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ON THETA-TYPE FUNCTIONS IN THE FORM (x; q)∞

CHANGGUI ZHANG

Abstract. As in our previous work [14], a function is said to be of theta-

type when its asymptotic behavior near any root of unity is similar to what
happened for Jacobi theta functions. It is shown that only four Euler infinite

products have this property. That this is the case is obtained by investigating

the analyticity obstacle of a Laplace-type integral of the exponential generating
function of Bernoulli numbers.

1. Introduction

In his last letter to Hardy, Ramanujan wrote that he had discovered very inter-
esting functions that he called mock ϑ-functions. As was said in Watson’s L.M.S.
presidential address [10], the first three pages, where Ramanujan explained what
he meant by “mock ϑ-functions”, are very obscure. Therefore, Watson quoted the
following comment of Hardy:

A mock ϑ-function is a function defined by a q-series convergent when |q| < 1,
for which we can calculate asymptotic formulae, when q tends to a “rational point”
e2rπi/s of the unit circle, of the same degree of precision as those furnished for the
ordinary ϑ-functions by the theory of linear transformation.

In our previous work [14], we proposed definitions of what we call theta-type,
false theta-type and mock theta-type functions, following directly from the above-
mentioned comment of Hardy. The main goal of this paper is to determine the
possible values of x for which the Euler q-exponential function (x; q)∞ is of theta-
type, where

(1.1) (x; q)∞ =
∏
n≥0

(1− x qn) .

1.1. Statement of Main Theorem. Let ζ = e2πir= e(r) be any root of unity,

with r ∈ Q. As in [14], a function f(q) is said to be of theta-type as q
a.r.−→ ζ, and

one writes f ∈ Tζ , if there exists a quadruplet (υ, λ, I, γ), composed of a couple
(υ, λ) ∈ Q×R, a strictly increasing sequence I ⊂ R and a C∗-valued map γ defined

on I, such that the following relation holds for any N ∈ Z≥0 as τ
a.v.−→ r:

(1.2) f(q) =

(
i

τ̂

)υ
e(λτ̂)

 ∑
k∈I∩(−∞,N ]

γ(k) qk1 + o(qN1 )

 .
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Here and in what follows, q = e2πiτ = e(τ), =τ > 0, τ̂ = τ − r and q1 = e(− 1
τ̂ ).

The symbol “q
a.r.−→ ζ” could be read as “q almost radially converges to the root of

unity ζ”. At the same time, “τ
a.v.−→ r” means that “τ almost vertically converges

to the rational point r”; see §1.2 (ii), below.
The above-named variable q1 may be considered as the modular variable with

respect to the root ζ. By considering the respective modular formulae, one can
easily see that the ordinary ϑ-functions, as well as the famous Dedekind η-function,
satisfy the condition in (1.2) for any root of unity ζ.

Let U denote the set of the roots of unity. One remembers that η(τ) = q1/24 (q; q)∞,
where q = e(τ). Thus, one can observe that (q; q)∞ ∈ Tζ for any ζ ∈ U. Further-
more, an elementary calculation shows that the following identities hold:

(−q; q)∞ =
(q2; q2)∞
(q; q)∞

, (
√
q; q)∞ =

(
√
q;
√
q)∞

(q; q)∞

and

(−√q; q)∞ =
(q; q)2∞

(
√
q;
√
q)∞ (q2; q2)∞

.

As one may check directly from (1.2), the set ∩ζ∈U (Tζ \ {0}) constitutes a multi-
plicative group which is stable by the ramification operator q 7→ qν for all ν ∈ Q>0.
Therefore, one obtains from the above the following property:

Remark 1.1. Given x ∈ {q,−q,√q,−√q}, one has (x; q)∞ ∈ Tζ for all ζ ∈ U.

The following result can be viewed as being converse to the above statement:

Theorem 1.1 (Main Theorem). Let (x0, β) ∈ C × R be such that |x0| = 1 and
β 6= 0, and consider x = x0 q

β. Then, the following conditions are equivalent:

(1) one has (x; q)∞ ∈ T1, with ζ = 1 = e(0);
(2) there exists a root of unity ζ = e2πir= e(r) such that (x; q) ∈ Tζ ;
(3) one has x ∈ {q,−q,√q,−√q}.

It should be noted that the four Euler q-exponential functions obtained in The-
orem 1.1 are intimately linked to the quadruplet (φ(q), ψ(q), f(−q), χ(q)), situated
at the heart of the Ramanujan’s theory about theta-functions and modular equa-
tions [2, Ch. 16]. Indeed, one can observe that f(−q) = (q; q)∞, χ(q) = (−q; q2)∞
and, furthermore, that

φ(q) =
(−q; q2)∞ (q2; q2)∞
(q; q2)∞ (−q2; q2)∞

, ψ(q) =
(q2; q2)∞
(q; q2)∞

.

In particular, these relations imply that

(q; q2)∞ =
f(−q2)

ψ(q)
, (−q2; q2)∞ =

χ(q)ψ(q)

φ(q)
.

1.2. Some ideas for the proof of Main Theorem. The following notational
conventions will be used through the whole paper:

(i) For simplicity, we will write e(z) = e2πiz for all z ∈ C, and this gives, in
particular, a map τ 7→ q = e(τ) from the Poincaré half-plane H onto the
unit disc D. Furthermore, one has e(Q ∩ [0, 1)) = U, where U denotes the
set of the roots of unity.
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(ii) Let ζ = e(r) ∈ U and r ∈ Q ∩ [0, 1). One writes q
a.r.−→ ζ if there exists

ε ∈ (0, π2 ) such that q → ζ in the sector | arg(q − ζ) + r| < ε inside the unit

disc D. Similarly, one writes τ
a.v.−→ r if there exists ε ∈ (0, π2 ) such that

τ → r in the sector | arg(τ − r)− π
2 | < ε in the upper half-plane H.

(iii) Given ζ = e(r) ∈ U, one says that f is exponentially small as q
a.r.−→ ζ or

τ
a.v.−→ r, and one writes f ∈ A≤−1ζ if there exists (C, κ) ∈ R2

>0 such that

|f(q)| ≤ C e−κ/|τ−r| for all q = e(τ) in some sector {|τ − r| < ρ, | arg(τ −
r)− π

2 | < ε}, where ε ∈ (0, π2 ) and ρ > 0.
(iv) For any given (z, τ) ∈ C×H, we set (z | τ)0 = (x; q)0 = 1, (z | τ)∞ = (x; q)∞

and, for N ∈ Z>0,

(1.3) (z | τ)N = (x; q)N =

N−1∏
n=0

(1− x qn) ,

where x = e(z) and q = e(τ). This is in line with (x; q)∞ given in (1.1).

Letting k = min I and c = γ(k) in (1.2) implies that

f(q) = c

(
i

τ̂

)υ
e

(
λ τ̂ − k

τ̂

)
(1 + f1(q)) , f1 ∈ A≤−1ζ .

If one takes the principal branch of the logarithm for both members of the above
equation, one can observe the following fact:

Remark 1.2 (Asymptotic form of the theta-type functions). Given ζ ∈ U and
f(q) ∈ Tζ , there exists a quadruplet (υ, c∞, c0, c1) ∈ Q× (iR)× C× (iR) such that

(1.4) log f(q) = υ log
i

τ̂
+
c∞
τ̂

+ c0 + c1 τ̂ mod A≤−1ζ .

The formula stated in (1.4) can be viewed as a necessary condition for any
function to be of theta-type. Furthermore, let C{z} be the set of analytic functions

at z = 0. One remembers that A≤−1ζ ∩ C{τ̂} = {0}. By replacing c0 + c1τ̂ with

any convergent power series of τ̂ in the relation in (1.4), we will introduce a larger
class of functions as follows:

Definition 1.1. Let ζ = e(r) ∈ U and r ∈ Q ∩ [0, 1). One says that f(q) admits

an exponential–convergent expansion as q
a.r.−→ ζ or τ

a.v.−→ r and one writes f ∈ Cζ
if there exists (υ, c∞) ∈ Q× (iR) such that

(1.5) log f(q) = υ log
i

τ̂
+
c∞
τ̂

mod C{τ̂} ⊕ A≤−1ζ .

