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On the positive powers of q-analogs of Euler series

Changgui ZHANG

Abstract. The most simple and famous divergent power series coming from
ODE may be the so-called Euler series

∑
n≥0(−1)n n!xn+1, that, as well as all

its positive powers, is Borel-summable in any direction excepted the negative

real half-axis (see [2] or [7]). By considering a family of linear q-difference oper-
ators associated with a given first order non-homogenous q-difference equation,

it will be shown that the summability order of q-analoguous counterparties of

Euler series depends upon of the degree of power under consideration.

1. Introduction

It is well-known that, given any direction starting from the origin of the complex
plane, the set of all Borel-summable series in this direction forms a differential
algebra; see [7, Proposition 1.3.4.2] or [2, Theorem 36]. This is not the same for
the summability with respect to the power series solutions of q-difference equations.
Indeed, if q > 1 and

(1.1) Êq(x) =
∑
n≥0

(−1)nqn(n−1)/2xn ,

the divergent power series Êq(x) is Gq-summable of only one level but its square

Êq(x)2 is Gq-summable of two levels; see [11, §4.3.8] and [8, Théorème 2.2.1].
The first purpose of this paper is to obtain a linear q-difference equation for every
positive power of the power series Êq(x). This will allow one to see the different
level of summability for each of these corresponding power series.

In what follows, let q be a given nonzero complex number, and let σq be the
associated q-difference operator defined by σqf(x) = f(qx). By direct computation,
one finds the series defined by (1.1) satisfies term by term the following linear q-
difference equation :

(1.2) (xσq + 1)y = 1 .

Now, write (1.2) into the form xσqy = 1 − y and then square both sides. As
(σqy)2 = σq(y

2), one obtains that x2σq(y
2) − y2 = 1 − 2y. By using again (1.2),

one gets the following equation:

(xσq + 1)(x2σq − 1)(y2) = x+ 1− 2(xσq + 1)y ,
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2 CHANGGUI ZHANG

what implies that

(1.3) (xσq + 1)(x2σq − 1)Êq(x)2 = x− 1 .

We shall explain how to obtain a linear q-difference equation for Êq(x)n. For
doing that, we shall start by recalling some non-commutative rings of q-difference
operators and then arrive at a n-th order such operator associated with any given n-
th power of a power series solution of some first order non-homogenous q-difference
equation. See Theorem 2.1 in § 2 and its generalisation stated in Theorem 4.3 in § 4.
Section 3 is reserved to the proofs of Theorem 2.1 and two related Lemmas. In the
last section, we shall apply, respectively, both Theorems 2.1 and 4.3 to the above-
mentioned power series Êq(x) and another q-analog Ê(x; q) of the classic Euler
series. At the end of the paper will be outlined some results about the summability
of both Êq(x) and Ê(x; q) when q > 1; see Theorem 5.3.

Throughout the present paper, we shall limit ourself to the q-summation method
studied in our previous works [11] and [8], by means of a q-Laplace integral involv-

ing the multivalued function elog
2 x/2 ln q. There exists another summation, using a

Jacobi theta function; see [10]. Comparing both summations can be seen as part
of Stokes analysis, and this would be interesting to find identities on the associated
special functions.

2. Notation and statements

As usual, we will denote by C{x} or C[[x]] the integral domain constituting of
the germs of holomorphic functions at x = 0 in the complex plane or that of the
power series of indeterminate x, respectively. Their respective corresponding field
of fractions will be denoted by C[x−1]{x} or C[x−1][[x]]. One has C{x} ⊂ C[[x]], as
well as C[x−1]{x} ⊂ C[x−1][[x]], in a natural way via the classic Taylor or Laurent
series.

Let R be one of the above-mentioned C-vector spaces C{x}, C[[x]], C[x−1]{x}
and C[x−1][[x]]. By replacing x with qx, the q-difference operator σq acts as an
automorphism over R. Let σkq = σqk for any integer k; in particular, σ0

q is simply
the identity map on R. We will denote by R[σq] the set of the (linear) q-difference
operators whose coefficients belong to R, i.e. L ∈ R[σq] if L =

∑n
k=0 akσ

k
q , where

ak ∈ R. By identifying each element of R with the corresponding multiplication
map in R, the set R[σq] constitutes itself a non-commutative ring for the composi-
tion of operators. Given L1, L2 ∈ R[σq], we will write L1L2 in stead of L1 ◦ L2.

