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Résumé

.

Version française abrégée L'équation différentielle x 2 y -y + x = 0 admet pour solution formelle la série dite d'Euler Ê(x) = .

n≥0 n!x n+1 . Borel-sommable dans toutes les directions sauf l'axe réel positif [0, +∞), celle-ci jour un rôle de première importance dans la théorie analytique des équations différentielles à singularités irrégulières [START_REF] Balser | Formal power series and linear systems of meromorphic ordinary differential equations[END_REF][START_REF] Ramis | Gevrey asymptotics and applications to holomorphic ordinary differential equations[END_REF]. L'équation aux dérivée partielles (2) ci-dessous, variante bidimensionnelle de la précédente équation, est satisfaite terme à terme par la série entière F (x 1 , x 2 ) = n1,n2≥0 (n 1 + n 2 )! x n1+1 1 x n2+1 2 , qui donne lieu à la série d'Euler en considérant Fx1 (0, x 2 ) ou Fx2 (x 1 , 0). Voir aussi [START_REF] Costin | Existence and uniqueness for a class of nonlinear higher-order partial differential equations in the complex plane[END_REF] pour une expression de F au moyen du taux d'accroisements de Ê évalué en deux points distincts. L'étude de l'équation (2) avec sa solutoin formelle F sera développée dans §3. On verra, en effet, que cette dernière est Borel-sommable au sens de Definition 2.1 dans toutes les directions d'argument (d 1 , d 2 ) ∈ [0, 2π] 2 tel que |d 1 -d 2 | < π. Les multiplicateurs de Stokes ainsi associés seront décrits dans Theorem 3.1. On pourrait s'étonner du fait que les directions singulières (d 1 , d 2 ) ∈ [0, 2π] 2 , avec |d 1 -d 2 | ≥ π, occupent un quart du tore R 2 /(2πZ) 2 des directions issues de l'origine du plan C 2 . Ce phénomène est pourtant inévitable, vu l'expression de la somme de Borel de F fournie dans Theorem 3.2.

Par ailleurs, l'équation (2) fait partie d'une famille d'équations linéaires comme indiquée dans [START_REF] Luo | Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations[END_REF], lesquelles pourront ensuite être rendues non linéaires sous la forme générale [START_REF] Luo | On a family of symmetric hypergeometric functions of several variables and their Euler type integral representation[END_REF] ; voir §4.1-2. Nous nous interesserons enfin, dans §4.3, à l'étude du problème de Cauchy pour (1), avec n = 2 et u(0, x) = 0, sous certaines hypothèses de généricité relatives à la singularité en (x 1 , x 2 ) = (0, 0) ∈ C 2 ; voir [START_REF] Majima | Asymptotic analysis for integrable connections with irregular singular points[END_REF].

Nous verrons que les solutions formelles des équations évoquées ci-dessus sont toutes Borel-sommables dans les directions convenablement choisies ; voir Theorems 4.1, 4.2 and 4.3. Pour ce faire, nous allons convertir chacune des ces équations aux dérivées partielles en une équation mélangeant les produits de convolution et les différentielles partiels dans le plan de Borel. Le problème de sommabilité sera alors ammené à une analyse d'existence de solutions à croissance au plus exponentielle à l'infini dans des secteurs dans le plan complexe bidimensionnel. Une telle analyse sera rendue possible grâce à une version adoptée au cas de deux variables de la norme Nagumo initialement introduite dans [START_REF] Luo | Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations[END_REF]Definition 4.2].

