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Abstract

We analyze the interaction between self-insurance and market insurance when

accident losses are multivalued. We show that self-insurance and market insur-

ance may be complementary when self-insurance expenses do not affect much

the probability distribution of large losses and the loading factor is high. This

contrasts sharply with the conclusion of Ehrlich and Becker (1972) who estab-

lish the substitutability between self-insurance and market insurance when the

cost of an accident is single-valued. The results are derived theoretically and

illustrated through numerical simulations.

Keywords: insurance, self-insurance, contracts.

JEL Classification Numbers: D86, G22, D80.

*INRAE and CREST- Ecole Polytechnique. E-mail: bourgeon@agroparistech.fr
�CREST- Ecole Polytechnique. E-mail: pierre.picard@polytechnique.edu.

1



1 Introduction

The article of Ehrlich and Becker (1972) on risk prevention and insurance is a widely

recognized cornerstone of insurance economic theory. Ehrlich and Becker (1972) distin-

guish self-insurance from self-protection. Self-insurance (or loss reduction) consists in

making preventive expenses that decrease the damages caused by accidents that may

occur, while self-protection (or loss prevention) refers to costly measures that reduce

the probability of such accidents. They show that self-insurance and market insurance

are substitutable, while self-protection and market insurance may be complementary.

In concrete terms, when a decrease in the price of market insurance makes it more at-

tractive, individuals reduce self-insurance and they may increase self-protection. The

objective of this paper is to reconsider this alleged substitutability between market

insurance and self-insurance and to highlight its lack of robustness. As illustrated by

debates on the insurability of climate-related risks in the global warming context, this

is not a purely academic issue: when the price of market insurance is affected by insur-

ers’ costs and by taxes and subsidies, while self-insurance exerts externalities on social

welfare, their interaction is often a crucial element that should be taken into account

in government decision-making.

Ehrlich and Becker (1972) analyze self-insurance in a two-state model, in which a

risk-averse individual faces the risk of an accident that may occur with a given probabil-

ity. He may protect himself against the potential damages of such an accident, through

market insurance or self-insurance. Both risk-management tools consist in substituting

wealth from the no-accident state to the accident state. In the case of market insur-

ance, this substitution of wealth between states of nature goes through the payment of

an insurance premium paid in both states in compensation for an indemnity larger the

premium received in the accident state. In the case of self-insurance, preventive ex-

penses also borne in both states allow the individual to reduce the damages that would

result from an accident. In such a setting, it comes as no surprise that an increase

in the price of market insurance leads the individual to rely more on self-insurance

through a standard effect of relative prices on customer’s optimal choices.

In what follows, we show that this substitutability between market insurance and

self-insurance does not extend beyond the two-state model considered by Ehrlich and

Becker (1972). Indeed, consider the case where the insurance contract is a straight

deductible, i.e. an insurance policy that covers the difference (if positive) between

the incurred damages and the deductible. We know from Arrow (1971) that such a

contract is optimal when the price of insurance is affected by a constant loading factor.



To fix ideas, assume that the losses incurred in case of an accident may be small,

medium or large, and that the loading factor is so large that only large losses are

covered in an optimal contract (i.e. the deductible is larger than medium-sized losses).

Then, by a standard price effect, a decrease in the loading factor leads the individual

to purchase more insurance, i.e., to choose a contract with a lower deductible: he

receives a larger compensation for large losses, while, if the change in the loading

remains small, there is still no compensation for small or medium-sized losses. Assume

furthermore that self-insurance shifts probability weights from medium-sized losses

to low-sized losses, without significant effect on the probability of large losses. In

that case, the improvement in the coverage of large losses makes the individual more

willing to self-insure. This is because these expenses are paid in all possible states,

including the worst case scenario with large losses, which is now less painful because

of the better insurance coverage. We will show that the complementarity between

market insurance and self-insurance emerges in such a case: a decrease in the loading

factor (i.e. a cheaper insurance coverage) leads the individual to purchase more market

insurance, by a standard price effect, and this improvement in the insurance coverage

(that boils down to increasing the worst-case bound of final wealth in the above three-

state example) stimulates the individual’s willingness to pay for self-insurance. A

decrease in the loading factor also reduces the savings in insurance premium generated

by self-insurance. This countervailing insurance premium effect is dominated by the

insurance coverage effect when self-insurance does not strongly affect the probability

of incurring the largest losses and the loading factor is large. On the contrary, market

insurance and self-insurance may be substitutable when insurance is available at a

lower price, with coverage of a wide spectrum of possible losses, be they small or large,

because the insurance premium effect dominates the insurance coverage effect in that

case.

One of the main advantages of the two-state setup of Ehrlich and Becker (1972) is

the clear distinction between self-protection and self-insurance. In doing so, the speci-

ficity of the interaction between market insurance and each of these risk-management

behaviors is highlighted in a very useful way. In more general terms, we may consider

that these risk-management expenses are translated into a first-order dominance neg-

ative shift in the probability distribution of possible losses. This is pure self-insurance

if the probability mass of the no-loss state is unaffected, while pure self-protection

corresponds to the case where this probability mass is increased, with an unchanged

probability distribution of losses conditionally on a loss occurring. In practice, both

forms of risk prevention frequently interact, and we will show that our conclusion about
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the complementarity between self-insurance and market insurance is robust to the co-

existence of self-insurance and self-protection. We will also show that the risk exposure

with self-insurance (possibly coexisting with self-protection) can be deduced from ap-

plying a deterministic function (called the residual loss function) to the random losses

that would be incurred in the absence of self-insurance. A simple condition on the

residual loss function will allow us to characterize the case where self-insurance and

market insurance are complements.