Furthermore, we will denote by ν0(f) ∈ Z ∪ {∞} the valuation of any given
element f of the field C[x−1][[x]] “at x = 0”. This means that (i) ν0(f) =∞ iff f is
the identically vanishing series, and (ii) ν0(f) = ν ∈ Z iff f ≡ c xν mod xν+1 C[[x]]
for some nonzero complex number c.

Throughout the whole section, P will be some given nonzero power series belon-
ging to the field C[x−1][[x]]. Define the associated family of power series {Pn}n≥0
as follows: P0 = 0, P1 = P , and

(2.1) Pn =

n−1∑
k=0

(−xσq)kP for n ≥ 2.
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By noticing that (−xσq)kP = (−x)k qk(k−1)/2 σkqP , it follows from (2.1) that, for
any pair (n, `) ∈ Z≥0 × Z>0,

Pn+` − Pn =

n+`−1∑
k=n

(−x)k qk(k−1)/2 σkqP

≡ (−1)n c qnν+n(n−1)/2xν+n mod xν+n+1 C[[x]] ,

where c 6= 0 and ν = ν0(P ) ∈ Z. This implies that

(2.2) Pm 6= Pn if m 6= n.

Given any positive integer n ≥ 1, let {LPn,k}1≤k≤n ⊂
(
C[x−1][[x]]

)
[σq] be the

associated family of q-difference operators defined in the following manner:

LPn,1 =
1

P1
(xnσq − (−1)n) =

1

P
(xnσq − (−1)n) ;(2.3)

LPn,k+1 =
1

Pk+1

(
xn−kσq − (−1)n−k

)
LPn,k, 1 ≤ k < n .(2.4)

Specifically, letting k = n, one gets the following form of the n-th order q-difference
operator LPn,n ∈

(
C[x−1][[x]]

)
[σq]:

(2.5) LPn,n =
1

Pn
(xσq + 1)

1

Pn−1

(
x2σq − 1

)
· · · 1

P1
(xnσq − (−1)n) .

Theorem 2.1. Let n be an integer ≥ 1, let P , f ∈ C[x−1][[x]] with P 6= 0, and
suppose that the following q-difference equation is satisfied:

(2.6) xσqf + f = P .

Then:

(2.7) LPn,n(fn) = (−1)n(n−1)/2 ,

where LPn,n is the q-difference operator defined by (2.5).

Theorem 2.1 will be proved with the help of the following lemmas.

Lemma 2.2. Let (n, k) ∈ Z2 such that 1 ≤ k ≤ n, and let P , f be as in Theorem
2.1. For 0 ≤ j ≤ k, define Ak;j ∈ C[x−1][[x]] by

(2.8) Ak;j =
∏
6̀=j

0≤`≤k

(Pj − P`) .

One has:

(2.9) LPn,k(fn) = (−1)k(2n−k+1)/2
k∑
j=0

1

Ak;j
(f − Pj)n .

Lemma 2.3. Let n be a nonnegative integer, C an extension field of C, and
let (α0, α1, ..., αn) ∈ Cn+1 such that αj 6= α` for j 6= `. Define the (n + 1)-tuple
(a0, a1, ..., an) ∈ Cn+1 as follows:

aj =
∏
` 6=j

0≤`≤n

(αj − α`)
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(a0 = 1 if n = 0). The following identity holds in the ring C[T ] of the polynomial
functions over C:

(2.10)

n∑
j=0

1

aj
(T − αj)n = (−1)n .

3. Proofs

Proof of Lemma 2.2. To simplify the presentation, we will write Ln,k in-

stead of LPn,k, and set εn,k = (−1)k(2n−k+1)/2. One has:

(3.1) εn;k+1 = (−1)n−k εn,k .

