Ahmed Zermane

Niels Dehio

Fellow IEEE Abderrahmane Kheddar

Planning Impact-Driven Logistic Tasks

Keywords: Planning Impact-Driven Logistic Tasks Logistics, Impact-aware planning and control, Tossing, Grabbing, Boxing, BiRRT

HAL is

I. INTRODUCTION

I MPACT-DRIVEN tasks are challenging to plan and to control due to non-smooth and fast contact dynamics. We are particularly interested in tasks found in the automated distribution and sorting logistics chains. Namely, fast and swift picking and tossing, grabbing, and boxing of objects of all sorts, see Fig. 1. The challenge is that the manipulated objects can undergo (open-loop) phases that are out of the robot control. For example, tossing an object requires accurate computation of its ballistic trajectory to meet landing specifications. Another example is manipulating (boxing) an object with a robot using impulses inducing an initial velocity (or, equivalently, an energy input) to bring it from an initial pose to a desired one: after the impulse, the object's motion is not 'controlled' by the robot. Our main contribution consists in devising a strategy in terms of planning and control of such tasks (defined by project partner Vanderlande) in two separate modules (Fig. 1):

• M1: Plan for the robots a trajectory (with or without a load) to reach a target location (position and orientation) and velocity (linear and angular) from a given initial state (comprising both position and velocity). We allow the starting velocity to be non-zero for the robot not need to stop at each cycle. Our planning module accounts for hardware and taskspace limits; see Sec. III.

• M2: For each task (tossing in Sec. IV, grabbing in Sec. V, Fig. 1: Proposed motion generator for scenarios with impact. and boxing in Sec VI), we devise separate modular plugins representing specific inverse kinematics solvers for mapping desired impact objectives from task-space onto joint-space. The output of M2 is the input of M1, i.e., the planner ensures bypassing the via-point with desired position and velocity.

With respect to related work (discussed in Sec. II), our novelty lies in defining task coordinates as a via-point, which are integrated into a time-constrained path. The latter is optimized for a generated samples' map. Throughout the entire letter, we assume rigid objects with known geometry and wellestimated inertial parameters [START_REF] Kurdas | Online payload identification for tactile robots using the momentum observer[END_REF].

We assessed our approach in several real-robot experiments, finally demonstrating a complex industry-driven task that could be customized to any sequence order, see Sec. VII.

II. A BRIEF BACKGROUND

• Planning and motion generation are well-explored topics in robotics. A multi-mode trajectory optimization proposed in [START_REF] Stouraitis | Multi-mode trajectory optimization for impact-aware manipulation[END_REF] combines hybrid control and dynamics to embrace impact for stopping moving objects in impact-aware manipulation tasks. In [START_REF] Toussaint | Describing physics for physical reasoning: Force-based sequential manipulation planning[END_REF], a multi-physics formulation enables one to interact with objects at non-zero relative velocity to achieve desired motions. Alternatively, by relying on trajectory optimization under contact constraints, the robot can push objects [START_REF] Sleiman | Contact-implicit trajectory optimization for dynamic object manipulation[END_REF]. Whereas [START_REF] Mészáros | Learning to pick at non-zerovelocity from interactive demonstrations[END_REF] relies on learning from interactive demonstrations to execute picking at non-zero relative velocities. In [START_REF] Wang | Impact-aware taskspace quadratic-programming control[END_REF], an impact-aware QP controller is formulated to be resilient to 3D frictional impacts in the task-space by defining new impact-related constraints and reformulating the usual ones to turn them robust against abrupt changes of the states at impacts. Other related works extend to impact for different robots and tasks within [START_REF] Khurana | Learning to hit: A statistical dynamical system based approach[END_REF], [START_REF] Bombile | Dual-arm control for coordinated fast grabbing and tossing of an object: Proposing a new approach[END_REF] using dynamical systems and machine learning-based approaches.

• Tossing can be seen as an extension of the robot's workspace or for speeding pick-and-place task that do not require high placement precisions. Existing robotic tossing methods are found in model-based and data-driven approaches. The most outstanding work is reported in [START_REF] Zeng | Tossing-Bot: Learning to throw arbitrary objects with residual physics[END_REF]. It is a machine learning-based system combined with residual physics designed to enable rapid picks and throws of arbitrary objects into selected boxes. In [START_REF] Kasaei | Throwing objects into a moving basket while avoiding obstacles[END_REF], tossing is formulated using reinforcement learning (RL), enabling generalization on various objects and fast reaction to dynamic environments. Combining decision transformers (DT) and RL enables tossing objects from handful experiments and far-from-reality trials [START_REF] Monastirsky | Learning to throw with a handful of samples using decision transformers[END_REF]. Earlier work in [START_REF] Ghadirzadeh | Deep predictive policy training using reinforcement learning[END_REF] handled basic shapes (balls) grasping and tossing using a deep neural network architecture to perform grasping. Throwing a ball by a kinetic chain approach based on swinging motion and constraining its motion to the release timing and release direction is proposed in [START_REF] Senoo | High-speed throwing motion based on kinetic chain approach[END_REF]. A dedicated gripper for grasping and throwing is proposed in [START_REF] Govindan | A novel hybrid gripper capable of grasping and throwing manipulation[END_REF], containing a latching mechanism that ensures both high accelerations for throwing by instantly discharging the stored elastic potential and low for placing.

