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Abstract

In this paper, we present the first Assignment-Dial-A-Ride problem
motivated by a real-life problem faced by medico-social institutions in
France. Every day, disabled people use ride-sharing services to go to an
appropriate institution where they receive personal care. These insti-
tutions have to manage their staff to meet the demands of the people
they receive. They have to solve three interconnected problems: the
routing for the ride-sharing services; the assignment of disabled peo-
ple to institutions; and the staff size in the institutions. We formulate
a general Assignment-Dial-A-Ride problem to solve all three at the
same time. We first present a matheuristic that iteratively generates
routes using a large neighborhood search in which these routes are
selected with a mixed integer linear program. After being validated on
two special cases in the literature, the matheuristic is applied to real
instances in three different areas in France. Several managerial results
are derived. In particular, it is found that the amount of cost reduc-
tion induced by the people assignment is equivalent to the amount of
cost reduction induced by the sharing of vehicles between institutions.

Keywords: health care operations management, allocation, sanitary
transportation, dial-a-ride, matheuristic, large neighborhood search
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Highlights

¢ This paper presents the first Assignment-Dial-A-Ride problem.
e We propose a solution method based on a matheuristic combining a large

neighborhood search and an exact method.

¢ A comparison with the literature and case studies on real instances in the

healthcare context is provided.

e In terms of managerial insight, this new approach reduces the current cost

up to 24% without degrading the service quality for users.

1 Introduction

In France, the medico-social sector is structured by a set of institutions and
services that support people with disabilities and other vulnerabilities. Every
day, each user is picked up at home and taken to their assigned medico-social
institution (MSI) where they receive personal care throughout the day. At the
end of the day, users are taken from their respective MSI to their homes. The
assignment process is long and labor intensive. Indeed, each demand has par-
ticular needs and each MSI has particular services. As a consequence, satisfying
all the demands requires to test many different configurations of assignment.

The assignment process is carried out by the MDPH (Maison
Départementale des Personnes Handicapées), the home for the disabled in
each French département. A multidisciplinary team (EP) within this institu-
tion analyzes the applications of people with disabilities and, where relevant,
refers them to a list of institutions and medical-social services (ESMS) adapted
to their needs. More precisely, each user receives medical care throughout the
week. Indeed, there is a care planning for each user that repeats weekly. As
a consequence, the EP must check if the MSIs’ weekly planning can accom-
modate the candidate and try to build a valid planning for each weekday. An
EP must process by hand over 200 referrals per month. Thus, it must change
assignments and plannings accordingly every month. The referrals are pro-
cessed one by one in order of arrival. As a consequence, the referrals’ order
have a considerable impact on the overall performance of the system. Using a
solver that processes all the demands simultaneously will facilitate this deci-
sion process. As a result, the quality of the assignment will be improved and
the EP will spend less time on the applications’ processing. Based on this anal-
ysis, the CDAPH, the commission for the rights and autonomy of the disabled
(Commission des Droits et de I’Autonomie des Personnes Handicappées) val-
idates or refuses each application. If a candidate is accepted, the CDAPH also
informs them about the reasons of acceptation and the care protocol. The per-
son must apply for admission to one or more institutions listed by the CDAPH.
This assignment process is more detailed in [1]. Because the resources of MSIs
are limited and the assignment process is so complex, previous decisions are
not revised even if the context changes. Therefore, the impact of these deci-
sions lasts several years. For example, if a space becomes available in a MSI
closer to a patient’s home, no steps are taken to review the current assignment.
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Moreover, the transportation criterion is not explicitly taken into account in
the assignment decision.

The daily transportation in the context of MSIs entails several problems.
The first is related to the users’ quality of life. Because they are in a vulnerable
position due to their disabilities, their daily transportation should not take
too long. However, a study presented by [2] shows the long duration of these
users’ ride times and the real need to reduce them. This study, carried out
in the city of Lyon and surrounding areas, shows that trips are on average
48 kilometers long and last on average 74 minutes. The second issue is that
the transportation also has an environmental impact of 1.42 million kg CO2
eq and 4 million km per year for 245,000 trips. This environmental impact
has to be limited. The final issue we address is the economic dimension. In
the case of patients under the age of 18, who make up the majority here, the
cost of this transportation system is funded directly by the MSIs. In 2017,
medico-social transportation costs totaled 500 million euros, at national level,
for all medico-social institutions put together [3]. This cost increased by 40%
between 2006 and 2014 [4] and has had a significant impact on their global
budget since this expense is the second largest after wages [5]. It follows that
more money spent on transportation means less money spent on supporting
people with disabilities and on the MSIs’ services.

The assignment process also has an impact on the institutions’ resources.
Each institution has accreditation for a certain number of places and a prede-
fined number of employees. Each employee has specific competencies. When
a user is assigned to the facility, that individual uses one space allocated in
the accreditation and also requires time from several appropriate caregivers. If
this time is greater than the available resource, the excess will be counted as
overtime. In practice, overtimes last until the next assignment at least or until
additional staff is recruited. Additionally, temporary workers can be recruited
for overtime.

This paper proposes a decision-making approach that integrates three
aspects of the problem. The first aspect is the assignment of people with dis-
abilities to a given MSI. The second aspect is the staff sizing at MSIs to be
able to satisfy the needs of their users. The last aspect is the management of
the shared door-to-door transportation service. This approach makes it possi-
ble to jointly optimize the proper use of resources and logistics costs. This is
called Assignment-Dial-A-Ride-Problem (ADARP) in the rest of the paper. If
used by the EP, some users might need to change MSI. However, this change
would occur only once a month. Moreover, a monthly reassignment is also a
chance for them to move to a closer MSI and thus, reduce their commuting
time. For the sake of clarity, we focus our study only on the transportation
from home to MSIs for one day. However, the results can easily be transposed
to the reverse - transportation from MSIs to home - by reversing the routes in
the solution. Combining the morning and afternoon problems would be ideal
but is still challenging as the size of the problem would be multiplied by two.
As a result, the computation duration would increase exponentially due to the
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NP-hardness of the DARP. To build the weekly planning, the problem must be
solved for each weekday. Aspects related to route consistency are not consid-
ered in this study but constitute interesting research perspectives. We refer the
reader to [6-8] for respectively, drivers, service times, and groups consistency.

The paper is structured as follows: Section 2 reviews the literature on
related problems and presents our main contributions. Section 3 defines the
problem with its route-based formulation. The method developed to solve the
ADARP is detailed in Section 4 and the case study is presented in Section 5.
In Section 6, the parameters of the method are tuned, the components of the
method are validated, and the method is challenged with results from the
literature. Section 7 then presents managerial results derived from numerical
analyses of the case study. In Section 8, we finally summarize our main findings
and indicate some interesting extensions of the model presented here.

2 Literature review

Despite having no added value to the care itself, transportation represents an
essential part of healthcare systems. Indeed, transportation is not a medical
act. In that regard, this support activity must be as efficient as possible to
improve the quality of service with a minimal cost. As described in [9], health-
care transportation is a complex problem due to its multiple aspects. As this
domain has been extensively studied in the literature, we provide only a few
references in order to be concise. The first aspect of medical transportation is
the nature of what is transported. It can be patients (e.g., [10], [11]), medical
staff (e.g., [12], [13], [14]) or medical supplies (e.g., [15], [16]). In our study,
we focus on the patient transportation. Second, it is possible to distinguish
emergency transportation (e.g., [17], [18]), where the patient’s life is directly
in danger, from the non-emergency transportation (e.g., [19], [20], [21]). In
our case, we study non-emergency transportation. Finally, the transportation
can be occasional (e.g., [10], [22]) or regular (e.g., [23], [24]). Our problem
is about regular transportation. To summarize, the assignment dial a ride
problem addresses the regular non-urgent patient transportation. As shown in
[25], the regular non-urgent transportation is growing with the global increase
in life expectancy. As a consequence, long-term care has received increasing
attention (e.g., [26]). In order to improve the efficiency of healthcare systems
in the long run, we must be able to revise previous decisions that are no more
relevant.