It is obvious that Tζ ⊂ Cζ . In this way, one will see that Theorem 1.1 can be
easily deduced from

Theorem 1.2. Let (x0, β) ∈ C× R be such that |x0| = 1 and β 6= 0, and consider
x = x0 q

β. Then, the following conditions are equivalent:

(1) one has (x; q) ∈ C1, with ζ = 1 = e2πi0;
(2) there exists a root of unity ζ = e2πir such that (x; q) ∈ Cζ ;
(3) one has x0 ∈ {1,−1} and β ∈ 1

2Z \ {0}.

A modular-like formula has been found for (x; q)∞ in [13, Th. 3.2] and [15, Th.
2.9], by means of one certain perturbed factor named P (z, τ), where x = e(z) and
q = e(τ). Thus, it suffices to understand the analyticity obstacle of P (α + β τ, τ)
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around each given rational point τ = r ∈ Q ∩ [0, 1). We shall obtain the condition
for this function to be analytically continued at τ = 0 by a Stokes analysis, with
the help of the Ramis-Sibuya Theorem [6], [8]. This analysis will be generalized
for every r ∈ Q ∩ (0, 1) by means of a series of transformations associated to the
continued fraction of r; transformations often used in the classical theory of the
modular functions.

1.3. Plan for the paper. The rest of the paper is divided into three sections. In
Sec. 2, we define a family of integrals involving the exponential generating function
associated with the Bernoulli numbers. These integrals can be seen as being of
Laplace type, and they will be used for stating an equivalent version of the above-
mentioned result on (x; q)∞; see Theorems 2.1 and 2.2.

Sec. 3 is essentially devoted to the part ζ = 1 of Theorem 1.2; see Theorem
3.1. By means of Theorems 2.1 and 2.2, we will see that the fact that a Euler
q-exponential function, modulo some exponentially small term, can be analytically
continued at τ = 0 and may be interpreted as one problem of the analytic continu-
ation inside the theory of the Gevrey asymptotic expansions; see Theorem 3.4 and
the proof of Theorem 1.2 given in §3.3.

Sec. 4 aims to obtain Theorem 1.2 for an arbitrary root ζ of unity; see Theorem
4.1. Lemma 4.1 will play a key role, especially in terms of permitting us to make use
of both continued fractions and modular transforms. Finally, a complete scheme
for proving our main result, Theorem 1.1, will be outlined at the end of the paper.

2. A Laplace-type integral involving Bernoulli exponential
generating function

The goal of this section is to develop appropriate means for properly understand-
ing the following result obtained in [13] and [15]:

Theorem 2.1 ( [13, Th. 3.2], [15, Th. 2.9]). Let (z, τ) ∈ U and let s = z/τ . If
s /∈ (−∞, 0], then

(2.1) (z | τ)∞ =

√
2πs(1− e(z))

Γ(s+ 1)
e(− τ

24
) es(log s−1)+

Li2(e(z))
2πiτ +P (z,τ) (

z − 1

τ
| − 1

τ
)∞ ,

where P (z, τ) denotes the analytic function in U defined by the following integral:

(2.2) P d(z, τ) =

∫ ∞eid
0

sin( ztτ )

eit/τ − 1

(
cot

t

2
− 2

t

)
dt

t
(−π < d < 0) .

In the above, U denotes the domain defined in C×H by the relation

(2.3) U = ∪δ∈(0,π)Cδ ×Hδ ,

where Hδ = {τ ∈ H : arg τ ∈ (0, δ)} and Cδ = C \
(

(1 +Hδ) ∪ (−1−Hδ)
)

. The

functions Γ, log and Li2 are the Euler Gamma function, the principal branch of the
complex logarithm function and the dilogarithm function, respectively.

In §2.1, we will introduce a family of Laplace-like integrals denoted as bd, involv-
ing the exponential generating function of Bernoulli numbers. It will be shown that
the term ((z − 1)/τ | − 1/τ)∞ in the right-hand side of (2.1) can be obtained from
comparing these integrals in different directions; see Theorem 2.2. One will also see
that the same integrals are closely linked to the function P (z, τ) used in Theorem
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2.1, and an equivalent version of this theorem will come from this comparison; see
Theorem 2.3 in §2.2.

2.1. Bernoulli integrals. Through the whole paper, we will denote by B(t) the
function defined by

(2.4) B(t) =
1

et − 1
− 1

t
+

1

2

for t∈ C \ {±2πik : k ∈ Z>0}. Indeed, one knows that

(2.5) B(t) =
∑
n≥1

B2n

(2n)!
t2n−1 ,

where B2n denotes the Bernoulli numbers for n ∈ Z>0; see [1, p. 12]. In addition,
by Binet’s formula [1, p. 28] on log Γ(x), it follows that

(2.6) I(x) :=

∫ ∞
0

B(t) e−xt
dt

t
= log Γ(x)− (x− 1

2
) log x+ x− 1

2
log 2π .

Here, first of all, one supposes that <x > 0, so the integration path is the half-axis
(0,+∞). By using an open interval (0,∞eid) in the half-plane <t > 0, this integral
representation can then be valid for all x ∈ C \ (−∞, 0].

The integral I(x) stated in (2.6) is the Laplace transform of the function t 7→
B(t)/t. In what follows, we shall consider a modified Laplace-type integral bd(z, τ)
associated to each d ∈ (−π2 ,

π
2 ):

(2.7) bd(z, τ) =

∫ ∞eid
0

e−zu − 1

eu − 1
B(τu)

du

u
.

To be brief, bd will be called a Bernoulli integral.
Let us determine the values (z, τ) ∈ C2 where the integral bd(z, τ) is well-defined.

From (2.5), it follows that B(t) = O(t) at t = 0 in C. Thus, the above integral in
(2.7) converges at u = 0 for all (z, τ) ∈ C× C. With regard to the convergence at
infinity, we define

(2.8) V d,+ = {τ ∈ C : <(τeid) > 0} , V d,− = {τ ∈ C : <(τeid) < 0}

and

(2.9) Ud = {z ∈ C : z + 1 ∈ V d,+} = V d,+ − 1 .

By using (2.4), one finds that B(t)→ ±1/2 when <t→ ±∞. Therefore, bd(z, τ) is
defined in two separated domains Ud × V d,+ and Ud × V d,− in C2.

Geometrically, Ud represents the half-plane containing the point at origin and
delimited by the straight-line −1+ei(−d+

π
2 )R, while V d,± are half-planes separated

by the straight line ei(−d+
π
2 )R. One can find that the interval (−1,∞) belongs to

Ud for every argument d ∈ (−π2 ,
π
2 ); see Figure 1.

Let

(2.10) W+ = ∪d∈(−π2 ,π2 )U
d × V d,+ , W− = ∪d∈(−π2 ,π2 )U

d × V d,− .

Since

∪d∈(−π2 ,π2 )V
d,+ = C \ (−∞, 0], ∪d∈(−π2 ,π2 )V

d,− = C \ [0,∞),

it follows that

(2.11) (−1,∞)× (C \ (−∞, 0]) ⊂ W+ , (−1,∞)× (C \ [0,∞)) ⊂ W− .
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Figure 1. Half-planes Ud, V d,− and V d,+

Definition 2.1. We define b+(z, τ) and b−(z, τ) in W+ and W−, respectively,
by applying the analytic continuation procedure to bd(z, τ) from Ud × V d,+ and
Ud × V d,− as d runs through (−π2 ,

π
2 ).

We shall make use of the following result to express the difference between
b+(z, τ) and b−(z, τ) in their common domain W+ ∩W−:

Lemma 2.1. If τ ∈ H and z ∈ H, then

(2.12)
∑
n≥1

1

n

e(nz)

1− e(nτ)
= − log ((z | τ)∞) .