• Dual-am grabbing enables higher payload handling and larger object grasp, e.g., [START_REF] Smith | Dual arm manipulation-a survey[END_REF]. In a previous work [START_REF] Dehio | Dual-arm box grabbing with impact-aware mpc utilizing soft deformable end-effector pads[END_REF], this scenario was achieved using an impact-aware model preview control with learned dynamics of soft deformable pads mounted on the end-effectors. In [START_REF] Bombile | Dual-arm control for coordinated fast grabbing and tossing of an object: Proposing a new approach[END_REF], Modulated Dynamical Systems (MDS) generate motion for a dual-arm system to grab and release an object reactively swiftly. In [START_REF] Van Steen | Dual arm impact-aware grasping through time-invariant reference spreading control[END_REF], a time-invariant reference spreading controller is formulated to manipulate the object swiftly. Impact grabbing is studied more fundamentally and theoretically in [START_REF] Aydinoglu | Stabilization of complementarity systems via contact-aware controllers[END_REF], [START_REF] Brogliato | Modeling, analysis and control of robot-object nonsmooth underactuated lagrangian systems: A tutorial overview and perspectives[END_REF], where Linear Complementarity Systems (LCS) formulation is employed to synthesize controllers and study systems' stability in rich contact manipulation problems, and dual-grabbing as an example. In [START_REF] Shirai | Chanceconstrained optimization in contact-rich systems[END_REF], grabbing is treated as a Stochastic Discrete-time LCS (SDLCS) solved by a chance-constrained based optimization.

• Boxing, i.e., pushing and tilting objects can be treated as impact-contacts in motion control and planning [START_REF] Mason | Toward robotic manipulation[END_REF]. For example, [START_REF] Cheng | Manipulation with suction cups using external contacts[END_REF] used a suction cup end-effector to tilt an object by developing a framework that withstands deformation modeling errors. In [START_REF] Shirai | Robust pivoting manipulation using contact implicit bilevel optimization[END_REF], a robust pivoting formalism accounts for object inertia parameters. It is developed based on contact implicit bilevel optimization and enhanced by a tactile closedloop control to deal with initializing issues and enable failure recovery. Impact-based interactions based on contact-implicit trajectory optimization (TO) are proposed in [START_REF] Sleiman | Contact-implicit trajectory optimization for dynamic object manipulation[END_REF], assuming a hard contact model and imposing unilateral constraints as complementarity conditions. On the other hand [START_REF] Onol | Contact-implicit trajectory optimization based on a variable smooth contact model and successive convexification[END_REF] proposed a TO based on a variable smooth contact model and successive convexification to push objects to a desired pose, whereas for the same problem [START_REF] Khurana | Learning to hit: A statistical dynamical system based approach[END_REF] used a learned statistical dynamical system to generate a non-zero relative contact velocity.

III. IMPACT-DRIVEN TRAJECTORY PLANNING

Module M1 builds on a sampling-based algorithm Bi-RTT [START_REF] Kuffner | Rrt-connect: An efficient approach to singlequery path planning[END_REF]. It uses a steering function to plan minimum-time trajectories in the robot's configuration space subject to a viapoint constraints in the task-space. The latter embeds explicitly impact postures and enforces back-to-safety configurations. Unlike any of the related works (e.g., [START_REF] Berscheid | Jerk-limited real-time trajectory generation with arbitrary target states[END_REF]), this creates profile motions with way-points on position, velocity and acceleration levels. This Module relies on acceleration-limited trajectory generation where Double Integrator Minimum Time (DIMT) is the neighborhood criterion [START_REF] Kunz | Probabilistically complete kinodynamic planning for robot manipulators with acceleration limits[END_REF]. It allows having non-zero start and end velocities of the planned trajectories. If any jerk constraints exist, it can be used within the steering function. Fig. 2: Two grown trees (blue and red edges). Sampled states are chosen within the bounds for each DoF, defined by velocity, position, and acceleration limits in the jerk-limited case. Via-point constraints for a task-space pose and velocity are converted into joint-space states using inverse kinematics.