Let us proceed by induction on k. For k = 1, since P1 = P , one has:

εn,1 = (−1)n; A1;0 = −P , A1;1 = P .

Thus, (2.3) implies that

Ln,1(fn) =
1

P
(xnσq(f

n)− (−1)nfn) .

At the same time, by considering (2.6), one gets that

xnσq(f
n) = (xσqf)n = (P − f)n ;

In this way, it follows that

Ln,1(fn) =
εn,1
P

((f − P )n − fn) ,

that is exactly what wanted in (2.9) for k = 1.
Now, suppose that equality (2.9) holds for some integer k between 1 and n− 1.

By using relation (2.4), one can express Ln,k+1(fn) as follows:

(3.2) Ln,k+1(fn) =
εn,k
Pk+1

k∑
j=0

(Bn,k;j − Cn,k;j) ,

where

(3.3) Bn,k;j = xn−kσq

(
1

Ak;j
(f − Pj)n

)
and

(3.4) Cn,k;j =
(−1)n−k

Ak;j
(f − Pj)n .

In view of (2.1), one finds that xσqPj = P − Pj+1, hence:

xσq(f − Pj) = xσqf − xσqPj = (P − f)− (P − Pj+1) = −(f − Pj+1).

Thus, it follows that

Bn,k;j =
(xσq(f − Pj))n

xkσqAk;j
=

(−1)n

xkσqAk;j
(f − Pj+1)n .

By using the expression of Ak;j given in (2.8), one has :

xkσqAk;j =
∏
` 6=j

0≤`≤k

(xσq(Pj − P`)) = (−1)k
∏
` 6=j

0≤`≤k

(Pj+1 − P`+1) .
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This is to say that

xkσqAk;j =
(−1)k

Pj+1
Ak+1,j+1 .

So, one can write (3.3) as follows:

(3.5) Bn,k;j =
(−1)n−kPj+1

Ak+1;j+1
(f − Pj+1)n .

Rewrite (3.2) into the following form:

(3.6) Ln,k+1(fn) =
εn,k
Pk+1

k−1∑
j=0

(Bn,k;j − Cn,k;j+1) +Bn,k;k − Cn,k;0

 .

Let j < k; one has:

Ak+1,j+1 = (Pj+1 − Pk+1)Ak,j+1.

Replace j by j + 1 in (3.4), and make use of (3.5). One gets that

Bn,k;j − Cn,k;j+1 =
(−1)n−kPk+1

Ak+1;j+1
(f − Pj+1)n .

Furthermore, one sees that Ak+1;0 = −Pk+1Ak;0. By letting j = k and j = 0 in
(3.5) and (3.4) respectively, one has:

Bn,k;k =
(−1)n−kPk+1

Ak+1;k+1
(f − Pk+1)n

and

Cn,k;0 = − (−1)n−kPk+1

Ak+1;0
(f − P0)n .

Thus, in view of (3.1), equality (3.6) implies that

Ln,k+1(fn) = εn,k+1

k+1∑
j=0

1

Ak+1;j
(f − Pj)n ,

which corresponds to (2.9) in which k was replaced by k + 1. �

Proof of Lemma 2.3. We give here two proofs.
Proof by induction – If n = 0, as a0 = 1, equality (2.10) becomes evident.

Suppose that (2.10) holds for some index n ≥ 0, and consider an (n + 2)-uplet
(α0, ..., αn+1) where, as before, αj 6= α` if j 6= `. Set

P(T ) =

n+1∑
j=0

1

ãj
(T − αj)n+1, ãj =

∏
` 6=j

0≤`≤n+1

(αj − α`).

Let k be an integer such that 0 ≤ k ≤ n+ 1. If one writes

ak;j =
∏

` 6=k,` 6=j
0≤`≤n+1

(αj − α`) ,

one has ak;j = ãj/(αj − αk) for j 6= k, what implies that

(3.7) P(αk) = −
∑
j 6=k

0≤j≤n+1

1

ak;j
(αk − αj)n.
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By applying the induction hypothesis to the (n+1)-uplet (α0, ..., αk−1, αk+1, ...αn+1)
appeared in the right hand side of (3.7), one obtains that P(αk) = (−1)n+1. As P
is a polynomial with degP ≤ n+ 1, one finds that P(T ) = (−1)n+1 identically.