Motivated by a para-transit application, many variants of the Dial-A-Ride
Problem (DARP), as defined in [27], have emerged in the last two decades. The
reader may refer to [28] and [29] for recent reviews. Because passengers are
vulnerable, several specific constraints or objectives related to the quality of
service are considered. For instance, the multi-criteria optimization of the total
ride time and the routing cost is considered in [30], among others. The solution
consistency may also be considered during the week. Some passengers prefer to
have the same driver every day [6], or to have the same pickup hours every day
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[24]. These two papers study the impact of consistency on the total cost of the
solution with a bi-objective analysis. Because some users are in wheelchairs,
[31] introduces the impact of heterogeneous users and vehicles. In the same
way, [10] study the possibility to configure the number of seats and wheelchairs
in a vehicle before the departure, and [11] study the same possibility but during
the route. Other extensions of the DARP consider the transfer of passengers
from one vehicle to an other [32] or the multidepot-DARP [33, 34].

The possibility to choose between several destinations in vehicle routing
problems (VRP) is introduced by [35]. In this paper, the authors present the
Generalized-VRP (GVRP) which is a VRP where a client demand can be
fulfilled by visiting one point in a list of alternatives. By adding time window
constraints, [36] extend the previous model and introduce the GVRPTW. In
the context of urban logistics, [37, 38] have extended the GVRPTW to the
VRP-with Delivery Options (VRPDO). In the latter, a delivery can be made
in certain lockers selected by the client, but the capacities of the lockers are
finite and have to be taken into account for the delivery point selections.

In the context of dial-a-ride transportation, the Generalized-DARP pre-
sented by [39] was the first paper to consider the possibility of alternative
pickup and delivery points. In that study, each passenger could be picked
up at their initial position or could walk for a certain distance to reach an
alternative pickup point. The same mechanism existed for alternative delivery
points. The optimization model jointly optimizes the selection of the pickup
and delivery points, and the selection of the routes.

The specificities of assignment problems in a medical context (i.e., long-
term decisions, compatibility between needs and competencies, ...) make it
difficult to transpose insights from other assignment studies with a different
context. This is the reason why this paragraph focuses on other research works
that also consider a medical context. The assignment of people with disabil-
ities was studied by [40]. This study demonstrated the impact of alternative
assignment policies on the performance of the healthcare system and on the
quality of care. Transport was not taken into account. The study identified
a number of points for improvement, including the long processing time due
to the lack of computerization, and the failure to take logistical criteria into
account in the choice of an assignment. In another work, [1] proposed a deci-
sion model for this assignment. In this model, a maximum distance between
a patient’s home and institutions was considered, but the management of the
transportation service and the staff sizing were not.

Several contributions with respect to the literature are presented in this
work. First, we introduce the first Assignment-Dial-A-Ride problem. This
problem stems from a real-life issue faced by medico-social institutions which
have to take three interconnected decisions pertaining to: 1) the routing for the
ride-sharing services; 2) the assignment of users to geographical points; and 3)
the staff sizing at the geographical points. Second, we present a matheuristic
that iteratively generates and selects routes. Routes are generated with a large
neighborhood search that includes an assignment problem, and are selected
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using a mixed integer linear program. After being validated on instances
from the literature for the Generalized-DARP and the VRPDO, the solution
method is applied to real instances obtained from the sanitary transporta-
tion services in three different areas in France. Finally, we provide managerial
insights derived from the numerical experiments. The cost reduction induced
by the user (re)assignment is equivalent to the cost reduction induced by the
sharing of the vehicles between institutions. Savings can thus be generated
without increasing ride times, with less than a quarter of the users reassigned,
and with small changes in institutions’ staff.

3 Model

The model is presented with its route-based formulation. In this section, we
introduce the notations used, the single route problem, and finally the route
selection problem coupled with staff sizing.

3.1 Notations

Users

We consider a set of users U. A user u € U has to be served by the selection
and execution of one of their itineraries Z,,. The pickup and delivery nodes of
user u € U and itinerary i € Z,, are denoted P(u,i) and D(u,1%) respectively.

Nodes

Let N = PUDUOTUO™ be the set of all the nodes. From a user’s perspective,
P ={P(u,i) | u € U,i € T,,} is the set of pickup nodes, D = {D(u,i) | u €
U,i € T,} is the set of delivery nodes. From a driver’s perspective, O =
{of | k € K} is the set of starting depots for the beginning of the routes,
and O~ = {o, | k € K} is the set of ending depots for the end of the routes.
Thus, any driver must start a route from a starting depot and finish it at an
ending depot. In practice, the starting and ending depots are usually the same.
However, we propose a formulation with differentiated starting and ending
depots as it easily encompasses our case and others (e.g., drivers directly return
home with the service vehicle).

Times

The time and the distance to go from node % to node j are denoted I'; ; and
A; j respectively. If a node n € NV is visited, the visit takes a service time S,
and the beginning of the service time has to be within a time window [A,,, By].
Then each user u € Y has a maximum ride time H,,.

Vehicles

Let K be the set of heterogeneous vehicles. Each vehicle is assigned to a specific
depot by the solution. The capacity of vehicle k£ € K is denoted V. The load
variation corresponding to user u € U in a vehicle is denoted V,, (it may be
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more than one in case of obesity or an in-wheelchair user). By extension, we
define the load variation for nodes such that Vp(, ;) = —Vp(u,i) = Vi for all
1 € Z. The load variation for nodes related to depots is zero. Then, when using
vehicle k, the fixed cost, the distance cost, and the time cost are denoted C’,{ ,
C¢, and C* respectively.

Geography
The set of geographical locations is denoted G, and G(n) € G is the
geographical location of node n € V.

Resources

A user v € U needs a quantity E, , of resources r € R with R the set of
resources. A resource corresponds to the amount of working time available
for a particular care from caregivers with the corresponding competency. The
availability of resource r € R in geographical locality g € G without paying for
overtime is denoted Eg,T and the maximal quantity of resources with overtime
(with paying) is denoted E;ﬁt. Then, C¢** is the resource extension cost per
unit of resource r € R.

Route

For a given route w, let UZ(w) be the set of tuples (u, i), where u is the user and
1 € T, the itinerary chosen for user u € U in route w. The ordered set of visited
nodes is denoted A (w), and the first and last visited nodes of route w € € are
denoted F(w) € OF and L(w) € O~ respectively. Then, the node visited just
before node n in route w is denoted Q(w, n) with n € M(w) \ {F(w)}.

3.2 Single-route problem

The single route problem is formulated as follows. Each route needs to comply
with these constraints while minimizing its costs.

The decision variables are: t,, ,,, the beginning of service time for node n
in route w; vy, the load of the vehicle when leaving the node n; and x; that
indicates whether or not the vehicle k is selected for the route w.

min f,, = Z C,{xk + C*(tw, L(w) = tw,F(w))

ke (1)
+ Z Ckxk Z AQ(w,n),n
kek RENLALF(w}

s.t.
tw.Q.n) T Q) m +9Qum) <lun Vn e N(w)\ {F(w)} (2)
Hy >ty p(ui) = tw,Plui) — SP(ui) Vui € UL(w) (3)
A, <tyn<B, Vn € N(w) (4)
L, Pui) < tw,D(ui) Vui € UL (w) (5)
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VQ(w,n) + Vo = Un Vn e N(w)\ {F(w)} (6)
vp < Vi, VneNw),kek (7)
Z T =1 (8)
kek

twm, Un € RT Vn € N (w) (9)
oy, € {0,1} Vk € K (10)

The objective function (1) is a sum of the fixed cost related to the depre-
ciation expense of the selected vehicle, the driver wage that is proportional to
the duration of the route, and the distance cost. In practice, drivers’ contracts
truly relate to the duration of their routes and are not based on a fixed weekly
salary.

Constraints (2) to (5) ensure respectively that the driving time and the
service time are respected between the visits of the nodes, the ride times do
not exceed the limit, the time windows are satisfied, and each pickup is before
the associated delivery. Constraints (6) to (8) ensure respectively that the
load increases when leaving pickup nodes and decreases for delivery nodes, the
maximum capacity of the selected vehicle is not exceeded, and one vehicle is
selected to serve the route.