To reach a target position/velocity (pose) state from a given initial one, Bi-RTT grows iteratively two trees: (i) forward in time starting from the initial state, and (ii) backward in time starting from the final state, see Fig. 2, blue-dotted area on the planning flowchart in Fig. 3. The sample-map segments with limited duration prevent numerical integration errors. Hence, there is no need to define an upper limit time [START_REF] Berscheid | Jerk-limited real-time trajectory generation with arbitrary target states[END_REF] for the whole trajectory. For the acceleration-limited trajectory generation, each state Q is represented by the stacked vectors of joint states Q = [q, q], which extend to accelerations Q = [q, q, q] in the jerk-limited case.

The steering method, described in Algorithm 1 (lines 12 and 18) and detailed in Algorithm 2, is either the DIMT or the jerk-based one, see details later. This steering method relies on determining the closest neighbor using a distance function. Different metrics exist to define distance functions. We use the go-to time between two states [START_REF] Kunz | Probabilistically complete kinodynamic planning for robot manipulators with acceleration limits[END_REF], [START_REF] Hauser | Fast smoothing of manipulator trajectories using optimal bounded-acceleration shortcuts[END_REF]. Despite not being a metric because of its asymmetry, it is proven reliable, parameter-free, and accounts for both position and velocity. As shown in Algorithm 1, a connection between two trees can be made if the randomly generated state Q r is successfully added to both trees (lines [START_REF] Dehio | Dual-arm box grabbing with impact-aware mpc utilizing soft deformable end-effector pads[END_REF][START_REF] Van Steen | Dual arm impact-aware grasping through time-invariant reference spreading control[END_REF][START_REF] Aydinoglu | Stabilization of complementarity systems via contact-aware controllers[END_REF][START_REF] Brogliato | Modeling, analysis and control of robot-object nonsmooth underactuated lagrangian systems: A tutorial overview and perspectives[END_REF][START_REF] Shirai | Chanceconstrained optimization in contact-rich systems[END_REF][START_REF] Mason | Toward robotic manipulation[END_REF][START_REF] Cheng | Manipulation with suction cups using external contacts[END_REF][START_REF] Shirai | Robust pivoting manipulation using contact implicit bilevel optimization[END_REF].

Each trajectory task can be generated by skipping path selection at the first phase of sample-map building for N iterations. For the same task, each via-point has multiple jointspace configurations competing to generate the best path, reddotted area in the flowchart see Fig. 3. We start evaluating the desired number of IK solutions (loop-line 9) by considering it as the new random states (line 10). Finally, Algorithm 1 extracts the path that fulfills all the initial and final conditions under limits and collision constraints (line 27). It has a time complexity of O(2n), where n = max(N (V 1 , V 2)). To introduce both steering functions, we define:

Algorithm 1 Extended BiRRT Algorithm 1: procedure BIRRT(qmax, q min , qmax, qmax, P init , P final , N) 2: cost i ← 0, cost f ← 0 3: FinalPath ← []; FinalCost ← ∞; 4: V 1 ← [P init , Q init , cost i]; 5: V 2 ← [P final , Q final , cost f]; 6: E1 ← []; E2 ← []; 7:
d ← true; % growing direction indicator 8:

counter ← 0; 9:

while counter ≤ N do 10:

Qr ← SampleInJointSpace; 11:

Pr ← ForwardKinematics(Qr), CollisionCheck(Qr); 12:

T 1 , S 1 , costr i , JointLimits ← Steering(Qr, V 1, d); 13:
if ¬JointLimits then 14:

Q i , P i ← SegmentsGeneration(T 1 , S 1); 15: Etemp ← BuildEdges(Q i , P i , S 1); 16: V 1 ← V 1 ∪ [Pr, Qr, costr] ∪ [P i , Q i , cost i]; 17: E1 ← E1 ∪ Etemp; 18: T 2 , S 2 , costr f , JointLimits ← steering(Qr, V 2, d); 19:
if ¬JointLimits then 20: • (qmax , qmax , ... q max) velocity, acceleration, jerk bounds.

Q i , P i ← SegementsGeneration(T 2 , S 2); 21: Etemp ← BuildEdges(Q i , P i , S 2) ; 22: V 2 ← V 2 ∪ [Pr, Qr, costr] ∪ [P i , Q i , cost i]; 23: E2 ← E2 ∪ Etemp; 24: Cost Tmp = costr i + costr f ; 25: if Cost Tmp < FinalCost then 26: FinalCost ← Cost Tmp ; 27: FinalPath ← Extractpath(V 1 , E 1 , V 2 , E 2 , d); 28: end if 29: end if 30: end if 31: Swap([V 1 , E 1], [V 2 , E 2
In DIMT steering function, there are four possible extremal motions for velocity and acceleration bounds, see Fig. 4: the parabolas P + and P -accelerating at qmax and at -q max , respectively; and the lines L + and L -traveling with zero acceleration at max velocity qmax and at min velocity -qmax , respectively. The sign of the first acceleration segment is determined programmatically [START_REF] Kunz | Probabilistically complete kinodynamic planning for robot manipulators with acceleration limits[END_REF], using σ = sgn(q i+1 -q i -δq acc),

where δq acc is the distance crossed while accelerating at qmax , which is defined as: Fig. 4: Position-velocity-Acceleration profiles, Two segments profile, and Three segments profile.