Proof by Lagrange polynomials1 – Let K = C(T ) be the field of the rational
functions over C. Let X be a new indeterminate, and set

F (X) = (T −X)n, Λj(X) =
∏
` 6=j

0≤`≤n

(X − α`) .

By noticing that F (X) ∈ K[X] be such that degF = n < n + 1, the Lagrange
interpolation formula [3, Chap. IV, §2, p. 26] implies that

F (X) =

n∑
j=0

F (αj)

aj
Λj(X) .

And now one compares the coefficients of Xn for both sides of the above equality.
As that of Λj is equal to 1, one finds that

(−1)n =
n∑
j=0

F (αj)

aj
=

n∑
j=0

(T − αj)n

aj
,

which is exactly the expected identity (2.10). �

End of the proof of Theorem 2.1. In view of Lemma 2.2, letting k = n in
(2.9) yields that

LPn,n (fn) = (−1)n(n+1)/2
n∑
j=0

1

An;j
(f − Pj)n ,

where
An;j =

∏
` 6=j

0≤`≤n

(Pj − P`) .

By (2.2), one knows that Pj 6= P` for j 6= `. Thus, by applying Lemma 2.3 with
C = C[x−1][[x]], X = f and αj = Pj , one gets that

n∑
j=0

1

An;j
(f − Pj)n = (−1)n.

This permits to finish the proof of Theorem 2.1. �

4. One generalisation of Theorem 2.1

Instead of (2.6), let us consider the following slightly more general q-difference
equation:

(4.1) ασqy + y = β ,

where both α and β are nonzero power series belonging to the field C[x−1][[x]]. In
the same spirit as in (2.1), define the sequence {βn}n≥0 in C[x−1][[x]] as follows:

(4.2) β0 = 0; βn =

n−1∑
k=0

(−ασq)k β , n ≥ 1 .

1We would like to thank our friend and collaborator J. Sauloy for this elegant proof.
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Proposition 4.1. For any given positive integer n, the following conditions
are equivalent.

(1) βj 6= 0 for any positive integer j such that 0 < j ≤ n.
(2) βj 6= β` for any couple of integers (j, `) such that 0 ≤ ` < j ≤ n.

Proof. Indeed, by (4.2), it follows that

(4.3) βj − β` =

j−1∑
k=`

(−ασq)k β = (−ασq)`βj−` .

As α 6= 0, l’operator (−ασq) is an automorphism on the C-vector space C[x−1][[x]].
So, this is the same for its `-th power or iteration (−ασq)`. This implies the
equivalence between the conditions stated in Proposition 4.1. �

Given a nonzero f ∈ C[x−1][[x]], one remembers that ν0(f) denotes the valua-
tion of f at x = 0, that is the lowest degree of the terms of f . By using (4.2), one
obtains that, for n > 0:

ν0(βn) =

{
ν0(β) if ν0(α) > 0;
(n− 1)ν0(α) + ν0(β) if ν0(α) < 0.

This gives the following statement for α, β ∈ C[x−1][[x]] \ {0}.
Remark 4.2. Both conditions considered in Proposition 4.1 are necessarily

fulfilled if ν0(α) 6= 0.

Theorem 4.3. Let n ∈ Z>0, and let α, β and f ∈ C[x−1][[x]]. Suppose that f
satisfies the q-difference equation in (4.1) and that βj 6= 0 for any positive integer
j such that 0 < j ≤ n. One has:

(4.4) Lα,βn (fn) = (−1)n(n−1)/2 ,

where Lα,βn is the n-th order q-difference operator defined by

(4.5) Lα,βn =
1

βn
(ασq + 1)

1

βn−1

(
α2 σq − 1

)
· · · 1

β1
(αn σq − (−1)n) .

Proof. Replace (k, P ) with (n, β) in (2.8), and define:

An;j =
∏
` 6=j

0≤`≤n

(βj − β`) , 0 ≤ j ≤ n.

