishery, 

management and conservation criteria would be effected if we use the quantiles 25% (strategy 

q25) or 75% (strategy q75). Main results are not affected though there is a high probability of 

not achieving the management target with the strategy q75. 

 

 

Fig. 6. - Boxplots presenting the three criteria “Fishery”, “Management” and “Conservation 

across scenario (“sce”) and among models (“ST”: single-trend; “TT”: two-trend; “SS”: spike 

and slab; “RS”: random slope) over the 10 years of simulation. Outliers not displayed for a 

better readability but considered for the graph and the calculated values (such as median) 

(strategy q25).  
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Fig. 7. - Boxplots presenting the three criteria “Fishery”, “Management” and “Conservation 

across scenario (“sce”) and among models (“ST”: single-trend; “TT”: two-trend; “SS”: spike 

and slab; “RS”: random slope) over the 10 years of simulation. Outliers not displayed for a 

better readability but considered for the graph and the calculated values (such as median) 

(strategy q75).  
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