Proof. This follows from [2, p. 36, (21.1)]. �

By (2.11), one finds that ((−1,∞)× (C \ R)) ⊂ W+ ∩W−. In what follows, we
will write C \ R = H ∪H−, where H− = −H = {τ ∈ C : =τ < 0}.
Theorem 2.2. Let (z, τ) ∈ W+ ∩W−. The following assertions hold:

(1) if τ ∈ H, then

(2.13) b+(z, τ)− b−(z, τ) = − log
(−(z + 1)/τ | − 1/τ)∞

(−1/τ | − 1/τ)∞
;

(2) if τ ∈ H−, then

(2.14) b+(z, τ)− b−(z, τ) = − log
((z + 1)/τ | 1/τ)∞

(1/τ | 1/τ)∞
.

Proof. (1) By the standard argument of analytical continuation, it suffices to prove
(2.13) for (z, τ) ∈ (−1,∞) × H. Thus, one chooses d1 ∈ (−π2 , 0) and d2 ∈ (0, π2 )

such that τ ∈
(
V d1,+ ∩ V d2,−

)
. The contour integral in (2.7) allows one to write

that

b+(z, τ)− b−(z, τ) = bd1,+(z, τ)− bd2,−(z, τ)

=

(∫ ∞eid1
0

−
∫ ∞eid2
0

)
e−zu − 1

eu − 1
B(τu)

du

u
.(2.15)

Since both d1 and d2 belong to (−π2 ,
π
2 ), the two half straight-lines used in the

contour-integral (2.15) are separated in the u-plane by the half straight-line `τ
defined by the relation `τ = {u ∈ C∗ : <(τu) = 0,<u > 0}; see Figure 2.

By observing that the function B(τu) admits simple poles u = 2nπi/τ (n ∈ Z>0)
on the line `τ , applying the Residues Theorem to (2.15) yields that

b+(z, τ)− b−(z, τ) =
∑
n≥1

1

n

e(−nz/τ)− 1

e(n/τ)− 1
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=
∑
n≥1

1

n

e(−n(z + 1)/τ)

1− e(−n/τ)
−
∑
n≥1

1

n

e(−n/τ)

1− e(−n/τ)
.(2.16)

By using the relation in (2.12), the above expression in (2.16) implies that

b+(z, τ)− b−(z, τ) = − log

(
(−z + 1

τ
| − 1

τ
)∞

)
+ log

(
(−1

τ
| − 1

τ
)∞

)
,

so that one obtains (2.13).
(2) When τ ∈ H−, the above proof can be adopted as follows: choose d1 ∈ (0, π2 )

and d2 ∈ (−π2 , 0), and observe that the simple poles of B(τu) to which the Residues
Theorem is applied become u = −2nπi/τ (n ∈ Z>0). A direct calculation implies
(2.14), which ends the proof of Theorem 2.2. �

Now, consider τ ∈ H, with arg τ = δ ∈ (0, π). By (2.10), it follows that (z, τ) ∈
W+ if and only if z ∈ V d,+ for some suitable d ∈ (−π2 ,

π
2 − δ). Thus, one obtains

the equivalence

(2.17) (z, τ) ∈ W+ ⇐⇒ z ∈ H ∪ Zτ ,

where Zτ is the half-plane associated with τ in the following manner:

Zτ = {z ∈ C : =z + 1

τ
< 0} .

One may see that if z ∈ Zτ , then z + z0 ∈ Zτ for all z0 ∈ R>0; see Figure 3.

-
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���
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−π2 < d < π
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Figure 3. The half-plane Zτ contains both the point τ and the
segment (−1,∞)
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Lemma 2.2. Let b+(z, τ) be as in Definition 2.1, and let s = z/τ . One supposes
that τ ∈ H. If (z − 1, τ) ∈ W+, then s /∈ (−∞, 0] and

(2.18) b+(z − 1, τ)− b+(z, τ) = I(s) ,

where I(s) is the Laplace integral stated by (2.6).

Proof. Since (z − 1, τ) ∈ W+, relation (2.17) implies that either z ∈ H ∪ (0,∞)
or z ∈ H− but =(z/τ) < 0. This implies that s /∈ (−∞, 0]. Also, relation (2.18)
follows immediately, by comparing (2.7) with (2.6). �

2.2. Functions related with Bernoulli integrals. First, let P (z, τ) be as in
(2.1) and consider how to express it by using b+(z, τ). In view of the fact that

cot
t

2
− 2

t
=
eit/2 + e−it/2

eit/2 − e−it/2
i− 2

t
= 2i

(
1

eit − 1
+

1

2
− 1

it

)
,

it follows that cot
t

2
− 2

t
= 2iB(it); see (2.4) for B(t). Thus, replacing the integra-

tion path (0,∞eid) with (0, i∞eid) in (2.2) yields that

(2.19) P d(z, τ) =

∫ ∞eid′
0

ezt/τ − e−zt/τ

et/τ − 1
B(t)

dt

t
,

where we write d′ = d+ π
2 ∈ (−π2 ,

π
2 ).

Let W+ be as in (2.10), and let U be as in (2.3). A simple computation shows
that

U = {(z, τ) ∈ W+ : τ ∈ H, (−z, τ) ∈ W+} .
Furthermore, comparing the integrals in (2.19) and (2.7) allows one to immediately
observe the following:

Remark 2.1. Let b+(z, τ) be as in Definition 2.1. The function P (z, τ) can be
expressed as

(2.20) P (z, τ) = −b+(z, τ) + b+(−z, τ) .

Furthermore, by gathering together (2.20) with (2.18), it follows that

(2.21) P (z + 1, τ)− P (z, τ) = I(−s) + I(s+
1

τ
) ,

where I(s) denotes the function defined by (2.6) with s = z/τ .
Next, given d ∈ (−π2 ,

π
2 ), let V d,± be as in (2.8), and define

Hd =

(
V d,+ − 1

2

)
∩
(
−V d,+ +

1

2

)
.

It is easy to see that the integral

(2.22) Bd(z, τ) =

∫ ∞eid
0

ezu − e−zu

eu/2 − e−u/2
B(τu)

du

u

is well-defined for any (z, τ) ∈ Hd × (V d,+ ∪ V d,−). Furthermore, by noticing that

ezu − e−zu

eu/2 − e−u/2
=
e(z+

1
2 )u − 1

eu − 1
− e−(z−

1
2 ) − 1

eu − 1
,

comparing (2.22) with (2.7) yields that

(2.23) Bd(z, τ) = bd(−z − 1

2
, τ)− bd(z − 1

2
, τ) .
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Definition 2.2. Let

(2.24) Ω+ = ∪d∈(−π2 ,π2 )H
d × V d,+ , Ω− = ∪d∈(−π2 ,π2 )H

d × V d,− .

We will denote by B+(z, τ) and B−(z, τ) the respective functions defined in Ω+ and
Ω− by the integral (2.22).

If there is no possible confusion, we will simply write Ω and B(z, τ) instead of
Ω+ and B+(z, τ), respectively.

From (2.23), it follows that

(2.25) B±(z, τ) = b±(−z − 1

2
, τ)− b±(z − 1

2
, τ) .

Furthermore, combining this last equality with (2.20) and (2.18) yields that

(2.26) B(z, τ) = P (z +
1

2
, τ)− I(

z + 1/2

τ
) .

Theorem 2.3. The following relation holds for all (z, τ) ∈ Ω with τ ∈ H:

(2.27) (z +
1

2
| τ)∞ = e(− τ

24
)
√

1 + e(z) e
Li2(−e(z))

2πiτ +B(z,τ) (
z − 1/2

τ
| − 1

τ
)∞ .

Proof. By considering (2.6), the formula in (2.1) can be put into the following form:

(z | τ)∞ =
√

1− e(z) e(− τ

24
) e

Li2(e(z))
2πiτ −I( zτ )+P (z,τ) (

z − 1

τ
| − 1

τ
)∞ .

Thus, one obtains (2.27), with the help of (2.26). �

3. Conditions for a Euler q-exponential function to be of
theta-type at one

Let x0 = e(α) = e2πiα with α ∈ R, and let β ∈ R. By using (1.3) with N =∞,
we write (x0 q

β ; q)∞ = (α + β τ | τ)∞, where τ ∈ H and q = e(τ). The goal of this
section is to establish the next result, which will be useful for the proof of Theorem
1.2.

