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REPRODUCIBILITY VIA NEURAL FIELDS OF VISUAL ILLUSIONS
INDUCED BY LOCALIZED STIMULI

CYPRIEN TAMEKUE, DARIO PRANDI, AND YACINE CHITOUR

Abstract. This paper investigates the replication of experiments by Billock and Tsou [PNAS,
2007] using the controllability of neural fields of Amari-type modelling the cortical activity
in the primary visual cortex (V1), focusing on a regular funnel pattern localised in the fovea
or the peripheral visual field. The aim is to understand and model the visual phenomena
observed in these experiments, emphasising their nonlinear nature. The study involves designing
sensory inputs simulating the visual stimuli from Billock and Tsou’s experiments. The after-
images induced by these inputs are then theoretically and numerically studied to determine their
capacity to replicate the experimentally observed visual effects. A key aspect of this research
is investigating the effects induced by the nonlinear nature of neural responses. In particular,
by highlighting the importance of both excitatory and inhibitory neurons in the emergence
of certain visual phenomena, this study suggests that an interplay of both types of neuronal
activities plays an essential role in visual processes, challenging the assumption that the latter
is mainly driven by excitatory activities alone.

Keywords. Neural field model, Visual illusions and perception, Spatially forced pattern
forming system.
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1. Introduction

Exploring a mathematically sound approach to understanding visual illusions in human per-
ception using neural dynamics can give us valuable insights into perceptual processes and visual
organization [3, 4], and can reveal much about how precisely the brain works. Neural dynamics
refers to the patterns of activity and interactions among neurons that give rise to our ability
to see and understand the world. Our visual system processes information in different stages,
with specialized neurons at each stage extracting specific details from what we see. The visual
system shows dynamic and widespread activity patterns, from detecting basic features like edges
and orientations to putting everything together and making sense of it. The brain area which
detects basic features such as spatial position, edges, local orientations and direction in visual
stimuli from the retina is the primary visual cortex (V1 for short), [18, 19].

Simple geometric visual hallucinations akin to that classified by Klüver [20] have been theo-
retically recovered in the last decades via the neural dynamic equation used to model the cortical
activity in V1 combined with the bijective nonlinear retino-cortical mapping [26, 32] between
the visual field and V1, see for instance, [7, 8, 12, 14, 31]. These geometric forms, known as form
constants, are obtained near a Turing-like instability using linear stability analysis, (equivariant)
bifurcation theory and pattern selection when the cortical activity is due solely to the random
firing of V1 neurons, that is, in the absence of sensory inputs from the retina. However, to
function correctly, the primary visual cortex must be primarily driven by sensory information
from the retina [18, 19], not only by the internal noisy fluctuation of its cells. But apart from
experimental studies [15], experimentally induced phenomena via psychophysical tests [5, 6, 25,
24, 21, 22] or even theoretical tools via Lie transformation group model for the analysis of per-
ceptual processes [17, 10], theoretically using neural dynamics, little is known on how precisely
sensory input is processed and represented in early visual areas.

It has been known since Helmholtz’s work [16] that even simple geometrical patterns compris-
ing black and white zones may induce strong after-images accompanying a visual perception after
a few seconds. Then, via redundant and non-redundant stimulation by funnel (fan shape) and
tunnel (concentric rings) patterns (see Figure 1), MacKay [21, 22] points out that there is some
can of orthogonal response in the visual cortex since funnel pattern induces a tunnel pattern as
an after-image, and conversely. More recently, by considering a neural field equation of Amari-
type [1, Eq. (3)] modelling the cortical activity in V1 taking into account a fully distributed
state-dependent sensory input representing cortical representation via the retino-cortical map
of funnel and tunnel patterns, Nicks et al. [23] theoretically proved these experimental findings
that there is an orthogonal response of V1 to visual inputs. The present authors sustained this
evidence in [29, 30]. In particular, via the controllability issue of the neural field equation of
Amari-type, we have shown that the underlying Euclidean symmetry of V1 restricts the ge-
ometrical shape of visual inputs that can induce a “strong” after-effect in the primary visual
cortex. If the visual input is symmetry with respect to a subgroup of the group of the motion
of the plane, then the induced after-image obtained via the Amari-type equation and the in-
verse retino-cortical map have the same subgroup as a group of symmetry. The latter suggests
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Figure 1. Visual illustration of the retino-cortical map, redrawn from [5]. The
top-left corresponds to the funnel pattern in the retina, and on the top-right,
the corresponding pattern of horizontal stripes is in V1. While the bottom-left
corresponds to the tunnel pattern in the retina, and on the bottom-right, the
corresponding pattern of vertical stripes is in V1. In particular, these images
are regular in shape and symmetrical with respect to a specific subgroup of the
plane’s motion group [7].

that the after-images induced by fully distributed tunnel and funnel patterns (more generally
spontaneous patterns obtained through Turing-like instability [7, 12, 31]) that fill all the visual
field have the same shape. Moreover, we exhibited in [28, 30] numerical simulations using the
Amari-type equation, showing that if the funnel pattern is localised either in the fovea (centre of
the visual field) or in the peripheral visual field, then the induced after-image consisting of the
tunnel pattern appears in the white or black complementary region where the stimulus is not
localised - demonstrating also orthogonal and non-local response in V1. These numerical simu-
lations, therefore, sustain the psychophysical experiments reported by Billock and Tsou [5], see
also [6]. Note that numerical simulations (including those for rotating after-images that are not
considered in this paper) performed in [23] also support the latter psychophysical experiments.

1.1. Billock and Tsou’s psychophysical experiments. Significant visual effects associated
with funnel and tunnel patterns have been recently observed in the psychophysical experiments
conducted by Billock and Tsou [5]. Like the MacKay effect [21, 22], these authors discovered
that introducing biased stimuli elicits orthogonal responses in the visual field. When a physical
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Figure 2. Billock and Tsou’s experiments: the presentation of a funnel pattern
stimulus in the centre (image on the top-left) induces an illusory perception of
tunnel pattern in surround (image on the top-right) after a flickering of the empty
region (the white region surrounding the stimulus pattern on the top-left). We
have a reverse effect on the bottom. Adapted from [5, Fig. 3].

stimulus is localised at the fovea (the central region of the visual field), the resulting visual illu-
sion appears in the flickering periphery. Conversely, the visual illusion emerges in the flickering
centre if the physical stimulus is presented in the periphery. Specifically, when a background
flicker is combined with a funnel pattern centred on the fovea (or periphery), the observer ex-
periences the illusory perception of a tunnel pattern in the periphery (or fovea, respectively).
Similarly, when the periphery (or fovea) of a tunnel pattern localised at the fovea (or periphery)
is subjected to flickering, an illusory rotating funnel pattern is perceived in the periphery (or
fovea). In both cases, the illusory contours in the afterimage appear within the nonflickering
region, depending on whether the flicker does not extend through the physical stimulus or if the
empty region is flickered out of phase. Refer to Fig. 2 for a visual illustration.

1.2. Strategy of study and presentation of our results. This paper aims to investigate
the theoretical replication of Billock and Tsou’s experiments [5] associated with a regular funnel
pattern localised in the fovea or peripheral visual field, as recalled in the previous section. We
will follow the idea of controllability of the Amari-type neural field introduced in [29, 30]. In
particular, we will stress why these intriguing visual phenomena are nonlinear, as first pointed
out in [28].

From a control theory point of view, the first aim is to design a suitable sensory input I,
V1 representation via the retino-cortical map of visual stimulus from the retina used in the
experiment such that the cortical state a : R+ × R2 → R solution to the following Amari-type
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control system

∂ta(x, t) + a(x, t) − µ

∫
R2
ω(x− y)f(a(y, t))dy = I(x), (t, x) ∈ R+ × R2,

a(x, 0) = a0(x), x ∈ R2,
(NF)

exponentially stabilizes to the stationary state, corresponding to the V1 representation via the
retino-cortical map of the induced after-image reported by Billock and Tsou. Secondly, we will
perform a quantitative and qualitative study of this stationary output to show that it captures
all the essential features of the visual illusion announced by Billock and Tsou at the V1 level. To
this aims, we follow a numerical analysis approach, specifically designed to address the complex
nonlinear dynamics characteristic of the considered neural fields model.

In Equation (NF), a0 is the initial datum modelling the initial state of cortical activity in
V1, the parameter µ > 0 characterizes the intra-neural connectivity, the function f serves as a
nonlinear response function that transforms the activity level of a neural population at location
y and time t into an output signal. (See Definition 2.1.) This output is then used as input for
other neural populations through the synaptic connectivity kernel ω. While the latter models
spatial relationships between neurons or neural populations, f models each population’s activity
transformations to output. Therefore, once the signal reaches V1, it will interact with local
neural dynamics captured by this equation. The equation then models how V1 responds to this
input while accounting for local interactions (via the connectivity kernel ω) and nonlinearities
in neural activity (via the response function f).

In biological brain tissue, neurons can be excitatory or inhibitory [18, 19], and an inhibitory
neuron decreases the likelihood that a post-synaptic neuron will send out electrical signals or
spike to communicate with other brain cells. A negative value for f(a(y, t)) might capture
this inhibitory influence. Notice also that a positive function f(a(y, t)) ≥ 0 would imply that all
neurons, regardless of their current activity level, provide some excitatory output. This overlooks
the crucial role of inhibitory neurons in shaping neural activity and perception. Moreover, as
it is evident from the study that we will present in this paper, a model lacking inhibitory
activity is likely insufficient for capturing certain phenomena such as that reported by Billock
and Tsou. In the latter case, we will also see that a complex interplay between excitatory and
inhibitory activity in the shape of f is required since an odd nonlinearity does not replicate the
phenomenon.

