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On the positive powers of q-analogs of Euler series

). By considering a family of linear q-difference operators associated with a given first order non-homogenous q-difference equation, it will be shown that the summability order of q-analoguous counterparties of Euler series depends upon of the degree of power under consideration.

Introduction

It is well-known that, given any direction starting from the origin of the complex plane, the set of all Borel-summable series in this direction forms a differential algebra; see [START_REF] Malgrange | Sommation des séries divergentes[END_REF]Proposition 1.3.4.2] or [START_REF] Balser | Formal power series and linear systems of meromorphic ordinary differential equations[END_REF]Theorem 36]. This is not the same for the summability with respect to the power series solutions of q-difference equations. Indeed, if q > 1 and

(1. [START_REF] Andrews | Special Functions[END_REF] Êq (x) = n≥0 (-1) n q n(n-1)/2 x n , the divergent power series Êq (x) is Gq-summable of only one level but its square Êq (x) 2 is Gq-summable of two levels; see [11, §4.3.8] and [8, Théorème 2.2.1].

The first purpose of this paper is to obtain a linear q-difference equation for every positive power of the power series Êq (x). This will allow one to see the different level of summability for each of these corresponding power series. In what follows, let q be a given nonzero complex number, and let σ q be the associated q-difference operator defined by σ q f (x) = f (qx). By direct computation, one finds the series defined by (1.1) satisfies term by term the following linear qdifference equation :

(1.2) (xσ q + 1)y = 1 . Now, write (1.2) into the form xσ q y = 1 -y and then square both sides. As (σ q y) 2 = σ q (y 2 ), one obtains that x 2 σ q (y 2 ) -y 2 = 1 -2y. By using again (1.2), one gets the following equation:

(xσ q + 1)(x 2 σ q -1)(y 2 ) = x + 1 -2(xσ q + 1)y , what implies that

(1.3) (xσ q + 1)(x 2 σ q -1) Êq (x) 2 = x -1 .
We shall explain how to obtain a linear q-difference equation for Êq (x) n . For doing that, we shall start by recalling some non-commutative rings of q-difference operators and then arrive at a n-th order such operator associated with any given nth power of a power series solution of some first order non-homogenous q-difference equation. See Theorem 2.1 in § 2 and its generalisation stated in Theorem 4.3 in § 4. Section 3 is reserved to the proofs of Theorem 2.1 and two related Lemmas. In the last section, we shall apply, respectively, both Theorems 2.1 and 4.3 to the abovementioned power series Êq (x) and another q-analog Ê(x; q) of the classic Euler series. At the end of the paper will be outlined some results about the summability of both Êq (x) and Ê(x; q) when q > 1; see Theorem 5.3.

Throughout the present paper, we shall limit ourself to the q-summation method studied in our previous works [START_REF] Zhang | Développements asymptotiques q-Gevrey et séries Gq-sommables[END_REF] and [START_REF] Marotte | Multisommabilité des séries entières solutions formelles d'une équation aux q-différences linéaire analytique[END_REF], by means of a q-Laplace integral involving the multivalued function e log 2 x/2 ln q . There exists another summation, using a Jacobi theta function; see [START_REF] Ramis | Local analytic classification of q-difference equations[END_REF]. Comparing both summations can be seen as part of Stokes analysis, and this would be interesting to find identities on the associated special functions.

Notation and statements

As usual, we will denote by C{x} or C [[x]] the integral domain constituting of the germs of holomorphic functions at x = 0 in the complex plane or that of the power series of indeterminate x, respectively. Their respective corresponding field of fractions will be denoted by

C[x -1 ]{x} or C[x -1 ][[x]]. One has C{x} ⊂ C[[x]], as well as C[x -1 ]{x} ⊂ C[x -1 ][[x]]
, in a natural way via the classic Taylor or Laurent series.