Theorem 3.1. Let (α, β) ∈ [0, 1)×(0, 1], and consider f(q) = (α+β τ | τ)∞. Then,
f ∈ C1 if and only if α ∈ {0, 12} and β ∈ { 12 , 1}.

The main idea here will consist of using Theorems 2.1 and 2.3 to rewrite f(q) in

such a way that log f(q) = B(...) or = P (...) mod C{τ} ⊕ A≤−11 , the exponential
small term being furnished by an infinite product of e(−1/τ). Thus, we will be
led to consider the analytic continuation of B or P around τ = 0 in the complex
plane; see Theorem 3.4 in §3.2. In this way, we will obtain the condition for (α, β)
required by Theorem 3.1, whose proof will be completed in §3.3.

We shall make use of the Gevrey asymptotic expansions for understanding the
analytic obstacle at τ = 0 of the above-mentioned functions B and P . This is
linked to the so-called Stokes’ phenomenon. One tool to treat this problem may be
Ramis-Sibuya Theorem, which will be briefly explained in §3.1 in what follows.
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3.1. Ramis-Sibuya’s Theorem on Gevrey asymptotic expansions. Let x0 ∈
C and let C̃x0

be the Riemann surface of the function x 7→ log(x − x0); let I =
(α1, α2) ⊂ R and let R > 0. We let Vx0

(I;R) denote the sector of a vertex at x0 in

C̃x0 , with an opening in I and a radius R; that is to say,

(3.1) Vx0
(I;R) = {x0 + reiα : α ∈ I, r ∈ (0, R)} .

By definition, a proper sub-sector of Vx0
(I;R) will be any domain of the form

Vx0
(J ; ρ) such that J̄ ⊂ I and ρ < R.
If the length of the open interval I is smaller than or equal to 2π, any sector

Vx0
(I;R) is not overlapped in C̃x0

; in this case, one will consider Vx0
(I;R) as a

sector in C. When x0 = 0, we will remove the sub-index 0 and simply write
V (I;R) instead of V0(I;R).

Let V = V (I;R) be a sector in C at 0. By definition ( [6], [8], . . . ), a given
function f defined and analytic in V is said to have a power series

∑
n≥0 anx

n,
an ∈ C, as a Gevrey asymptotic expansion at 0 in V , if, for any proper sub-sector
U = V (J ; ρ), one can find C > 0 and A > 0 such that the following estimates hold
for all n ∈ Z≥0:

(3.2) sup
x∈U

∣∣∣∣∣(f(x)−
n−1∑
m=0

amx
m)x−n

∣∣∣∣∣ ≤ C An n! .

As a typical example, the Borel-sum function of a given divergent series, if it
exists, admits this series as a Gevrey asymptotic expansion. A Gevrey type as-
ymptotic expansion is also called an exponential asymptotic expansion, due to the
following fact:

Remark 3.1. [6, p. 175, Th. 1.2.4.1 1)] A function f admits the identically null
series as a Gevrey asymptotic expansion at 0 in V if and only if f is exponentially
small there, which means that, for all proper sub-sectors U in V , there exists C > 0
and κ > 0 such that, for all x ∈ U , |f(x)| ≤ C e−κ/|x|.

In what follows, we will denote by A≤−1(V ) the space of all functions that
are exponentially small in V as indicated in Remark 3.1. More generally, when
V = Vx0

(I;R), we will say that f ∈ A≤−1(V ) when f is exponentially small as
x→ x0 in V .

Theorem 3.2. [6, p. 176, Th. 1.3.2.1] Let V1, ..., Vm, Vm+1 be a family of open
sectors at 0 in C such that Vm+1 = V1, Vj ∩ Vj+1 6= ∅ for 1 ≤ j ≤ m and that the
whole union ∪mj=1Vj contains a neighborhood of 0 in C. For every j, let fj be a
given analytic and bounded function in Vj. If

fj+1 = fj mod A≤−1(Vj ∩ Vj+1) ,

then all fj’s admit the same Gevrey asymptotic expansion at 0.

The above result is currently called Ramis-Sibuya’s Theorem. We shall make use
of the following statement deduced from Theorem 3.2:

Corollary 3.1. Let R > 0, and let I1 and I2 be open intervals such that

[−ε, π − ε] ⊂ I1 ⊂ (−π, π), [π − ε, 2π − ε] ⊂ I2 ⊂ (0, 2π)

for some ε ∈ (0, π). Let V1 = V (I1;R), V2 = V (I2;R), and consider two analytic
and bounded functions f1 and f2 defined, respectively, in V1 and V2. If f1 − f2 ∈
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A≤−1(V1 ∩ V2), then f1 and f2 have the same Gevrey asymptotic expansion and,
moreover, the following conditions are equivalent:

(1) one of the functions f1 and f2 can be continued into an analytic function
at 0 in C;

(2) both f1 and f2 can be continued into an analytic function at 0 in C;
(3) f1 ≡ f2 in V1 ∩ V2.

Proof. The existence of a Gevrey asymptotic expansion for f1 and f2 follows im-
mediately from Theorem 3.2.

Let f̂ =
∑
n≥0 anx

n be the common asymptotic expansion of f1 and f2. Since
the length of I1 and that of I2 are larger that π, one finds that f1 and f2 are the

respective Borel-sum functions of f̂ in V1 and V2. Thus, the above statement in (1)

implies that f̂ is really a convergent series, so that their two Borel-sums are equal
to each other. In this way, one obtains that (1) implies all other statements.

On the other hand, if the statement in (3) is true, then both f1 and f2 equal
to a same analytic and bounded function in the punctuated disc {0 < |x| < R}.
By the Riemann removable singularities Theorem, one finds the statements (1) and
(2). �

3.2. Asymptotic expansion of Bernoulli integrals. From now on, we will iden-
tify the upper half-plane H as the sector V (I;R) with I = (0, π) and R =∞. Thus,
A≤−1(H) will be the space of all analytic functions inH that are exponentially small

as τ → 0. It is easy to see that A≤−1(H) ⊂ A≤−11 , where ζ = 1 = e2πi0 with r = 0;
see §1.2 (iii).

Proposition 3.1. Let (α, β) ∈ R2, and consider

f(τ) = log

(
(−α+ β τ

τ
| − 1

τ
)∞

)
for τ → 0 in H. If α > 0, then f ∈ A≤−1(H).

Proof. Thanks to Euler [1, p. 490, Corollary 10.2.2 (b)], one can write that, for all
x ∈ C,

(3.3) (x; q)∞ =
∑
n≥0

qn(n−1)/2

(q; q)n
(−x)n .

Letting x = e(−(α+ β τ)/τ) and q = e(− 1/τ) into (3.3), one gets that

(−α+ β τ

τ
| − 1

τ
)∞ = 1 +

∑
n≥1

(−1)ne(−n(α+ β τ)/τ)

(− 1/τ | − 1/τ)n
e

(
n(n− 1)

2
(− 1

τ
)

)
,

where (. | .)n is defined as in (1.3). Since e( − ν
τ ) ∈ A≤−1(H) for any ν > 0, it

follows that, when α > 0,

(−α+ β τ

τ
| − 1

τ
)∞ = 1− e(−(α+ β τ)/τ)

1− e(− 1/τ)
mod A≤−1(H)

= 1 mod A≤−1(H) .

This finishes the proof. �

Proposition 3.2. Let (α, β) ∈ R2 and let I = (−π, π). If α > −1, then b+(α +
β τ, τ) is well-defined and analytic in V (I;R), and is bounded in every proper sub-
sector of V (I;R) with R > 0.
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Proof. For all τ ∈ C∗, let Dτ be the sector containing 0 that is bounded by
(−∞,−1] ∪ [−1,−1 − ∞τ), where [−1,−1 − ∞τ) denotes the half straight-line
starting from −1 to ∞ with the direction −τ . By combining (2.8) together with
(2.9), one can find that, for all fixed τ ∈ C\(−∞, 0], the function b+(z, τ) is defined
and analytic for z ∈ Dτ .

If α > −1, one can easily see that α + β τ belongs to this half-plane Dτ when
τ /∈ R−. This implies that b+(α+ β τ, τ) is well-defined and analytic in any sector
V (I;R).