Therefore, the effect that plays the non-linearity f on the reproducibility of Billock and
Tsou’s experiments using Equation (NF) will be highlighted. As we previously pointed out in
[28, Fig. 8], these phenomena are wholly nonlinear and strongly depend on the shape of the
nonlinear function f .

Notice that while sensory inputs in Billock and Tsou’s experiments are time-varying, our study
finds that a temporal flicker of the complementary region where the stimulus is not localized
is not necessary to reproduce these intriguing visual phenomena. Notice that this observation
was already made in [23]. Our interpretation is that Billock and Tsou’s phenomena result
wholly from the underlying non-local and nonlinear properties of neural activity in V1 rather
than the temporal flickering of the complementary region where the stimulus is not localized.
In particular, the flickering should instead be in the origin of illusory motions that subjects
perceived in the after-images in these experiments.

The remaining paper is organised as follows: Section 1.3 recalls some general notations used
throughout the following. We present assumptions on model parameters used in Equation (NF)
in Section 2.1. Section 2.2 describes the mathematical modelling of visual stimuli associated with
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funnel patterns used in Billock and Tsou’s experiments. In Section 3, we recall some preliminary
results related to the well-posedness of equation (NF) and those in the direction of replicating
Billock and Tsou’s experiments associated with a funnel pattern localised either in the fovea
or in the peripheral visual field. The replication of the phenomena using Equation (NF) starts
precisely in Section 4. In Section 4.1, we prove that the stationary output of Equation (NF)
associated with a pattern of horizontal stripes localised in the left area of V1 does not contain a
pattern of vertical stripes in the white complementary region (the right area of V1) but rather
a mixture of horizontal and vertical stripes if the response function is linear. In Section 4.2,
we prove that even with certain nonlinear response functions that exhibit strong inhibitory or
excitatory influences and a weak slope, or a balance between excitatory and inhibitory influences,
the stationary output of Equation (NF) associated with a pattern of horizontal stripes localised
in the left area of V1 is identical with that of the linear response function. Section 5 focuses
precisely on proving that if, for instance, the response function in Equation (NF) exhibits a
good interplay between excitatory and inhibitory influence and a weak slope, then the stationary
output associated with a pattern of horizontal stripes localised in the left area of V1 contains a
pattern of vertical stripes in the white complementary region (the right area of V1) as Billock
and Tsou reported. For this aim, we follow a numerical analysis-type of argument in Section 5.1,
together with an analysis of the corresponding numerical schemes. Section 5.2 presents some
numerical simulations that bolster our theoretical study. Finally, in Section 6, we discuss the
main results of our paper and highlight areas for future work. We defer to Appendix A, the
proof of some technical results used in the paper.

1.3. General notations. In the following, d ∈ {1, 2} is the dimension of Rd and |x| denote
the Euclidean norm of x ∈ Rd. For p ∈ {1,∞}, Lp(Rd) is the Lebesgue space of class of
real-valued measurable functions u on Rd such that |u| is integrable over Rd if p = 1, and
|u| is essentially bounded over Rd when p = ∞. We endow these spaces with their standard
norms ∥u∥1 =

∫
Rd |u(x)|dx and ∥u∥∞ = ess supx∈Rd |u(x)|. We let C([0,∞);L∞(Rd)) be the

space of all real-valued functions u on Rd × [0,∞) such that, u(x, ·) is continuous on [0,∞) for
a.e., x ∈ Rd and u(·, t) ∈ Lp(Rd) for every t ∈ [0,∞). We endow this space with the norm
∥u∥L∞

t L∞
x

= sup
t≥0

∥u(·, t)∥∞.

We let S(Rd) be the Schwartz space of rapidly-decreasing C∞(Rd) functions, and S ′(Rd) be
its dual space, i.e., the space of tempered distributions. Then, S(Rd) ⊂ Lp(Rd) and Lp(Rd) ⊂
S ′(Rd) continuously. The Fourier transform of u ∈ L1(R2) is defined by

û(ξ) := F{u}(ξ) =
∫
Rd
u(x)e−2πi⟨x,ξ⟩dx, ∀ξ ∈ Rd.

Since S(Rd) ⊂ L1(R2), one can extend the above by duality to S ′(Rd), and in particular to
L∞(Rd). The convolution of u ∈ L1(Rd) and v ∈ Lp(Rd), p ∈ {1,∞}, is

(u ∗ v)(x) =
∫
Rd
u(x− y)v(y)dy, ∀x ∈ Rd.

Finally, the following notation will be helpful: if F is a real-valued function defined on R2,
we use F−1({0}) to denote the zero level-set of F .

2. Assumption on parameters and mathematical modelling of visual stimuli

In this section, we will present assumptions that we will consider on the parameters in Equa-
tion (NF), specifically on the response function f and on the connectivity kernel ω, as it is
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highlighted in Section 2.1. Then, in Section 2.2, we will present how we mathematically model
the visual stimuli used in Billock and Tsou’s experiments associated with a regular funnel pat-
tern localised in the fovea or peripheral visual field that we incorporate as sensory inputs in
Equation (NF).

2.1. Assumption on parameters in the Amari-type equation. We make the following
assumption on parameters involved in Equation (NF).

Coupling kernel: In this article, we use a spatially homogeneous and isotropic interaction
kernel ω in relation to coordinates (x1, x2). It depends solely on the Euclidean distance among
neurons, showing rotational symmetry. The “Mexican-hat” distribution is employed, a variant
of the Difference of Gaussians (DoG) model with dual components. The initial Gaussian part
governs short-range excitatory interactions, and the latter Gaussian models long-range inhibitory
interactions in V1 neurons. Thus, the connectivity kernel is taken as:

ω(x) = [2πσ2
1]−1e

− |x|2

2σ2
1 − κ[2πσ2

2]−1e
− |x|2

2σ2
2 , x ∈ R2, (2)

where κ > 0, and σ1 and σ2 satisfy 0 < σ1 < σ2 and σ1
√
κ < σ2. The latter condition is crucial

for explicitly calculating the L1-norm of ω, as detailed in Equation (4).
Note that ω(x) is equivalent to ω(|x|), and ω belongs to the Schwartz space S(R2). The

Fourier transform of ω is explicitly given by:

ω̂(ξ) = e−2π2σ2
1 |ξ|2 − κe−2π2σ2

2 |ξ|2 , ∀ξ ∈ R2,

and the maximum of ω̂ occurs at every vector ξc ∈ R2 satisfying |ξc| = qc. Thus:

qc :=

√√√√√ log
(

κσ2
2

σ2
1

)
2π2(σ2

2 − σ2
1)

and max
r≥0

ω̂(r) = ω̂(qc). (3)

The L1-norm of ω is also explicitly represented by:

∥ω∥1 = (1 − κ) + 2
(
κe

− Θ2
2σ2

2 − e
− Θ2

2σ2
1

)
with Θ := σ1σ2

√√√√√2 log
(

σ2
2

κσ2
1

)
σ2

2 − σ2
1
. (4)

Let us mention that ω might not satisfy the balanced condition ω̂(0) = 0, an equilibrium
between excitation and inhibition. Nonetheless, this equilibrium is achieved when κ = 1.

Finally, in the sequel, we use the letter Cω to denote any positive constant depending only
on the parameters involved in the definition of ω.
Response function: The choice of the response function f is crucial, and it is motivated by
authors’ previous works [30, 28]. Indeed, in [30, Figs. 5 and 6] we illustrated the capability of
Equation (NF) to reproduce Billock and Tsou experiments with the nonlinear response function
f(s) = (1+exp(−s+0.25))−1−(1+exp(0.25))−1, and that f(s) = tanh(s) does not reproduce the
phenomenon, suggesting that certain (non-odd) sigmoidal-type response functions are required
to replicate the phenomenon. In [28, Section 4], we briefly explained why the stationary output
pattern of the Amari-type Equation (NF) does not capture the essential features of the visual il-
lusions reported by Billock and Tsou’s when the response function is linear. Moreover, still in [28,
Fig. 8], by considering the “sigmoidal-type” response function fm,α(s) = max(−m,min(1, αs))
with m ≥ 0 and α > 0, we figured out ranges on parameters m and α for which the stationary
output pattern of the Amari-type Equation (NF) captures the essential features of the visual
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Figure 3. On the left, nonlinear response functions fm,α(s) =
max(−m,min(1, αs)) for different values of m and α. On the right a 1D
DoG kernel ω.

illusions reported by Billock and Tsou’s. More precisely, [28, Fig. 8] suggests that nonnegative
f0,α, odd f1,α with 0 < α < ∞, nonlinearities fm,α with strong inhibitory influence m > 1
and weak slope 0 < α < 1 as well as nonlinearities fm,α with strong excitatory influence and
weak slope 0 < α < m ≤ 1 do not replicate Billock and Tsou’s experiments associated with a
regular funnel pattern localised either in the fovea or in the peripheral visual field. While for
other values of m and α, Equation (NF) with the response function fm,α captures the essential
features of the visual illusions reported by Billock and Tsou (either the “strong” or the “weak”
phenomenon, as recalled in Section 1.1).

Observe also that fm,α is a non-smooth “mathematical approximation” of the following sig-
moid function, frequently used in neural field models like (NF),

gγ,ν(s) := (1 + exp(−γ(s− ν)))−1 − (1 + exp(κν))−1, γ > 0, ν > 0.