Very few articles have studied self-insurance with multiple loss levels. They show

that the comparative static results obtained in the two-state case are not necessar-

ily valid in the multi-state case. Indeed, in the two-state case, self-insurance shares

the same properties as market insurance because loss reduction efforts and insurance

coverage produce similar hedging benefits by substituting wealth from the no-accident

state to the accident state. In the multi-state case, self-insurance measures may affect

the probability distribution of losses very differently, depending on the technology used

and the nature of the risk. Hence, the protection offered by self-insurance can be very

different from the coverage brought about by the optimal insurance contract. The

impacts of these differences on self-insurance choices are illustrated by Hiebert (1989),

who considers variations in risk aversion, and by Lee (2010) who considers wealth ef-

fects. Other studies kept the assumption of a single-valued self-insurable loss, and

focused attention on the effect of an additional source of uncertainty, either under the

form of non-reliable self-insurance (Briys et al., 1991) or by adding an additional in-

dependent background risk to the self-insurance problem (Mahul, 1997). For our part,

we consider a general setup with a continuum of losses and we show that self-insurance

and market insurance may be complementary for high loading rates, and substitutable

for low loading rates, due to the balance between the insurance-coverage effect and the

insurance-premium effect that tips in different directions in each case.

The economic policy dimension of this issue is particularly relevant in several areas,

and it is worth emphasizing it. Of particular importance is the case of agriculture, since

farmers and other agricultural businesses face significant risks from natural hazards,

pests and other unforeseen events. The high transaction costs, strengthened by the

insurers’ capital costs in the climate change context, make crop insurance expensive,

and there is intense debate about whether and to what extent crop insurance should

be subsidized.1 Some of these debates, starting in the 1990’s, centered on whether

crop insurance could be a substitute to pesticides, fertilizers, crop specialization or

1See for instance Gao (2023) in the case of the US crop insurance program.
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irrigation, viewed as alternative ways to protect farmers against risks affecting their

crop.2 This line of research, particularly Weber et al. (2016), suggests that, in practice,

expanded insurance coverage has little effect on technologies used by farmers. Our

approach is coherent with these findings: pesticides and other risk-reducing devices

may be considered as self-insurance, and there is no reason to think that they should

be substitutable to insurance. In a more theory-oriented perspective and in line with

recent works in ecology, Quaas and Baumgärtner (2008) consider the contribution of

farmers to ecosystem quality and biodiversity as self-insurance.3 They develop a model

inspired from Ehrlich and Becker (1972) in which this form of self-insurance (which

they call “natural insurance”) and market insurance are substitutes, with the ultimate

conclusion that improving access to market insurance leads to a lower level of ecosystem

quality. Our model takes a different view on this issue, by putting into question the

alleged substitutability between these two forms of insurance.

Beyond the case of crop insurance, the insurability of large risks is increasingly

becoming a major concern due to the high capital costs required to cover risks with a

systemic dimension (see Hartwig et al., 2020, in the case of economic losses caused by

pandemics). The question of whether or not the government should provide funding

for individuals and firms to buy insurance in those cases, along with implementing

policies such as insurance mandates and post-disaster relief programs, is becoming

increasingly important (see Boomhower et al., 2023, for an analysis of these issues in

the case of wildfire insurance). In such cases, understanding how government funding

affects self-insurance choices is of major importance.

The rest of the paper is organized as follows: in Section 2, we describe our setup.

Section 3 studies the interaction between market insurance and self-insurance in the

constant absolute risk aversion (CARA) case. In Section 4, we extend our results to

the case where the individual is prudent, without postulating constant absolute risk

aversion. The last section wraps up. All proofs are in the Appendix.

2See Horowitz and Lichtenberg (1993), Smith and Goodwin (1996), Wu (1999), and more recently
Weber et al. (2016) for a study with US data, and Chakir and Hardelin (2014) and Enjolras and
Aubert (2020) for studies with French data.

3The effect of biodiversity on the productivity of ecosystems is a major field of research in ecology
and theoretical biology, the main conclusion being that species richness favors the intertemporal
stability of ecosystems. Biodiversity is viewed as a “natural insurance” device that acts either by
guaranteeing that some species maintains when other fails as in portfolio management, or by creating
asynchronicity between fluctuations in the development of species when the ecosystem may be affected
by environmental shocks such as heatwaves or rain deficit. See Yachi and Loreau (1999), Cottingham
et al. (2001) and Shanafelt et al. (2015) for illustrative examples of this line of research.

4



2 The model

Consider a risk-averse individual (household or business) who has initial wealth w and

may incur a loss x ∈ (0, x̄] in the case of an accident. Should an accident occur, the

extent of the loss depends on the individual’s behavior: he can reduce it by taking

appropriate self-insurance measures. We denote by a ≥ 0 the corresponding expendi-

tures and by F (x|a) the resulting cumulative probability distribution function of the

loss x. There is a (possibly zero) mass of probability F (0|a) = F̄ (a) for the no-accident

state, and F (x|a) is differentiable with respect to x when x > 0. Here and in what

follows subscripts refer to partial derivatives, and we denote f(x|a) = Fx(x|a). Hence,
f(x|a)/[1 − F̄ (a)] is the density of the loss, conditionally on an accident occurring.