Enfin, notons que la notion de sommabilité à la Borel d'une série de deux ou plusieurs variables a été largement étudiée dans [START_REF] Sanz | Summability in a direction of formal power series in several variables[END_REF], [START_REF] Mozo-Fernández | Topological tensor products and asymptotic developments[END_REF], [START_REF] Zurro | A new Taylor type formula and C ∞ extensions for asymptotically developable functions[END_REF] et bien d'autres travaux. Dans [START_REF] Chen | On the Borel-Laplace summation of power series of two variables[END_REF], nous avons étudié plusieurs conditions équivalentes pour décrire une série Borel-summable dans une direction donnée en cas de deux variables. Comme le montrera Theorem 2.1, nous allons priviléger le point de vue des fonctions ayant un développement asymptotique au sens de H. Majima [START_REF] Majima | Asymptotic analysis for integrable connections with irregular singular points[END_REF]. On verra que, sur certains aspects, notre approche diffère de celle entreprise par [START_REF] Sanz | Summability in a direction of formal power series in several variables[END_REF] ; voir les discussions développées au §2.2.

Les résultats annoncés dans la présente Note sont extraits de notre article [START_REF] Chen | Summability of Formal Solutions of Singular PDEs by means of two-dimensional Borel-Laplace method[END_REF].

Introduction

Let us consider the following non-linear singular PDE of the form

t∂ t u = F (t, x, u, ∇ x u), (t, x) ∈ C t × C n x , (1) 
where u = u(t, x) is an unknown function, ∇ x is the usual derivative operator (∂ x1 , • • • , ∂ xn ) and F is a function of (t, x, u, v). Such equations can be found already in [START_REF] Baouendi | Cauchy problems with characteristic initial hypersurface[END_REF][START_REF] Tahara | Fuchsian type equations and Fuchsian hyperbolic equations[END_REF]; see also [START_REF] Chen | On the holomorphic solution of non-linear totally characteristic equations[END_REF][START_REF] Costin | Existence and uniqueness for a class of nonlinear higher-order partial differential equations in the complex plane[END_REF][START_REF] Gérard | Singular nonliear partial differential equations[END_REF][START_REF] Luo | On a family of symmetric hypergeometric functions of several variables and their Euler type integral representation[END_REF]. In [START_REF] Chen | Formal solutions for first-order nonlinear PDEs with irregular singularity[END_REF][START_REF] Luo | Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations[END_REF], we dealt with the case of n = 1 under the condition that the equation in (1) admits x = 0 as a generic irregular singular point. It has been show that the formal solution of (1) is k-summable for x and convergent for t. In this paper, we will study the case of n = 2; the main idea is to make use of the 2-dimensional Borel-Laplace summation method considered in our previous paper [START_REF] Chen | On the Borel-Laplace summation of power series of two variables[END_REF]. Under some suitable conditions, it will be shown that the formal solution is Borel-summable for the variable (x 1 , x 2 ) while the variable t remains near zero; see Theorem 4.3.

As t = 0 can be viewed as a Fuchsian type singular point in (1), we will start with some PDEs without the variable t. The first differential equation that we will study is the following one:

x 2 1 ∂ x1 u + x 2 2 ∂ x2 u -u + x 1 x 2 = 0 , (2) 
which is a PDE version of the ODE satisfied by the Euler series; see §2. After having obtained the directions along which the formal solution of ( 2) is Borel-summable, we will consider the Stokes phenomenon, for what a link with the Euler series will be established. Section 4 will be essentially devoted to two families of nonlinear PDEs, one of which is a special case of (1). In the below, we will start with some general statements about the Borel-summability of power series of two variables.

Borel-summability of power series of two variables

Let C to denote the Riemann surface of the Logarithm, which will be identified with R >0 ×R via the map (r, ϕ)

→ re iϕ . Given (d, θ, ρ) ∈ R × R 2 >0 , one writes S d (θ; ρ) = {x ∈ C : |x| < ρ, | arg(x) -d| < θ/2}; by extension, S d (θ) = S d (θ; ∞)
, which is an unbounded sector. Unless explicitly stated, we usually suppose that θ < 2π, in such a way that each of S d (θ; ρ) and S d (θ) can be viewed as one part of the complex plane C. As usual, let D(0; R) ( D(0; R), resp.) be the open (closed, resp.) disc centered at 0 with radius R > 0. Furthermore, one defines S d R (θ) = D(0; R) ∪ S d (θ). In the case of two variables, we will write

d = (d 1 , d 2 ), θ = (θ 1 , θ 2 ), ρ = (ρ 1 , ρ 2 ) and R = (R 1 , R 2 )
. This permits to define the domains S d (θ; ρ), S d (θ) and S d R (θ) in an evident way. Furthermore, we will use the partial order < in R 2 given by the relation (a