In this paper, when referring to a response function we will always assume the following.

Definition 2.1. A response function is a non-decreasing Lipschitz continuous function f : R →
R such that f(0) = 0, f is differentiable at 0, and α := f ′(0) = ∥f ′∥∞.

Of particular interest in the rest of the paper is the family of response functions given by

fm,α(s) = max(−m,min(1, αs)) =


1, if s ≥ 1

α ,

αs, if − m
α ≤ s ≤ 1

α ,

−m, if s ≤ −m
α ,

s ∈ R,

for every 0 ≤ m < ∞ and 0 < α < ∞, or by

f∞,α(s) = min(1, αs), s ∈ R,

for every 0 < α < ∞. Please refer to Figure 3 for a visual illustration. Notice that, whenever
m ≥ 0 is finite, fm,α is bounded.

Finally, it is worth emphasising that the spatially forced pattern-forming mechanism that we
are studying is qualitatively the same if instead of fm,α we use the smooth sigmoid gγ,ν since
the neural field model (NF) is structurally stable.
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The intra-neural connectivity parameter µ > 0: Following our previous works [30, 28, 29],
we assume that µ > 0 is smaller than the threshold parameter µc > 0 where certain geometric
patterns spontaneously emerge in V1 in the absence of sensory inputs from the retina, see for
instance, [12, 9, 23, 7]. This threshold parameter is referred to as the bifurcation point, and it
is analytically given by

µc := 1
f ′

m,α(0)ω̂(qc)
= 1
αω̂(qc)

,

where ω̂(qc) is defined by (3). Moreover, we let

µ0 := 1
f ′

m,α(0)∥ω∥1
= 1
α∥ω∥1

≤ µc, (5)

be the largest value of µ up to which we can insure the existence and uniqueness of a stationary
solution to Equation (NF) in the space L∞(R2). We henceforth assume that

µ < µ0.

Remark 2.1. The response function fm,α is globally bounded for all finite m ≥ 0 and α > 0
ensuring that, independently of µ > 0, the solution a ∈ C([0,∞);L∞(Rd)) of Equation (NF)
is uniformly bounded for t ∈ [0,+∞), for any initial datum a0 ∈ L∞(R2) and sensory input
I ∈ L∞(R2). See for instance [29, Theorem B.6.]. Although the semilinear response function
f∞,α is unbounded, we prove in Section 3 that this is still true under the assumption µ < µ0.

2.2. Mathematical modelling of visual stimuli. In this section, we mathematically model
the cortical representation of visual stimuli associated with funnel patterns used in Billock and
Tsou’s experiments that we incorporate as sensory inputs in Equation (NF). Note that we are
devoted to replicating the static version of these phenomena. Here, “static” refers to a physical
visual stimulus that induces an afterimage on the retina, resulting in illusory contours that do not
exhibit apparent motion. Consequently, we will not consider a time-dependent sensory input,
which should incorporate the modelling of flickering employed in the experiment. However,
as we already pointed out, this consideration will be enough for the corresponding stationary
output pattern of Equation (NF) to capture all the essential features (illusory contours) of the
after-image reported by Billock and Tsou.

Recall that the functional architecture of V1 exhibits a remarkable characteristic known as
retinotopic organization [32]: the neurons in the V1 area are arranged orderly, forming a to-
pographic or retinotopic map (well-known as the retino-cortical map). This map represents a
two-dimensional projection of the visual image formed on the retina. Notably, neighbouring
regions of the visual field are represented by neighbouring regions of neurons in V1, establishing
a bijective relationship. Up to the authors’ knowledge, the retino-cortical map was first repre-
sented analytically as a complex logarithmic map in [26]. Let (r, θ) ∈ [0,∞) × [0, 2π) denote
polar coordinates in the visual field (or in the retina) and (x1, x2) ∈ R2 Cartesian coordinates
in V1. The retino-cortical map (see also [30] and references within) is analytically given by

reiθ 7→ (x1, x2) := (log r, θ) . (6)

Due to the retino-cortical map analytical representation (6) and consistent with spontaneous
patterns description [12, 7], we consider that the function which generates the funnel pattern is
given in Cartesian coordinates x := (x1, x2) ∈ R2 of V1 by

PF (x) = cos(2πλx2), λ > 0.
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Figure 4. Funnel pattern
in the centre of the visual
field.

Figure 5. Horizontal
stripes in the left area of
V1.

retino-cortical map

reiθ 7→ (log r, θ)

Figure 6. Funnel pattern
in the peripheral visual
field.

Figure 7. Horizontal
stripes in the right area of
V1.

retino-cortical map

reiθ 7→ (log r, θ)

Let us point out that one of the fundamental properties of the retinotopic projection of the
visual field into V1 is that small objects centred on the fovea (centre of the visual field) have a
much larger representation in V1 than do similar objects in the peripheral visual field. Conse-
quently, a more realistic cortical representation of Billock and Tsou’s visual stimulus associated,
e.g., with the funnel pattern localised respectively in the fovea and in the peripheral visual field,
should consist of taking the sensory input as

IL(x1, x2) = PF (x1, x2)H(θL − x1), IR(x1, x2) = PF (x1, x2)H(x1 − θR). (7)

Here, θL and θR are nonnegative real numbers, and H is the Heaviside step function, modelling
that the funnel pattern is localised in the fovea and the peripheral visual field, respectively.
Note that IL and IR correspond to sensory inputs consisting of horizontal stripes in the left
and right areas of the cortex V1. Indeed, since visual stimuli employed in these experiments
are alternating sequences of white and black zones, we represent every cortical function, say IR,
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as defined in (7) in terms of a binary image, corresponding to the zero-level set of IR, in the
following way: in the regions where IR > 0 we put the black grayscale and where IR ≤ 0 we put
the white grayscale, refer for instance, to Figures 5 and 7.

Remark 2.2. For ease in the presentation, in the following, we will restrict ourselves to the
funnel pattern IL localised in the left area of V1 since the same analysis can be straightforwardly
adapted to IR.

3. Preliminary results on the Amari-type equation

In this section, we begin by discussing the concept of a stationary state as it applies to
Equation (NF). Following this, we review essential preliminary findings related to the well-
posedness of the same equation that is necessary to comprehend the rest of the paper.

Definition 3.1 (Stationary state). Let a0 ∈ Lp(R2). For every I ∈ Lp(R2), a stationary state
aI ∈ Lp(R2) to Equation (NF) is a time-invariant solution, viz.

aI = µω ∗ f(aI) + I. (SS)

The following well-posedness result is [29, Theorem 3.1], which only relies on the globally
Lipschitz property of the nonlinearity f .

Theorem 3.1 ([29]). Let I ∈ L∞(R2). For any initial datum a0 ∈ L∞R2), there exists a unique
a ∈ C([0,∞);L∞(Rd)), solution of Equation (NF). If µ < µ0, there exists a unique stationary
state aI ∈ L∞(R2) to (NF). Moreover, the following holds.

∥a(·, t) − aI∥∞ ≤ e−(1−µ∥ω∥1)t∥a0 − aI∥∞, for any t ≥ 0.

In the following theorem, we prove the uniform boundedness of the solution under the as-
sumptions of Section 2.1.

Theorem 3.2. Let a0 ∈ L∞(R2), I ∈ L∞(R2) and a ∈ C([0,∞);L∞(Rd)) be the solution of
(NF). Then,

i. If 0 < µ < µ0, it holds

∥aI∥∞ = lim
t→+∞

∥a(·, t)∥∞ ≤ ∥I∥∞

(
1 − µ

µ0

)−1
, (8)

where aI is the stationary solution to Equation (NF) given by Theorem 3.1.
ii. If µ = µ0, we have

∥a(·, t)∥∞ ≤ ∥I∥∞t+ ∥a0∥∞, for any t ≥ 0. (9)

Proof. We recall from Theorem 3.1 that for all x ∈ R2, and every t ≥ 0 we have

a(x, t) = e−ta0(x) +
(
1 − e−t

)
I(x) + µ

∫ t

0
e−(t−s)(ω ∗ f(a))(x, s)ds. (10)

Therefore, we apply Minkowski’s and Young convolution inequalities to (10), and obtain for any
t ≥ 0,

et∥a(·, t)∥∞ ≤ ∥a0∥∞ + µ

µ0

∫ t

0
es∥a(·, s)∥∞ds+ ∥I∥∞

∫ t

0
esds, (11)
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using that f is α-Lipschitz continuous. Applying now Grönwall’s Lemma A.1 with u(t) =
et∥a(·, t)∥∞, g(t) = µ/µ0 and h(t) = ∥I∥∞e

t to inequality (11) yields (9) for µ = µ0, while for
µ ̸= µ0 one gets

∥a(·, t)∥∞ ≤ e
−
(

1− µ
µ0

)
t
∥a0∥∞ + ∥I∥∞

(
1 − µ

µ0

)−1
(

1 − e
−
(

1− µ
µ0

)
t
)
, for any t ≥ 0.

Inequality (8) follows directly. □

One also has the following.

Proposition 3.1. Under the assumption µ < µ0, for any α > 0 we let

mα := α∥I∥∞

(
1 − µ

µ0

)
.

Then, for any m ≥ mα the stationary solution of Equation (NF) with response function fm,α

coincides with the unique stationary solution to the same equation with response function fmα,α.