We assume that increasing a improves this distribution in the sense of the First-Order

Stochastic Dominance (FOSD), i.e. that Fa(x|a) ≥ 0 with strict inequalities in a sub-

set of (0, x̄) of positive measure. We also assume Faa(x|a) ≤ 0, which corresponds

to the decreasing marginal efficiency of self-insurance. The case F (0|a) = F̄ ≥ 0 for

all a, a constant, corresponds to the “pure” self-insurance case as defined by Ehrlich

and Becker (1972). It means that the probability of a loss occurring, 1− F̄ , does not

depend on a. In what follows, we assume that F (0|a) may depend on a (i.e. F̄ (a)

with F̄ ′(a) > 0 for some a), a setting in which self-insurance measures also affect

self-protection.4

We assume dE[x|a]/da < −1 at a = 0, and furthermore we have d2E[x|a]/da2 =

−
� x̄

0

Faa(x|a)dx ≥ 0: hence, an increase in self-insurance expenses reduces the expected

loss by an amount larger than its expected cost (at least when a is small), but with a

decreasing marginal efficiency. We also assume that a is verifiable, i.e., there is no moral

hazard impeding the contractual relationship between the insurer and the insured.

The policyholder’s preferences are characterized by Von Neumann-Morgenstern util-

ity function u(wf ) that satisfies u
′ > 0, u′′ < 0 at any final wealth level wf . The market

insurance contract specifies a premium P paid at the outset, and an indemnity I(x) for

all x ∈ [0, x̄], and thus wf = w−x−P −a+I(x). Assuming that the insurance market

4For the sake of notational simplicity, we assume that the loss upper limit x̄ does not depend on
a, and that f(x|a) is twice-differentiable almost everywhere in R2

+ with f(x̄|a) = 0. We consider the
case where x̄ may depend on a in Section 3.4. We also assume that x 7→ Fa(x|a) is continuous in R⋆

+

(and right continuous at x = 0), for all a ≥ 0.
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is competitive, the optimal insurance contract and self-insurance level are solution of

max
I(·),P,a

Eu =

� x̄

0

u(w − x− P − a+ I(x))dF (x|a)

s.t.

P ≥ (1 + σ)

� x̄

0

I(x)dF (x|a),

I(x) ≥ 0 for all x ∈ [0, x̄],

where σ > 0 is the loading factor. We know from Arrow (1971) that, in that case, the

optimal insurance contract entails full coverage over a deductible D > 0, leading to

I(x) = max{0, x−D}. The corresponding insurance premium is given by

P = P̂ (D, a, σ) ≡ (1 + σ)

� x̄

D

(x−D)dF (x|a),

and the individual’s program can be rewritten as

max
a,D

Eu ≡
� D

0

u(w−x−P̂ (D, a, σ)−a)dF (x|a)+[1−F (D|a)]u(w−D−P̂ (D, a, σ)−a).

(1)

Let a⋆(σ) and D⋆(σ) be the optimal solution to this problem when the loading

factor is σ.5 An increase in σ makes insurance more expensive and this reduces the

demand for market insurance under the form of a higher deductible. This direct price

effect may be compensated by a wealth effect when absolute risk aversion changes

with wealth, hence an ambiguous global effect in that case. Furthermore, the change

in the optimal self-insurance expenses a⋆(σ) induced by the increase in σ modifies the

individual’s risk exposure, which also affects the optimal deductibleD⋆(σ). If the direct

price effect dominates the indirect consequences of the wealth effect and of the change

in risk exposure, then D⋆(σ) is an increasing function. In that case, market insurance

and self-insurance are substitutable risk management tools when a⋆(σ) is increasing,

and they are complementary when a⋆(σ) is decreasing.

5In what follows, it is assumed that a⋆(·) and D⋆(·) are continuous functions from R+ to R+. In
full generality, we cannot exclude that a⋆(σ) and/or D⋆(σ) are multivalued for some σ. By a standard
continuity argument of consumer demand theory (see Proposition 3.AA.1 in Mas-Colell et al., 1995),
(a⋆(·), D⋆(·)) would be an upper hemicontinuous correspondence in that case. However, since a⋆(σ)
and D⋆(σ) are uniquely defined when σ is either equal to 0 or large enough, we can conclude that
a⋆(·) and D⋆(·) are continuous functions at least when σ is small or large enough.
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3 Interaction between market insurance and self-

insurance

We will start by focusing attention on the two polar cases that correspond to large

and small values of the loading factor σ, with large and small values of the optimal

deductible D∗(σ), respectively. The case of constant absolute risk aversion will allow

us to show that market insurance and self-insurance may be complementary or sub-

stitutable, according to the value of σ. We then examine the full scope of the loading

factor, i.e. from 0 to the largest value beyond which the individual does not purchase

market insurance, and present conditions that allow for a monotonic deductible and a

bell-shaped (i.e. first increasing and then decreasing) self-insurance expenditure. We

illustrate these theoretical results through simulations before examining a case where

self-insurance and market insurance are substitutable for all values of σ. Finally, our

results will be interpreted in a very intuitive way through the notion of residual loss

function.