By taking into account Proposition 4.1, it follows that An;j 6= 0. Thus, one might
proceed in the same way as for the proof of Theorem 2.1. We omit the details. �

5. About the summability of the powers of q-Euler series

Let us come back to the power series Êq(x) defined by (1.1), which satisfies
the q-difference equation stated in (1.2). Letting P = 1, Theorem 2.1 implies
immediately the following result.

Remark 5.1. Given any integer n ≥ 2, the n-th power Êq(x)n satisifies the
following identity:

(5.1) (xσq + 1)
1

Pn−1

(
x2σq − 1

)
...(xnσq − (−1)n)Êq(x)n = (−1)n(n−1)/2 Pn ,

where Pk = 1− x+ ...+ q(k−1)(k−2)(−x)k−1 for 1 ≤ k ≤ n.
In particular, when n = 2, as P2 = 1− x, (5.1) takes the form of (1.3).
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Furthermore, it might be interesting to notice that, if q = 1, one has Ê1(x) =
1

1 + x
and, in this case, the above identity in (5.1) is simply equivalent to the

following elementary relation:
n∏
k=1

xk − (−1)k∑k−1
j=0 (−x)j

= (−1)n(n−1)/2 (x+ 1)n .

This observation related with the specific case of q = 1 may be also made for The-
orem 4.3, by assuming, for example, both α and β to belong to the field C[x−1]{x}
of the germs of meromorphic functions at x = 0 in C or to the sub-field C(x) of the
rational functions over C.

Our next remark goes to another q-analog of the following so-called Euler series:

(5.2) Ê(x) =
∑
n≥0

(−1)n n!xn+1 .

This power series is divergent for all x ∈ C \ {0} but Borel-summable in every
direction excepted R−. It satisfies the following first order ODE:

(5.3) (x δ + 1)y = x, δ = x∂x = x
d

dx
.

Letting Y = Ê(x)2, one can check that

(5.4) (x δ + 1− x) (x δ + 2)Y = 2x2.

Indeed, if y = Ê(x), one deduces from (5.3) that xδ(y2) = 2x y δy = 2y(x − y) =
2xy − 2y2. This means that (xδ + 2)(y2) = 2x y. Thus, applying again (5.3) yields

that (x δ + 1)
1

2x
(x δ + 2) y2 = x . In this way, one gets (5.4), using the identity

(x δ+1)
1

2x
=

1

2x
(x δ+1−x) in the non-commutative ring C(x)[δ] of the differential

operators over C(x).

Besides, the correspondances n ↔ 1− qn

1− q
and n! ↔ (1− q)...(1− qn)

(1− q)n
suggest

one to consider the following q-analog of the Euler series:

(5.5) Ê(x; q) = x+
∑
n≥1

(−1)n
(1− q)...(1− qn)

(1− q)n
xn+1.

This can be written in term of a basic hypergeometric series as follows:

Ê(x; q) = x 2φ1(q, q; 0; q,− x

1− q
) = x 2φ0(q−1, q−1;−; q−1,

x

1− q−1
).

See [6, (1.2.22), p. 4] for the general definition of rφs(...; ...; q, z).

Let δq =
σq − 1

q − 1
= x∆q, where ∆q is defined in [1, p. 488, (10.2.3)]. By

observing that n =
δxn

xn
and

1− qn

1− q
=

δqx
n

xn
, a direct computation shows that

Ê(x; q) satisfies the q-analog of (5.3) as follows: (x δq + 1)y = x . If one writes

(5.6) α =
x

q − 1− x
, β = (q − 1)α ,

it follows from the above that

(5.7) (ασq + 1) Ê(x; q) = β .
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Remark 5.2. Let α be as in (5.6). The following identity holds in the field
C[x−1][[x]]:

(5.8)

(
α δq +

1

q − 1− x

) (
α δq −

1

x
+

1

q − 1− x

)
Ê(x; q)2 = α (σqα− 1) .

Moreover, when q → 1, (5.8) is reduced into the following equivalent form of (5.4):

(5.9)

(
δ +

1

x

) (
δ +

2

x

)
Ê(x)2 = 2 .