Let R be one of the above-mentioned C-vector spaces C{x}, C

[[x]], C[x -1 ]{x} and C[x -1 ][[x]]
. By replacing x with qx, the q-difference operator σ q acts as an automorphism over R. Let σ k q = σ q k for any integer k; in particular, σ 0 q is simply the identity map on R. We will denote by R[σ q ] the set of the (linear) q-difference operators whose coefficients belong to R, i.e. L ∈ R[σ q ] if L = n k=0 a k σ k q , where a k ∈ R. By identifying each element of R with the corresponding multiplication map in R, the set R[σ q ] constitutes itself a non-commutative ring for the composition of operators. Given L 1 , L 2 ∈ R[σ q ], we will write

L 1 L 2 in stead of L 1 • L 2 .
Furthermore, we will denote by ν 0 (f ) ∈ Z ∪ {∞} the valuation of any given element f of the field C[x -1 ][[x]] "at x = 0". This means that (i) ν 0 (f ) = ∞ iff f is the identically vanishing series, and (ii)

ν 0 (f ) = ν ∈ Z iff f ≡ c x ν mod x ν+1 C[[x]]
for some nonzero complex number c.

Throughout the whole section, P will be some given nonzero power series belonging to the field C[x -1 ][[x]]. Define the associated family of power series {P n } n≥0 as follows: P 0 = 0, P 1 = P , and (2.1)

P n = n-1 k=0 (-xσ q ) k P for n ≥ 2.
By noticing that (-xσ q ) k P = (-x) k q k(k-1)/2 σ k q P , it follows from (2.1) that, for any pair (n, ) ∈ Z ≥0 × Z >0 ,

P n+ -P n = n+ -1 k=n (-x) k q k(k-1)/2 σ k q P ≡ (-1) n c q nν+n(n-1)/2 x ν+n mod x ν+n+1 C[[x]] ,
where c = 0 and ν = ν 0 (P ) ∈ Z. This implies that (2.2)

P m = P n if m = n.
Given any positive integer n ≥ 1, let

{L P n,k } 1≤k≤n ⊂ C[x -1 ][[x]] [σ q ]
be the associated family of q-difference operators defined in the following manner:

L P n,1 = 1 P 1 (x n σ q -(-1) n ) = 1 P (x n σ q -(-1) n ) ; (2.3) L P n,k+1 = 1 P k+1 x n-k σ q -(-1) n-k L P n,k , 1 ≤ k < n . (2.4)
Specifically, letting k = n, one gets the following form of the n-th order q-difference operator

L P n,n ∈ C[x -1 ][[x]] [σ q ]: (2.5) L P n,n = 1 P n (xσ q + 1) 1 P n-1 x 2 σ q -1 • • • 1 P 1 (x n σ q -(-1) n ) . Theorem 2.1. Let n be an integer ≥ 1, let P , f ∈ C[x -1 ][[x]
] with P = 0, and suppose that the following q-difference equation is satisfied:

(2.6) xσ q f + f = P .
Then:

(2.7)

L P n,n (f n ) = (-1) n(n-1)/2
, where L P n,n is the q-difference operator defined by (2.5). Theorem 2.1 will be proved with the help of the following lemmas.

Lemma 2.2. Let (n, k) ∈ Z 2 such that 1 ≤ k ≤ n, and let P , f be as in Theorem 2.1. For 0 ≤ j ≤ k, define A k;j ∈ C[x -1 ][[x]] by (2.8) A k;j = =j 0≤ ≤k (P j -P ) .

One has:

(2.9)

L P n,k (f n ) = (-1) k(2n-k+1)/2 k j=0 1 A k;j (f -P j ) n .
Lemma 2.3. Let n be a nonnegative integer, C an extension field of C, and let (α 0 , α 1 , ..., α n ) ∈ C n+1 such that α j = α for j = . Define the (n + 1)-tuple (a 0 , a 1 , ..., a n ) ∈ C n+1 as follows:

a j = =j 0≤ ≤n (α j -α ) (a 0 = 1 if n = 0).
The following identity holds in the ring C[T ] of the polynomial functions over C:

(2.10) n j=0 1 a j (T -α j ) n = (-1) n .