3.1 Two polar cases

Let us focus attention on the case where more self-insurance (i.e. an increase in a)

does not affect significantly the probability of incurring the largest losses.6 This is

obviously the case if, for any a, there exists x̂(a) smaller than x̄ such that an increase

in a does not affect F (x|a) when x is in the interval [x̂(a), x̄]. Fig. 1 illustrates this

extreme case: an increase in self-insurance only reduces the probability of incurring

medium-sized losses: an increase in a shifts F (x|a) upwards when x is smaller than

x̂(a), without change for loss levels larger than x̂(a). In what follows, more generally,

the relative weakness of self-insurance in the prevention of the largest risks corresponds

to the case where Fa(x|a) is low (more precisely, smaller than f(x|a)) when x is close

to x̄.

Market insurance is attractive when the loading factor is not too large, and we

denote σ̄ its upward limit, above which the individual does not purchase insurance,

that is σ̄ = sup{σ ∈ R+ | D⋆(σ) < x̄} > 0, with D⋆(σ) increasing when σ is close

6This case is illustrated by Lee (2010) in his study of wealth effects in self-insurance: as he writes,
the construction code may significantly reduce losses resulting from a small earthquake, because design
constraints enable buildings to withstand earthquake forces up to some limit, but a strong earthquake
may destroy all buildings and make these constraints almost useless. Similarly, in ecosystem manage-
ment, preserving biodiversity and adopting less intensive agricultural practices may protect farmers
from short-term droughts, but this would not protect them from the consequences of a catastrophic
long-term drought.
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(a) Density distribution functions

x
0

f(x|0)

x̂(a) x̄

f(x|a)

(b) Cumulative distribution functions

x
0

1

F̄

F (x|a)

F (x|0)

x̄x̂(a)

Figure 1: Shifts in the p.d.f. and in the c.d.f. when self-insurance increases from 0 to
a > 0.

to σ̄ and D⋆(σ̄) = x̄. We also have D⋆(0) = 0 because full coverage is optimal when

insurance is purchased at actuarial price, and D⋆(σ) > 0 when σ > 0, which implies

that D⋆(σ) is increasing when σ is small. In other words, at least when σ is close to 0

and σ̄, the direct price effect on D∗(σ) dominates the indirect consequences of changes

in wealth and risk exposure when σ changes. For intermediate values of σ, D∗(σ) may

not be monotonic, although we may find assumptions under which this will be the

case (see Section 3.2). This section restricts attention to the case of constant absolute

risk aversion (i.e. u is a CARA function) where the wealth effect on optimal choices

vanishes. The more general case of a prudent individual will be considered in Section 4.

Proposition 1 shows that market insurance and self-insurance are complementary when

self-insurance does not affect significantly the probability of incurring the largest-size

losses and the loading factor σ is large enough.

Proposition 1 Assume that, for all a > 0, there exists x̂(a) smaller than x̄ such that

Fa(x|a) < f(x|a) if x ∈ [x̂(a), x̄]. If the individual displays constant absolute risk

aversion, then D⋆(σ) is increasing and a⋆(σ) is decreasing when σ is close to σ̄.

The condition on the distribution of losses in Proposition 1 stipulates that self-

insurance does not strongly affect the likelihood of the largest possible loss values.

More precisely, let us define the “global cost of risk” as the sum of the loss and the

self-insurance expenses, z ≡ x + a, which is distributed according to c.d.f. G(z|a) =
F (z − a|a), with G(a|a) = F̄ , over the support [a, a + x̄]. We thus have Ga(z|a) =

Fa(z−a|a)− f(z−a|a) and we will say that self-insurance expenses a are locally weak
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(resp. strong) at loss level x = x0 when Ga(x0 + a|a) is negative (positive). The weak

or strong power of self-insurance thus characterizes its marginal efficiency depending

on the level of loss considered. In words, self-insurance is strong at loss level x0 ∈ (0, x̄]

when increasing a reduces the probability that the global cost of risk will be larger

than x0 + a, and it is locally weak otherwise. Clearly self-insurance is locally weak

in the neighborhood of x̄ in the extreme case described in Fig. 1, but of course, the

validity of Proposition 1 is broader.

In order to intuitively interpret Proposition 1, consider how market insurance affects

the individual’s willingness to pay for self-insurance. Denote by V̄ his expected utility

in a status quo situation where he self-insures for an amount a while the deductible

is D, and consider the supplementary self-insurance spending δ that the individual

would be willing to make (for D unchanged) to reduce his risk exposure from F (·|a)
to F (·|a+ ε), ε > 0. In other words, δ ≡ δ(ε,D) is defined by

V̄ =

� D

0

u(w − x− P̂ (D, a+ ε, σ)− a− δ)dF (x|a+ ε)

+ [1− F (D, a+ ε)]u(w −D − P̂ (D, a+ ε, σ)− a− δ),

with δ(0, D) = 0. Differentiating V̄ with respect to ε and δ yields the marginal will-

ingness to pay for an improvement in the risk exposure:

∂δ(ε,D)

∂ε

∣∣∣∣
ε=0

=

� D

0
[u(w − x− P − a)− u(w −D − P − a)]dFa(x|a)

∂Eu/∂w
(2)

− ∂P̂ (D, a, σ)