3.3 Route selection problem and staff sizing

Even though the set of routes that satisfy the single-route problem (1)-(10)
is huge, here we formulate the route selection problem by assuming that it is
possible to list them all in a set €2. Note that all combinations of itineraries
have to be considered. A route w € ) is characterized by its cost f, and its
set of tuples UZ(w). The latter contains the list of users served by the route
and the itineraries chosen for each user served. If two routes have the same
set of users and itineraries, then only the cheapest can be kept in ) and the
other can be dropped.

The route selection model is now presented. The model consists in selecting
some routes, taking into account the quantity of resources available in each
geographical locality. The first decision variable y,, (14) is a Boolean indicating
whether or not the route w is selected. The second decision variable e, (15)
is the quantity of extra resources » € R that must be spent to ensure that the
needs of each user assigned to geographical locality g € G will be satisfied.

min f =Y fuyo + Y D Ciey, (11)

wEeN reR geG
s.t.

Egr+egr > Z Z Eu Yo VreR,geg  (12)
weR  wicUZ(w) |

se{ei D}
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> Yo =1 Vu el (13)
weQ|uieUT(w)
Yo € 40,1} Yw € Q2 (14)
0<eg, <E™ VgeG,reR  (15)

The objective (11) is the sum of the cost of individually selected routes
and the sum of all costs related to the payment of the extra resources in each
geographical locality.

The model contains only two constraints. The first constraint (12) is
related to the consumption of each resource r in each geographical locality
g. The left-hand side of the inequality represents the amount of available
resources r in locality g. This quantity is defined by the initial amount of
available resource E,, and the quantity of extra resources e, that have to
be paid. The right-hand side of the inequality represents the consumption
related to the selected routes. With w a selected route and u,i € UZ(w),
if the itinerary ¢ has its pickup or its delivery in geographical position g
(i.e., g € {G(P(u,1)),G(D(u,1))}), then user u consumes a quantity F, , of
resource 7 in locality g. The second constraint (13) is a classical set partitioning
problem where all users have to be served once.

4 Solution method

The formulation presented in the previous section specifies our problem. How-
ever, the number of routes in {2 makes the problem intractable if formulated
in that way. In this section, we will see how we can generate a subset of routes
with a heuristic, and solve the route selection problem on this subset called
“pool”, denoted by €. Because the pool ' is a subset of 2, the routes in €
have to be solutions to the single route problem. The heuristic used to fill the
subset of routes is the Large Neighborhood Search (LNS). For each iteration
of LNS, the routes of the solution found are added to Q’. The route selection
problem is then solved when the pool of routes contains v routes. The rest of
this section details this solution method.

4.1 General framework: Iterative Route Selection (IRS)

The general framework is presented in Algorithm 1 and is denoted by IRS
(Iterative Route Selection). This is a hybrid column generation where the
columns (i.e., the routes) are generated with a LNS and selected with a master
problem formulated as a Mixed-Integer Linear Program (MILP).

The input parameters of IRS are: v the initial number of routes used to
solve the route selection problem; e the constant positive multiplier for chang-
ing the pool size defined by v; 7 the total time limit; and 7' the time limit for
the MILP solver which solves the route selection problem.

First, the best solution is initialized empty (line 1). During a given execu-
tion time 7 (line 2), the framework performs some iterations (lines 3 to 8). For
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Algorithm 1 General framework: IRS

Parameters: v, ¢, 7, 7’

Result: Best solution S*

\* Initialization * \
1: S* = @
2: while execution time < 7 do

\* Route generation with an LNS (see Section 4.2) * \

3: O, S8* :=LNS(S*,v)

\* Solve the route selection problem * \
4: Solve (11)-(15) with an MILP Solver, taking £ = §’; warm start with
S*; time limit 7/

\* Update v * \

5: if the route selection problem has been solved to optimality on two
consecutive iterations then

6: vi=[vx(1+e)]
: else if optimality was not proven on two consecutive iterations and S*
was not improved then
v:=|max{1l,v/(1+¢)}|
: end if
10: end while

each iteration of the framework, the LNS creates a pool of routes €’ (line 3).
This pool is used to solve the route selection problem (line 4).

The parameter v is dynamically adjusted according to the capacity of
the MILP solver to solve the selection route problem (lines 5 to 8). As v
corresponds to the number of routes in €', it correlates to the difficulty to
solve the route selection problem. On the one hand, the optimal solution has
a better potential when there are more routes in €’. But on the other hand,
having more routes makes it more difficult to find this optimal solution. So, our
goal is to have a pool of routes ' as large as possible but sufficiently small so
the MILP solver finds the optimal solution. Hence, this dynamic adjustment
of v ensures that the MILP solver will reach proven optimality approximately
half the time.

4.2 Large Neighborhood Search (LNS)

The Large Neighborhood Search (LNS) metaheuristic, introduced by [41], has
been successfully used to solve several DARP variants (e.g., [32, 42]). It has
also been combined to set covering/partitioning problems to create LNS-based
matheuristics in several routing problems (e.g., [11, 38, 43]). The framework
we used for the LNS is presented in Algorithm 2.

The LNS works with three solutions: best (S*), current (5), and new (S’).
At each beginning of the LNS, the current solution and the new solution are
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Algorithm 2 Large Neighborhood Search algorithm

Parameters: 5*, v
Result: Q', 5*
\* Initialization * \

1 S:=8% §:=5*
2: reset Q' with the routes in S*
3: while || < v do
4: SI =5
\* Removal * \
5: select a random percentage of users p
6: remove g percent of users from S’ using a random removal operator
\* Insertion * \
7: solve the “assignment problem”
8: insert half of the uninserted users in S’ using a random insertion
operator
9: solve the “assignment problem”
10: insert the remaining uninserted users in S’ using a random insertion
operator

\* Update Q" * \
11: add the routes in S’ to '

\* Acceptation criteria * \
12: if S’ < S* then

13: S*=5, S:=9

14: reset () with the routes in S*
15: else if S’ < S *1.05 then

16: S =9

17: end if

18: end while

initialized with the best solution (line 1). For each iteration, the current solu-
tion is copied into the new solution, after which the new solution is destroyed
and repaired (lines 5 to 10). If the newly repaired solution outperforms the
best, then it updates the best and the current ones (line 13). In our case, we
use the simple “record-to-record” acceptance criterion [44] to manage the cur-
rent solution. If the new solution under-performs the best solution with less
than a 5% difference, then it updates the current solution (line 16). If the new
solution under-performs the best solution with more than a 5% difference, the
new solution is restored to be identical to the current one at the beginning of
the new iteration (line 4).

During the LNS iterations, all the routes in the new solution are recorded
in ' (line 11). The LNS stops when the number of routes in Q' reaches v
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(line 3). At the beginning of an LNS, the pool is initialized with the routes of
the best solution S* only (line 2), and when the LNS improves the best solution
S* (mainly at the beginning of IRS), the pool Q' is reinitialized (line 14).

At the beginning of each LNS iteration, a new solution identical to the
current solution is partially destroyed. A percentage of the users, randomly
chosen in [u,ﬁ], is removed from the new solution (lines 5 to 6). The destroy
operators used are the random removal and the historical node-pair removal
introduced by [41]. To repair the solution, the non-inserted users are inserted
one by one using a k-regret operator [41] with k& € {1,2,3,4}. In a regular
LNS, the users are inserted one by one just after the destroy step. However, the
current procedure used here is: 1) choose one itinerary per non-inserted user
by solving the “assignment problem” (detailed in Section 4.3); 2) insert 50%
of non-inserted users; 3) solve the assignment problem again; and 4) insert the
remaining non-inserted users (lines 7 to 10).

4.3 Assignment problem

The set of non-inserted users is denoted by U™ C U. To solve the assignment
problem, we first compute an insertion cost estimation £, ; for all non-inserted
users u € Y™ and for all itineraries ¢ € Z,,. The cost retained for F,, ; is the
minimum of the insertion costs over all positions of the inserted pickup and
delivery in every route. The insertion cost is defined as the difference between
the cost of the route after insertion and before insertion. We also compute the
resulting availability E;,r of resources r € R in geographical locality g € G,
considering the users who are still inserted in the partially destroyed new
solution.