To obtain (5.8), one can apply (4.2) for n = 1 and n = 2, where α and β are
defined by (5.6). This gives that

β1 = (q − 1)α, β2 = β − ασqβ = (q − 1)α (1− σqα) .

Thus, it follows from applying Theorem 4.3 to (5.7) that Ê(x; q)2 satisfies the
following q-difference equation:

(5.10) L
(
Ê(x; q)2

)
= α (σqα− 1) ,

where

(5.11) L =
1

(q − 1)2
(ασq + 1)

(
ασq −

1

α

)
.

By replacing σq with (q − 1)δq + 1 in (5.11), one gets that

L =

(
α δq +

1 + α

q − 1

) (
α δq +

α2 − 1

(q − 1)α

)
.

As α+ 1 =
q − 1

q − 1− x
and α2 − 1 =

(q − 1)(2x− q + 1)

(q − 1− x)2
, one deduces immediately

(5.8) from (5.10). The limit equation form given in (5.9) can be obtained from (5.8)
by noticing both limits α→ −1 and δq → δ for q → 1.

In the rest of this paper, we will suppose that q > 1 even if, in most cases, the
hypothesis |q| > 1 may be really enough; see [9] and [10]. Let us recall some results
about the summability of power series solutions of q-difference equations. Given
any linear q-difference operator L of the following form:

L =

n∑
j=0

ajσ
j
q ∈ C{x}[σq] , a0an 6= 0 ,

one definies its associated Newton polygon NP(L) as being the convex hull of the
set {(j,m) : m ≥ ν0(aj)} in the strip [0, n]× [0,+∞). By following [8, (3.1.2)] and
[11, Proposition 5.14], one knows that, if NP(L) admits only integer slopes, saying
κ1 ≤ κ2 ≤ ... ≤ κn, then there exist ν ∈ Z, (h1, h2, ..., hn) ∈ (1 + xC{x})n and

(c0, c1, ..., cn) ∈ (C \ {0})n+1
such that

(5.12) L = c0 x
ν h1 (xκ1σq + c1) h2 (xκ2σq + c2) ... hn (xκnσq + cn) .

Furthermore, let K+ = Z>0 ∩ {κj : 1 ≤ j ≤ n}, and define ~k as follows:

(5.13) ~k =

{
∅ if K+ = ∅
(k1, ..., km) if K+ = {k` : 1 ≤ ` ≤ m} and k1 < ... < km .



10 CHANGGUI ZHANG

By considering [8, § 3.3.5], it follows that any power series f̂ ∈ C[[x]] such that

L(f̂) ∈ C{x} remains convergent or is Gq-summable of order ~k = (k1, ...km) ∈ Zm>0

depending on whether ~k = ∅ or not.

Theorem 5.3. Given any integer n ≥ 2, the n-th power Êq(x)n is Gq-summable

of order (1, 2, ..., n). And this is the same for Ê(x; q)n.

Proof. This follows from taking into account (5.1) or applying Theorem 4.3
to (5.7) with the help of Remark 4.2. �

Applying [2, Theorem 36] or [7, Proposition 1.3.4.2] implies that every power

Ê(x)n of the Euler series is Borel-summable at the same level, contrarily to what

happens in the case of their respective q-analog Ê(x; q)n; see Theorem 5.3. Fur-

thermore, thanks to [4, Theorem 3.15], one knows that the Gq-sum of Ê(x; q) tends

toward the Borel-sum of Ê(x) when q → 1+. In our coming work [5], it would be

shown that, given one generic direction d and two power series f̂1 and f̂2 such that

Lj(f̂j) ∈ C{x} for some Lj ∈ C{x}[σq], where j = 1 or 2, the Gq-sum of f̂1f̂2 along

d is equal to the product of the Gq-sum of f̂1 along d with that of f̂2. In this way,
one would obtain that the Gq-sum of Êq(x)n or Ê(x; q)n can be really expressed

as the n-th power of that of Êq(x) or Ê(x; q), respectively.
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