Proof. By Theorem 3.1, the stationary solution am,α ∈ L∞(R2) to Equation (NF) with response
function fm,α is the unique solution of am,α = I + µω ∗ fm,α(am,α). In particular, inequality (8)
implies that

−mα

α
≤ am,α(x) ≤ mα

α
, for a.e. x ∈ R2.

Therefore, one has1, for a.e. x ∈ R2,
am,α(x) = I(x) + µω ∗ fm,α(am,α)(x)

= I(x) + µ

∫
R2
ω(x− y)fm,α(am,α(y))1{− mα

α
≤am,α(y)≤ 1

α
}dy

+µ
∫
R2
ω(x− y)fm,α(am,α(y))1{am,α(y)≥ 1

α
}dy

= I(x) + µω ∗ fmα,α(am,α)(x),
since fm,α(s) = fmα,α(s) for every s ≥ −mα/α. It follows that am,α is a stationary solution for
Equation (NF) with nonlinearity fmα,α. The statement follows by uniqueness of the stationary
solution provided by Theorem 3.1. □

Applied, for instance, to Billock and Tsou’s experiments replication, Proposition 3.1 implies
the following simple but important result.

Corollary 3.1. Under the same assumptions as Proposition 3.1, let m1 ≥ mα be such that the
response function fm1,α reproduces Billock and Tsou’s experiments. Then, the same is true for
any response function fm,α such that m ≥ m1.

The following result proves that the stationary state to Equation (NF) is Lipschitz continuous
whenever the sensory input I is.

Proposition 3.2. Assume that µ < µ0. If the sensory input I ∈ L∞(R2) is LI-Lipschitz
continuous on some open set Ω ⊂ R2, then the corresponding stationary solution to equation
(NF) is also Lipschitz continuous on Ω, with Lipschitz constant upper bounded by

DI := LI + µ
α∥I∥∞
1 − µ

µ0

Cω, (13)

1Here 1A denotes the characteristic function of the subset A ⊂ R2.
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where Cω denotes a constant depending only on ω.

Proof. Let a ∈ L∞(R2) be the unique stationary solution whose existence is guaranteed by
Theorem 3.1. For x ∈ R2 we have that

a(x) = I(x) + µb(x) with b := ω ∗ f(a).
Since ω ∈ S(R2) and f(a) ∈ L∞(R2), one has that b is infinitely differentiable on R2. Since by
assumption f is α-Lipschitz continuous and satisfies f(0) = 0, it is straightforward to show that

∥∇b(x)∥ ≤ α∥a∥∞

√
∥∂x1ω∥2

1 + ∥∂x2ω∥2
1, ∀x ∈ R2.

It follows by the Mean Value Theorem that b is Lipschitz continuous on R2. Since I is Lipschitz
continuous on Ω and using Theorem 3.2 to upper bound ∥a∥∞, the result then follows at once. □

The following simple result will be used hereafter.

Lemma 3.1. Assume that the response function f in Equation (NF) is odd. If µ < µ0, for any
sensory input I ∈ L∞(R2) one has a9I = −aI .

Proof. Thanks to Theorem 3.1, we have that aI and a9I are uniquely defined by aI = I +
µω ∗ f(aI) and a9I = −I + µω ∗ f(a9I), respectively. Since f is odd, one has aI + a9I =
µω ∗ [f(aI) − f(−a9I)]. Therefore, Young convolution inequality yields

∥aI + a9I∥∞ ≤ µ∥ω∥1∥f(aI) − f(−a9I)∥∞ ≤ µ

µ0
∥aI + a9I∥∞,

so that ∥aI + a9I∥∞ = 0. □

In the following, we prove more general results that provide insight into the qualitative prop-
erties of the stationary state of Equation (NF) when the sensory input has a cosine factor.

Proposition 3.3. Let the sensory input I be given by I(x1, x2) = cos(2πλx2)I1(x1), for λ > 0
and (x1, x2) ∈ R2, where I1 ∈ L∞(R). If µ < µ0, then the following hold.

(1) aI is 1/λ-periodic, even and globally Lipschitz continuous with respect to x2 ∈ R;
(2) If f is odd, then aI is 1/2λ-antiperiodic with respect to x2 ∈ R. Namely,

aI(x1, x2 + 1/2λ) = −aI(x1, x2), for a.e. (x1, x2) ∈ R2.

Proof. We assume that λ = 1 for ease of notation. Using that the convolution operator commutes
with translation, and that the input I and ω are even with respect to x2, one deduces that
aI is even with respect to x2. Let us prove that aI is 1-periodic with respect to x2. For
a.e. (x1, x2) ∈ R2, one has

aI(x1, x2 + 1) = cos(2πλx2)I1(x1) + µ

∫
R2
ω(x1 − y1, x2 + 1 − y2)f(aI(y))dy

= I(x1, x2) + µ

∫
R2
ω(x− y)f(aI(y1, y2 + 1))dy.

It follows that (x1, x2) 7→ aI(x1, x2 + 1) is the stationary solution associated with I and hence
it coincides with aI .

Let us show that aI is Lipschitz continuous with respect to x2. Taking the derivative of (20)
with respect to x2, one finds that for a.e. (x1, x2) ∈ R2 it holds

∂x2a(x1, x2) = −2π sin(2πx2)I1(x1) + µ

∫
R2
ω(x− y)f ′(aI(y))∂x2a(y)dy.



14 CYPRIEN TAMEKUE, DARIO PRANDI, AND YACINE CHITOUR

Since ∥f ′∥∞ ≤ α by assumption, it follows that ∥∂x2a(x1, ·)∥L∞(R) ≤ 2π∥I1∥∞ (1 − µ/µ0)−1, for
a.e. x1 ∈ R, showing that aI(x1, ·) is Lipschitz continuous for a.e. x1 ∈ R. This completes the
proof of item (1).

Let us now prove item (2). For a.e. (x1, x2) ∈ R2, then one has

−aI(x1, x2 + 1/2) = cos(2πλx2)I1(x1) − µ

∫
R2
ω(x1 − y1, x2 + 1/2 − y2)f(aI(y))dy

= I(x1, x2) + µ

∫
R2
ω(x− y)f(−aI(y1, y2 + 1/2))dy,

where in the last equality we used the fact that f is odd. Hence, (x1, x2) 7→ −aI(x1, x2 + 1/2)
is the stationary solution associated with I and hence it coincides with aI . □

One has the following result related to Billock and Tsou’s experiments which is the main focus
of this paper. The proof is an adaptation of that of [29, Theorem 5.2]. We will present it for
the sake of completeness.

Proposition 3.4. Assume that the response function f in Equation (NF) is odd. Let the sensory
input IL be given by (7). If µ < µ0/2, denote by aL ∈ L∞(R2) the corresponding stationary state
to IL. Then, for a.e. x1 ∈ R, the set of zeros of aL(x1, ·) coincides with that of x2 7→ cos(2πλx2).

Proof. We assume that λ = 1 for ease of notation. The zeroes of x2 7→ cos(2πx2) are zk = k+1/4
for every k ∈ Z. Let x1 ∈ R, let us first prove that aI(x1, zk) = 0. Since aI(x1, ·) is 1-periodic by
Proposition 3.3, it is enough to prove that aI(x1, 1/4) = 0. Using that aI(x1, ·) is 1/2-antiperiodic
and even by Proposition 3.3, one gets aI(x1, 1/4) = aI(x1,−1/4 + 1/2) = −aI(x1,−1/4) =
−aI(x1, 1/4). Therefore, aI(x1, 1/4) = 0. Conversely, let x∗ := (x∗

1, x
∗
2) ∈ R2 be such that

aL(x∗) = 0. We want to show that cos(2πx∗
2) = 0. Recall that for a.e. x := (x1, x2) ∈ R2,

aL(x) = cos(2πx2)H(θL − x1) + µ

∫
R2
ω(x− y)f(aL(y))dy. (16)

If x∗
1 ≤ θL, then from (16), it follows

cos(2πx∗
2) = −µ

∫
R2
ω(y)f(aF (x∗ − y))dy. (17)

By using (16) once again, one obtains

aL(x∗
1 − y1, x

∗
2 − y2) = I2(y) + µ

∫
R2
k(y, z)f(aL(x∗ − z))dz, (18)

where I2(y) := sin(2πx∗
2) sin(2πy2)H(θL − x∗

1 + y1) and for every (x, y) ∈ R2 × R2,
k(y, z) = ω(y − z) −H(θL − x∗

1 + y1) cos(2πy2)ω(z),
satisfies

sup
y∈R2

∫
R2

|k(y, z)|dy ≤ 2∥ω∥1.

Since µ < µ0/2, the contracting mapping principle ensures that y 7→ g2(y) := aL(x∗ − y) is the
unique solution to (18). Moreover, it holds

−aL(x∗
1 − y1, x

∗
2 + y2) = I2(y) + µ

∫
R2
k(y, z)f(−aL(x∗

1 − z1, x
∗
2 + z2))dz,

since f is odd. So the function (y1, y2) 7→ −g2(y1,−y2) is also solution of (18) with input I2. By
uniqueness of solution, one has g2(y1,−y2) = −g2(y1, y2) and that y 7→ ω(y)f(aL(x∗ − y)) is an
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via the stationary

equation (SS)

Figure 8. On the left, we have the sensory input IL(x1, x2) = cos(2πλx2)H(θL−
x1) with λ = 0.4 and θL = 5. On the right, we have the corresponding sta-
tionary output when the response function is the odd nonlinearity f1,1(s) =
max(−1,min(1, s)). The cortical data is defined on the square (x1, x2) ∈
[−10, 10]2 with step ∆x1 = ∆x2 = 0.01. The parameters in the kernel ω are
σ1 = 1/π, σ2 =

√
2/π and κ = 1.2. Here µ := 0.99µ0, where µ0 is defined in

(5)-(4). These numerical results are obtained using the Julia toolbox from [27].

odd function with respect to y2 ∈ R, since ω is radial and f is an odd function. It follows from
Fubini’s theorem that the right-hand side of (17) is equal to 0. □

Remark 3.1. Note that the assumption µ < µ0/2 in Proposition 3.4 is technical due to our
strategy in the proof. Numerical simulations suggest that the conclusion of the proposition
remains valid for all µ0/2 ≤ µ < µ0. See, for instance, Figure 8.