E_‘;J»T = Eg,r - Z Eu,r Yu € L{,g S g

users in the sol.
assigned to g

Then, knowing F,, ; and E;,T, the following assignment problem is solved
to choose the itineraries.

min [ = Z Z Fyizui + Z Z Cﬁmteg,r (16)

ueU™° i€, reR geg
S.t.
> =1 Vu U (17)
1€Ly
Epotegr> > > Eurzus  VreRgeg (18)

uEU™  GET,|

s {&it )

Zui € {0,1} YueU™, i€, (19)
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0<eg, <E YgeG,reR (20)

This problem looks like the route selection problem. However, these are not
the routes that are selected, but one itinerary per user. The decision variable
zy,; (19) indicates whether or not the itinerary 4 is selected for user u. As in
the route selection problem, e, . (20) represents the quantity of extra resource
r € R that has to be paid to ensure that each user assigned to geographical
locality g € G will be satisfied. The objective function (16) is the sum of the
insertion cost estimation, that depends on selected itineraries, and the cost of
the extra resources. Constraint (17) ensures the selection of one itinerary per
user. Then, constraint (18) computes the extra resources needed, depending
on the selected itineraries.

It is obvious that the assignment solution is not optimal. First, the inser-
tion cost estimations F, ; are updated only twice per LNS iteration, once
at the beginning and once after 50% of the insertions have been completed.
Moreover, the insertion cost estimation is just the cheapest insertion at the
moment of computation. However, Section 6.1 shows numerically that solving
the assignment problem more or less frequently during the insertion procedure
has little impact and does not significantly improve the overall performance
of the method.

5 Case study

As presented in the introduction, ADARP is introduced in this paper to solve
a real case of a Dial-A-Ride with user assignment and MSIs staff sizing.

Instances

We have 3 real instances for our problem. Table 1 presents their main charac-
teristics. The first instance “Loire” is located in the Loire département, France.
Despite being centered around a medium-sized city (Saint—Etienne), this area
is mainly rural, so there is a low-density demand. The second instance “Rhone”
is centered around the city of Lyon and the whole Rhéne département. The
area is urban and densely populated. The last instance “Savoie” covers the
whole Savoie département. The study area is stretched out, the demand has a
low density, and there are many mountains (French Alps) and valleys.

Table 1 Number of users, MSIs, and depots for the three instances

Inst. Users MSI  Depots
Loire 42 2 1
Rhoéne 125 4 2

Savoie 208 5 3
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Current assignment

For these three instances, we know the current user assignment to MSIs. We
also know the average resources needed per user, i.e., we know FE, , for all
users u and resources 7.

Resource availability

For these experiments, it was not possible to obtain precisely the real availabil-
ity of the resources of each MSI, i.e., current staff size. These were therefore
estimated by adding all the average resources needed by users.

E,, = > E,, VYreR,geg

users currently
u .
assigned to g

Resources

There are 6 resources. Resources CO to C4 are different human resources
needed by people with disabilities. It is possible to extend these resources
up to a certain limit (i.e., E_';ﬁf) using overtimes and temporary workers, but
these extensions have costs (i.e., C¢®"). The extensions related to C0O to C4
are tactical decisions. Resource C5 represents the MSI’s accreditation, i.e., the
number of users that can be assigned to an institution. In our basic instances,
this resource cannot be changed because it seems to be a strategic decision to
change the size of the building, the dining hall, the facilities, etc. However, a
sensitivity analysis on these values is still presented in Section 7.1.

Time and distance

The time and distance values from node i to j (i.e., I'; ; and A, ;) have been
computed using the API detailed in [45].

Maximal ride time

The theoretical maximal ride time of a user is equal to the duration of the
direct itinerary of its current assignment, multiplied by a parameter called
Direct Time Factor (DTF). MSIs would theoretically like to observe DTF =
1.5 but in practice, the max ride time is not really controlled by them. That
is why the following experiments are done with DTF = 1.25, 1.5, and 1.75.
At the same time, any ride time up to 15 minutes is accepted by MSIs.
Therefore, for each user, the maximal ride time used in the following experi-
ments is the maximal value between 15 minutes and the current direct duration
multiplied by DTF (H,, = max{15; max{l'p,, p,.} x DTF},Yu € U,i € T,).

Time Windows

The reception time of MSIs are between 8:00 and 9:15. Therefore, all drop-
offs happen within this time frame. For a DTF of 1.75, the width of the users’
time windows follows the distribution presented in Table 2. Obviously, the
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distribution is shifted towards the smaller time windows when the DTF is
decreased.

Table 2 number of users relative to the width of the time windows for a DTF = 1.75

width of the time window in minutes

Inst.  [40,44] [45,49] [50,54] [55,59] [60, 64] [65, 69]

Loire 0 10 7 6 17 2

Rhoéne 13 5 1 4 98 4

Savoie 9 46 39 47 66 1
Itineraries

For each user, all of its potential itineraries originate from his/her home. By
default, all MSIs can receive all users. However, the maximum ride time pre-
cludes some itineraries from home to MSIs when the direct ride time for the
itinerary is longer than the maximum ride time. Thus, the number of feasi-
ble itineraries increases with the DTF, as shown in Table 3. For the Savoie
instance with a DTF of 1.5, there are on average 1.97 feasible itineraries per
user. If the DTF is reduced to 1.25, this number decreases to 1.57. On the
opposite, if the DTF is increased to 1.75, then the average number of feasi-
ble itineraries increases to 2.33 per user. According to Table 4 whatever the
chosen DTF, there is always at least one user with the maximum number of
feasible itineraries. In other words, at least one user can go to any of the MSIs.

Table 3 Average number of feasible itineraries (i.e., MSIs) per user depending on DTF

DTF

Inst. 1.25 1.50 1.75

Loire 1.60 1.71 1.79
Rhone 2.14 2.51 2.68
Savoie 1.57 1.97 2.33

Vehicles

There are 4 types of vehicles with different capacities and costs. The number of
each type of vehicle available at each depot is not limited. In our case, buying
a vehicle is actually a tactical decision by MSIs because it is easy for them to
sell, buy, exchange, or reconfigure vehicles to adapt their fleet as needed.

Depots

The depots are located at the car park of some MSIs. At the beginning of the
day, the drivers travel to these MSIs with their own means of transport and
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Table 4 Number of users with ¢ feasible itineraries (i.e., MSIs) depending on DTF

nb of feasible itineraries

Inst. DTF 1 2 3 4 5

Loire 1.25 17 25
1.50 12 30
1.75 9 33

Rhoéne 1.25 54 26 19 26
1.50 44 19 16 46
1.75 36 24 9 56

Savoie 1.25 128 53 16 10 1
1.50 114 37 22 20 15
1.75 97 34 18 29 30

take the MSI’s vehicles. The drivers start and end their routes at the same
MSI. As these MSIs have dedicated car parks, we can consider that there is
no maximal number of vehicles at the depots.

6 Validation of the method

The solution method was coded in C++ and compiled with g++ 11. CPLEX
22.1.0 was used for solving the route selection problem. The experiments were
performed on an AMD EPYC 7702 2.1GHz processor. As in many articles in
this research field, 5 runs are done per instance for numerical experiments.
The values of the solution method parameters are the following. The initial
number of routes v in the pool €’ that stops the LNS iterations is set to 100
routes. The increasing or decreasing percentage € of the number of routes v
is set to 25%. The MILP solver limit 7" for each IRS iteration is set to 10
seconds. The proportion of users removed for each iteration of LNS is randomly
chosen from a uniform distribution between [u,71] = [10%,45%]. Lastly, the
total time 7 available to run IRS on instances Loire, Rhone, and Savoie are
30, 60, and 120 minutes respectively. Each instance uses a different value for
T because the number of users significantly differs among them. This value
ensures a sufficient number of iterations in order to reach good solutions.

6.1 Validation of the components and tuning of
parameters

The route and the assignment components of the IRS are evaluated in Table 5.
All values are the percentage deviation from the Best Known Solutions (BKS,
presented in Appendix A). The first column presents the solutions obtained
with the IRS framework presented in this paper. As we can see, the average
gap obtained by the IRS is 0.32%. The results are pretty stable as the worst
average gap over five runs is only 0.77% (for the Loire instance with DFT =
1.75)
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The noRSP (no route selection problem) column presents the case where
the LNS is used to generate solutions and the route selection problem is never
solved. For instance, in Algorithm 1 line 3 is used but line 4 is not. In this
case, the average gap with the BKS increases to 2.06% and the results are not
really stable. As an interpretation, the pool of routes acts as a memory that
can be used to build better solutions. By using the LNS without the route
selection problem, the solver is short-sighted as it just moves from one solution
to another. Having a pool of saved routes allows the solver to simultaneously
consider many routes that were generated at different moments.