δq acc = 1 2 (qi + qi+1) | qi -qi+1 | qmax . (2)
thus we have qi1 = -q i2 = σ qmax and qlimit = σ qmax . The motion profile time parameters are defined as follows: 1) determine t 1 by solving the quadratic equation,

qi1 t 2 1 + 2 qi t 1 + q2 i+1 -q2 i 2q i2 -(q i+1 -q i) = 0; (3)
2) check for velocity bounds violation, if (qt1 < qmin) or (qt1 > qmax), then it is a trapezoidal constantvelocity profile segment with duration t v :

t 1 = qlimit -qi qi1 , (4)
t v = q2 i+1 + q2 i -2 q2 limit 2 qlimit qi1 + q i+1 -q i qlimit , (5)
t 2 = qi -qlimit qi2 . (6)
else:

t 2 = qi+1 -qi qi2 + t 1 . (7)
After obtaining the extremal profile for each DoF with duration T i (i = 1, n and n is DoFs number), and checking for its blocked time interval, the minimum-acceleration trajectory [START_REF] Kunz | Probabilistically complete kinodynamic planning for robot manipulators with acceleration limits[END_REF], [START_REF] Lau | Smooth RRT-connect: An extension of RRTconnect for practical use in robots[END_REF] is then applied to synchronize T for all the DoFs by calculating new profiles parameters as follows:

T 2 qi1 + (2T (qi+1 + qi) -4(q i+1 -q i))q i1 -(qi+1 -qi) 2 = 0, (8)
For the Jerk-limited steering method. We use the algorithm proposed in [START_REF] Berscheid | Jerk-limited real-time trajectory generation with arbitrary target states[END_REF] (available online). The resultant motion profile is an S-curve time scaling that consists of a maximum of seven segments.

IV. TOSSING Our approach differs from all previously cited work [START_REF] Zeng | Tossing-Bot: Learning to throw arbitrary objects with residual physics[END_REF], [START_REF] Kasaei | Throwing objects into a moving basket while avoiding obstacles[END_REF], [START_REF] Monastirsky | Learning to throw with a handful of samples using decision transformers[END_REF], [START_REF] Senoo | High-speed throwing motion based on kinetic chain approach[END_REF], [START_REF] Govindan | A novel hybrid gripper capable of grasping and throwing manipulation[END_REF] in explicitly defining constraints reflecting any robot's ability to toss within a computed reach workspace, and more importantly, in integrating explicit constraints on objects' impact specifications. That is to say, we account for objects landing impact location, relative speed, or impulse. Then, it is plugged into the developed planner previously with the physical modeling of the tossing ballistic.

Prior to planning and control, we define the toss release reachable workspace (in both position and velocity). The Algorithm 3 describes the entire process, and Fig. 5 illustrates the outcome in a schematic way.

Algorithm 3 Tossing-Workspace (Robot, Z max , Z min , step) 1: RWspace ← ReachableWorkspace(Robot, V, d); 2: z = Z min ; 3: while z ≤ Zmax do 4:
TWspace ← TossingWorkspace(Robot, RWspace, z); 5: z = z + step; 6: end while 7: return TWspace; First, we define the robot's reachable workspace with task velocity bounds (line 1 Algorithm 3). Using the latter, we estimate the tossing workspace by solving simple ballistic motion discarding post-impact effects (e.g., bouncing, sliding...) for each height layer (z). For each z we sample a launching position with different velocities (using an iterative algorithm based on Monte Carlo). We solve for each pose (position and velocity) (line 4 Algorithm 3) the landing time t l such that P t l = z l from eq. (9) (see later). Fig. 5: example of a reachable workspace (sphere-like volume with black edges) and tossing workspace, for z max = 0.5 m and z min = -0.7 m (left). Tossing set for a given target (right).

We formulate the tossing ballistics as an optimization problem. The release state (a via-point in our planning) is determined by optimizing the ballistic motion, considering the robot's capabilities to generate a feasible one. Other ballistic related phenomena could be modeled, e.g., aerodynamics, bouncing, gripper dynamics... but would lead to a complex non-linear problem. Our primary goal is to solve tossing from industry-driven perspectives. Bouncing is challenging to predict. Therefore, one of the objectives we set is having low impact relative-velocity of the thrown objects when the precision of the landing spots prevails.