1 , a 2 ) < (b 1 , b 2 ) ⇔ a 1 < b 1 and a 2 < b 2 .
By substituting ≤ to < here, we obtain also the relation ≤ in R 2 . Similarly we can define the partial orders > and ≥ in R 2 respectively. Lastly, we will write

x n = x n1 1 x n2 2 for all x = (x 1 , x 2 ) ∈ C 2 and n = (n 1 , n 2 ) ∈ Z 2 ≥0 .
2.1 -On the one hand, given S = S d (θ; ρ), we will denote by A 1 (S) the space of analytic functions admitting a strong asymptotic expansion as x = (x 1 , x 2 ) → (0, 0) in S in the sense of H. Majima [START_REF] Majima | Asymptotic analysis for integrable connections with irregular singular points[END_REF].

On the other hand, if S = S d R (θ), we will denote by E 1 (S) the set of analytic functions φ in S with an exponential growth of order at most one at infinity. This is to say, for any (R , θ

) ∈ R 2 >0 × R 2 >0 with R < R and θ < θ, one can find (C, ν) ∈ R 2 >0 such that |φ(ξ)| ≤ C exp(ν |ξ|) for all ξ = (ξ 1 , ξ 2 ) ∈ S d R (θ ), where |ξ| = |ξ 1 | + |ξ 2 |. Thus, to each d ∈ R 2 ,
we can associate the inductive limit spaces A d

1 and E d 1 in the following way:

A d 1 = ∪ θ>π,ρ>0 A 1 (S d (θ; ρ)) , E d 1 = ∪ θ>0,R>0 E 1 (S d R (θ)) ,
where π = (π, π) and 0 = (0, 0). Furthermore, we introduce the following generalized space Ẽd

1 : Ẽd 1 = C δ 0 ⊕ E d1 1 δ 0;1 ⊕ E d2 1 δ 0;2 ⊕ E d 1 .
Here δ 0 , δ 0;1 and δ 0;2 are the Dirac operators related to 0 = (0, 0) ∈ C 2 = C ξ1 × C ξ2 , 0 ∈ C ξ1 and 0 ∈ C ξ2 , respectively; E d1

1 and E d2 1 denote the spaces of analytic functions with an exponential growth of order at most one at infinity in some sector containing the directions d 1 and d 2 , respectively.

Like as in the case of one variable, the spaces Ẽd 1 and A d 1 may be viewed as differential algebras.

Theorem 2.1 Given d = (d 1 , d 2 ) ∈ R 2 , the following Laplace integral L d 1 φ(x) = ∞e id 1 0 ∞e id 2 0 φ(ξ 1 , ξ 2 ) e -ξ1/x1-ξ2/x2 dξ 2 dξ 1
gives an isomorphism of differential algebras from Ẽd

1 onto A d 1 . If f (x) = n≥0 a n x n ∈ C[[x]], one defines its (formal) Borel-transform as follows (ξ = (ξ 1 , ξ 2 )): B1 f (ξ) = a 0 δ 0 + n1≥0 a n1+1,0 n 1 ! ξ n1 1 δ 0;1 + n2≥0 a 0,n2+1 n 2 ! ξ n2 2 δ 0;2 + n≥0 a n+1 n! ξ n . ( 3 
) Definition 2.1 Let d = (d 1 , d 2 ) ∈ R 2 . A given power series f (x) ∈ C[[x]] will be called Borel-summable in the direction of argument d if B1 f ∈ Ẽd 1 .
In this case, we write f ∈ C{x} d 1 .

In view of Theorem 2.1, one finds that the composite map L d • B1 gives an isomorphism of differential algebras from C{x} d

1 onto A d 1 . So, L d • B1 f can be called Borel-sum of f ∈ C{x} d 1 in d.