In IRS, two assignment problems are solved at each iteration of LNS: at the
beginning of the insertion procedures and after 50% of re-inserted users. The
noAP (no Assignment Problem) column presents the case where an itinerary is
assigned to a user by the k-regret insertion operator for each insertion during
the LNS, and not by solving assignment problems with a MILP solver. In
other words, instead of having only one candidate itinerary per user thanks to
the assignment problem, all itineraries are candidates for insertion. Thus, the
number of insertions that must be tested increases. As a consequence, the LNS
takes more time for each insertion. In this case, the k-regret choice is based
on the cheapest itinerary that maintains the capacity constraints. We can see
the noAP method under-perform the IRS method by 1.70 — 0.32 = 1.38%.

Lastly, the LNS column corresponds to noRSP and noAP together. The
method is a simple LNS with a record-to-record acceptance criterion and the
k-regret insertion operator is used to select the best assignment of an itinerary
to a user. With an average gap of 11.32%, this method is clearly not efficient.

Table 5 Evaluation of the components. Average gap with the BKS in % for 5 runs

Inst. DTF IRS noRSP noAP LNS

Loire 1.25 0.00 0.00 0.00 1.70
1.5 0.16 1.34 1.37 3.34

1.75 0.77 1.30 1.57 1.57

Rhone 1.25 0.61 1.28 0.56 7.57
1.5 0.26 1.43 1.29 13.96

1.75 0.28 1.70 1.87 11.71

Savoie 1.25 0.24 1.93 1.08 11.63
1.5 0.34 4.88 3.57  23.23

1.75  0.22 4.71 3.99 27.19

mean 0.32 2.06 1.70  11.32

Table 6 shows how the number of times the assignment problem is solved,
influences the overall performance of our matheuristic. Table 7 shows this
influence on the number of iterations of the IRS and the LNS, and as well as
on the size of the pool of routes v. For v, its initial value at the beginning of
the resolution, its average value across the resolution, and its final value at the
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end of the resolution are provided. In this table, the metrics are averaged over
all the instances for all the DTF’s values for the 5 runs. In both tables, column
“1” represents the case where the assignment problem is solved only once after
the destroy phase and at the beginning of the insertion phase; columns “27,
“3”, and “4” represent the cases where the assignment problem is solved 2, 3
or 4 times during one iteration, respectively, i.e after the destroy phase and
every 50%, 33%, and 25% of inserted users. Then, column “all” is the case
where the assignment problem is solved before each user insertion.

According to Table 6, the best result is obtained when the assignment prob-
lem is solved twice during an iteration of the LNS. Thus, this value is used
in the rest of the experiments and serves as a basis for the following analysis.
The main observation is that, irrespective of the number of assignment prob-
lems we solve from 1 to 4, the performance is fairly good and stable. Indeed
on average, the gap difference is 0.2% (= 0.52 — 0.32) or less. The second
observation is that solving the assignment problem each time a user is inserted
gives poor results. In this case, the number of IRS iterations decreases by 71%
(= %) and the number of LNS iterations decreases by 79%. This leads
to a 0.84% (= 1.16 — 0.32) gap difference which is fairly larger than the one
observed among columns 1, 2, 3, 4. While Table 6 shows the importance of the
assignment problem, Table 7 shows that it is not required to solve the assign-
ment problem often. Solving it too often will reduce the number of iterations
of the IRS, but on the opposite, solving it too rarely will decrease the quality
of the selected itineraries during the insertion phase of the LNS. The numer-
ical results show that the balance is obtained when the assignment problem
is solved twice during the LNS. However, these are the results for using the
minimum insertion cost as a criterion for the route selection problem. Another
criterion (e.g., average insertion cost) might result in different performances.
As the results were good with minimum insertion cost, we decided to continue
with it. Nevertheless, criterion selection is an interesting topic for future work.
Our last observation is that the size of the pool of routes v for the route selec-
tion problem increases during the resolution. It means that the MILP solver
is able to handle a growing number of routes. This can be explained by the
following. The MILP solver uses a warm start with the best solution. In addi-
tion, the proportion of bad routes relative to the best solution increases as
the best solution improves. As a consequence, it becomes easier for the MILP
solver to eliminate bad solutions during the route selection problem.

6.2 Comparison with the literature

Generalized-Dial-A-Ride Problem

The closest problem in the literature to ours is the GDARP presented by [39].
The authors use a Greedy Randomized Adaptive Search Procedure (GRASP)
to solve their problems. In the GDARP, each user has one origin and one des-
tination. The specificity is that a user can walk from his/her origin to one of
the possible pickup locations and again walk from one of the possible drop-off
locations to his/her destination. In this case, the ride happens only between
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Table 6 Number of times the assignment problem is solved during an iteration of the
LNS. Average gap with the BKS in % for 5 runs per line

Number of solved assignment problems

Inst. DTF 1 2% 3 4 all
Loire 1.25 0.00 0.00 0.00 0.00 0.00
1.5 0.16 0.16 0.16 0.00 0.65

1.75 1.54 0.77 1.03 1.88 1.54

Rhone 1.25 0.79 0.61 0.38 0.49 0.74
1.5 0.13 026 0.19 0.39 0.92

1.75 0.19 0.28 0.29 0.29 1.03

Savoie 1.25 0.07 024 0.26 0.38 0.79
1.5 0.60 0.34 0.61 0.65 2.81

1.75 0.26 0.22 0.27 0.63 1.92

mean 0.42 0.32 0.36 0.52 1.16

*: chosen parameter

Table 7 Metrics relative to the number of times the assignment problem is solved during
an iteration of the LNS.

Number of solved

assignment problems 1 2% 3 4 0
Nb LNS iterations 113,416.31  76,173.96  68,450.20 57,601.27  15,932.73
Nb IRS iterations 98.38 82.51 68.33 60.24 24.11
initial v 100 100 100 100 100
average v 3,147.55  2,909.77  2,795.80  2,722.17  1,447.42
final v 5761.82  5465.62 532042  5,187.24  3,801.73

*: chosen parameter

the selected pickup and drop-off. Similarly to our problem, a user has multi-
ple possible pickup and drop-off locations (i.e., multiple possible itineraries).
However, there is no resource allocation similar to the staff sizing in our prob-
lem. In the model presented by [39], the objective is to minimize the itinerary
duration of drivers and users from their respective origins to their respective
destinations. To establish a proper comparison, our algorithm has been slightly
adapted to use the same objective function.

Table 8 presents the results of the comparison between their results with a
GRASP with 500 iterations and our IRS algorithm with 500 iterations on an
instance with 50 users. To be fair, the LNS iterations are counted in the 500
iterations of the IRS. For each algorithm, results are given with one run. For
each instance, IRS ameliorates the BKS slightly.

Vehicle Routing Problem with delivery options

Another problem close to ours is the VRPDO introduced by [37, 38]. Clients
have several preferences for their delivery options, the total number of first and
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Table 8 Comparison of costs for [39] instances with 500 iterations for GRASP and IRS

Inst. GRASP IRS

CM 51 16,232 16,202
CM 52 14,532 14,505
CM 53 13,912 13,896
CM 54 13,821 13,790
CM 55 13,824 13,814

second preferred options is constrained, some delivery options have capacities,
and the objective is to minimize first the number of vehicles and then the
cost, based on the distance only. Our algorithm has been adapted to these
specific features. Table 9 presents the comparison between the best solution
found with two methods (LNS-SPP and MathHeu) combining different LNSs
and set partitioning problems with 5 runs in [37, 38] and the best solution
found with 5 runs of the IRS algorithm. IRS’s computation times are 30, 60,
and 120 minutes for instance sizes 50, 100, and 200 respectively. The table
presents for each best solution its number of routes (“Nb routes”), its cost
(“Cost”), and the cost gap between the LNS-SPP & MathHeu and the IRS.