We define

P d ∈ R 3 , Q d ∈ R 4
as the desired position and quaternion orientation of the object and P t l , Q t l the ones at time-step t l of the ballistic motion defined by:

P t l =   x y z   =   v x t l + x o v y t l + y o -gt 2 l + v z t l + z o   , (9)
and

Q t l = t l 0 1 2 Ω(ω)Q dt with ω = I -1 τ -I -1 (ω × Iω) (10)
where Ω(ω) ∈ R 4×4 is a skew-matrix; g is the gravitational acceleration; [x o , y o , z o] ∈ R 3 and Q o ∈ R 4 are position and orientation coordinates of the object's CoM at the moment of release; v ee = [v x , v y , v z], ω ee = [ω xo , ω yo , ω zo] are the linear and angular velocities of the end-effector from which that of the picked object is determined as initial conditions for eq. (9) and eq. (10), respectively; I ∈ R 3×3 is the object inertia matrix; and τ ∈ R 3 is the external torques for a free ballistic motion (assumed nil, τ = 0 3×1). We denote the translation error e P = P t l -P d ; used as design, evaluation criterion in [START_REF] Zeng | Tossing-Bot: Learning to throw arbitrary objects with residual physics[END_REF], [START_REF] Monastirsky | Learning to throw with a handful of samples using decision transformers[END_REF] respectively; and express the orientation error e O as the imaginary part of the Hamilton product between desired and landing rotations:

e O = [Q d Q -1 t l] = ν t l • d -ν d • f l + d × t f (11
)
The problem of the IK for tossing accounting for impact constraints (location, orientation, and velocity) and robot limits, is formulated as a weighted optimization as follows: min q, q w 1 e P 2 + w 2 e O 2 + w 3 v desired -v impact 2 s.t: qmin ≤ q ≤ qmax and q min ≤ q ≤ q max [v ee , ω ee] = J(q) q v ee ≤ v max and ω ee ≤ ω max [START_REF] Ghadirzadeh | Deep predictive policy training using reinforcement learning[END_REF] where decision variables (q, q) are robot's joint position and velocity; J is the Jacobian matrix; and w i the associated weight to each term. The object's impact velocity v impact is considered in the ballistic optimization. The generated tossing pose, chosen from a constrained subset in Fig. 5, would induce a landing velocity as close as possible to v desired at the landing time t l , i.e., by the end of the ballistic motion trajectory. The solution of the optimization problem defined in eq. 12 is then considered a via-point state for the trajectory planner. The target {P d , Q d , v impact } belongs to the tossing workspace; else the solution found will be the closest to it.

V. IMPACT GRABBING Swift grabbing of objects with impact using a dual-arm robotic system requires (i) knowing where to contact the object for each arm (e.g., could be driven by having the object balanced during lifting), (ii) specifying relative velocity at both impacts, and, more importantly, (iii) synchronizing both arms to impacts at the same time. To fulfill these requirements, we query the planner to find feasible collision-free configuration paths for both robots (which can be extended to multi-robots). Indeed, our proposed planner can straightforwardly handle dual manipulation and many configurations can be put into cascade to form a fully defined series of tasks, i.e., dual-grab, dual-toss, or dual-place, dual-re-grab, etc.

Synchronizing both robots can be done at the planning level; time constraints are added to the planned path for each robot to match the arrival time for both of them. It can also be made at the control level since we use the same tracking strategy in Sec. VII-A, introducing the posture task of the fastest robot with a delay corresponding to the time difference between the planned paths.

Once the impact with the object occurs, the robot shall instantly switch the control objectives in terms of forces and torques toward a stable grasp and swift motion control. Our multi-robot QP task-space control formulation enables parallel admittance tasks to monitor and control the contact state between the dual-arm system and the object, see Fig. 6. In order to account for impact uncertainties due to one robot contacting the object before the other one, we mitigate the impact velocity bounds (using momentum conservation) in the impact-aware QP controller w.r.t to the possible motion of the object in the direction of the opposite contact, which results in lowering impacting velocity bounds for both robots.

VI. IMPACT BOXING

Boxing involves applying an impulse on an object to induce an initial velocity that brings it to a desired state. Concretely, we examine how to rotate a resting box using a single impulse provided by a robotic arm, which is mainly different from what is described in related work, e.g., [START_REF] Sleiman | Contact-implicit trajectory optimization for dynamic object manipulation[END_REF], [START_REF] Khurana | Learning to hit: A statistical dynamical system based approach[END_REF], [START_REF] Mason | Toward robotic manipulation[END_REF], [START_REF] Cheng | Manipulation with suction cups using external contacts[END_REF], [START_REF] Shirai | Robust pivoting manipulation using contact implicit bilevel optimization[END_REF], [START_REF] Onol | Contact-implicit trajectory optimization based on a variable smooth contact model and successive convexification[END_REF]. We use an explicit model-based plugin that integrates our planning strategy by accounting for all forces acting on the box; see Fig. At impact time T , utilizing Newton's Laws circumvents the complexity linked to state discontinuities [START_REF] Halm | A quasi-static model and simulation approach for pushing, grasping, and jamming[END_REF]. Thus, there is a need to use second-order Measure Differential Equation (MDE) (assuming no sliding):

