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Abstract. We present an algorithm that uses finite automata to find
the common motifs with gaps occurring in all strings belonging to a
finite set S = {S1, S2, . . . , Sr}. In order to find these common motifs we
must first identify the factors that exist in each string. Therefore the
algorithm begins by constructing a factor automaton for each string Si.
To find the common factors of all the strings, the algorithm needs to
gather all the factors from the strings together in one data structure
and this is achieved by computing an automaton that accepts the union
of the above-mentioned automata. Using this automaton we are able
to create a new factor alphabet. Based on this factor alphabet a finite
automaton is created for each string Si that accepts sequences of all non
overlapping factors residing in each string. The intersection of the latter
automata produces the finite automaton which accepts all the common
subsequences with gaps over the factor alphabet that are present in all
the strings of the set S = {S1, S2, . . . , Sr}. These common subsequences
are the common motifs of the strings.

1 Introduction

The problem of finding common motifs in a set of strings has long been an area of
interest in the academic community. Given a set of strings, the problem of finding
common motifs in that set is the problem of finding similar substrings that lie in
all of these strings. In some particular applications, like in biology, this require-
ment is more flexible in the sense that motifs do not have to be identical but have
to share a certain degree of similarity. This degree is quantified using metrics
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such as Hamming and Levenshtein distances or by allowing don’t care symbols
to occur in the motifs. Don’t care symbols are occurrences in the string that can
match any symbol of the alphabet. In this paper, we are interested in finding
common motifs in the strings that have don’t care symbols concentrated in dis-
tinct parts of contiguous positions in the strings, i.e. common motifs with gaps.

This problem has engrossed biologists because of its applications in that area.
It can be applied in understanding the fundamental process of gene expression
[8]. Gene expression consists of two parts, transcription and translation. During
transcription an mRNA molecule is created by copying a gene from the DNA
and during translation the mRNA molecule is decoded to produce a protein. In
order though for the transcription process to begin, one or more proteins, called
transcription factors, have to bind to some specific regions of the gene called
binding sites. These binding sites share common patterns which are the common
motifs of the genes. If these common motifs are identified and extracted from the
genes, they will give the opportunity to biologists to match these binding sites to
their corresponding transcription factors in order to be able to fully understand
the way gene expression works [8].

A classical approach to finding these motifs was by using artificial intelligence
techniques [10] but these methods are inexact methods that used machine learn-
ing to discover the motifs by training the machines to recognize them. Recently,
microarray technology has been used particularly in this application of the prob-
lem but this technology is inexact, it is based on probabilities and is limited by
weak signal sequences [8].

In text algorithm applications, finding common motifs with gaps has been
mainly handled using suffix trees [1,2,5,7] which provided exact results. In this
paper we propose an algorithm using automata to index common gapped motifs.
We believe that the use of automaton permit the indexation of bigger strings
and allows more open definitions.

Section 2 formally introduces the general problem. Section 3 presents an al-
gorithm in order to solve the question of finding common motifs with gaps.
Moreover Section 4 presents a complete example following step by step the pro-
posed algorithm. Eventually in Section 5 there is an analysis of the complexity
of the proposed solution.

2 Definition of the Problem

Given a set of strings S = {S1, S2, . . . , Sr} and p, q, 1 ≤ p ≤ q ≤ min(|Sj | :
j ∈ 〈1, r〉). The problem of finding common motifs with gaps consists in finding
words B1, B2, . . . , Bm such that:

1. m > 1.
2. p ≤ |Bi| ≤ q for i ∈ 〈1, m〉.
3. B1 ◦di,1 B2 ◦di,2 . . . ◦di,m−1 Bm occur in Si for all i ∈ 〈1, r〉, m > 1 and the

size of the gap di,j varies in each motif (Fig. 1), where ◦ denotes don’t care
symbol matching any symbol of alphabet and ◦j denotes concatenation of j

don’t care symbols.
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Fig. 1. An example of a motif with gaps that occurs in every string, where by di,j we
mean a size of a gap

3 Algorithm

The algorithm takes as input a set of strings S = {S1, S2, . . . , Sr} and two
constants p, q, which will be the lower and upper bound respectively of the
length each motif can have, and returns the common motifs with gaps found in
all those strings. The algorithm begins with computing the set of all factors F

of length between the constants p and q that appear in all strings belonging to
the set S = {S1, S2, . . . , Sr}.

In order to find all these factors in F that appear in all the strings, we begin
by creating a factor automaton MFi for each string Si ∈ S. Each factor au-
tomaton MFi accepts all the factors of the particular string Si ∈ S. Then, the
algorithm joins all the MFi automata together in one automaton. The resulting
union automaton accepts the union of the languages accepted by each of the r

automata. This automaton can either be deterministic or non-deterministic. If it
is deterministic, then the algorithm finishes because this is a sign that there are
no common symbols and therefore no common motifs are present in the strings
from this set S. On the other hand, if the resulting union automaton is non-
deterministic, the algorithm proceeds with transforming this non-deterministic
automaton into a deterministic one.