∂a
,

where ∂Eu/∂w > 0 and P = P̂ (D, a, σ) with

∂P̂ (D, a, σ)

∂a
= −(1 + σ)

� x̄

D

Fa(x|a)dx ≤ 0, (3)

since Fa(x|a) ≥ 0. Equation (2) is the sum of two positive terms that correspond to the

benefits of an increase in self-insurance for the insured. The first term is the monetary

equivalent of the expected utility gain that results from the downward shift in losses,

for a given insurance premium. It corresponds to the previously mentioned insurance

coverage effect. This first term cancels when D = 0 and using u′ > 0 and Fa(x|a) ≥ 0

shows that it is positive when D > 0. The second term in (3) is the decrease in the

insurance premium due to the decreased probability of losses above the deductible: it

9



is the insurance premium effect.

Under CARA preferences, the marginal willingness to pay is not affected by wealth

effects. This makes the analysis of the insurance coverage effect much easier. To

start with, consider the case illustrated in Fig. 1 where Fa(D|a) = 0 when D is large

enough but lower than x̄, a circumstance under which the insurance premium effect

fully vanishes. Using (2) and integrating by parts give

∂2δ(ε,D)

∂ε∂D

∣∣∣∣
ε=0

= −
[1− F (D|a)]

[
e−αDFa(0|a) +

� D

0
e−α(D−x)Fa(x|a)dx

]
[� D

0
e−α(D−x)dF (x|a) + 1− F (D|a)

]2 < 0,

where α is the index of absolute risk aversion. In a nutshell, in the case of Fig. 1,

a smaller deductible increases the willingness to pay for a favorable shift of F (·|a)
corresponding to a unit increase in a. In other words, in this case, because of the

insurance coverage effect, the larger the deductible, the lower the marginal willingness

to pay for self-insurance. This remains true if Fa(x|a) is positive but not too large

when x is close to x̄, a case in which the insurance premium effect is positive but small.

The next Proposition considers the other polar case and shows that market-insurance

and self-insurance are substitutable when the loading factor is small.

Proposition 2 If the individual displays constant absolute risk aversion, D⋆(σ) and

a⋆(σ) are increasing when σ is close to zero.

The intuition of Proposition 2 is the following. We have D⋆(0) = 0 and D⋆(σ) > 0

when σ > 0, hence D⋆(σ) is locally increasing when σ is small. Since the policyholder

faces no risk when σ = 0, his self-insurance level is the same as if he were risk-neutral,

i.e. a⋆(0) = aN , where aN solves ∂E[x|aN ]/∂a = −1. In other words, aN equalizes the

marginal decrease in expected loss with the marginal cost of self-insurance. When σ is

close to 0, D⋆(σ) is also close to zero. In that case, the individual is almost fully covered

and reducing the insurance premium is the main reason for increasing self-insurance.

In other words, the insurance premium effect dominates the insurance coverage effect,

and consequently an increase in σ triggers an increase in a⋆(σ) above aN because of

this cost-cutting objective. This mechanism may be related to the marginal willingness

to pay for self insurance, since

∂δ(ε,D)

∂ε

∣∣∣∣
ε=0

≃ − ∂P̂ (D, a, σ)

∂a

∣∣∣∣∣
D=0,a=aN

= 1 + σ,
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when D is close to 0. Hence, at the first order, an increase in σ in the neighborhood

of 0 leads to an increase in the marginal willingness to pay for self-insurance from 1

(its equilibrium value when D = 0 and a = aN) to 1 + σ. This leads to simultaneous

increases in D⋆(σ) and a⋆(σ) when σ increases, which corresponds to the the sub-

stitutability between market insurance and self-insurance established in Proposition

2.

3.2 Full scope for the loading factor

The next two propositions provide sufficient conditions on the distribution of losses for

D⋆(σ) to be increasing and a⋆(σ) to be bell-shaped when σ goes from 0 to σ̄.

Proposition 3 Assume faa(x|a)− fax(x|a) ≥ 0 for all x such that fa(x|a) < 0. Then,

if the individual displays constant absolute risk aversion, D⋆(σ) is increasing for all

σ ∈ [0, σ̄].

Proposition 3 gives a sufficient condition for the deductible to increase with the

loading factor σ in the CARA case. We know that this property is true in the pure

market insurance problem without self-insurance. However, it is also known that, in

this problem, a change in the probability distribution of losses affects the optimal de-

ductible in an ambiguous way (see, e.g., Briys and Schlesinger, 1990). Here, when σ

changes, in addition to the standard price effect on insurance demand, the optimal

deductible D⋆(σ) is also affected by the change in the risk exposure induced by the

variation in the optimal self-insurance level a⋆(σ). It is shown in the proof of the propo-

sition that the price effect dominates, i.e. that D⋆(σ) is increasing for all σ ∈ [0, σ̄],

when faa(x|a) > fax(x|a) for all x such that fa(x|a) < 0. This condition corresponds

to a limit on the marginal efficiency of self-insurance, in the sense that it is more and

more costly to reduce the probability of incurring large losses (i.e., loss values x such

that fa(x|a) < 0) when a is increasing.7 If this condition were not satisfied, then an

increase in a∗(σ) induced by a decrease in σ could reduce the risk exposure so strongly