Proofs

Proof of Lemma 2.2. To simplify the presentation, we will write L n,k instead of L P n,k , and set n,k = (-1) k(2n-k+1)/2 . One has: (3. [START_REF] Andrews | Special Functions[END_REF] n;k+1 = (-1) n-k n,k . Let us proceed by induction on k. For k = 1, since P 1 = P , one has:

n,1 = (-1) n ; A 1;0 = -P , A 1;1 = P . Thus, (2.3) implies that L n,1 (f n ) = 1 P (x n σ q (f n ) -(-1) n f n ) .
At the same time, by considering (2.6), one gets that

x n σ q (f n ) = (xσ q f ) n = (P -f ) n ;
In this way, it follows that

L n,1 (f n ) = n,1 P ((f -P ) n -f n ) ,
that is exactly what wanted in (2.9) for k = 1. Now, suppose that equality (2.9) holds for some integer k between 1 and n -1. By using relation (2.4), one can express L n,k+1 (f n ) as follows:

(3.2) L n,k+1 (f n ) = n,k P k+1 k j=0 (B n,k;j -C n,k;j ) , where (3.3) B n,k;j = x n-k σ q 1 A k;j (f -P j ) n and (3.4) C n,k;j = (-1) n-k A k;j (f -P j ) n .
In view of (2.1), one finds that xσ q P j = P -P j+1 , hence:

xσ q (f -P j ) = xσ q f -xσ q P j = (P -f ) -(P -P j+1 ) = -(f -P j+1 ).
Thus, it follows that

B n,k;j = (xσ q (f -P j )) n x k σ q A k;j = (-1) n x k σ q A k;j (f -P j+1 ) n .
By using the expression of A k;j given in (2.8), one has :

x k σ q A k;j = =j 0≤ ≤k (xσ q (P j -P )) = (-1) k =j 0≤ ≤k (P j+1 -P +1 ) .
This is to say that

x k σ q A k;j = (-1) k P j+1 A k+1,j+1 .
So, one can write (3.3) as follows:

(3.5) B n,k;j = (-1) n-k P j+1 A k+1;j+1 (f -P j+1 ) n .
Rewrite (3.2) into the following form:

(3.6) L n,k+1 (f n ) = n,k P k+1   k-1 j=0 (B n,k;j -C n,k;j+1 ) + B n,k;k -C n,k;0   .
Let j < k; one has: A k+1,j+1 = (P j+1 -P k+1 ) A k,j+1 . Replace j by j + 1 in (3.4), and make use of (3.5). One gets that

B n,k;j -C n,k;j+1 = (-1) n-k P k+1 A k+1;j+1 (f -P j+1 ) n .
Furthermore, one sees that A k+1;0 = -P k+1 A k;0 . By letting j = k and j = 0 in (3.5) and (3.4) respectively, one has:

B n,k;k = (-1) n-k P k+1 A k+1;k+1 (f -P k+1 ) n and C n,k;0 = - (-1) n-k P k+1 A k+1;0 (f -P 0 ) n .
Thus, in view of (3.1), equality (3.6) implies that

L n,k+1 (f n ) = n,k+1 k+1 j=0 1 A k+1;j (f -P j ) n ,
which corresponds to (2.9) in which k was replaced by k + 1.

Proof of Lemma 2.3. We give here two proofs.

Proof by induction -If n = 0, as a 0 = 1, equality (2.10) becomes evident. Suppose that (2.10) holds for some index n ≥ 0, and consider an (n + 2)-uplet (α 0 , ..., α n+1 ) where, as before, α j = α if j = . Set

P(T ) = n+1 j=0 1 ãj (T -α j ) n+1 , ãj = =j 0≤ ≤n+1 (α j -α ).
Let k be an integer such that 0 ≤ k ≤ n + 1. If one writes

a k;j = =k, =j 0≤ ≤n+1 (α j -α ) , one has a k;j = ãj /(α j -α k ) for j = k, what implies that (3.7) P(α k ) = - j =k 0≤j≤n+1 1 a k;j (α k -α j ) n .
By applying the induction hypothesis to the (n+1)-uplet (α 0 , ..., α k-1 , α k+1 , ...α n+1 ) appeared in the right hand side of (3.7), one obtains that P(α k ) = (-1) n+1 . As P is a polynomial with deg P ≤ n + 1, one finds that P(T ) = (-1) n+1 identically.