I yy /o 1 ω = τ ι δ T j + τ P j (13)
and

τ ι = # ‰ OM × F ι = [0, -z M f ιx + x M f ιz , 0] T τ P = # ‰ OG × P = [0, mgx G , 0] T = [0, mgd 1 cos(α 1), 0] # ‰ OM = l cot(ψ), 0,l T , # ‰ OG = d 1 cos(α 1), 0, d 1 sin(α 1)
are the coordinates of the impact point M and the object's CoM; F ι is the impact force generated by the robot endeffector; P is the gravity force acting on the box; and δ T is the Dirac measure at impact. [I, ω] is described in Sec. IV. We enforce non-sliding impact with

| f t | ≤ µ 0 f n , | τ ι | ≥ D y f n , andf ιz > f ιx > 0 (14
)
where µ 0 and D y are friction coefficients. Post-impact dynamics can be expressed as

I yy /o 1 ω = τ P (θ) j = mgd 1 cos(θ) j (15
)
with ω 0 = ω + 0 = 0 resulting from the impact, and θ + = 0. the post-impact velocity at M is written as: [START_REF] Dehio | Dual-arm box grabbing with impact-aware mpc utilizing soft deformable end-effector pads[END_REF] we get ω + by solving the energy based equation eq. 17:

ν + M = ω + × # ‰ OM = ω + [l cot(ψ), 0, l] T (
1 2 I yy /o 1 ω + 2 = mgd 1 (1 -sin(α 1)) (17
)

ω + = 2mgd 1 I yy /o 1 (1 -sin(α 1)) (18
)
we can then estimate the impact point and velocity from eq. 16 to plug it into the impact planner. However there are situations where, even in perfect physics, it is not possible to reach a settled pose. The right amount of velocity to bring the object to reach its intended pose induces a rotational trajectory from the initial resting pose to the singular point at near-to-nil angular velocity (S 1 in Fig. 7). Having the right minimal energy making the rotating object pass the singular pose S 1 , the remaining second phase trajectory is a free-falling one; which induces another impact at S 2 resulting in an energy gain. Depending on the impact physics, the geometry of the object and the landing ground, the desired pose can be reached after a few bounces or the object would fall on the other side.

In order to achieve boxing, some conditions must be satisfied, first

τ ι > τ P ⇔ l -f ιx + cot(ψ)f ιz > mgd 1 cos(α 1) (19)
From eqs. (14) and (19), we constraint x M

f ιx < cot(ψ)f ιz ⇔ ψ > π 4 ⇔ x m < l (20)
Then from eq. 19, the influence of the box thickness is also clear, i.e., the thinner the box to be flipped, the more impact force is needed. At some point it will never be possible to flip it with any amount of normal force

l → 0 ⇒ x m → 0 ⇒ ψ → π 2
The CoM position to the rotation axis can also make this task difficult to achieve. By analyzing energy at singularity positions S 1 and S 2 (see Fig. 7), we seet two main conditions:

(i) θ 2 + α 2 ≤ π 2 , and (ii) E 2 = mgd 2 cos(θ 2 + α 2) ≤ E 1 = mgd 1 cos(α 1)
, where is the coefficient of restitution.

Assuming that, at S 1 , ω S1 ≥ 0; at S 2 , ω S2 = 0; and = 1,

mgd 1 = mgd 2 cos(θ 2 + α 2) (21)
since cos(

θ 2 + α 2) ∈ [0, 1] we have d 1 ≤ d 2 (22)
which means π 2 -α 2 ≤ α 1 .

VII. EXPERIMENTS

We conducted extensive experiments using 7 DOF Panda robots to assess our approach. We also used the open-source QP controller mc_rtc that runs at 1 kHz using the necessary dependencies [START_REF] Dehio | Dual-arm box grabbing with impact-aware mpc utilizing soft deformable end-effector pads[END_REF] mc_franka and mc_panda. We report some results and data obtained and provide an accompanying video Check video: https://youtu.be/A8N0C3mE3TM as supplementation material.