7To be more specific, consider a status quo situation where a = a0 and x = x0 with fa(x0|a0) < 0.
Hence, −fa(x0|a0) is a measure of the marginal efficiency of self-insurance on losses around x0 (whose
probability decreases when self-insurance increases). Starting from this status quo, consider a small
increase in self-insurance da > 0 compensated by a decrease in the loss level dx = −da so that the
global cost x+ a = x0 + a0 is unchanged. This compensated increase in self-insurance yields

dfa = fax(x0|a0)dx+ faa(x0|a0)da = [faa(x0|a0)− fax(x0|a0)]da > 0,

which means that, for a global cost x + a = x0 + a0, the marginal efficiency of self-insurance is
decreasing. One may check that the condition is satisfied in the simulation presented in section 3.3.
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that the insured would choose a higher deductible. The condition prevents to have

such a Giffen effect on market-insurance.

Proposition 4 Assume that (i) C(a) ≡ {x|Fa(x|a) − f(x|a) ≥ 0} is a convex subset

of [0, x̄), and (ii) C(a′) ⊆ C(a) for all relevant (a, a′), a < a′. Then, if D⋆(σ) is an

increasing function and if the individual displays constant absolute risk aversion, a⋆(σ)

is a unimodal function when σ ∈ [0, σ̄].

As in the previous propositions, the results are obtained under constant absolute

risk aversion. Assumption (i) introduces C(a), the subset of [0, x̄) in which Fa(x|a)
is larger or equal to f(x|a), i.e. the subset of losses where self-insurance is locally

strong. As in Proposition 1, C(a) does not include x̄ for all relevant values of a. More

restrictively, according to assumptions (i) and (ii), C(a) is a sub-interval of [0, x̄) that

shrinks when a increases. In particular, C(a′) ⊆ C(a) when a′ > a conveys the idea

that the marginal efficiency of self-insurance is decreasing when a is increasing.8

We already know from Propositions 1 and 2 that a⋆(σ) is increasing when σ is close

to 0, and that it is decreasing when σ is close to σ̄ if Fa(x|a) < f(x|a) when x is close

to its upper limit x̄. Under the conditions postulated in Propositions 3 and 4, a⋆(σ)

is bell-shaped over the whole interval [0, σ̄]. In other words, because of the interaction

between the insurance premium effect and the insurance coverage effect, there exists

σ̂ ∈ (0, σ̄) such that a⋆(σ) is monotonically increasing when σ < σ̂ and monotonically

decreasing when σ > σ̂. Firstly, for a given deductible, the larger the loading factor

σ, the larger the decrease in the insurance premium induced by an increase in self-

insurance. This positive effect of an increase in σ on a⋆(σ) corresponds to the risk

premium effect. However, and this is the channel of the insurance coverage effect,

the increase in σ also triggers an increase in the optimal deductible D∗(σ). As we

have seen above, the increase in the deductible reduces the marginal willingness to

pay for self-insurance, hence a countervailing effect of the increase of the deductible

on the optimal self-insurance. This increase simultaneously reduces the intensity of

the insurance premium effect and triggers the insurance coverage effect. When σ is

larger than σ̂, the balance tips in favor of reducing self-insurance expenses when the

deductible increases.

8C(a) is a sub-interval of [0, x̄) if Fa(x|a) − f(x|a) is quasi-convex in x. As shown in the proof of
Proposition 3, the condition postulated in this proposition ensures that this function is non-increasing
w.r.t. a, and thus C(a′) ⊆ C(a) if a′ > a.
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3.3 Illustration

For illustrative purposes, consider the case where f(x|a) = (1− F̄ )h(x|a) where F̄ > 0

is a constant (pure self-insurance), and

h(x|a) = 1

x̄

(
1−

√
a

ā

3
√
3

2
(2x/x̂− 1)(1− (2x/x̂− 1)2)1{x∈[0,x̂]}

)
,

with a ∈ [0, ā] and x̂ ≤ x̄. Hence, h(x|a) is the conditional density of the loss, with a

sinusoidal shape when x ≤ x̂, and it is flat above x̂, with h(x|a) = 1/x̄ if x ∈ [x̂, x̄),

h(x|a) > 1/x̄ if x ∈ (0, x̂/2) and h(x|a) < 1/x̄ if x ∈ (x̂/2, x̂). Function h(x|a) is

illustrated by Fig. 2a in the cases a = ā (the blue curve), and a = ā/2 (the red curve),

with ā = 10, x̂ = 70 and x̄ = 100.9 Fig. 2b depicts the c.d.f. of the loss when a is at

its maximum ā (the blue curve) and at its minimum a = 0 (the red line).

(a) h(x|a) with a = ā and a = ā/2

20 40 60 80 100
0

0.5

1

1.5

2
·10−2 (b)

� x

0
h(u|a)du with a = ā and a = 0

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Figure 2: Conditional density and probability distributions of the loss (x̄ = 100, ā = 10
and x̂ = 70).

The parameter values used in the simulations are presented in Table 1,10 and under

these assumptions, we have computed the optimal deductible and self-insurance levels

when the loading factor σ goes from 0 to 150%.

The results are summarized in Table 2 and illustrated in Fig. 3, 4 and 5, with

9Conditional density h(x|a) reaches a maximum when x = x̂
(√

3− 1
)
/2
√
3 and a minimum when

x = x̂
(√

3 + 1
)
/2
√
3.