Proof by Lagrange polynomials 1 -Let K = C(T ) be the field of the rational functions over C. Let X be a new indeterminate, and set

F (X) = (T -X) n , Λ j (X) = =j 0≤ ≤n (X -α ) .
By noticing that F (X) ∈ K[X] be such that deg F = n < n + 1, the Lagrange interpolation formula [3, Chap. IV, §2, p. 26] implies that

F (X) = n j=0 F (α j ) a j Λ j (X) .
And now one compares the coefficients of X n for both sides of the above equality.

As that of Λ j is equal to 1, one finds that

(-1) n = n j=0 F (α j ) a j = n j=0 (T -α j ) n a j ,
which is exactly the expected identity (2.10).

End of the proof of Theorem 2.1. In view of Lemma 2.2, letting k = n in (2.9) yields that

L P n,n (f n ) = (-1) n(n+1)/2 n j=0 1 A n;j (f -P j ) n ,
where A n;j = =j 0≤ ≤n (P j -P ) . By (2.2), one knows that P j = P for j = . Thus, by applying Lemma 2.3 with

C = C[x -1 ][[x]
], X = f and α j = P j , one gets that

n j=0 1 A n;j (f -P j ) n = (-1) n .
This permits to finish the proof of Theorem 2.1.

One generalisation of Theorem 2.1

Instead of (2.6), let us consider the following slightly more general q-difference equation:

(4.1) α σ q y + y = β ,
where both α and β are nonzero power series belonging to the field

C[x -1 ][[x]].
In the same spirit as in (2.1), define the sequence

{β n } n≥0 in C[x -1 ][[x]
] as follows:

(4.2) We would like to thank our friend and collaborator J. Sauloy for this elegant proof.

β 0 = 0; β n = n-1 k=0 (-α σ q ) k β , n ≥ 1 .
Proposition 4.1. For any given positive integer n, the following conditions are equivalent.

(1) β j = 0 for any positive integer j such that 0 < j ≤ n.

(2) β j = β for any couple of integers (j, ) such that 0 ≤ < j ≤ n.

Proof. Indeed, by (4.2), it follows that (4.3)

β j -β = j-1 k= (-α σ q ) k β = (-α σ q ) β j-.
As α = 0, l'operator (-α σ q ) is an automorphism on the C-vector space

C[x -1 ][[x]].
So, this is the same for its -th power or iteration (-α σ q ) . This implies the equivalence between the conditions stated in Proposition 4.1.

Given a nonzero f ∈ C[x -1 ][[x]
], one remembers that ν 0 (f ) denotes the valuation of f at x = 0, that is the lowest degree of the terms of f . By using (4.2), one obtains that, for n > 0:

ν 0 (β n ) = ν 0 (β) if ν 0 (α) > 0; (n -1)ν 0 (α) + ν 0 (β) if ν 0 (α) < 0.
This gives the following statement for α, β 

∈ C[x -1 ][[x]] \ {0}.
∈ C[x -1 ][[x]
]. Suppose that f satisfies the q-difference equation in (4.1) and that β j = 0 for any positive integer j such that 0 < j ≤ n. One has:

(4.4) L α,β n (f n ) = (-1) n(n-1)/2
, where L α,β n is the n-th order q-difference operator defined by

(4.5) L α,β n = 1 β n (α σ q + 1) 1 β n-1 α 2 σ q -1 • • • 1 β 1 (α n σ q -(-1) n ) .
Proof. Replace (k, P ) with (n, β) in (2.8), and define:

A n;j = =j 0≤ ≤n (β j -β ) , 0 ≤ j ≤ n.
By taking into account Proposition 4.1, it follows that A n;j = 0. Thus, one might proceed in the same way as for the proof of Theorem 2.1. We omit the details.

About the summability of the powers of q-Euler series

Let us come back to the power series Êq (x) defined by (1.1), which satisfies the q-difference equation stated in (1.2). Letting P = 1, Theorem 2.1 implies immediately the following result.