4. On Billock and Tsou’s experiments replication

In this section, we investigate the replication of Billock and Tsou’s phenomena using Equa-
tion (NF). In the current study, we aim to elucidate the efficacy of Equation (NF) in mimicking
these visual illusions, as briefly reviewed in Section 1.1. We focus on determining if the model’s
output exhibits qualitative concordance with the human experience of these illusions. It is im-
perative to note that our analysis is strictly qualitative and serves as an illustrative proof of
concept for applying Amary-type dynamics (NF) in simulating the perceptual outcomes elicited
by visual illusions as previously obtained in [29] for the MacKay effect from redundant stimula-
tion replication. This study does not endeavour to align its findings with quantitative empirical
data, as such data are contingent upon numerous experimental variables that do not have a
straightforward relationship with the parameters within our model.

We begin by proving that these phenomena are wholly nonlinear in contrast, for instance,
to the MacKay effect from redundant stimulation [21] that we proved in [29] for being a linear
phenomenon. Therefore, we will see that Equation (NF) with a linear response function f cannot
reproduce the psychophysical experiments by Billock and Tsou [5] associated with the funnel
pattern stimulus when the corresponding sensory inputs are modelled as in (7).
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4.1. Unreproducibility of Billock and Tsou experiments: linear response function.
This section assumes that the response function f is linear. To simplify our analysis, we specif-
ically focus on the funnel pattern centred on the fovea within the visual field. As a result, the
corresponding sensory input I consists of a localized pattern of horizontal stripes in the left area
of the V1 cortex by the retino-cortical map, see Figure 5.

Previously, in [28, Proposition 5.], we proved that (NF) with a linear response function is
incapable of reproducing Billock and Tsou’s experiments, as verified through direct Fourier
transform computations. While this finding sufficed to establish our desired outcome, it failed
to offer deeper insights into the qualitative properties of the stationary state associated with the
sensory input utilized in these experiments. Specifically, it did not precisely characterise the zero-
level set of this stationary state. To address this gap, we draw upon the qualitative properties
of the sensory input I and utilize tools from complex and harmonic analysis. Consequently, we
present the following key results in this section.
Theorem 4.1. Assume that the response function f in Equation (NF) is linear with slope
α > 0 and that the sensory input I = IL. If µ < µ0, denote by aL ∈ L∞(R2) the corresponding
stationary state to IL. Then, the zero-level set ZaL of aL satisfies

ZaL ∩ [(0,+∞) × R] = [X1 × R] ∪ [(0,+∞) × X2], (19)
where X1 and X2 are discrete and countable sets, respectively in (0,+∞) and R.

Since f(s) = αs and IL(x1, x2) = cos(2πλx2)H(θL − x1), with λ > 0 and θL ≥ 0, we assume
without loss of generality that α = 1, λ = 1 and θL = 0 to keep the presentation clear for reader
convenience. Therefore, the stationary state aL ∈ L∞(R2) satisfies

aL(x1, x2) = cos(2πx2)H(−x1) + µ

∫
R2
ω(x− y)aL(y)dy, (x1, x2) ∈ R2, (20)

where the kernel ω is defined in (2).
We pedagogically split the proof of Theorem 4.1 into several steps. The first result is the

following.
Lemma 4.1. Under hypotheses of Theorem 4.1, the stationary state aL decomposes as

aL(x1, x2) = a1(x1) cos(2πx2), (x1, x2) ∈ R2. (21)
Here a1 ∈ L∞(R) is given by

a1(x1) = H(−x1) + µ(K ∗H(−·))(x1), x1 ∈ R. (22)
where K ∈ S(R) is defined for all x1 ∈ R by

K(x1) =
∫ +∞

−∞
e2iπx1ξ ψ̂1(ξ)

1 − µψ̂1(ξ)
dξ, ψ̂1(ξ) = e−2π2σ2

1(1+ξ2) − κe−2π2σ2
2(1+ξ2), ξ ∈ R. (23)

Proof. We fix x1 ∈ R. Since x2 7→ aL(x1, x2) is 1-periodic and even on R, we expand aL(x1, ·)
in term of Fourier series as

aL(x1, x2) =
∞∑

n=0
an(x1) cos(2πnx2), x2 ∈ R, (24)

a0(x1) =
∫ 1

0
aL(x1, t)dt, and an(x1) = 2

∫ 1

0
aL(x1, t) cos(2πnt)dt, x1 ∈ R. (25)

Thanks to Proposition 3.3-item (1), one has that the derivative a′
L(x1, ·) of aL with respect to x2

is continuous and bounded on R. Thus a′
L(x1, ·) belongs to L2([−1, 1]), the space of real-valued
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measurable and square-integrable functions over [−1, 1]. Since aL(x1, ·) is absolutely continuous
(Lipschtiz continuous by Proposition 3.3-item (1)) on R, it follows from [13, Théorème 2.] that
its Fourier series converges uniformly to aL(x1, ·) on R. Observe also that (25) defines functions
an ∈ L∞(R) for all n ∈ N, so that one gets for all x1 ∈ R and for all σ > 0, there exists M > 0
such that

+∞∑
n=0

∫ ∞

−∞

∣∣∣∣∣ 1
σ

√
2π
e− (x1−y1)2

2σ2 e−2π2σ2n2
an(y1) cos(2πnx2)

∣∣∣∣∣ dy1 ≤ M

1 − e−2π2σ2 .

Therefore, we can substitute (24) into (20) and find the following family of one-dimensional
linear integral equations indexed by n ∈ N.

an(x1) = δ1,nH(−x1) + µα(ψn ∗ an)(x1), x1 ∈ R, (26)
where δ1,n is the usual Kronecker symbol and the kernel ψn is given for every n ∈ N, by

ψn(s) = e−2π2n2σ2
1
e

− s2
2σ2

1

σ1
√

2π
− κe−2π2n2σ2

2
e

− s2
2σ2

2

σ2
√

2π
, s ∈ R.

For n ̸= 1, equations (26) yields to
(δ − µαψn) ∗ an = 0, in S ′(R), (27)

where δ is the Dirac distribution at 0. Taking the Fourier transform of (27) in the space S ′(R),
one obtains for all ξ ∈ R,

(1 − µψ̂n(ξ))F{an}(ξ) = 0, n ̸= 1.

It is not difficult to see that max{ψ̂n(ξ) | ξ ∈ R} ≤ max{ω̂(ξ) | ξ ∈ R2} ≤ ∥ω∥1. Since µ∥ω∥1 < 1
by assumption, one deduces 1 − µψ̂n(ξ) > 0 for all ξ ∈ R, and F{an} ≡ 0. It follows that

an ≡ 0, for all n ̸= 1.
In the case n = 1, one has

a1(x1) = H(−x1) + µ(ψ1 ∗ a1)(x1), x1 ∈ R. (28)
Finally, taking respectively the Fourier transform of (28) and the inverse Fourier transform in
the space S ′(R), we find that a1 ∈ L∞(R2) is given by (22) with K ∈ S(R) defined as in (23). □

Due to Lemma 4.1, inverting the kernel K defined in (23) and providing an asymptotic
behaviour of its zeroes on R will help to provide thorough information on the zeroes of the
function a1 as given by (22). To achieve this, we use tools from complex analysis.

Let us consider the extension of K̂ in the set C of complex numbers,

K̂(z) = ψ̂1(z)
1 − µψ̂1(z)

, z ∈ C.

Then K̂ is a meromorphic function on C, and its poles are zeroes of the entire function

h(z) := 1 − µe−2π2σ2
1(1+z2) + κµe−2π2σ2

2(1+z2), z ∈ C.

Remark 4.1. The holomorphic function h is an exponential polynomial [2, Chapter 3] in −z2

with frequencies α0 = 0, α1 = 2π2σ2
1 and α2 = 2π2σ2

2 satisfying α0 < α1 < α2 due to assumptions
on σ1 and σ2. It is normalized since the coefficient of 0-frequency equals 1. A necessary condition
for h for being factorizable [2, Remark 3.1.5, p. 201] is that parameters σ1 and σ2 are taken so
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that it is simple. By definition [2, Definition 3.1.4, p. 201], h is simple if α1 and α2 are
commensurable, i.e., α1/α2 is rational, which is equivalent to σ2

1/σ
2
2 is rational.

Remark 4.2. Thanks to Remark 4.1, without loss of generality, we can set parameters in the
kernel ω in (2) are such that κ = 1, σ1 = 1/π

√
2 and σ2 = σ1

√
2. We also let µ = 1.

Using Theorem A.1, and arguing similarly as in the proof of [29, Proposition 5.12.], we can
prove that a1 has a discrete and countable set of zeroes in (0,+∞), under the considerations in
Remark 4.2.