10Normalization ā = 10 yields aN = 1.152. Furthermore, assuming F̄ = 0.20 means that there is a
80% chance of incurring a loss, which would be uniformly distributed over [0, x̄] if the individual does
not take any self-insurance measure. The value of the initial wealth level w is only relevant to derive
the expected utility level reached in each case.
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Table 1: Calibration values

α w F̄ x̄ ā x̂ aN

0.05 20 0.2 100 10 70 1.152

Parameters: α is the ARA coefficient, w the
initial wealth, F̄ the probability that no acci-
dent occurs, x̄ the maximal loss, ā the maxi-
mum self-insurance level and x̂ the maximum
loss affected by self-insurance measures. aN is
the self-insurance level under risk neutrality.

Table 2: Simulation results

σ (%) D⋆ a⋆ P̂ Eu E[x|a⋆] σx(a
⋆)

0 0.000 1.152 37.695 0.000 47.119 30.191
10 9.249 1.389 33.506 −0.474 46.837 30.302
20 16.734 1.601 30.321 −0.926 46.604 30.392
30 22.816 1.753 28.018 −1.358 46.446 30.452
40 27.976 1.836 26.267 −1.772 46.363 30.483
50 32.553 1.850 24.819 −2.172 46.350 30.488
60 36.774 1.797 23.500 −2.556 46.403 30.468
70 40.801 1.682 22.186 −2.923 46.520 30.424
80 44.742 1.514 20.786 −3.271 46.698 30.356
90 48.650 1.308 19.248 −3.596 46.931 30.265
100 52.508 1.088 17.581 −3.894 47.200 30.158
110 56.227 0.882 15.860 −4.163 47.480 30.043
120 59.694 0.709 14.196 −4.403 47.741 29.933
130 62.840 0.574 12.669 −4.614 47.966 29.836
140 65.655 0.474 11.316 −4.799 48.152 29.755
150 68.163 0.401 10.135 −4.962 48.301 29.689

Simulation results under parameter values given Table 1. Eu is normal-
ized to 0 for σ = 0. The last two columns E[x|a⋆] and σx(a

⋆) correspond
to the expected loss and the standard deviation of the loss, respectively,
conditional to the occurrence of an accident.
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the loading factor (in percentage) on the horizontal axis.11 A fair premium (σ = 0)

leads to a complete insurance coverage (i.e. D = 0) with self-insurance expenses

a∗(0) = aN = 1.152. As the loading factor increases, the optimal deductible D∗(σ)

increases, while the insurance premium and the individual’s expected utility decrease.12

Their paths are given Fig. 3a, 4a and 4b, respectively. Optimal self-insurance

a∗(σ) rises at first to reach 1.850 when σ = 50%, and then decreases.13 Hence market

insurance and self-insurance are substitutable when σ is smaller than 50%, and they

are complementary for larger values of the loading factor.

(a) Deductible

20 40 60 80 100 120 140
0

20

40

60

(b) Self-insurance

20 40 60 80 100 120 140

0.5

1

1.5

Figure 3: Deductible and self-insurance as functions of the loading factor.

The non-monotonic variations of the self-insurance expenses result in non-monotonic

(and opposite) variations of the expected value E[x|a⋆(σ)] and standard deviation

σx(a
⋆(σ)) of the loss as illustrated in Fig. 5a and 5b, respectively.

3.4 Large-risk self-insurance

So far, we have presented conditions on the probability distribution of the loss that

lead to the complementarity between self-insurance and market insurance, at least for

high values of the loading factor. We believe that these conditions are representative

of many real situations, but this obviously does not mean that strict substitutability

11The simulations were performed with Mathematica.
12The monotonic decrease in the insurance premium P when σ is increasing is a consequence of the

high value of the price-elasticity of insurance demand when α = 0.05. A larger index of absolute risk
aversion would correspond to a lower price-elasticity, and the relationship between P and σ would not
be monotonic in that case.

13One can easily verify that the conditions of Proposition 4 hold, i.e. that C(a) ≡ {x|Fa(x|a) −
f(x|a) ≥ 0} is an interval that shrinks when a varies from 0.4 to 2.
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(a) Insurance premium
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(b) Expected utility
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Figure 4: Premium and expected utility as functions of the loading factor.

(a) Expected loss
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(b) Standard deviation of the loss
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Figure 5: Expected value and standard deviation of the loss as functions of the loading
factor.
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is not possible in particular situations. Hence, for the sake of completeness, we now

present conditions that make Ehrlich and Becker (1972)’s substitutability result be-

tween market and self-insurance valid in a continuum-of-loss framework. As shown in

Proposition 5, this is the case if self-insurance is locally strong in the upper tier of

losses.

Proposition 5 Assume that C(a) ≡ {x|Fa(x|a)− f(x|a) ≥ 0} = [x̃(a), x̄] with x̃′(a) ≥
0. Then, if D⋆(σ) is an increasing function and if the individual displays constant

absolute risk aversion, market insurance and self-insurance are substitutes for all σ ∈
[0, σ̄].