The boundedness of this function over any proper sub-sector comes from direct
estimates done for (2.7). �

In a similar way, one can find that the statement of Proposition 3.2 remains true
if b+(z, τ) and I are replaced with b−(z, τ) and (0, 2π), respectively. Thus, one
obtains the following:

Theorem 3.3. Let (α, β) ∈ R2 and let b+(z, τ) as in Definition 2.1. If α > −1,
then b+(α + β τ, τ) admits a Gevrey asymptotic expansion in any sector V (I;R)
with I = (−π, π) and R > 0.

Moreover, b+(α + β τ, τ) can be continued into an analytic function at τ = 0 if
and only if α = 0 and β ∈ Z.

Proof. Fix R > 0, and let

V1 = V ((−π, π);R), V2 = V ((0, 2π);R).

Define

f1(τ) = b+(α+ β τ, τ) = b+(α+ β τ, τ), f2(τ) = b−(α+ β τ, τ)

for τ ∈ V1 and V2, respectively. By putting z = α + β τ into both relations (2.13)
and (2.14) of Theorem 2.2, it follows that

(3.4) f1(τ)− f2(τ) = − log
(−(α+ β τ + 1)/τ | − 1/τ)∞

(−1/τ | − 1/τ)∞
,

if τ ∈ H ∩ V1 ∩ V2, and that

(3.5) f1(τ)− f2(τ) = − log
((α+ β τ + 1)/τ | 1/τ)∞

(1/τ | 1/τ)∞
,

if τ ∈ H− ∩ V1 ∩ V2.
One observes that V1 ∩ V2 ∩ R = ∅. Therefore, by considering Proposition 3.1,

relation (3.4) together with (3.5) imply that f1(τ) − f2(τ) is exponentially small
in the common domain V1 ∩ V2. This allows us to apply Corollary 3.1 to get a
particularly the common Gevrey asymptotic expansion of both f1 and f2.

Furthermore, Corollary 3.1 implies that f1 can be extended into an analytic
function at τ = 0 in C if and only if

(−α+ β τ + 1

τ
| − 1

τ
)∞ = (−1

τ
| − 1

τ
)∞

for all τ ∈ H, or, equivalently,

−α+ β τ + 1

τ
= −1

τ
mod Z .

In this way, one finds the necessary and sufficient condition α + β τ ∈ τZ in order
to have an analytic function b+(α + β τ, τ) at τ = 0 in C. This ends the proof of
Theorem 3.3. �
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Now, consider the functions P (z, τ) and B(z, τ) appearing in Theorems 2.1 and
2.3. In keeping with the spirit of Theorem 3.3, one finds the following result:

Theorem 3.4. Let (α, β) ∈ R2, and let V = V (I;R) with I = (−π, π) and R > 0.
Then

(1) if α ∈ (−1, 1), the function P (α + β τ, τ) admits a Gevrey asymptotic ex-
pansion as τ → 0 in V ;

(2) if α ∈ (− 1
2 ,

1
2 ), the function B(α + β τ, τ) admits a Gevrey asymptotic

expansion as τ → 0 in V .

Furthermore, P (α + β τ, τ) or B(α + β τ, τ) can be continued into an analytic
function at τ = 0 in C if and only if α = 0 and β ∈ 1

2Z.

Proof. We shall consider only the function P (z, τ), and the case of B(z, τ) is very
similar.

By using (2.20), P (α + β τ, τ) can be expressed in terms of b+(α + β τ, τ) as
follows:

P (α+ β τ, τ) = −b+(α+ β τ, τ) + b+(−α− β τ, τ) .

Thus, Theorem 3.3 implies that P (α + β τ, τ) remains analytic and has a Gevrey
asymptotic expansion as τ → 0 in V when α ∈ (−1, 1).

Furthermore, combining the expression of P (z, τ) in (2.20) with Stokes’s relations
(2.13) and (2.14) allows one to obtain the following equation: for all τ ∈ H,

P (z, τ)− P−(z, τ) = log
(−(z + 1)/τ | − 1/τ)∞

(−(−z + 1)/τ | − 1/τ)∞
,

where P−(z, τ) denotes the function defined by (2.19) with d ∈ (0, π). Thus,
P (α+ β τ, τ) can be continued into an analytic function at τ = 0 if and only if

−(α+ β τ + 1)/τ = (α+ β τ − 1)/τ mod Z .
This achieves the proof of Theorem 3.4. �

3.3. Proof of Theorem 3.1. In what follows, we will denote by C{τ} the space
of the germs of analytic functions at τ = 0 in H. One knows that the dilogarithm is
well-defined and analytic in the universal covering of C \ {1}. Thus, u 7→ Li2 (e(u))
represents an analytic function on the Riemann surface of logarithm, i.e, the uni-
versal covering C̃0 of C \ {0}.

Lemma 3.1. The following relation holds for all u ∈ C̃0:

(3.6) Li2
(
e(ue2πi)

)
− Li2 (e(u)) = 4π2 u .

Proof. Let x = e(u) for u ∈ C̃0. When u makes a complete rotation along a circle
around u = 0, the corresponding x forms a circle around x = 1. By using a relation
between Li2(x) and Li2(1− x) [12, §2],

Li2(1− x) = −Li2(x) +
π2

6
− log x log(1− x),

one finds that the monodromy of Li2 around x = 1 can be expressed as follows:

Li2(1 + x e2πi) = Li2(1 + x)− 2πi log(1 + x) .

Therefore, one gets that

Li2
(
e
(
ue2πi

))
− Li2 (e (u)) = −2πi log (e (u)) ,

which implies the desired relation (3.6). �
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Proof of Theorem 3.1. First of all, suppose that (α, β) ∈ {0, 12 )× { 12 , 1}. It follows
from Remark 1.1 that f ∈ T1, so f ∈ C1, also.

Now, consider the “only if” part, and suppose that f ∈ C1. The rest of the proof
will be divided into two parts, according whether α may be null or not.
• Case 1: α ∈ (0, 1). Let α′ = α− 1

2 , and observe that α′ ∈ (− 1
2 ,

1
2 ). By putting

z = α′ + β τ into (2.27) of Theorem 2.3, it follows that

(3.7) log f(q) = A(τ) + L(τ) +B(α′ + β τ, τ) +R(τ),

where one introduces the following notation:

A(τ) = log
(
e
(
− τ

24

) √
1 + e(α′ + β τ)

)
=

π

12

τ

i
+

1

2
log (1− e(α+ β τ)) ,

L(τ) =
Li2(e(α+ β τ))

2πiτ
, R(τ) = log(

α+ β τ − 1

τ
| − 1

τ
)∞ .

On the one hand, as α′− 1/2 < 0, Proposition 3.1 implies that R(τ) ∈ A≤−1(H) ⊂
A≤−11 . On the other hand, it is easy to see that

A(τ) ∈ C{τ}, L(τ) =
Li2(e(α))

2πiτ
mod C{τ} .

Thus, comparing (1.5) (ζ = 1, r = 0, τ̂ = τ) with (3.7) yields that

(3.8) B(α′ + β τ, τ) = ν log
τ

i
+
λ

τ
mod C{τ} ⊕ A≤−11 ,

where ν ∈ Q and λ ∈ C.
By Theorem 3.4, it follows that B(α′+β τ, τ) has a Gevrey asymptotic expansion

as τ → 0 in any sector V = V (I;R), where I = (−π, π) and R > 0. This implies
that ν = 0 and λ = 0 in (3.8). Furthermore, the exponentially small term used in
(3.8) will be bounded in any proper sub-sector of V . As the openness of V is larger
than π, a classical argument such as the Phragemen-Lindeloff Theorem implies that
this term is identically null; see [5] for more on this matter. Thus, one gets that
B(α′+ β τ, τ) can be really continued into an analytic function at τ = 0. Applying
Theorem 3.4 (2) implies that α′ = 0 and β ∈ 1

2Z, so it follows that α = 1
2 and

β ∈ { 12 , 1}.
• Case 2: α = 0. Putting z = β τ and s = z/τ = β > 0 into (2.1) of Theorem

2.1 gives that

f(q) =

√
2πβ(1− e(β τ))

Γ(β + 1)
e(− τ

24
) eβ(log β−1)+L(τ)+P (β τ,τ)R1(τ) ,

so that

(3.9) log f(q) =
1

2
log

τ

i
− I(β) +A(τ) + L(τ) + P (β τ, τ) +R(τ) .