A. Trajectory Tracking

Common to all tasks, the planner (Sec. VII-A) does not include the robot's dynamics. Hence, we cannot track the planned trajectory obtained from Algorithm 1 in open-loop; therefore, we impose a posture task objective in the QP controller [START_REF] Bouyarmane | On weight-prioritized multitask control of humanoid robots[END_REF]. Let the triplet {q ref , qref , qref } t be position, velocity, and acceleration references at t time-step within the generated trajectory, and {q cur , qcur } t the current position and velocity sensor readings. The desired task-space acceleration is formulated as a classical linear spring-damper feedback law qd = qref -K s (q cur -q ref) -K d (qcur -qref), with diagonal positive-definite matrices K s , K d that represent the stiffness and damping gains. The QP is formulated as:

min q∈R n q -qd s.t: C(q, q)q + d ≤ 0 (23)
where C(q, q) is the constraints vector related to the robot's limits (position, velocity, acceleration, torque, jerk); the jerk is included in the constraints by deriving generated acceleration; d is the bounds vector. Figure 8 shows a sample trajectory-tracking result, revealing a limited position and velocity error: |e position | ≤ 6.10 -3 rad, |e velocity | ≤ 25.10 -3 rad/s for all joints, and the corresponding task-sapce velocity and position errors to the via-point. Which is enough for the intended tasks and their application in a logistics context under the assumption made for each task.

B. Tossing

First, the robot's reachable and tossing workspaces are constructed. Then assuming that we know precisely the object inertia parameters, we toss to several chosen empty containers as landing targets (put at different heights) within the reachable tossing space. These tossing experiments are achieved either with a suction cup or a panda gripper as picking tools. For the suction cup case, the object is assumed to be rigidly attached to the suction cup for the planning, and the suction cup -object contact rupture delay is determined statistically by analyzing pressure drop down and actual release command at around ≈ 200 ms in preliminary experiments. This is to show that we are able to plan various objects tossing on different locations. We also specified different landing velocities (equivalently different landing impacts) w.r.t to the surface normal for the same landing target of the same object. To highlight differences between ballistic motions, we compare the release configurations and measure the object impacts. For this purpose, we instrumented the target floor with ATI-force sensors; see result data in Fig. 9. The obtained results demonstrate that we are able to toss objects (providing their inertia parameters are known) precisely to any reachable location surrounding the robot. Yet, contrarily to existing tossing approaches, see Sec. II (tossing) and Sec. IV (first paragraph), we are able to put specifications on the landing pose and relative velocity (or impact). We also didn't have to learn from any real or simulation data/trials or put constraints on the tossing configuration (shortcut used in the learning methods) that limits the performance of robots and reduces the solutions set. For now, it is still difficult to precisely predict object pose and location after impact, as such behaviors are yet extremely difficult to predict.

C. Grabbing

We have also replicated intensive grabbing scenarios, namely those already achieved in [START_REF] Dehio | Dual-arm box grabbing with impact-aware mpc utilizing soft deformable end-effector pads[END_REF]. The only addedvalue with respect to our latter work is that now, we are able to automatically generate grabbing trajectories that were made ad-hoc by the user in [START_REF] Dehio | Dual-arm box grabbing with impact-aware mpc utilizing soft deformable end-effector pads[END_REF], see results on grabbing in Sec. VII-E where all skills are combined. Compared to [START_REF] Bombile | Dual-arm control for coordinated fast grabbing and tossing of an object: Proposing a new approach[END_REF], we do not need to have an intermediary MDS learning phase, as we can simply define task-space targets. Moreover, in [START_REF] Bombile | Dual-arm control for coordinated fast grabbing and tossing of an object: Proposing a new approach[END_REF], there is no guarantee on constraint fulfillment; also, it is not possible to specify landing constraints other than object location.

D. Boxing

We tested boxing (tilting fully different boxed-objects) utilizing a 3D-printed rigid end-effector. Boxes are used in our experiments because a large quantity of parcels found in Fig. 11: Desired joint velocity for three joints, i = {2, 3, 4}, dark colors (red, bleu, green) and the real measured corresponding velocities by the encoders with light colors.

Figure 11 illustrates the velocity tracking performance in the boxing experiment (namely in the presence of velocity jumps produced by the impact), and how important it is to take the robot back to a safe configuration to proceed to with the next task objective.

In case of boxes that cannot reach the desired pose in a stand-alone motion (i.e., would bypass S 2 in Fig. 7), it is possible to plan another robot arm to meet the box a little after the singular configuration S 1 in Fig. 7 and still achieve boxing.

There is no similar existing work to which our approach is to be compared. Indeed, the boxing studied in this paper is an extreme dynamic motion case; in most cases, it is acceptable to gently tilt boxes to grab them with slower dynamics by applying a continuously sustained contact. This can be done as formulated in [START_REF] Shirai | Tactile tool manipulation[END_REF] using tactile feedback, where contact is sustained during the whole motion. In terms of performance, rotating a box in [START_REF] Shirai | Tactile tool manipulation[END_REF] took ∼ 160 s. Our implementation of contact-sustained boxing using force sensing took 45 s, whereas impact-boxing is made in around 1 s!