Remark 5.1. Given any integer n ≥ 2, the n-th power Êq (x) n satisifies the following identity:

(5.1) (xσ q + 1) 1 P n-1

x 2 σ q -1 ...(x n σ q -(-1) n ) Êq (x) n = (-1) n(n-1)/2 P n ,

where

P k = 1 -x + ... + q (k-1)(k-2) (-x) k-1 for 1 ≤ k ≤ n.
In particular, when n = 2, as P 2 = 1 -x, (5.1) takes the form of (1.3).

Furthermore, it might be interesting to notice that, if q = 1, one has Ê1 (x) = 1 1 + x and, in this case, the above identity in (5.1) is simply equivalent to the following elementary relation:

n k=1 x k -(-1) k k-1 j=0 (-x) j = (-1) n(n-1)/2 (x + 1) n .
This observation related with the specific case of q = 1 may be also made for Theorem 4.3, by assuming, for example, both α and β to belong to the field C[x -1 ]{x} of the germs of meromorphic functions at x = 0 in C or to the sub-field C(x) of the rational functions over C.

Our next remark goes to another q-analog of the following so-called Euler series:

(5.2) Ê(x) = n≥0 (-1) n n! x n+1 .
This power series is divergent for all x ∈ C \ {0} but Borel-summable in every direction excepted R -. It satisfies the following first order ODE:

(5.3) (x δ + 1)y = x, δ = x∂ x = x d dx .
Letting Y = Ê(x) 2 , one can check that (5.4)

(x δ + 1 -x) (x δ + 2)Y = 2x 2 .
Indeed, if y = Ê(x), one deduces from (5.3) that xδ(y 2 ) = 2x y δy = 2y(x -y) = 2xy -2y 2 . This means that (xδ + 2)(y 2 ) = 2x y. Thus, applying again (5.3) yields that (x δ + 1) 1 2x (x δ + 2) y 2 = x . In this way, one gets (5.4), using the identity Besides, the correspondances n ↔ 1 -q n 1 -q and n! ↔ (1 -q)...(1 -q n ) (1 -q) n suggest one to consider the following q-analog of the Euler series:

(5.5) Ê(x;

q) = x + n≥1 (-1) n (1 -q)...(1 -q n ) (1 -q) n x n+1 .
This can be written in term of a basic hypergeometric series as follows:

Ê(x; q) = x 2 φ 1 (q, q; 0; q, -x 1 -q ) = x 2 φ 0 (q -1 , q -1 ; -; q -1 , x 1 -q -1 ).

See [6, (1.2.22), p. 4] for the general definition of r φ s (...; ...; q, z).

Let δ q = σ q -1 q -1 = x ∆ q , where ∆ q is defined in [1, p. 488, (10.2.3)]. By observing that n = δx n

x n and 1 -q n 1 -q = δ q x n x n , a direct computation shows that Ê(x; q) satisfies the q-analog of (5.3) as follows: (x δ q + 1)y = x . If one writes (5.6) α = x q -1 -x , β = (q -1) α , it follows from the above that (5.7) (α σ q + 1) Ê(x; q) = β .

Remark 5.2. Let α be as in (5.6). The following identity holds in the field

C[x -1 ][[x]]: (5.8) α δ q + 1 q -1 -x α δ q - 1 x + 1 q -1 -x Ê(x; q) 2 = α (σ q α -1) .
Moreover, when q → 1, (5.8) is reduced into the following equivalent form of (5.4):

(5.9)

δ + 1 x δ + 2 x Ê(x) 2 = 2 .
To obtain (5.8), one can apply (4.2) for n = 1 and n = 2, where α and β are defined by (5.6). This gives that

β 1 = (q -1) α, β 2 = β -α σ q β = (q -1) α (1 -σ q α) .
Thus, it follows from applying Theorem 4.3 to (5.7) that Ê(x; q) 2 satisfies the following q-difference equation:

(5.10) L Ê(x; q) 2 = α (σ q α -1) , where

L = 1 (q -1) 2 (α σ q + 1) α σ q - 1 α . (5.11) 
By replacing σ q with (q -1)δ q + 1 in (5.11), one gets that

L = α δ q + 1 + α q -1 α δ q + α 2 -1 (q -1) α . As α + 1 = q -1 q -1 -x and α 2 -1 = (q -1)(2x -q + 1) (q -1 -x) 2
, one deduces immediately (5.8) from (5.10). The limit equation form given in (5.9) can be obtained from (5.8) by noticing both limits α → -1 and δ q → δ for q → 1.