Proof of Theorem 4.1. To complete the proof of Theorem 4.1, it suffices to consider Lemma 4.1,
Theorem A.1 and observe that aL given by (21) satisfies (19). □

A consequence of Theorem 4.1 is the following.
Corollary 4.1. Assume µ < µ0 and that the response function f is linear. Then, Equation (NF)
does not reproduce Billock and Tsou’s experiments associated with a sensory input consisting of
a pattern of horizontal stripes localised in the left area in the cortex V1.
Proof. Given that the sensory input in equation (NF) is a pattern consisting of horizontal stripes
localised in the left area in the cortex V1, Theorem 4.1 shows that the corresponding stationary
state consists of a mixture of patterns of horizontal and vertical stripes in the right area in V1
instead of vertical stripes only, as Billock and Tsou reported. □

4.2. Unreproducibility of Billock and Tsou’s experiments with certain nonlinear re-
sponse functions. As we recalled in Section 2.1, the numerical results provided in [28, Fig. 8]
suggest that a complex interplay of excitatory and inhibitory activity is required to replicate
complex phenomena like Billock and Tsou’s experiments using the Amari-type neural fields equa-
tion (NF). In particular, they suggest adopting a nonlinear function fm,α that allows for positive
and negative values but is not odd, breaking the symmetry between excitatory and inhibitory
influences. More precisely, [28, Fig. 8] suggests that the stationary output of Equation (NF)
computed with the following response functions does not capture the essential features of visual
illusions reported by Billock and Tsou. For s ∈ R, they are given by:
(NL1) Nonnegative (wholly excitatory influence) nonlinearities:

f0,α(s) = max(0,min(1, αs)), 0 < α < ∞,

(NL2) Odd (balanced inhibitory and excitatory influence) nonlinearities:
f1,α(s) = max(−1,min(1, αs)), 0 < α < ∞,

(NL3) Nonlinearities with a strong excitatory influence and a weak slope:
fm,α(s) = max(−m,min(1, αs)), 0 < α < m ≤ 1,

(NL4) Nonlinearities with a strong inhibitory influence and a weak slope:
fm,α(s) = max(−m,min(1, αs)), 0 < α < 1 < m.

This section aims to provide analytical insight into why the Amari-type neural fields equa-
tion (NF) does not replicate Billock and Tsou’s experiments when the response function is taken
to be one of (NL2)-(NL4). The main focus will be on the study of the qualitative properties
in terms of the zero-level set of the stationary solution to Equation (NF) obtained with each
of these nonlinearities when the sensory input is taken as IL defined in (7). We are currently
unable to treat the case (NL1).

The first theorem of this section is the following.
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Theorem 4.2. If µ < µ0 and min(1,m)α−1 ≥ ∥I∥∞ (1 − µ/µ0)−1, then the stationary solution
am,α to Equation (NF) with the response function fm,α is the solution to Equation (NF) with
the linear response function with slope α > 0. In particular, if I = IL, the nonlinear response
functions (NL3) and (NL4) do not replicate Billock and Tsou’s experiments.

Proof. If µ < µ0 then am,α ∈ L∞(R2) is the unique solution to am,α = IL + µω ∗ fm,α(am,α)
thanks to Theorem 3.1. Recall from Theorem 3.2 that ∥am,α∥∞ ≤ ∥I∥∞(1 − µ/µ0)−1. If
min(1,m)α−1 ≥ ∥I∥∞ (1 − µ/µ0)−1, then for a.e. x ∈ R2, one has

−m

α
≤ am,α(x) ≤ 1

α
.

Therefore, fm,α(am,α(y)) = am,α(y) for a.e. y ∈ R2, and am,α ∈ L∞(R2) solves the stationary
equation with a linear response function with slope α > 0. Finally, to prove the last part of
the theorem, it suffices to observe that ∥IL∥∞ = 1 and (1 − µ/µ0)−1 > 1, which implies that
min(1,m) > α, and then α < m ≤ 1 or α < 1 < m. The result then follows at once thanks to
the first part of the theorem and Theorem 4.1. □

Remark 4.3. Observe that Theorem 4.2 also accounts for the case of m = 1 and α < 1. This
means that the odd nonlinearity f1,α of (NL2) with 0 < α < 1 does not replicate Billock and
Tsou’s experiments. It, therefore, remains to prove that the odd nonlinearity f1,α with α ≥ 1
does not replicate Billock and Tsou’s experiments.

Fortunately, for all α ≥ 0, the odd nonlinearity f1,α of (NL2) satisfies all the hypotheses
of Proposition 3.4, taken as the response function in Equation (NF). One, therefore, has the
following result. See, for instance, Figure 8 for a numerical visualisation.

Proposition 4.1. Under the assumption µ < µ0/2, Equation (NF) with response function
(NL2) does not reproduce Billock and Tsou’s experiments associated with a sensory input con-
sisting of a pattern of horizontal stripes localised in the left area in the cortex V1.

Proof. Given that the sensory input in Equation (NF) is a pattern consisting of horizontal
stripes localised in the left area in the cortex V1, Proposition 3.4 shows that the corresponding
stationary state consists of a mixture of patterns of horizontal and vertical stripes in the right
area in V1 instead of vertical stripes only, as Billock and Tsou reported. □

Summing up, the results in this section provide a complete theoretical investigation of Billock
and Tsou’s experiments replication by Equation (NF) with response function fm,α, except for
the range m ̸= 1 and α ≥ min(m, 1). Although outside of the scope of this work, we observe
that, thanks Corollary 3.1, the study of this range can be reduced to considering the semilinea
response function f∞,α.

5. Numerical analysis and experiments

In this section we present a numerical scheme for the approximation of stationary solutions
of (NF) and analyse its convergence. Finally, we present some numerical experiments obtained
using this scheme.

5.1. Analysis of the numerical scheme. In this section, for the sake of generality, we assume
that the response function f satisfies the assumptions in Definition 2.1. Given a sensory input
I ∈ L∞(R2), we compute numerical solutions an,h,M : Z2 → R depending on three parameters
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h > 0, M > 0, and n ∈ N. These are obtained via the following iterative procedure, where
(i, j) ∈ Z2:

a0,h,M (i, j) = I(ih, jh),

an+1,h,M (i, j) = I(ih, jh) + µh2
M∑

p,q=−M

ω(ph, qh)f(an,h(i− p, j − q)).

We start by presenting the following error estimate, whose proof is quite technical and is pre-
sented in Appendix A.2.
Theorem 5.1 (Numerical error estimate). Assume that µ < µ0 and let the sensory input I be
given by

I(x1, x2) = I1(x1, x2)H(θL − x1) + I2(x1, x2)H(x1 − θL),
where θL ∈ R, and I1, I2 ∈ L∞(R2) are globally Lipschitz continuous. Then, for any η ∈
(µ/µ0, 1) there exists h0 > 0 such that for every h < h0 it holds

sup
(i,j)∈Z2

|aI(ih, jh) − an,h,M (i, j)| = O(h) +O (ηn) +O

(
e

− M2h2
2σ2

2

)
,

where the O(·)’s only depend on µ, η α, ω, ∥I∥∞, and the Lipschitz constants of I1 and I2.
Remark 5.1. The only part of the proof where the Lipschitz continuity assumption on the
sensory input in Theorem 5.1 is needed is to control the error introduced by the discretization of
the integral term of (NF). It is however easy to see that the argument of proof can be adapted
to more general sensory inputs I, under appropriate assumptions on the region where I is not
Lipschitz continuous.
Remark 5.2. It is immediate from Theorem 5.1 that to have numerical convergence to the
exact stationary solution aI , one has to choose h → 0, n → +∞, and M such that Mh → +∞.

To compare the zero level-set of the exact solution with their numerical approximations, we
introduce the following approximated zero level-set for aI :

Zε
aI

= {x ∈ R2 | |aI | < ε}, ε > 0.
In order to define a numerical approximation of the above, for a sensory input I ∈ L∞(R2) as
in Theorem 5.1, we let Ω± = {x ∈ R2 | ±(x1 − θL) > 0}. Then, for (n, h,M) ∈ N × R+ × R+,
we define

Zε,±
n,h,M = {x ∈ Ω± | ∃(i, j) ∈ Z2 s.t.

(ih, jh) ∈ Ω±, |x− (ih, jh)| < h/2 and |an,h,M (i, j)| < ε},
Zε

n,h,M = Zε,−
n,h,M ∪ Zε,+

n,h,M .

We have the following result, which guarantees the convergence of the numerical approximations
of the zero level-set to the exact set ZaI .
Theorem 5.2. Under the same assumptions as in Theorem 5.1, for any ε ∈ (0, 1/2) it holds

Zε/2
n,h,M ⊂ Zε

aI
⊂ Z2ε

n,h,M , (31)
for any (n, h,M) ∈ N × R+ × R+ such that, for some constant C > 0 depending only on µ, α,
ω, ∥I∥∞ and the Lipschitz constants of I1 and I2, it holds

h ≤ Cε, n ≥ −C log ε, M ≥ −C log ε
ε2 . (32)
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Proof. By Theorem 5.1, there exists (n0, h0,M0) ∈ N × R+ × R+ such that for any n > n0,
h < h0, and M > M0, we have that

sup
(i,j)∈Z2

|aI(ih, jh) − an,h,M (i, j)| < ε

2 . (33)

The estimate (32) immediately follows choosing, e.g., η = (1 + µ/µ0)/2. Moreover, by Lipschitz
continuity of aI on Ω+ ∪ Ω−, which is guaranteed by Proposition 3.2, up to reducing h0 (i.e.,
reducing C > 0), for all (i, j) ∈ Z2 with (ih, jh) ∈ Ω± and x ∈ Ω± such that |x− (ih, jh)| ≤ h/2,
we have

|aI(x) − aI(ih, jh)| < ε

2 . (34)

Combining (33) and (34) one easily obtains (31), completing the proof of the statement. □

5.2. Simulations for Billock and Tsou experiments. The numerical implementation is
obtained using the Julia toolbox from [27], which implements the numerical scheme presented
above. These experiments have been obtained with parameters:

n = 102, h = 10−2, M = 103.