E. Combining different tasks

With our modular impact-aware planning and control approach, it is straightforward to combine previous individual impact-aware tasks. Since the planning can start from any state, no pause is necessary between two successive trajectories. We successfully experimented with a scenario that can be encountered in logistics were a given object at rest would first be boxed to change its pose, then grabbed and then tossed. Figure 12 illustrates such an example with snapshots from the multimedia video of this scenario . For the latter scenario, Fig. 12: Sequencing boxing, grabbing, and tossing in one run. Fig. 13 shows the force measurements for part of the task starting from boxing to dual arm tossing (notice that tossing is made in dual arm, that is adapting the computation of the working spaces) indicating boxing performed by the right panda robot (light red region) and the transition from dual grabbing impact (blue region) to sustained contact through an admittance task objective in the QP controller (orange region). Fig. 13: Measured right panda (see Fig. 12) end-effector applied forces (along x, y, and z-axes) while impacting a box to change its initial rotation. In the grabbing interval, the endeffectors normal forces are shown (also during contact).

F. Discussions and limitations

Although repeatable, our experiments are conducted in wellcalibrated settings, blindly (i.e., without using vision for object tracking). Adding object tracking would enhance significantly the performance and robustness of our approach. Moreover, the shape and inertia parameters of the objects are known, which is not always the case in logistics sorting. Yet, online and fast inertia parameter estimation is possible [START_REF] Kurdas | Online payload identification for tactile robots using the momentum observer[END_REF] and has to be integrated as a prior task in our planning, which is certainly possible for grabbing or tossing. Yet, for boxing, we cannot escape from first impact that would allow identifying such parameters for unknown objects. We also did not reach the precision wanted for the tossing scenario when objects are picked with a suction cup. First, contact location uncertainties can occur, but this can be mitigated with online inertia identification (including the CoM). The challenging issue is the non-linear deformation of the suction cup. Also, a drop of pressure at release induces non-negligible perturbations. It is crucial to integrate the suction-cup dynamics in the planning as an extension of the robot model, e.g., [START_REF] Cheng | Manipulation with suction cups using external contacts[END_REF], [START_REF] Pham | Critically fast pick-and-place with suction cups[END_REF]. Another issue is the uncertainty in the release moment that can lightly change the object's ballistic trajectory. Since the latter depends on the release pose and velocity, the target can become out of reach. We also noticed that extra care should be given to the end-effector orientation motion at release to prevent undesired interaction between the object and the end-effector after it is released. The experiments also confirmed that for boxing the impacting location and impacting velocities are very sensitive parameters for the success of the tilting.

VIII. CONCLUSION AND FUTURE WORK

We propose a decoupled approach to plan motions for a class of impact tasks based on kinodynamic sampling in jointspace. The new planner is plugged into modules for tossing, grabbing, and boxing, each of which links its target impact objective to via-point configuration parameters (in terms of joint-space position and velocity), which our planner takes into account. The entire task is executed by a standard taskspace QP controller, which is proven to be highly efficient for generating intentional impacts. This work will be further investigated by benchmarking our developed methods together with others (data driven [START_REF] Bombile | Dual-arm control for coordinated fast grabbing and tossing of an object: Proposing a new approach[END_REF], [START_REF] Khurana | Learning to hit: A statistical dynamical system based approach[END_REF] and reference spreading [START_REF] Van Steen | Dual arm impact-aware grasping through time-invariant reference spreading control[END_REF]) in real logistic cases that include robotics with our industrial partner in the frame of the I-AM project. We will also investigate the possibility of casting the entire tasks as a global optimization problem, with more robustness to uncertainties by incorporating suction cup models and additional tasks such as impact assemblies and on-the-fly catching of objects.

Algorithm 2 1 :Fig. 3 :

 213 Fig. 3: Planning framework flowchart.

Fig. 6 :

 6 Fig. 6: Dual grabbing scenario: (left) define impact-grab velocity, (right) execute the planned trajectory.

7

 7

 .

Fig. 7 :

 7 Fig.7: On the left side, the force applied on the box exactly before starting to tilt. On the right one, the box and applied forces during tilting phases S 1 and S 2 .

Fig. 8 :

 8 Fig. 8: Position, velocity, and acceleration tracking for joint 1: desired (dark) and real (shaded), (Top-left). Position and velocity tracking errors (Top-right). Measured Position and Velocity errors to the TS defined Tossing Points (Bottom).

Fig. 9 :

 9 Fig. 9: Same target with impact velocities.

This paper was recommended for publication by Editor Chao-Bo Yan upon evaluation of the Associate Editor and Reviewers' comments. This work was supported by the Research Project I.AM. through the European Union H2020 program (GA 871899) A. Zermane and A.

e-commerce sorting logistics are cardboard boxes; and we used boxes obtained from real deliveries.

Figure 10 shows the execution of the planned trajectory. The desired impact point M is reached with the corresponding velocity to induce the intended planned rotational motion (all obtained from computations in Sec. VI). q (rad/s)