In the rest of this paper, we will suppose that q > 1 even if, in most cases, the hypothesis |q| > 1 may be really enough; see [START_REF] Roques | On classical irregular q-difference equations[END_REF] and [START_REF] Ramis | Local analytic classification of q-difference equations[END_REF]. Let us recall some results about the summability of power series solutions of q-difference equations. Given any linear q-difference operator L of the following form:

L = n j=0 a j σ j q ∈ C{x}[σ q ]
, a 0 a n = 0 , one definies its associated Newton polygon N P(L) as being the convex hull of the set {(j, m) : m ≥ ν 0 (a j )} in the strip [0, n] × [0, +∞). By following [8, (3.1.2)] and [START_REF] Zhang | Développements asymptotiques q-Gevrey et séries Gq-sommables[END_REF]Proposition 5.14], one knows that, if N P(L) admits only integer slopes, saying

κ 1 ≤ κ 2 ≤ ... ≤ κ n , then there exist ν ∈ Z, (h 1 , h 2 , ..., h n ) ∈ (1 + xC{x}) n and
(c 0 , c 1 , ..., c n ) ∈ (C \ {0}) n+1 such that (5.12) L = c 0 x ν h 1 (x κ1 σ q + c 1 ) h 2 (x κ2 σ q + c 2 ) ... h n (x κn σ q + c n ) .

Furthermore, let K + = Z >0 ∩ {κ j : 1 ≤ j ≤ n}, and define k as follows:

(5.13) k = ∅ if K + = ∅ (k 1 , ..., k m ) if K + = {k : 1 ≤ ≤ m} and k 1 < ... < k m .

By considering [8, § 3.3.5], it follows that any power series f ∈ C[[x]] such that L( f ) ∈ C{x} remains convergent or is Gq-summable of order k = (k 1 , ...k m ) ∈ Z m >0 depending on whether k = ∅ or not.

Theorem 5.3. Given any integer n ≥ 2, the n-th power Êq (x) n is Gq-summable of order (1, 2, ..., n). And this is the same for Ê(x; q) n .

Proof. This follows from taking into account (5.1) or applying Theorem 4.3 to (5.7) with the help of Remark 4.2.

Applying [START_REF] Balser | Formal power series and linear systems of meromorphic ordinary differential equations[END_REF]Theorem 36] or [START_REF] Malgrange | Sommation des séries divergentes[END_REF]Proposition 1.3.4.2] implies that every power Ê(x) n of the Euler series is Borel-summable at the same level, contrarily to what happens in the case of their respective q-analog Ê(x; q) n ; see Theorem 5.3. Furthermore, thanks to [START_REF] Vizio | On q-summation and confluence[END_REF]Theorem 3.15], one knows that the Gq-sum of Ê(x; q) tends toward the Borel-sum of Ê(x) when q → 1 + . In our coming work [START_REF] Dreyfus | A q-summation process that is a morphism of difference ring[END_REF], it would be shown that, given one generic direction d and two power series f1 and f2 such that L j ( fj ) ∈ C{x} for some L j ∈ C{x}[σ q ], where j = 1 or 2, the Gq-sum of f1 f2 along d is equal to the product of the Gq-sum of f1 along d with that of f2 . In this way, one would obtain that the Gq-sum of Êq (x) n or Ê(x; q) n can be really expressed as the n-th power of that of Êq (x) or Ê(x; q), respectively.
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Remark 4 . 2 .Theorem 4 . 3 .

 4243 Both conditions considered in Proposition 4.1 are necessarily fulfilled if ν 0 (α) = 0. Let n ∈ Z >0 , and let α, β and f

(

  -x) in the non-commutative ring C(x)[δ] of the differential operators over C(x).