In the above, I denotes the function given by (2.6),

A(τ) =
π

12

τ

i
+

1

2
log

e (β τ)− 1

i β τ
, L(τ) =

Li2(e(β τ))

2πiτ
,

and

R(τ) = logR1(τ), R1(τ) = (
β τ − 1

τ
| − 1

τ
)∞ .
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One can easily see that A(τ) ∈ C{τ}. Letting u = β τ in (3.6) gives that

L(τ e2πi)− L(τ) = −2βπi. In view of the equality Li2(1) = π2

6 , the function L can
be put into the following form:

L(τ) =
c∞
τ

+ β log
τ

i
mod C{τ} , c∞ = − π

12
i .

In addition, by Proposition 3.1, one gets that R ∈ A≤−11 . Thus, it follows from
(3.9) that

(3.10) log f(q) =
c∞
τ

+ (
1

2
+ β) log

τ

i
+ P (β τ, τ) mod C{τ} ⊕ A≤−11 .

One knows that P (β τ, τ) admits a Gevrey asymptotic expansion as τ → 0 in
C \ (−∞, 0]. As in Case 1 for B(..., τ), comparing (3.10) with (1.5) gives that
P (β τ, τ) can be continued into an analytic function at τ = 0. Thus, applying
Theorem 3.4 (1) implies, finally, that β ∈ 1

2Z, whis gives that β ∈ { 12 , 1}.
• In summary, one finds that f ∈ C1 implies that α ∈ {0, 12} and β ∈ { 12 , 1}.

This ends the proof of Theorem 3.1. �

4. Asymptotic behavior at an arbitrary root via continued fractions

With regard to an arbitrary root ζ of unity, we shall establish the following
result, which, together with Theorem 3.1, will imply Theorem 1.2:

Theorem 4.1. Let r ∈ Q∩ (0, 1), ζ = e(r) and (α, β) ∈ [0, 1)× (0, 1], and consider
f(q) = (α+ β τ | τ)∞. Then f ∈ Cζ if and only if α ∈ {0, 12} and β ∈ { 12 , 1}.

First, one will observe, in §4.1, that the corresponding functions B and P used
in Theorems 2.3 and 2.1 are analytic at each non-zero rational point τ = r. This
allows us to establish one key lemma, Lemma 4.1, in §4.2, that permits us to pass
an arbitrary rational value r to an other r1. By iterating this procedure, one arrives
at the case of r = 0, to which case Theorem 3.1 can be applied. This is realized in
terms of the continued fractions relative to r and related modular transforms; see
Theorem 4.4 in §4.3. We complete the proofs of Theorems 4.1, 1.2 and 1.1.

4.1. Bernoulli integral and associated functions on a real axis. We will
discuss the degenerate case τ ∈ R>0 for the functions b+(z, τ), B(z, τ) and P (z, τ).
In what follows, we will make use of the notational convention

(4.1) ε ∈ (0,
π

2
), Wε = V ((−ε.ε);∞), W c

ε = C \ W̄ε ,

and the letter r always denotes a given positive number.
First of all, we consider the function b+(z, τ). It should be noted that the relation

stated in (2.18) is valid for any (z, τ) ∈ H × H. If z /∈ H, we have to avoid the
poles of the Gamma function, and the right-hand side of (2.18) continues to be
well-defined over the Riemann surface of log while s /∈ Z≤0. Thus, Lemma 2.2
allows one to make the analytic continuation of the function b+ at (z, τ) provided
that (z + n)/τ /∈ Z≤0 for all n ∈ Z≥1. This yields the following observation:

Remark 4.1. For any fixed τ ∈ H, z 7→ b+(z, τ) can be continued into an analytic
function on the universal covering of C \∆τ , where

(4.2) ∆τ = Z≤−1 ⊕ τZ≤0 .
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By Definition 2.1 and Remark 4.1, b+(z, τ) is well-defined and analytic in the
domain (−W c

ε − 1)×Wε, where −W c
ε − 1 = C \

(
−W̄ε − 1

)
; see Figure 4 below. In

particular, we note the following fact:

Remark 4.2. Given r > 0, α ∈ (−1, 0) and β ∈ R, there exists ρ ∈ (0, r) such that
the function τ 7→ b+(α + β(τ − r), τ) is well-defined and analytic in the open disc
{τ ∈ C : |τ − r| < ρ}.

−1 0��
���

�

H
HH

H
HH

�
�
�
�

H
H
H
H

H
ε Wε−W̄ε − 1 �

K
−W c

ε − 1

Figure 4. b+(z, τ) is analytic for z ∈ (−W c
ε − 1) and τ ∈Wε

When ε → 0+, Wε becomes (0,∞) and −W c
ε − 1 is reduced into C \ (−∞,−1].

By replacing τ with r in the partial lattice ∆τ given by (4.2) for all τ ∈ H, we will
continue to write ∆r = {n+mr : n ∈ Z≤−1,m ∈ Z≤0}. It is easy to see that ∆r is
discrete on the real axis if and only if r is a rational number. In this way, we shall
make use of the following remark:

Remark 4.3. If n and d are co-prime positive integers such that r = n
d ∈ (0, 1),

then

(4.3) ∆r = −1 +
1

d
Z≤0 ⊂ (−∞,−1] .

For any α ∈ R, let [α] denote the integral part of α and {α} denote the corre-
sponding fractional part, that is α− [α]. If z0 ∈ (−∞,−1] \∆r, we define

(4.4) b̆(z0, r) =

[−z0]− 1− 2

[−z0]−1∑
k=1

{
z0 + k

r

} πi .

Theorem 4.2. Let r ∈ (0, 1)∩Q and let ∆r, b̆ be as in the above. Then b+(z, r) is
analytic in C \ (−∞,−1] and can be continued to be an analytic function over the
universal covering of C \∆r in such a way that the following relation holds for all
z0 ∈ (−∞,−1] \∆r:

(4.5) lim
ε→0+

(
b+(z0 + iε, r)− b+(z0 − iε, r)

)
= b̆(z0, r) .

Proof. As τ → r in H, the limit set ∆r of the singularities of b+(z, τ) is discrete,
as stated in (4.3). By considering Remark 4.1, one obtains that b+(z, r) is analytic
over the universal covering of C \∆r.

Now, let D(z0) denote the expression in the left-hand side of (4.5). By putting
τ = r into (2.18), one finds that, if z /∈ (−∞, 0], then b+(z− 1, r) = b+(z, r) + I(s),
where s = z/r and I(s) is given in (2.6). Thus, one can write

D(z0 − 1) = D(z0) + lim
ε→0+

(
I(
z0
r

+ εi)− I(
z0
r
− εi)

)
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for all z0 ∈ (−∞, 0] \∆r. By using (2.6), one gets that

(4.6) D(z0 − 1) = D(z0) + (1− 2z0
r

)πi+ lim
ε→0+

(
log Γ(

z0
r

+ εi)− log Γ(
z0
r
− εi)

)
.

Let n be any negative integer, say, n = −m, m > 0, and let s ∈ (n, n+ 1). From

the relation Γ(x) =
Γ(x+m)

(x)m
and the fact that log Γ(x + m) is well-defined and

analytic for <(x) > n, it follows that

lim
ε→0+

(log Γ(s+ εi)− log Γ(s− εi)) = − lim
ε→0+

(log(s+ εi)m − log(s− εi)m)

= 2πin .

Therefore, (4.6) yields that

(4.7) D(z0 − 1) = D(z0) + 2
(
n− z0

r

)
πi+ πi .

Letting z0 = (n + δ0)r with n0 ∈ Z<0 and δ0 ∈ (0, 1), the above expression in
(4.7) becomes D(z0 − 1)−D(z0) = −2πiδ0 + πi. By replacing z0 with z0 + 1 and
iterating this process, one obtains the finite sequences (nk) and (δk) associated with
the pair (z0, r) in the following manner: z0 + k = (nk + δk)r, where nk ∈ Z<0 and
δk = δk(z0, r) = { z0+kr }. Since D(z0 + k) = 0 for k > −1− z0, one finds that

D(z0 − 1) = −2
(
δ0 + ...+ δ[−z0]−1

)
πi+ [−z0]πi .