-

The above-introduced spaces A 1 (S d (θ; ρ)) are already used in [START_REF] Sanz | Summability in a direction of formal power series in several variables[END_REF] with regard to the Borelsummability of power series of two or more variables; see also [START_REF] Carrillo | An extension of Borel-Laplace methods and monomial summability[END_REF][START_REF] Mozo-Fernández | Topological tensor products and asymptotic developments[END_REF] and [START_REF] Zurro | A new Taylor type formula and C ∞ extensions for asymptotically developable functions[END_REF]. However, instead of our spaces E 1 (S d R (θ)), one finds the spaces of type E 1 (S d 0 (θ)) in [START_REF] Sanz | Summability in a direction of formal power series in several variables[END_REF], where S d 0 (θ) = S d (θ) denotes an unbounded sector containing d. This difference may be significant for some situations, as it will be shown in the below.

If one considers the partial differential operator

L = x 2 2 ∂ x2 (x 2 1 ∂ x1 + 1) + 1, then the following series f (x 1 , x 2 ) = n2≥n1≥0 (-1) n2 (n 2 !) 2 (n 2 -n 1 )! x n1+1 1 x n2+1 2 (4) 
will satisfy L u = x 1 x 2 . Letting φ = B f , one finds that φ(ξ) = 1 1+ξ2(1+ξ1) , so φ is analytic at 0 ∈ C 2 and can be analytically continued in any sector S d 0 (θ) such that |d j ± θ j /2| < π/2 for j = 1 and 2. Thus, the series f given by ( 4) could be Borel-summable in such directions d in the sense of [START_REF] Sanz | Summability in a direction of formal power series in several variables[END_REF]. What may be surprising is that φ can not be analytically continued in any domain of the form

S d R (θ) with R ∈ R 2 >0 , this means f ∈ C{x} d 1 for all d ∈ R 2
, by considering Definition 2.1 here. In our previous work [START_REF] Chen | On the Borel-Laplace summation of power series of two variables[END_REF], we introduced intermediate spaces situated between the inductive spaces E d 1 and ∪ θ>0 E 1 (S d 0 (θ)), and this defines what we call (1, 2) or (2, 1)-iteratively Borel summable series in a given direction d. In this setting, the above series f is (2, 1)-iteratively Borel summable but not (1, 2)-iteratively Borel summable in the direction (0, 0), contrarily to the statement of [START_REF] Sanz | Summability in a direction of formal power series in several variables[END_REF]Prop. 5.4]. S;µ,n ), with µ ∈ R ≥0 and n ∈ Z ≥0 . Let m ∈ N, D = D(0; ρ 1 ) × ... × D(0; ρ m ) with ρ j > 0, and let Φ be an analytic function defined in S × D. By using the results in [3, §3], one can prove that Φ ∈ Ẽ1;µ,n (S){z} ρ , with ρ = (ρ 1 , ..., ρ m ) if the map z → Φ(., z) is an analytic mapping from D to Ẽ1;µ,n (S). Now, we define Ẽd 1;µ,n {z} = ∪ Ẽ1;µ,n (S){z} ρ by taking the union for all S = S d R (θ) with θ > 0, R > 0 and for all ρ 1 > 0, ..., and ρ m > 0, where (ρ 1 , ..., ρ m ) = ρ. By Theorem 2. 1,A d 1 can be found from Ẽd 1 via the Laplace integral L d 1 . Thus, we define

-Let

A d 1;µ,n {z} = L d 1 Φ(., z) : Φ(., z) ∈ Ẽd 1;µ,n {z} , A d 1 {z} = ∪ µ≥0 A d 1;µ,n {z} (n ≥ 0) . (5) 

2-dimensional Euler equation

Let Ê(x) = n≥0 n! x n+1 be the so-called Euler's series that satisfies x 2 y -y + x = 0. One can see that (2) is satisfied by the 2-dimensional Euler's series F 2 , the quotient of the additive group R 2 by (2πZ) 2 , and set