Instance types U and V have 2 and 1.5 delivery options per client on average
respectively. We note that these instance types are fairly well solved with IRS.
However, we find that the IRS algorithm performs poorly for the instance type
UBC. The explanation is that the UBC instances are the U instances with large
vehicle capacity. With large vehicle capacity, the length of the routes increases,
so the time needed to perform an insertion with the K-regret procedure also
increases. For this reason, the number of investigated routes during the IRS
algorithm is reduced. This case, with large vehicle capacity and long routes,
is rather far from our case study.

Table 9 Comparison with the best solutions in the literature [37, 38] and the best
solutions for 5 runs of IRS

LNS-SPP & MathHeu IRS Gap

Type Size Nb Routes Cost (€) Nb Routes Cost (€) Cost (%)

U 50 54 3,864 54 3,869 0.13
100 105 6,499 105 6,511 0.19
200 205 11,726 205 11,763 0.32
UBC 50 20 2,293 21* 2,272 -0.92*
100 40 3,580 40 3,617 1.03
200 80 6,048 80 6,181 2.19
A% 50 54 3,742 54 3,720 -0.59
100 104 7,001 104 6,964 -0.53
200 203 13,669 203 13,471 -1.45

*: As the number of routes is not the same, the cost cannot be compared
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7 Managerial results

At this point, it is reasonable to consider that the IRS algorithm is able to
provide fairly good results on our instances. In this section, several analyses
will be presented on our case study to derive managerial results from the MSIs’
perspective and the users’ perspective.

Four scenarios are considered. Scenario (A) refers to the current real case.
Most of the time in the real case, a vehicle transports only those users who go
to the same MSI, and the users are never reassigned from their current MSI to
another one to improve transportation performance (including the user’s ride
time). Scenario (B) refers to an emerging practice where the transportation
facilities of the MSIs are shared. Therefore, users from different MSIs can be
in the same vehicle at the same time. In this scenario, users are not reassigned.
Without being able to measure it precisely, we find that this sharing remains
infrequent but is gradually being practiced more between the MSIs. Scenario
(C) refers to the case where the vehicles are not shared but where users are
assigned to the MSIs, taking into account the transportation cost. Scenario
(D) refers to the case of ADARP, with users’ assignments and vehicles sharing
between MSIs.

7.1 From the MSIs’ perspective

Cost and routes

Table 10 presents the cost and the number of routes for the 4 scenarios. As
Scenario (A) is taken as a reference, the cost and the number of routes are pre-
sented as absolute values for this scenario and as relative values (gap in %) for
the other scenarios. We note that the average saving from the vehicles sharing
without assignment (B) is 8.12% of the cost of the current practice (A). By
comparison, assignment without sharing (C) represents a 12.26% gain, and
sharing and allocating (D) represents a 16.91% gain. We can easily conclude
that the users’ reassignment from one facility to another is a fine opportu-
nity to reduce the expenses of socio-medical facilities. We also find that the
evolution of the number of routes is strongly correlated to the cost savings
in Scenarios (B) (C) and (D). Beyond the cost reduction, the reduction of
the number of routes is an objective for the MSIs that would enable them to
manage fewer vehicles and therefore also fewer drivers. We find a clear route
number reduction tendency with the introduction of assignment flexibility. In
some cases, this decrease can amount to more than 36% owing to the possibil-
ity of assignment only (Scenario (C), Inst. Sa, DTF=1.25). To conclude, the
benefit related to a reassignment policy seems equivalent to the cost reduc-
tion related to vehicle sharing. Moreover, these two changes can be combined
to further improve economic performance. However, from a managerial point
of view, reassignment could be more advantageous than vehicle sharing which
could potentially be difficult when the MSIs have to charge one another for
the transport service. The reassignment option should then be considered a
priority by MSIs wishing to collaborate with one another.
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Table 10 Effect of user assignment and sharing of vehicles on the cost and the number of
routes

Cost Nb Routes
Scena. A B (@] D A B C D
Assign. No No Yes Yes No No Yes Yes
Shared No Yes No Yes No Yes No Yes
Unit € % % % # % % %
Inst. DTF
Loire 1.25 1,248 -7.16 -13.44 -19.66 13 -15.38 -15.38 -30.77
1.5 1,023 -9.89 -17.04 -20.26 11 -18.18 -27.27 -36.36
1.75 885 -8.73 -14.13 -16.03 9 -11.11 -22.22 -22.22
Rhone 1.25 1,931 -9.52 -9.49 -16.74 26 -15.38 -15.38 -26.92
1.5 1,601 -9.52 -6.90 -14.22 20 -15.00 -15.00 -15.00
1.75 1,408 -5.58 -3.57 -8.97 16 6.25 0.00 0.00
Savoie 1.25 4,225 -9.19 -19.95 -23.93 46 -15.22 -36.96 -34.78
1.5 3,458 -7.34 -13.73 -18.01 34 -5.88  -26.47 -23.53
1.75 3,137 -6.17 -12.11 -14.34 30 -10.00 -16.67 -20.00
mean -8.12  -12.26 -16.91 -11.10 -19.48 -23.29

Impact on the MSIs’ payrolls

Table 11 presents the evolution of the two main expenses for MSIs: the cost
related to the routes, and staff wages. These two costs are compared for Scenar-
ios (A) and (D). Wages are the sum of the current wages of the staff (€1,931,
€6,910, and €7,760 for respectively Loire, Rhone, and Savoie) and the over-
time (cost for the extension of capacity). We can see that the sharing and the
assignment decrease the routing cost significantly (up to 28.63%) but increase
the cost of wages only slightly (no more than 2.56%). From a managerial point
of view, it is interesting to note that the increase in salaries is relatively low,
and therefore does not lead to a radical change in the payrolls of the MSIs.
Thus, it could be considered that the allocation of human resources to institu-
tions would be affected only slightly by the implementation of a reassignment
policy.

Number of user places

Until now, the capacity of the MSIs (i.e., the number of users served) has been
fixed as it is difficult to increase this value in real life. However, we studied the
impact of such an increase on Scenario (D). Hence, Table 12 presents the cost
of Scenario (A) compared with the different increase of C5 in Scenario (D). As
we can see, most of the assignment gain can be obtained without increasing
their capacities. In addition, this gain does not seem significant above a 5%
capacity increase.
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Table 11 Evolution of the two main expenses for MSIs: routes and wages between

Scenarios (A) and (D)

Routes ‘Wages
Scena. A D A D
Unit € % € %
Inst. DTF
Loire 1.25 1,247 -22.28 1,931 1.69
1.5 1,023 -22.36 1,931 1.11
1.75 884 -17.94 1,931 0.87
Rhoéne 1.25 1,931 -21.96 6,909 1.46
1.5 1,600 -15.74 6,910 0.35
1.75 1,408 -10.70 6,910 0.35
Savoie 1.25 4,225 -28.63 7,760 2.56
1.5 3,457 -22.79 7,760 2.13
1.75 3,137  -19.17 7,760 1.95
mean -20.17 1.39

Table 12 Impact of increasing the number of user places (Capacity C5)

Scena. A D
Cs 0%  +0%  +5% +10% +20%  +oo
Unit € % % % % %
Inst. DTF
Loire  1.25 1,247 -19.60 -22.40 -24.98 -26.65 -28.42
1.5 1,023 -20.23 2229 -23.46 -24.05 -25.15
1.75 884 -15.94 -17.45 -20.24 -21.27 -24.17
Rhéne  1.25 1,931 -16.72 -18.08 -19.43 -19.50 -19.71
L5 1,600 -14.12 -14.86 -15.68 -15.66 -15.69
1.75 1,408  -8.95 -11.15 -10.65 -10.57 -10.67
Savoie  1.25 4,225 -23.84 -26.32 -27.00 -27.72 -27.72
1.5 3,457 -17.97 -2070 -21.61 -23.19 -23.22
1.75 3,137 -14.34 -17.38 -18.77 -19.29 -19.20
mean -16.86 -18.96 -20.20 -20.88 -21.55
7.2 From people with disabilities and other

vulnerabilities perspective

Table 13 presents two indicators from a user’s perspective. The first one is the
ride time, which has to be as short as possible. The second one is the number
of reassignments, which should also be as low as possible to avoid upsetting
the previous habits of the user and the staff. Those indicators are important
as they are directly linked to the quality of service. We find that sharing
vehicles (B) does not have a significant impact on the ride time. However, the
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reassignment does, with an average reduction of ride time of more than 5%
(C, D). On the second indicator, we find that the cost saving for Scenario (D)

can be obtained by reassigning less than a quarter of the users.