Replacing z0 with z0 + 1 in this last relation gives D(z0) = b̆(z0, r), where b̆ is as
given in (4.4), so one obtains the expected relation (4.5) and Theorem 4.2. �

By using (2.25), one finds that B(z, τ) is analytic in the domain

((1/2 +W c
ε ) ∩ (−1/2−W c

ε ))×Wε .

In addition, from (2.20) one obtains that P (z, τ) can be continued to be analytic in
the domain ((−1−W c

ε ) ∩ (1 +W c
ε )) ×Wε; see Figure 5 below, where Wε and W c

ε

are given in (4.1).

−1 0 1�
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��
���

�

H
HH

H
HH

HH
HHH

H

�
��

�
��H

Wε�

K
−W c

ε − 1

U

�
W c
ε + 1

Figure 5. P (z, τ) is analytic for z ∈ (−W c
ε − 1) ∩ (W c

ε + 1) and τ ∈Wε

Similarly to Remark 4.2, one can observe the following property:

Remark 4.4. Let r > 0 and (α, β) ∈ R2. If α + βr ∈ (− 1
2 ,

1
2 ), then τ 7→ B(α +

β τ, τ) is well-defined and analytic inside some open disc centered at τ = r.
Moreover, things are the same for τ 7→ P (α+ β τ, τ) when α+ βr ∈ (−1, 1).

By letting ε → 0+, one sees that, for any r > 0, B(z, r) is analytic for all
z ∈ C\(−∞,−1/2)∪(1/2,∞), while P (z, r) is analytic for z ∈ C\(−∞,−1]∪[1,∞).

Theorem 4.3. Let r ∈ (0, 1)∩Q, and let ∆r and b̆ be as in (4.3) and (4.4). Then
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(1) the function B(z, r) can be continued to be analytic in the universal covering
of C \ ((1/2 + ∆r) ∪ (−1/2−∆r)), and the following relations hold for all
z0 ∈ R \ ((1/2 + ∆r) ∪ (−1/2−∆r)):

(4.8) lim
ε→0+

(B(z0 + iε, r)−B(z0 − iε, r)) = −b̆(−|z0| −
1

2
, r) ;

(2) the function P (z, r) can be continued to be analytic in the universal covering
of C \ (∆r ∪ (−∆r)) in such a way that, for all z0 ∈ R \ (∆r ∪ (−∆r)),

(4.9) lim
ε→0+

(P (z0 + iε, r)− P (z0 − iε, r)) = −b̆(−|z0|, r) .

Proof. This follows directly from Theorem 4.2 together with relations (2.25) and
(2.20). �

4.2. One key lemma. As in the definition of b̆(z, r) in (4.4), we will let [a] and {a}
denote the integral and fractional part, respectively, of any given real a. Given each
non-zero real r, consider the associated one-to-one map Tr defined on [0, 1)× (0, 1]
as follows:

(4.10) Tr : (α, β) 7→ ({(1− α)

[
−1

r

]
+ β}, 1− α) .

One finds easily that

(4.11) Tr({0,
1

2
} × {1

2
, 1}) = {0, 1

2
} × {1

2
, 1} .

Lemma 4.1. Let r ∈ (0, 1) ∩ Q, ζ = e(r), ζ1 = e({− 1
r}), and let z(τ) = α + β τ

with (α, β) ∈ [0, 1)× (0, 1]. Consider

f(q) = (z(τ) | τ)∞ , g(q1) = (z1(τ1) | τ1)∞ ,

where q = e(τ), τ1 = − 1
τ −

[
− 1
r

]
, q1 = e(τ1) and

(4.12) z1(τ1) = α1 + β1 τ1 ,

(α1, β1) being the transform of (α, β) defined by (4.10). Then f ∈ Cζ if and only if
g ∈ Cζ1 .

Proof. For simplicity, write r1 = {− 1
r} and N = [− 1

r ]. As − 1
r = r1 + N , the

following equivalence holds on the upper half-planes =τ > 0 and =τ1 > 0:

(4.13) τ
a.v.−→ r ⇐⇒ τ1

a.v.−→ r1 .

By observing that τ = −1/(τ1+N), one gets that (z(τ)−1)/τ = (1−α)(τ1+N)+β,
so it follows from (4.12) that z1(τ1) = (z(τ)− 1)/τ mod Z. One remembers that
(z | τ)∞ = (z′ | τ ′) if (z, τ) = (z′, τ ′) mod Z2; see (1.3). Thus, one finds that
g(q1) = g̃(q) if one defines

(4.14) g̃(q) =

(
z(τ)− 1

τ
| − 1

τ

)
∞
.

By noticing the relation τ1 − r1 = (τ − r)/(rτ), it follows from (4.13) that
g(q1) ∈ Cζ1 if and only if g̃(q) ∈ Cζ . Thus, we shall use Theorems 2.3 and 2.1 to
link f(q) with g̃(q) in the following fashion:

(4.15) f(q) = H(q) g̃(q) .
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By hypothesis, (α, β) /∈ Z×{0}, so f(q) is not identically null. As Cζ\{0} constitutes
a multiplicative group, Lemma 4.1 says exactly that H ∈ Cζ , which is what we need
to establish.

As before, write τ̂ = τ − r. As in the proof of Theorem 3.1, we shall distinguish
two cases: α+ βr /∈ Z and α+ βr ∈ Z.
• Case 1: α+ βr− n ∈ (0, 1) with some n ∈ Z. Let α′ = α− n− 1

2 , and observe

that α′ + βr ∈ (− 1
2 ,

1
2 ). By applying Theorem 2.3 to z = z(τ) − n − 1

2 , the factor
H(q) defined by (4.15) can be written as follows: H(q) = H1(q)H2(q)H3(q), where

H1(q) =
√

1− e(z(τ)) e(− τ

24
) e

Li2(e(z(τ)))
2πiτ , H2(q) = eB(α′+β τ,τ)

and

(4.16) H3(q) =
((z(τ)− n− 1)/τ | − 1/τ)∞

((z(τ)− 1)/τ | − 1/τ)∞
.

When τ → r, it follows that e (z(τ)) → e(α + βr) 6= 1 for α + βr /∈ Z. Thus
Li2(e(z(τ))) is really analytic at τ = r in C. As r 6= 0, one finds, finally, that
H1 ∈ C{τ̂}. In addition, Remark 4.4 implies that B(α′ + β τ, τ) is analytic at
τ = r. Furthermore, one can express H3 as

H3(q) =

(
z(τ)− n− 1

τ
| − 1

τ

)
−n

or H3(q) =
1

((z(τ)− 1)/τ | − 1/τ)n

for n ∈ Z≤0 or Z≥0, respectively; see (1.3). This also shows that H3 ∈ C{τ̂}. Thus,
one gets that H ∈ (C{τ̂} \ {0}

)
⊂ Cζ .

• Case 2: α+ βr = n ∈ Z. Let s = (z(τ)−n)/τ , and notice that z(τ)−n = β τ̂ ,
so s = β τ̂/τ . As β 6= 0, one gets that s ∈ C \ R for all τ ∈ H. Moreover, one has
C{s} = C{τ̂} for r 6= 0.