(x) = n1,n2≥0 (n 1 + n 2 )! x n1+1 1 x n2+1 2 . 3.1 -Let T 2 = R 2 /(2πZ)
D = {(d 1 , d 2 ) ∈ (0, 2π) 2 : |d 1 -d 2 | < π} , S = {d ∈ T 2 : d ∈ [0, 2π] 2 \ D} . (6) 
Given d ∈ D and λ > 0, there exist θ ∈ R 2 >0 and δ > 0 such that |1 -

ξ 1 -ξ 2 | ≥ δ (λ + |ξ|) for all ξ = (ξ 1 , ξ 2 ) ∈ S d (θ). Consequently, F ∈ C{x} d 1 if, and only if, d ∈ D. Let {j, k} = {1, 2}, d = (d 1 , d 2 ) ∈ D, and define α j = max(0, d k -π), β j = min(2π, d k + π). Since β j > α j + π and d k ∈ (α j , α j + π], one can choose 0 in such a way that, letting d - j = α j + and d + j = β j -, one has d k ∈ (d - j , d - j + π) ⊂ (d - j , d + j ). Thus, if U = (d 1 -, d 1 + ) × (d - 2 , d + 2 ) ∪ (d - 1 , d + 1 ) × (d 2 -, d 2 + ) ,
then U ⊂ D and F ∈ C{x} δ 1 for δ ∈ U . Let F be the Borel-sum of F associated with a given δ ∈ U . It follows that F ∈ A 1 (S) with S = S 1 × S 2 or S = S 1 × S 2 , where

S j = {x j ∈ C * : arg(x j ) ∈ (d - j - π 2 , d + j + π 2 )} , S k = {x k ∈ C * : arg(x k ) ∈ (d k -- π 2 , d k + + π 2 } . (7)
Theorem 3.1 Let T j = {z ∈ S j : ze 2πi ∈ S j } for j = 1 and 2. The following relations hold respectively for x ∈ S 1 × T 2 and x ∈ T 1 × S 2 :

F (x 1 , x 2 e 2πi ) -F (x 1 , x 2 ) = 2πi x 1 x 2 x 1 -x 2 e -1/x2 , F (x 1 e 2πi , x 2 ) -F (x 1 , x 2 ) = 2πi x 1 x 2 x 2 -x 1 e -1/x1 . ( 8 
)
3.2 -The above series F can be also expressed as follows:

F (x) = n≥0 n! n k=0 x k+1 1 x n-k+1 2 = x 1 x 2 x 1 -x 2 n≥0 n! (x n+1 1 -x n+1 2 ) = x 1 x 2 x 1 -x 2 Ê(x 1 ) -Ê(x 2 ) . (9) 
In other words, if we denote by ∆ the operator defined by the following relation:

∆f (x 1 , x 2 ) = f (x 1 ) -f (x 2 ) x 1 -x 2 if x 1 = x 2 , ∆f (x 1 , x 2 ) = f (x 1 ) if x 1 = x 2 , (10) 
then F (x) = x 1 x 2 ∆f (x). One remembers that the Euler series Ê is Borel-summable in all direction excepted in R >0 , and its Borel-sum in R -can be continued to be analytic in S π (3π); see [START_REF] Ramis | Gevrey asymptotics and applications to holomorphic ordinary differential equations[END_REF].

Theorem 3.2 Let d = (d 1 , d 2 ) ∈ T 2 \ S,
conserve S j and S k as in [START_REF] Chen | Summability of Formal Solutions of Singular PDEs by means of two-dimensional Borel-Laplace method[END_REF], and consider the Borel-sum F of

F in d. Then F (x) = x 1 x 2 ∆E(x) for all x = (x 1 , x 2 ) ∈ (S 1 × S 2 ) ∪ (S 1 × S 2 )
, where ∆E is obtained from (10) by replacing f with the Borel-sum E of Ê in S π (3π).