Table 13 Ride time evolution and proportion of users moved from their current assignment

Ride Time Reassigned user
Scena. A B C D C D
Assign. No No Yes Yes Yes Yes
Shared No Yes No Yes No Yes
Unit  min. % % % % %
Inst. DTF
Loire 1.25 36.44 -1.10 -1.77 -3.06  19.05 23.81
1.5 41.06 5.76 -2.48 -1.01  23.81 19.05
1.75 44.97 10.64 3.34 4.30 19.05 14.29
Rhéne 1.25 25.14 0.60 -3.10 -3.27  12.80 12.80
1.5 28.09 -0.67 -2.38 -3.96 9.60 8.00
1.75 30.79  -3.87 -3.95 -8.42 8.00 8.00
Savoie 1.25 31.04 -1.12 -12.30 -11.03 24.04 21.63
1.5 34.64 0.53 -11.26 -7.51  23.56 17.79
1.75 40.09 -4.24 -16.29 -13.63 19.23 17.31
mean 34.69 0.73 -5.58 -5.29 17.68 15.85

8 Conclusion

In this paper, we addressed an important issue in the medico-social sector that
impacts the quality of care, the cost of the system, and the system’s environ-
mental footprint. The goal is to integrate logistic aspects into users’ assignment
decisions by simultaneously solving three interrelated problems: the allocation
of the users, the transportation of the users, and the assignment of the medi-
cal staff. We named this new problem the Assignment Dial-A-Ride Problem.
It can be seen as an extension of the GDARP and the VRPDO. This problem-
solving approach jointly optimizes the routing for the shared transportation
service, the assignment of users with disabilities and other vulnerabilities to
geographical locations, and the extra resources needed at those locations.

To address this problem, we developed a matheuristic, the iteration route
selection algorithm (IRS) which combines a LNS and a MILP solver. The LNS
generates a pool of routes and the MILP solver chooses the best combination
of these routes. For each iteration of the LNS, an assignment problem is solved
twice during the insertion procedure. The method was validated on instances
from the literature for the GDARP and the VRPDO. We then considered 3
real instances from the sanitary transportation of 3 départements in France.

The key finding is that a proper user assignment is paramount for improv-
ing the current transportation system. The saving induced by the assignment
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is equivalent to that obtained by the transport sharing. Assignment and shar-
ing can be combined to achieve a greater cost reduction. Compared with the
current practice, this combination reduces costs by 17% on average and up to
24% without degrading the service quality. From the institutions’ perspective,
transportation costs can be reduced with very small changes in the staff size.
From the perspective of users in vulnerable situations, the savings come with
a slight decrease in transportation time and less than a quarter of users are
reassigned.

For future research, we plan to develop a model to take human resources
into account more precisely. For example, the ability to reallocate existing
human resources between MSIs, considering the cost, the skills, and the dis-
tances, may be taken into account. A second line of research is related to
the location of institutions themselves. From the public health policy point of
view, it would be relevant to measure the impact of the opening or closing of
an institution, or to modify its capacity in terms of access to care in a territory.
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Appendix A BKS Section 6.1

Table A1l Best known solution (BKS)

Inst. DTF  Cost (€)

Loire 1.25 1,002.53
1.50 816.02
1.75 743.12

Rhéne 1.25  1,608.01
1.50  1,373.32
1.75  1,281.98

Savoie 1.25  3,214.34
1.50  2,834.83
1.75  2,687.22

References

1]

Mosquera Varela, A.F., Trilling, L., Monteiro, T.: Managing the accom-
panying path of people with disabilities in a medico-social network: a
method to create a process model based on autonomous actors point of
views,. In: 20th IFAC World Congress of the International Federation of
Automatic Control (IFAC 2017) (2017)

Tellez, O., Daguet, L., Lehuédé, F., Monteiro, T., Osorio Montoya, G.,
Péton, O., Vercraene, S.: A stakeholder oriented approach to the opti-
mization of transports of people with disabilities. Supply Chain Forum:
An International Journal 21(2), 93-102 (2020)

Gonzalez, L., Roussel, R., Héam, J.-C., Mikou, M., , C.: Health
expenditure in 2017 - results of the health accounts - 2018 ed.
(fr: Les dépenses de santé en 2017 - résultats des comptes de la
santé - Edition 2018.). Technical report, Direction de la recherche,
des études, de Dévaluation et des statistiques (2017). https:
//drees.solidarites-sante.gouv.fr /publications/panoramas-de-la-drees/
les-depenses-de-sante-en-2017-resultats-des-comptes-de-la-sante

Lesteven, P., Robert, E., Wahl, T., Grimonprez, P.E.: Health transporta-
tion - 2016 expenditure review (fr: Les transports sanitaires - revue de
dépenses 2016.). Technical report, Inspection générale des affaires sociales
(IGAS) (2016). https://www.igas.gouv.fr/spip.php?article557

ANAP: Transport - improving the management of transport for disabled
people - volume 1: Feedback (fr: Transports - améliorer la gestion des


https://drees.solidarites-sante.gouv.fr/publications/panoramas-de-la-drees/les-depenses-de-sante-en-2017-resultats-des-comptes-de-la-sante
https://drees.solidarites-sante.gouv.fr/publications/panoramas-de-la-drees/les-depenses-de-sante-en-2017-resultats-des-comptes-de-la-sante
https://drees.solidarites-sante.gouv.fr/publications/panoramas-de-la-drees/les-depenses-de-sante-en-2017-resultats-des-comptes-de-la-sante
https://drees.solidarites-sante.gouv.fr/publications/panoramas-de-la-drees/les-depenses-de-sante-en-2017-resultats-des-comptes-de-la-sante
https://drees.solidarites-sante.gouv.fr/publications/panoramas-de-la-drees/les-depenses-de-sante-en-2017-resultats-des-comptes-de-la-sante
https://www.igas.gouv.fr/spip.php?article557

715

720

725

730

735

740

745

Springer Nature 2021 I¥TEX template

The Assignment-Dial-A-Ride-Problem 27

transports de personnes handicapées - tome 1 : Retour d’expériences).
Technical report, ANAP (2016). https://ressources.anap.fr/transports/
publication/2426

Braekers, K., Kovacs, A.A.: A multi-period dial-a-ride problem with
driver consistency. Transportation Research Part B: Methodological 94,
355-377 (2016)

Tellez, O., Vercraene, S., Lehuédé, F., Péton, O., Monteiro,
T.: The time-consistent dial-a-ride problem. Networks 79(4),
452478 (2022). https://doi.org/10.1002/net.22063. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.22063.  Accessed
2023-01-09

Lindstrgm, C., Rgpke, S.: Group Consistent Dial-A-Ride using Adaptive
Large Neighborhood Search: 13th International Conference on Computa-
tional Logistics (2022)

Tellez Sanchez, O.A.: Optimizing the daily transport for people with
disabilities. PhD thesis, Université de Lyon, INSA Lyon (2019).
2019LYSEI059. http://www.theses.fr/2019LYSEI059/document

Qu, Y., Bard, J.F.: The heterogeneous pickup and delivery problem with
configurable vehicle capacity. Transportation Research Part C: Emerging
Technologies 32, 1-20 (2013)

Tellez, O., Vercraene, S., Lehuédé, F., Péton, O., Monteiro, T.: The
fleet size and mix dial-a-ride problem with reconfigurable vehicle capac-
ity. Transportation Research Part C: Emerging Technologies 91, 99-123
(2018)

Genet, N., Boerma, W.G., Kringos, D.S., Bouman, A., Francke, A.L.,
Fagerstrom, C., Melchiorre, M.G., Greco, C., Devillé, W.: Home care in
Europe: a systematic literature review. BMC Health Services Research
11(1), 207 (2011)

Mankowska, D.S., Meisel, F., Bierwirth, C.: The home health care rout-
ing and scheduling problem with interdependent services. Health Care
Management Science 17(1), 15-30 (2014)