From this deterministic union automaton we identify all factors having length
between the two constants p and q that are repeating in all strings from the set
S. These factors are subsequently used to create a repetition table RT, which
is used to create a new factor alphabet containing only the symbols relevant to
the factors extracted in the previous steps.

Based on the repetition table, we find the longest common subsequence over
the factor alphabet of all the strings of S. To achieve this aim, we first cre-
ate a finite automaton MSi for each string Si ∈ S accepting sequences of non-
overlapping factors using the factor alphabet as input alphabet. Then, we create
the automaton MS by taking the intersection of these automata MSi. The result-
ing automaton will accept the intersection of the languages accepted by each of
the factor automata i.e. it accepts all sequences of factors occurring in all strings
from the set S which are the common motifs of the strings with gaps.



The algorithm:

Input: Set of strings S = {S1, S2, . . . , Sr}, p, q.
Output: Sequence of words B1, B2, . . . , Bm occurring in all strings in S.
Method:

1. (a) For each string Si ∈ S construct a factor automaton Miε by creating
automaton Mi, accepting string Si (i.e. L(Mi) = {Si}), then adding
ε-transitions leading from the initial state to all states of Mi and making
all states final.

(b) Construct automaton Mε, L(Mε) =

r⋃

i=1

L(Miε).

(c) By eliminating ε-transitions in Mε we get MF .
(d) If MF is deterministic, then strings in S have no common symbol and

thus they cannot have a common motif. Set m = 0 and exit the algo-
rithm.

(e) Using determinisation of MF we construct MDF while for each state q′

of MDF we preserve a set of states of MF q′ consists of. The set is called
d-subset.

2. Find all states of MDF representing factors of length between p and q and
having at least one state from each automaton Mi in its d-subset. Construct
a repetition table RT (the shortest path from the initial state to the state
spells the repeated factor while members of d-subset identify locations).

3. Take all factors represented by states in the previous step and create a new
“factor alphabet” FA.

4. For each string Si in S construct a finite automaton MSi accepting sequences
of all non-overlapping factors from FA.

5. Construct automaton MS accepting all common subsequences of sequences
accepted by automata MSi for i ∈ 〈1, r〉 using the following approach:
(a) Add ε-transitions parallel to each transition in each finite automaton

MSi, i ∈ 〈1, r〉. The resulting automata will be MS
ε
i .

(b) By eliminating ε-transitions in MS
ε
i we get MS

N
i for each i ∈ 〈1, r〉.

(c) Construct the automaton MS, L(MS ) =

r⋂

i=1

L(MS
N
i ).

(d) Finite automaton MS is accepting all sequences B1, B2, . . . , Bm which
are sequences of factors occurring in all strings from set S.

4 An Example

As an example let’s consider a set of strings S = {aabccddab, babbcdacd}. We will
find common motifs in this set of strings bounded from parameters p = 2, q = 3.

First (step 1a of the algorithm) we construct finite automata M1ε and M2ε

for both strings from S. See Fig. 21.
In the next step (step 1b of the algorithm) we construct automaton Mε ac-

cepting the union of languages L(M1ε) and L(M2ε). See Fig. 3.

1 All states in the automata presented in this paper are final states.
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Fig. 2. Transition diagrams of finite automata M1ε and M2ε for the set of strings
S = {aabccddab, babbcdacd} from the example
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Fig. 3. Transition diagram of finite automaton Mε from the example

According to step 1c of the algorithm, we construct automaton MF by replac-
ing the ε-transitions by non ε-transitions. The transition diagram of the resulting
automaton is given in Fig. 4.

In this example, automaton MF is nondeterministic. This means that there
is a possibility that a common motif exists in set S. According to step 1e of the
algorithm 3, we must construct its deterministic equivalent MD. Its transition
diagram is given in Fig. 5.

Table 1 is the repetition table RT of common factors created as described
in step 2 of the algorithm. The factor alphabet (step 3 of the algorithm) is
FA = {ab, bc, cd, da}. Subsequently we will construct, according to step 4 of the
algorithm, finite automata MS1 and MS2 accepting all non-overlapping sequences
of factors of the both strings. Their transition diagrams are depicted in Fig. 6.

The last step (step 5 of the algorithm involves the construction of an automa-
ton which accepts all sequences of factors occurring in both strings of S. Tran-
sition diagrams of finite automata MS

ε
1

and MS
ε
2

are shown in Fig. 7 (step 5a).
Transition diagrams of finite automata MS

N
1

and MS
N
2

are shown in Fig. 8
(step 5b of the algorithm).