Summability of formal solutions of linear or non-linear PDEs

Let D be as in [START_REF] Chen | On the Borel-Laplace summation of power series of two variables[END_REF], and choose arg t ∈ [0, 2π) for any t ∈ C * ; given (β, γ 1 , γ 2 ) ∈ C * 3 , define

D β;γ1,γ2 = d ∈ R 2 : d + (arg γ 1 β , arg γ 2 β ) ∈ T 2 \ S .
3.1 -In order to generalize the study of (2), consider the following linear PDE:

c 1 (x) x 2 1 ∂ x1 u + c 2 (x) x 2 2 ∂ x2 u -b(x) u + a(x) = 0 , (11) 
where a, b, c 1 and c 2 are some given functions of the variable x = (x 1 , x 2 ). 

b(0) -c 1 (0) ξ 1 -c 2 (0) ξ 2 ) U = A -B * U + C 1 * (ξ 1 U ) + C 2 * (ξ 2 U ) ,
in which A, B, C 1 and C 2 are linked with the Borel-transforms of a, b, c 1 and c 2 . Let A d 1 {z} be as in [START_REF] Chen | Formal solutions for first-order nonlinear PDEs with irregular singularity[END_REF], and consider the following Cauchy problem:

-

c 1 (x) x 2 1 ∂ x1 u + c 2 (x) x 2 2 ∂ x2 u -G(x, u) = 0, u(0) = 0 . (12) 
In what follows, we will assume the following hypothesis for ( 12 

t∂ t u = c 1 (x)x 2 1 ∂ x1 u + c 2 (x)
x 2 2 ∂ x2 u -G(x, t, u, δ x u), u(x, 0) = 0, [START_REF] Majima | Asymptotic analysis for integrable connections with irregular singular points[END_REF] which is a special case of (1). We will conserve Hypothesis (H1) made in §4.2 and replace (H2) and (H3) with the following ones: 

  S = S d R (θ), and consider Ẽ1 (S). By generalizing the Nagumo norm considered in [11, Definition 4.2], one can get a family of Banach spaces ( Ẽ1;µ,n (S),

Theorem 4 . 1

 41 Let d ∈ R 2 , and consider (11) with a, b, c 1 and c 2 ∈ A d 1 . If b(0) c 1 (0) c 2 (0) = 0 and d ∈ D b(0);c1(0),c2(0) , then (11) has a unique solution u ∈ A d 1 . To prove Theorem 4.1, one can apply Borel transform to rewrite (11) into a convolution equation: (

  ): (H1) d = (d 1 , d 2 ) ∈ R 2 , c j ∈ A d 1 with c j (0) = γ j = 0 for j = 1 and 2. (H2) G ∈ A d 1 {u}, G(0, 0) = 0 and ∂ u G(0, 0) = β = 0. (H3) The relation d ∈ D β;γ1,γ2 holds.

Theorem 4 . 2 3 . 3 -

 4233 Under (H1), (H2) and (H3), the Cauchy problem in (12) admits a unique solution u ∈ A d 1 . Let δ x = (x 1 ∂ x1 , x 2 ∂ x2 ) be a Euler vector fields, and consider the following Cauchy problem:

(Theorem 4 . 3

 43 H2a) G ∈ A d 1 {t, u, v 1 , v 2 }, G(x, 0 4 ) = ∂ v1 G(x, 0 4 ) = ∂ v2 G(x, 0 4 ) = 0 and ∂ u G(0 6 ) = β / ∈ Z <0 . (H3a) The relation d ∈ D 1;c1(0),c2(0) ∩ ∩ ∈N * D β+ ;c1(0),c2(0) holds. Under (H1), (H2a) and (H3a), the Cauchy problem in (13) admits a unique solution u ∈ A d 1 {t}, that is to say, there exist a unique sequence of functions u ∈ A d 1 such that the power seriesu(x, t) = ∞ =1 u (x) t(14)converges into a solution of (13) in a domain of the form S d R (θ) × D(0; T ), where θ > (π, π).
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