Malagodi, L., Lanzarone, E., Matta, A.: Home care vehicle routing prob-
lem with chargeable overtime and strict and soft preference matching.
Health Care Management Science 24(1), 140-159 (2021)

Kelle, P., Woosley, J., Schneider, H.: Pharmaceutical supply chain
specifics and inventory solutions for a hospital case. Operations Research
for Health Care 1(2), 54-63 (2012)


https://ressources.anap.fr/transports/publication/2426
https://ressources.anap.fr/transports/publication/2426
https://ressources.anap.fr/transports/publication/2426
https://doi.org/10.1002/net.22063
http://www.theses.fr/2019LYSEI059/document

750

755

760

765

770

775

780

28

[16]

[17]

18]

[19]

Springer Nature 2021 I¥TEX template

The Assignment-Dial-A-Ride-Problem

Uthayakumar, R., Priyan, S.: Pharmaceutical supply chain and inventory
management strategies: Optimization for a pharmaceutical company and
a hospital. Operations Research for Health Care 2(3), 52-64 (2013)

Coster, J.E., Turner, J.K., Bradbury, D., Cantrell, A.: Why Do People
Choose Emergency and Urgent Care Services? A Rapid Review Utilizing
a Systematic Literature Search and Narrative Synthesis. Academic Emer-
gency Medicine: Official Journal of the Society for Academic Emergency
Medicine 24(9), 1137-1149 (2017)

Li, M., Vanberkel, P., Carter, A.J.E.: A review on ambulance offload delay
literature. Health Care Management Science 22(4), 658-675 (2019)

Mahon, A.G.M.: Non-emergency patient transport: an integral part
of accessible comprehensive health care. SAMJ: South African Medi-
cal Journal 101(10), 684-685 (2011). Publisher: South African Medical
Association

Huggins, C., Shugg, D.: Non-Emergency Patient Transport in Victoria:
An overview. Australasian Journal of Paramedicine 6(4) (2008). Number:
4

Fogue, M., Sanguesa, J.A., Naranjo, F., Gallardo, J., Garrido, P., Mar-
tinez, F.J.: Non-emergency patient transport services planning through
genetic algorithms. Expert Systems with Applications 61, 262-271 (2016)

Qu, Y., Bard, J.F.: A Branch-and-Price-and-Cut Algorithm for Heteroge-
neous Pickup and Delivery Problems with Configurable Vehicle Capacity.
Transportation Science 49(2), 254-270 (2015). Publisher: INFORMS

Feillet, D., Garaix, T., Lehuédé, F., Péton, O., Quadri, D.: A new con-
sistent vehicle routing problem for the transportation of people with
disabilities. Networks 63(3), 211-224 (2014)

Tellez, O., Vercraene, S., Lehuédé, F., Péton, O., Monteiro, T.: The time-
consistent dial-a-ride problem. Networks, 22063 (2021)

Hains, I.M., Marks, A., Georgiou, A., Westbrook, J.I.: Non-emergency
patient transport: what are the quality and safety issues? A systematic
review. International Journal for Quality in Health Care: Journal of the
International Society for Quality in Health Care 23(1), 68-75 (2011)

Worrall, P., Chaussalet, T.J.: A structured review of long-term care
demand modelling. Health Care Management Science 18(2), 173-194
(2015)



785

790

795

800

805

810

815

27]

28]

32]

(33]

[38]

Springer Nature 2021 I¥TEX template

The Assignment-Dial-A-Ride-Problem 29

Cordeau, J.-F., Laporte, G.: A tabu search heuristic for the static multi-
vehicle dial-a-ride problem. Transportation Research Part B: Method-
ological 37(6), 579-594 (2003)

Molenbruch, Y., Braekers, K., Caris, A.: Typology and literature review
for dial-a-ride problems. Annals of Operations Research 259(1), 295-325
(2017)

Ho, S.C., Szeto, W.Y., Kuo, Y.-H., Leung, J.M.Y., Petering, M., Tou,
T.W.H.: A survey of dial-a-ride problems: Literature review and recent
developments. Transportation Research Part B: Methodological 111,
395-421 (2018)

Lehuédé, F., Masson, R., Parragh, S.N., Péton, O., Tricoire, F.: A multi-
criteria large neighbourhood search for the transportation of disabled
people. Journal of the Operational Research Society 65(7), 983-1000
(2014)

Parragh, S.N.: Introducing heterogeneous users and vehicles into models
and algorithms for the dial-a-ride problem. Transportation Research Part
C: Emerging Technologies 19(5), 912-930 (2011)

Masson, R., Lehuédé, F., Péton, O.. The dial-a-ride problem with
transfers. Computers & Operations Research 41, 12-23 (2014)

Braekers, K., Caris, A., Janssens, G.K.: Exact and meta-heuristic
approach for a general heterogeneous dial-a-ride problem with multiple
depots. Transportation Research Part B: Methodological 67, 166-186
(2014)

Malheiros, I., Ramalho, R., Passeti, B., Bulhoes, T., Subramanian, A.: A
hybrid algorithm for the multi-depot heterogeneous dial-a-ride problem.
Computers & Operations Research 129, 105196 (2021)

Ghiani, G., Improta, G.: An efficient transformation of the general-
ized vehicle routing problem. European Journal of Operational Research
122(1), 11-17 (2000)

Moccia, L., Cordeau, J.-F., Laporte, G.: An incremental tabu search
heuristic for the generalized vehicle routing problem with time windows.
Journal of the Operational Research Society 63(2), 232-244 (2012)

Dumez, D., Lehuédé, F., Péton, O.: A large neighborhood search approach
to the vehicle routing problem with delivery options. Transportation
Research Part B: Methodological 144, 103-132 (2021)

Dumez, D., Tilk, C., Irnich, S., Lehuédé, F., Péton, O.: Hybridizing large



820

825

830

835

840

30

[41]

42]

(44]

[45]

Springer Nature 2021 I¥TEX template

The Assignment-Dial-A-Ride-Problem

neighborhood search and exact methods for generalized vehicle rout-
ing problems with time windows. EURO Journal on Transportation and
Logistics 10, 100040 (2021)

Pinson, C., Afsar, H.M., Prodhon, C.: Heuristic approaches to solve a gen-
eralized dial-a-ride problem applied to car-pooling. IFAC-PapersOnLine
49(12), 1187-1191 (2016)

Osorio, G., Monteiro, T., Trilling, L., Albert, F.: Multi-criteria assignment
policies to improve global effectiveness of medico-social service sector.
Engineering Applications of Artificial Intelligence 61, 21-34 (2017)

Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems.
Computers & Operations Research 34(8), 24032435 (2007)

Gschwind, T., Drexl, M.: Adaptive Large Neighborhood Search with a
Constant-Time Feasibility Test for the Dial-a-Ride Problem. Transporta-
tion Science 53(2), 480-491 (2019)

Parragh, S.N., Schmid, V.: Hybrid column generation and large neigh-
borhood search for the dial-a-ride problem. Computers & Operations
Research 40(1), 490-497 (2013)

Dueck, G.: New Optimization Heuristics: The Great Deluge Algorithm
and the Record-to-Record Travel. Journal of Computational Physics
104(1), 86-92 (1993)

Mapotempo: Mapotempo - Route Planning | Route Optimization | Live
Tracking. https://www.mapotempo.com/


https://www.mapotempo.com/

	Introduction
	Literature review
	Model
	Notations
	Users
	Nodes
	Times
	Vehicles
	Geography
	Resources
	Route


	Single-route problem
	Route selection problem and staff sizing

	Solution method
	General framework: Iterative Route Selection (IRS)
	Large Neighborhood Search (LNS)
	Assignment problem

	Case study
	Instances
	Current assignment
	Resource availability
	Resources
	Time and distance
	Maximal ride time
	Time Windows
	Itineraries
	Vehicles
	Depots



	Validation of the method
	Validation of the components and tuning of parameters
	Comparison with the literature
	Generalized-Dial-A-Ride Problem
	Vehicle Routing Problem with delivery options



	Managerial results
	From the MSIs’ perspective
	Cost and routes
	Impact on the MSIs' payrolls
	Number of user places


	From people with disabilities and other vulnerabilities perspective

	Conclusion
	Acknowledgment
	BKS Section 6.1