We refer to the captions of the figures for the exact parameters used in the coupling kernel ω,
the input IL, and the parameter µ.

We exhibit in Figures 9 and 10 a numerical reproduction of Billock and Tsou’s experiments,
in the sense that the stripes’ frequency is similar to that used in the experiment, for a funnel-
like stimulus localised in the fovea and the peripheral visual field. In V1, we have a pattern of
black/white horizontal stripes in the left (respectively right) area in V1 and white in the right
(respectively left) area in V1. We also exhibit in Figures 11 and 12 a numerical experiment
where the stripes’ frequency is not the one of Billock and Tsou’s experiments.

Observe that each output pattern exhibited in Figures 9–12 captures all the essential features
of the after-image reported by Billock and Tsou at the level of V1. It suffices to apply the inverse
retino-cortical map to each output pattern to obtain such images at the retina level. See, for
instance, [28].

6. Concluding remarks and discussion

In this paper, we investigated the replication of the psychophysical observations reported by
Billock and Tsou [5] using neural dynamics of Amari-type modelling the cortical activity in V1.
We focused on the case where intra-neural connectivity is weaker than the threshold where, in
the absence of sensory input from the retina, specific geometrical patterns spontaneously arise.
We considered in particular visual stimuli consisting of regular funnel patterns localized in the
fovea or peripheral visual field.

Firstly, the retino-cortical map between the visual field and V1 allowed us to model these
visual stimuli as patterns of horizontal stripes localized in the left or right area of V1, that
we incorporated as sensory inputs in the neural fields equation. Then, through complex and
harmonic analysis tools, we have shown that when the neuronal response function of V1 is linear,
the output pattern of the equation does not capture the V1 representation of the after-images
reported by Billock and Tsou, suggesting that the phenomenon is wholly nonlinear. Next, we
dived into the study of nonlinear response functions for which the corresponding output patterns
of the equation qualitatively capture, at the level of V1, the essential features of the after-images
reported by Billock and Tsou. Through this study, we have analytically shown that nonlinear
response functions with either balanced inhibitory and excitatory influence or a strong excitatory
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via the stationary

equation (SS)

Figure 9. On the left, we have the sensory input IL(x1, x2) = cos(2πλx2)H(θL−
x1) with λ = 0.4 and θL = 5. On the right, we have the corresponding
stationary output when the response function is the nonlinearity f0.2,0.5(s) =
max(−0.2,min(1, 0.5s)). The parameters in the kernel ω are σ1 = 1/π

√
2,

σ2 = σ1
√

2 and κ = 1.2. Here µ := 1.5 and µ0 = 1.92.

via the stationary

equation (SS)

Figure 10. On the left, we have the sensory input IR(x1, x2) =
cos(2πλx2)H(x1 − θR) with λ = 0.6 and θR = 2. On the right, we have the
corresponding stationary output when the response function is the nonlinear-
ity f0.2,0.8(s) = max(−0.2,min(1, 0.8s)). The parameters in the kernel ω are
σ1 = 1/π, σ2 = σ1

√
2 and κ = 1. Here, µ := 1.2 and µ0 = 2.

influence and weak slope or a strong inhibitory influence and weak slope do not reproduce
the phenomenon. This, suggests that a complex interplay between excitatory and inhibitory
influences is required for the neural fields equation to replicate the psychophysical observations
reported by Billock and Tsou [5] for a funnel pattern visual stimulus localized either in the fovea
or peripheral visual field. Finally, we presented numerical experiments showing that nonlinear
response functions other than those enumerated previously can reproduce the phenomenon.
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via the stationary

equation (SS)

Figure 11. On the left, we have the sensory input IL(x1, x2) =
cos(2πλx2)H(θL − x1) with λ = 1.25 and θL = 3. On the right, we have the
corresponding stationary output when the response function is the nonlinear-
ity f0.5,1.5(s) = max(−0.5,min(1, 1.5s)). The parameters in the kernel ω are
σ1 = 1/π

√
2, σ2 = 1/π and κ = 1.2. Here, µ := 1.5 and µ0 = 1.92.

via the stationary

equation (SS)

Figure 12. On the left, we have the sensory input IR(x1, x2) =
cos(2πλx2)H(x1 − θR) with λ = 1 and θR = 2. On the right, we have the
corresponding stationary output when the response function is the nonlinearity
f∞,5(s) = 1 − max(0, 1 − 5s). The parameters in the kernel ω are σ1 = 1/π,
σ2 = σ1

√
2 and κ = 1. Here, µ := 1.2 and µ0 = 2.

While much remains to be understood about the mechanisms underlying Billock and Tsou’s
psychophysical observations, our study provides valuable insights into how the primary visual
cortex processes sensory information arising from localized regular funnel patterns in the visual
field. In particular, this study supports the experimental finding suggesting that there is an
orthogonal response in the unexcited region of V1, as a response to simple geometrical patterns
from the retina that do not fill all the visual field or are not regular in shape.
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We stress that the structure of the visual stimuli related to funnel patterns used by Billock
and Tsou at the V1 level was crucial to obtain the results presented in this paper. The same
modelling regarding the tunnel pattern localised in the fovea or the peripheral visual field (see
[5, Fig. 3b and 3d]) will not yield the after-images reported by Billock and Tsou. Indeed, due
to the rotational invariance of these tunnel patterns, the stationary solutions induced by the
corresponding sensory inputs will be invariant with respect to translations in the second variable
of V1 (see, e.g., [29, Proposition A.1]). In particular, this excludes the possibilty of a funnel-like
after-image in the unexcited region.

In this work, we have focused on time-independent visual stimuli which turned out be enough
to model (static) nonlocal perceptual phenomena associated with the funnel patterns under con-
sideration. Studying pattern formation from spatiotemporal visual stimuli would be interesting
in future work. As an open question related directly to the current study, it will be interesting
to analytically show that a nonnegative response function (as, e.g., the response function (NL1)
of Section 4.2), which models wholly excitatory of inhibitory influence, does not reproduce the
phenomenon, as suggested by the numerical simulations exhibited in [28, Fig. 8]. Moreover,
finding a systematic analytical method for explicitly studying the qualitative properties of the
output pattern (e.g., the structure of the zero level-set) would be valuable. The starting point
could be to investigate the case of the semilinear response function f∞,α since numerical analysis
arguments and simulations suggest that this nonlinearity reproduces the phenomenon.

Appendix A. Complementary results

This section contains miscellaneous results used in the previous sections. We begin with the
following Gronwall’s lemma, see for instance [11, Proposition 2.1] for a proof.

Lemma A.1. Assume that u ∈ C([0, T );R), T ∈ (0,∞) satisfies the integral inequality

u(t) ≤ u(0) +
∫ t

0
g(s)u(s)ds+

∫ t

0
h(s)ds, on [0, T ),

for some 0 ≤ g ∈ L1(0, T ) and h ∈ L1(0, T ). Then u satisfies the pointwise estimate

u(t) ≤ u(0)eG(t) +
∫ t

0
h(s)eG(t)−G(s)ds, ∀t ∈ (0, T ),

where G(t) =
∫ t

0 g(s).

A.1. Explicit computations of the kernel K of Section 4.1. The following result is used to
prove that Equation (NF) with a linear response function does not replicate Billock and Tsou’s
observations for a funnel pattern localized either in the fovea or peripheral visual field.

Theorem A.1. Under the considerations of Remark 4.2, the kernel K defined in (23) satisfies,
for any x ∈ R∗,

√
3

2π K(x) = e−2πm0|x|√
n2

0 +m2
0

cos
(

2πn0|x| + 4π
3 − ϕ0

)

+
∞∑

k=1

e−2πmk|x|√
n2

k +m2
k

cos
(

2πnk|x| + 4π
3 − ϕk

)

+
∞∑

k=1

e−2πfk|x|√
f2

k + e2
k

cos
(

2πek|x| + 4π
3 − θk

)
.
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Here, for any k ∈ N, we have that ϕk, θk ∈ R, and, letting ck =
√

1 + 6k and dk =
√

−1 + 6k,
we have

m2
k =

1 +
√

1 + π2

9 c
4
k

2 , n2
k =

−1 +
√

1 + π2

9 c
4
k

2 , k ∈ N, (36)

e2
k =

1 +
√

1 + π2

9 d
4
k

2 , f2
k =

−1 +
√

1 + π2

9 d
4
k

2 , k ∈ N. (37)

Proof. We recall that for x1 ∈ R, one has

K(x1) =
∫ +∞

−∞
e2iπx1ξ ψ̂1(ξ)

1 − ψ̂1(ξ)
dξ, ψ̂1(ξ) = e−(1+ξ2) − e−2(1+ξ2), ξ ∈ R.

We are looking for poles of the following meromorphic function

h(z) = ψ̂1(z)
1 − ψ̂1(z)

e2iπx1ξ, ψ̂1(z) = e−(1+z2) − e−2(1+z2), z ∈ C.