Putting z = z(τ)− n = β τ̂ into Theorem 2.1 gives that the factor H(q) defined
by (4.15) can be read as follows: H(q) = H0(q)H1(q)H2(q)H3(q), where

H0(q) =

√
2πs(1− e(τs))

Γ(s+ 1)
e(− τ

24
) , H1(q) = es(log s−1)+

Li2(e(τs))
2πiτ ,

H2(q) = eP (β (τ−r),τ), and where H3(q) is given by (4.16). It is immediately appar-
ent that H0 ∈ C{s}, so H0 ∈ C{τ̂} also. Also, from Remark 4.4, one knows that
H2 ∈ C{τ̂}; it is the same for H3, as explained in the above. Furthermore, replacing
u with τs in (3.6) of Lemma 3.1 gives that Li2(e(τse2πi))− Li2(e(τs)) = 4π2τs, so
one gets the identity

s log(se2πi) +
Li2(e(τse2πi))

2πiτ
= s log s+

Li2(e(τs))

2πiτ
,

which implies that H2 ∈ C{s} = C{τ̂}. Finally, one finds that H ∈ (C{τ̂} \ {0}) ⊂
Cζ , which ends the proof. �

4.3. Continued fractions and modular transforms. Let us consider the as-
ymptotic behavior of the Euler function (z | τ)∞ when τ

a.v.−→ r ∈ (0, 1) ∩ Q or,

equivalently, when q
a.r.−→ ζ = e(r). Our strategy is to use continued fractions in

order to reduce the general case τ
a.v.−→ r to the known case τ

a.v.−→ 0.
Indeed, the above operation (r, τ, z) 7→ (r1, τ1, z1), considered in Lemma 4.1,

allows one to link two rational numbers: r and r1. By iterating this process, one

arrives at the case where τ
a.v.−→ 0. This iteration procedure requires one to write r
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into continued fraction. Thus, to any given r = p
m ∈ Q ∩ (0, 1) will be associated

the sequences rj ∈ Q ∩ [0, 1) and dj ∈ Z>0 in the following manner:

(4.17) r0 =
p

m
, d0 = 0; rj =

{
− 1

rj−1

}
, dj =

[
− 1

rj−1

]
( 1 ≤ j ≤ ν) ,

where ν denotes the smallest index such that rν = 0, i.e., 1/rν−1 ∈ Z>0. With the
standard notation for the continued fractions, one can notice that

(4.18) r = [0, d1,−d2..., (−1)ν−1dν ] =
1

d1 − |
1

d2 − |
· · · 1

|dν
.

Now, given (α0, β0) ∈ [0, 1) × (0, 1] and r ∈ (0, 1) ∩ Q as in (4.18), define the
r-depending sequence (zj , τj)0≤j≤ν as follows: τ0 = τ , z0 = z0(τ0) = α0 + β0 τ ,

(4.19) τj = − 1

τj−1
− dj , zj = zj(τj) = αj + βj τj ,

where (αj , βj) = Trj−1
(αj−1, βj−1), Trj−1

being the transform obtained by substi-

tuting rj−1 to r in (4.10). If τ = τ0
a.v.−→ r in H, then τj

a.v.−→ rj in H, particularly

with τν
a.v.−→ 0. Furthermore, it is easy to see that τj ∈ H, with

τj = Mj τj−1 , Mj =

(
−dj −1

1 0

)
∈ SL(2;Z) ,

where τ 7→ M τ denotes the classic modular transform associated with a modular
matrix M . Thus, one can find that τν = M τ with M = Mν ...M1 ∈ SL(2;Z).

Theorem 4.4. Let (ν, r), τj and zj(τj) be given as in (4.18) and (4.19), with
(α, β) ∈ [0, 1)× (0, 1]. Let ζj = e(rj) and qj = e(τj) for j from 0 to ν. Consider

f(q) = (z0(τ0)|τ)∞, fj(qj) = (zj(τj)|τj)∞ .

Then, the following conditions are equivalent:

(1) f ∈ Cζ ;
(2) fν ∈ C1;
(3) fj ∈ Cζj for all j from 1 until ν;

(4) α ∈ {0, 12} and β ∈ {1, 12}.

Proof. For simplicity, write ∆ = {0, 12}×{1,
1
2}. By (4.11), it follows that (α, β) ∈ ∆

if and only if (αj , βj) ∈ ∆ for (one of) all indices j from 0 to ν. In addition,
applying Theorem 3.1 to fν implies that (αν , βν) ∈ ∆ if and only if fν ∈ C1. Thus,
by considering Lemma 4.1, one finds that all conditions (1) – (4) stated in Theorem
4.4 are equivalent. �

Now, we are ready to finish, successively, the proofs for Theorems 4.1 and 1.2
and, therefore, the proof for the main theorem.

Proof of Theorem 4.1. This follows directly from Theorem 4.4. �

Proof of Theorem 1.2. In view of Theorems 3.1 and 4.1, it suffices to notice that,
given ζ ∈ U, one has (x0 q

β ; q)∞ ∈ Cζ if and only if the same holds by replacing β
with β + 1. This last equivalence can be deduced from the relation (x0 q

β ; q)∞ =
(1−x0 qβ) (x0 q

β+1; q)∞ and the fact that (1−x0 qβ) ∈ Cζ , for Cζ \ {0} constitutes
a multiplicative group. �
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Proof of Theorem 1.1. By taking into account Remark 1.1 and Theorem 1.2, one
needs only to observe that, for any positive integer n ∈ Z>0 and any root ζ ∈ U,
any finite product of the form (x0 q

β ; q)n does not belong to Tζ , although the same
function belongs to the larger class Cζ . �

Addendum. After having finished a first version of our paper, we learned that
the interesting work [4] is closely related to the present paper. Indeed, let α > 0
and µ ∈ [0, 1) be as in [4, Theorem 1]. By combining [4, (3.2) & (3.3)] together
with (1.2) and (1.4), one can observe the following result:

Remark 4.5. One has (e(µ)qα; q)∞ ∈ T1 only if the following conditions are
satisfied for all integers k ≥ 2:

(4.20) Bk(0, e(µ))Bk+1(α) = 0 .

In the above, Bk(α) denotes the usual Bernoulli polynomials, and Bk(α, y) are
the rational functions defined by the Taylor series expansion

(4.21)
z eαz

y ez − 1
=

∞∑
k=0

Bk(α, y)

k!
zk

near z = 0. One can notice that Bk(α) = Bk(α, 1) and Bk = Bk(0) = Bk(0, 1),
where Bk are the Bernoulli numbers. Furthermore, one knows from [1, p. 55, 44
(c)] or [7, p. 6, (2.71)] that

(4.22) Bk(α) =

k∑
j=0

(
k

j

)
Bj α

k−j .

Proposition 4.1. The following condtions are equivalent for any (µ, α) ∈ [0, 1)×
(0,+∞):

(1) relation (4.20) holds simultaneously for all integers k ≥ 2;
(2) relation (4.20) holds simultaneously for k = 2 and k = 3;
(3) (µ, α) ∈ {(0, 12 ), (0, 1), ( 1

2 ,
1
2 ), ( 1

2 , 1)}.

Proof. It is obvious that (1) implies (2). To see (2) ⇔ (3), firstly let µ = 0 and
y = e(0) = 1. Relation (4.20) becomes Bk Bk+1(α) = 0. By [1, p. 12] or [7, p. 6],
it follows that B0 = 1, B1 = − 1

2 , B2 = 1
6 and B3 = 0. Using (4.22) gives that

B3(α) = α(α − 1
2 )(α − 1). Thus, (4.20) holds simultaneously for k = 2 and k = 3

if and only if α ∈ { 12 , 1}. Next, let µ ∈ (0, 1) and y = e(µ) 6= 1; putting α = 0

into (4.21), one can get that B0(0, y) = 0, B1(0, y) = 1
y−1 , B2(0, y) = − 2 y

(y−1)2 and

B3(0, y) = 3y(y+1)
(y−1)3 . Again, one can notice that B2(0, y) 6= 0, so relation (4.20)

holds for k = 2 only if α ∈ { 12 , 1}. Since B4 = − 1
30 , one obtains, applying (4.22),

that B4(α) = α4 − 2α3 + α2 − 1
30 . One can see that B4( 1

2 ) 6= 0 and B4(1) 6= 0.
Therefore, (4.20) holds simultaneously for both k = 2 and k = 3 if and only if
α ∈ { 12 , 1} and e(µ) = −1. This implies the equivalence between the conditions
(2) and (3) stated in Proposition 4.1. Finally, suppose that condition (3) holds. It
follows from Theorem 1.1 that (e(µ) qα; q)∞ ∈ T1, which, together with Remark
4.5, implies (1). In this way, we complete the proof of Proposition 4.1. �
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