According to the step 5c of the algorithm, we need to construct a finite au-
tomaton accepting the language that corresponds to the intersection of the lan-
guages accepted by the two automata. The transition diagrams of the finite



automaton accepting the intersection of the languages accepted by automaton
MS

N
1

and MS
N
2

is depicted in Fig 9.
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Table 1. Repetition table RT of common factors from the example (F – first occur-
rence, G – repetition with a gap)

Factor d-subset Repetitions

ab 319132 (31, F ), (91, G), (32, F )

bc 4152 (41, F ), (52, F )

cd 616292 (61, F ), (62, F ), (92, G)

da 8172 (81, F ), (72, F )
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Fig. 6. Transition diagrams of finite automata MS1 and MS2 accepting sequences of
non-overlapping factors of both strings from the example
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Finally, from the above computation we may conclude that in this particular
set S = {aabccddab, babbcdacd} and using parameters p = 2, q = 3 the following
common motifs occur: m1 = {ab, cd}, m2 = {ab, da}, m3 = {bc, cd}, m4 =
{bc, da}.

5 Time and Space Complexity of the Algorithm

We shall discuss the time and space complexity for each step of the algorithm.
As described in Section 3 the algorithm requires five steps.

In Step 1 we fist construct r finite automata, one for each string Si of the set
of strings S. The time and space needed to construct each automaton depends
on the length of each particular string Si which is the language to be accepted
by the automaton. Therefore this process requires linear time and space [4] with
respect to the length of the strings.



Subsequently we wish to construct the automaton which accepts the union
of these languages. If we assume that the value n is the cumulated size of the

input sequences i.e. n =

r∑

i=1

|Si|, then this step requires O(n) space and time for

all the strings to be included in the automaton. Next, we wish to transform this
union automaton into a deterministic factor automaton also called Direct Acyclic
Word Graph (DAWG). In most cases the union automaton is non-deterministic.
In order to create the deterministic factor automaton we need to transform
the non-deterministic union automaton to a deterministic automaton which will
be the factor automaton MF . Generally, the construction of a deterministic
automaton from a non-deterministic requires exponential time and space. In the
case of factor automata though the maximum number of states of the resulting
deterministic automaton is 2|n| − 1 and the maximum number of transitions is
3|n| − 4 [3]. Thus, this step is bounded overall by linear time and space.

In Step 2 we extract from MF the factors belonging to all the strings and which
have length between the values p and q, and we add them to the repetition table
RT . In order to find all these factors we need to reach all the states at depth q.
Let δ = q − p + 1 the length of the last interval. As we are looking for all the
factors between p and q there are at most n×δ such factors. Thus the complexity
of this step is O(n × δ).

In Steps 3 and 4 we construct the new factor alphabet and for each string Si

in S we construct a finite automaton MSi accepting all non-overlapping factors
from the factor alphabet. Each automaton requires O(n) time to be constructed
and O(n) space. Thus, overall this step can be completed in linear time and
requires linear space.

In Step 5 we construct the finite automaton MS accepting all common subse-
quences of the strings accepted by MSi. This is achieved by creating the finite au-
tomaton MS that accepts the intersection of the languages accepted by automata
MSi taken from Step 4. The process of intersecting automata requires quadratic
time and is usually done by cartesian product. In [6], Holub and Melichar present
an algorithm for the intersection of factor automata which does not employ carte-
sian product but uses state marking. Using this algorithm we avoid the creation
of all inaccessible states during the automaton construction.

Although the resulting automaton from the algorithm in [6] contains no in-
accessible states as it would have if we had used cartesian product to construct
it, nevertheless the time and space complexities of this step are still quadratic
relative to the input. For the case of only two factor automata to be intersected,
for example L1 and L2 having lengths n and m respectively then the state com-
plexity of L1 ∩ L2 is O(nm). When we transfer this into a problem with many
automata the complexity will become O(nk)—polynomial with n size of texts
and exponential with k the number of automata. This is a familiar situation
relating to the problem of finding the longest common subsequences of many
(> 3) strings using Dynamic Programming which is an NP-complete problem so
no better exact algorithm is destined to appear [9].



Overall, looking over all the steps we can see that the algorithm’s time and
space complexity is exponential due to the last step that requires the intersection
of many finite automata.

6 Conclusion

We have presented a complete automaton based algorithm to solve the problem
of identifying and indexing the common motifs with gaps in a set of strings.
The algorithm takes advantage of the fact that one can find common motifs of
a set of strings by intersecting their corresponding factor automata which were
created by the common factors residing in the strings. Other solutions of the
problem require some limit of gaps (fixed gap, bounded gap, bounded sum of
gaps). The presented algorithm allows any gaps while keeping the same time
and space complexity. Moreover it offers a sound application of finite automata
on the problem of finding common motifs with gaps in a set of strings.
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