By careful computations, one finds that the poles of h in C are given by Fk,ℓ, Fk,ℓ, Gk,ℓ and
Gk,ℓ, where for ℓ ∈ {0, 1}, one has

Fk,ℓ = (−1)ℓnk + imk, k ∈ N, and Gk,ℓ = (−1)ℓfk + iek, k ∈ N∗,

where mk and nk are given by (36), and ek and fk are given by (37). Then the residue of h are
given for ℓ ∈ {0, 1} by

Res(h, Fk,ℓ) = (−1)ℓiFk,ℓe
(−1)ℓi π

3

2
√

3 + π2

3 c
4
k

e2iπx1Fk,ℓ , Res(h, Fk,ℓ) = Res(h, Fk,ℓ), k ∈ N,

Res(h,Gk,ℓ) = −(−1)ℓiGk,ℓe
−(−1)ℓi π

3

2
√

3 + π2

3 d
4
k

e2iπx1Gk,ℓ , Res(h,Gk,ℓ) = Res(h,Gk,ℓ), k ∈ N∗.

We now fix x1 > 0, and we let

Rn :=

√√
1 + π2

9 c
4
n +

√√
1 + π2

9 d
4
n

2 , n ∈ N∗.

We consider the path Γn straight along the real line axis from −Rn to Rn and then coun-
terclockwise along a semicircle centred at z = 0 in the upper half of the complex plane,
Γn = [−Rn, Rn] ∪ C+

n , where C+
n = {Rne

iθ | θ ∈ [0, π]}. Then, by the residue Theorem,
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one has for all n ∈ N∗,∫ Rn

−Rn

h(ξ)dξ +
∫

C+
n

h(z)dz = 2πi
ℓ=1∑
ℓ=0

n−1∑
k=0

Res(h, Fk,ℓ) + 2πi
ℓ=1∑
ℓ=0

n−1∑
k=1

Res(h,Gk,ℓ)

= 2π√
3
e−2πm0|x|√
n2

0 +m2
0

cos
(

2πn0|x| + 4π
3 − ϕ0

)
+

2π√
3

n−1∑
k=1

e−2πmk|x|√
n2

k +m2
k

cos
(

2πnk|x| + 4π
3 − ϕk

)
+

2π√
3

n−1∑
k=1

e−2πfk|x|√
f2

k + e2
k

cos
(

2πek|x| + 4π
3 − θk

)
,

where ϕk := ϕk(mk, nk) ∈ R and θk := θk(ek, fk) ∈ R are such that

cosϕk = nk√
m2

k + n2
k

, sinϕk = mk√
m2

k + n2
k

, k ∈ N,

cos θk = − fk√
e2

k + f2
k

, sin θk = ek√
e2

k + f2
k

, k ∈ N∗.

Arguing similarly as in the proof of [29, Theorem B.1. ] we can prove that∫
C+

n

h(z)dz −−−−−→
n→+∞

0.

Finally, passing in the limit as n → +∞ in Equation (38) completes the proof. □

A.2. Proof of Theorem 5.1. We start by noticing that

lim
h→0

h2
∞∑

p,q=−∞
|ω(ph, qh)| = ∥ω∥1.

Hence, one can take h > 0 small enough, such that

µαh2
∞∑

p,q=−∞
|ω(ph, qh)| ≤ η < 1. (39)

Consider the fixed point equation

b(i, j) = I(ih, jh) + µh2
M∑

p,q=−M

ω(ph, qh)f(b(i− p, j − q)), b ∈ ℓ∞(Z2). (40)

Thanks to (39), the contraction mapping principle ensures the existence and uniqueness of the
solution ah,M to the above. In particular, it holds

sup
(i,j)∈Z2

|ah,M (i, j) − an,h,M (i, j)| ≤ ηn+1

1 − η
∥I∥∞. (41)
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Consider now the fixed point equation of the type (40) with M = +∞. Thanks to (39), this
equation admits a unique solution ah ∈ ℓ∞(Z2) such that

ah(i, j) = I(ih, jh) + µh2
∞∑

p,q=−∞
ω(ph, qh)f(ah(i− p, j − q)). (42)

We now claim that there exists a constant Cω > 0 depending only on the parameters of the
coupling kernel ω such that

sup
(i,j)∈Z2

|ah(i, j) − ah,M (i, j)| ≤ µα

(1 − η)2 ∥I∥∞Cωe
− M2h2

2σ2
2 . (43)

First of all, observe that by (42) we have

sup
(i,j)∈Z2

|ah(i, j)| ≤ ∥I∥∞
1 − η

. (44)

Next, for any (i, j) ∈ Z2, by (40) and (42), we have

ah(i, j) − ah,M (i, j) = J1 + J2, (45)

where

J1 = µh2 ∑
max{|p|,|q|}≥M+1

ω(ph, qh)f(ah(i− p, j − q)),

J2 = µh2
M∑

p,q=−M

ω(ph, qh)
(
f(ah(i− p, j − q)) − f(ah,M (i− p, j − q))

)
.

Using (44) and the fact that f is globally α-Lipschitz continuous, one has

|J1| ≤ µh2α∥I∥∞
1 − η

∑
max{|p|,|q|}≥M+1

|ω(ph, qh)|

|J2| ≤ µh2α sup
(i,j)∈Z2

|ah(i, j) − ah,M (i, j)|
M∑

p,q=−M

|ω(ph, qh)|

It is then immediate to see that

|J1| ≤ µh2α∥I∥∞
1 − η

Cω

∫ ∞

M+1
e

−
x2

1h2

2σ2
2 dx1

∫ ∞

−∞
e

−
x2

2h2

2σ2
2 dx2 ≤ µα∥I∥∞

1 − η
Cωe

− M2h2
2σ2

2 . (50)

Here, Cω > 0 denotes possibly different constants only depending on ω. As for J2, we deduce
from (39) and (49) that

|J2| ≤ η sup
(i,j)∈Z2

|ah(i, j)|.

Collecting (45), (50), and the above completes the proof of the claim.
We are now left to upper-bound |aI(ih, jh) − ah(i, j)| for all (i, j) ∈ Z2 and h small enough.

To proceed, we define the squares Qp,q = (ph, (p+ 1)h) × (qh, (q+ 1)h) ⊂ R2 for (p, q) ∈ Z2. By
definition of aI and ah, one gets that for every (i, j) ∈ Z2

aI(ih, jh) − ah(i, j) = µ
∞∑

p,q=−∞

(
K1

p,q +K2
p,q +K3

p,q

)
,



28 CYPRIEN TAMEKUE, DARIO PRANDI, AND YACINE CHITOUR

where

K1
p,q =

∫
Qp,q

ω(y)
(
f(aI(ih− y1, jh− y2)) − f(aI((i− p)h, (j − q)h))

)
dy,

K2
p,q =

∫
Qp,q

(
ω(y) − ω(ph, qh)

)
f(aI((i− p)h, (j − q)h)) dy,

K3
p,q =

∫
Qp,q

ω(ph, qh)
(
f(aI((i− p)h, (j − q)h)) − f(ah(i− p, j − q))

)
dy.

By Theorem 3.2 and the α-Lipschitz continuity of f , it is immediate to see that

|K2
p,q| ≤ α∥I∥∞

1 − µ
µ0

h3 max
Qp,q

|∇ω| and |K3
p,q| ≤ αh2|ω(ph, qh)| sup

(i,j)∈Z2
|aI(ih, jh) − ah(i, j)|.

Observe that there exists Cω ≥ 1 such that maxQp,q |∇ω| ≤ Cω|∇ω(ph, qh)|, for every (p, q) ∈ Z2.
Hence, it follows that there exists Cω > 0 such that

µ
∞∑

p,q=−∞
|K2

p,q| ≤ Cω
µα∥I∥∞
1 − µ

µ0

h. (54)

On the other hand, by (39), we have

µ
∞∑

p,q=−∞
|K3

p,q| ≤ η sup
(i,j)∈Z2

|aI(ih, jh) − ah(i, j)|. (55)

To estimate K1
p,q, we start by noticing that, by construction, there exists p0 ∈ N such that

K1
p,q ∩ {x1 = θL} ≠ ∅ if and only if p = p0. In particular, aI is Lipschitz continuous on Qp,q if

p ̸= p0 by Proposition 3.2, with Lipschitz constant upper-bounded by DI defined in (13) where
the corresponding LI is equal to the maximum of the Lipschitz constants of I1 and I2. Hence,
for every (p, q) ∈ Z2 p ̸= p0 we have

|K1
p,q| ≤ αDIh

∫
Qp,q

|ω(y)| dy.

It follows that
µ

∑
(p,q)∈Z2

p ̸=p0

|K1
p,q| ≤ µαDIh∥ω∥1. (56)

On the other hand, for every (p0, q), q ∈ Z, we have

|K1
p0,q| ≤ α

∥I∥∞
1 − µ

µ0

∫
Qp0,q

|ω(y)| dy.

Hence, there exists a constant Cω > 0

µ
∞∑

q=−∞
|K1

p0,q| ≤ µα∥I∥∞
1 − µ

µ0

∫
{p0h≤y1≤(p0+1)h}

|ω(y)| dy ≤ µα∥I∥∞
1 − µ

µ0

Cωh. (57)

By collecting the estimates (54), (55), (56), and (57), we obtain that

sup
(i,j)∈Z2

|aI(ih, jh) − ah(i, j)| ≤ Cωµα

(1 − η)2 (DI + ∥I∥∞)h. (58)

Finally, collecting (41), (43) and (58) yields the statement. □
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