Under the conditions of Proposition 5, the set of loss levels for which self-insurance

is locally strong, C(a), is an interval that includes the largest losses for all a, i.e.

losses close to x̄, contrary to Propositions 1 and 4. The condition x̃′(a) ≥ 0 indicates

that C(a) shrinks when a increases, due to a decreasing marginal efficiency of self-

insurance. An example of such a case is given by proportional self-insurance, i.e. when

loss x is the realization of the random variable X(a) = X0γ(a), with γ(0) = 1 and

γ′(a) < 0, where X0 is the random variable of the loss without any self-insurance

(hence with c.d.f. F (x|0)) and γ(a) is a loss reduction factor that is the same for

all potential losses that would occur if there were no self-insurance.14 We then have

F (x|a) ≡ Pr{X(a) ≤ x} = Pr{X0 ≤ x/γ(a)} = F (x/γ(a)|0) for all x ∈ (0, x̄γ(a)],

which gives x̃(a) = −γ(a)/γ′(a) with x̃′(a) ≥ 0 if γ′′(a) ≥ γ′(a)2/γ(a).15

3.5 Self-insurance as a residual loss function

We have assumed that the random loss x is distributed in [0, x̄] according to c.d.f.

F (x|a) for all a ≥ 0. Interestingly, the effect of self-insurance on the individual’s risk

exposure may also be characterized by a function L(·|a) from [0, x̄] to [0, x̄] called

residual loss function (RLF) such that L(x|a) ≤ x and L(x|0) = x. By definition of

the RLF, the random loss under self-insurance expenses a has the same probability

distribution as L(X0|a) where X0 is the random variable that corresponds to the no-

self-insurance case, i.e. a = 0. In other words, function L(·|a) is defined by

F (L(x|a)|a) = F (x|0) for all x in [0, x̄],

14This is the case considered by Quaas and Baumgärtner (2008) in a model with mean-variance
preferences.

15Under proportional self-insurance, the upper bound of possible losses depends on self-insurance
expenses. The proof of Proposition 5 covers this case.
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with Lx > 0, La ≤ 0.16 Fig. 6 illustrates this definition in the pure self-insurance case

(i.e., F̄ ′(a) = 0 for all a), and for simplicity, we restrict ourselves to this case in what

follows. The black curve depicts the c.d.f. of the loss without self-insurance F (x|0),
and the blue curve the distribution of the loss with a > 0, F (x|a). There is the same

probability that the loss is lower than x0 in the absence of self-insurance and lower

than L(x0|a) under self-insurance at level a > 0.17

x
0

1

F̄

F (x|a)
F (x|0)

x̄x0L(x0|a)

••

Figure 6: Derivation of the residual loss function.

Proposition 1 has shown that self-insurance and market insurance are complemen-

tary when σ is large, under the assumption Fa(x|a)− f(x|a) < 0 when x is close to x̄,

a case that we have called “locally weak self-insurance”. Furthermore, Proposition 4

has extended this result under the assumption that Fa(x|a)− f(x|a) is positive when

x is in an interval C(a) whose upper and lower bounds are lower than x̄ and possibly

larger than 0, respectively. The following proposition highlights the close link between

this characterization and the RLF.

Proposition 6 For all (x, a), we have Fa(x|a)− f(x|a) < 0 iff La(L
−1(x|a)|a) > −1.

16Proportional self-insurance corresponds to the case where L(x|a) = γ(a)x, with γ(a) ∈ (0, 1),
γ′(a) < 0.

17The definition of RLF does not require that the random loss under self-insurance is a deterministic
function of the random loss that would occur in the absence of self-insurance. For the sake of clarity,
consider Ω the underlying set of states of nature (associated with a set of events and a probability
measure) and let Xa : Ω → [0, x̄] be the random variable such that Xa(ω) is the loss in state ω ∈ Ω
under self-insurance expenses a. According to the definition of RLF, Xa and L(X0|a) are identically
distributed in [0, x̄], which does not imply that Xa is a deterministic function of X0.
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Using Proposition 6 allows us to reformulate Proposition 1 in an intuitive way.

Since L−1(x|a) goes to x̄ when x goes to x̄, the condition in Proposition 1 means that a

marginal increase in self-insurance expenses da is equivalent to a residual loss decrease

−La(x|a)da smaller than da. This is why self-insurance was said to be locally weak in

that case, although Proposition 6 now shows that “ex post inefficient” would have been

a better terminology. Hence, the condition in Proposition 1 means that increasing self-

insurance would be ex post inefficient if only the largest losses were considered. The

condition C(a′) ⊆ C(a) if a′ > a in Proposition 4 may also be reinterpreted in the same

perspective: when self-insurance expenses increase, there is a widening of the lowest

and highest parts of interval [0, x̄] where increasing self-insurance is ex post inefficient,

which corresponds to a decreasing marginal efficiency of self-insurance.

A possible interpretation of condition La(L
−1(x|a)|a) > −1 is in terms of regret

the individual may feel when he suffers a loss x after spending a on self-insurance.

Indeed, assume that the individual’s rationality reflects an underlying causal model

in which he faces an exogenous loss (i.e. independent of his decisions), distributed

according to c.d.f. F (·|0), which can be reduced through self-insurance, the final loss

being distributed according to c.d.f. F (·|a). The condition La(L
−1(x|a)|a) > −1

then means that after suffering a loss x and realizing that this loss would have been

L−1(x|a) without self-insurance, this individual regrets in retrospect having spent too

much money on self-insurance.18

4 Beyond the CARA case

When absolute risk aversion is not constant, the optimal choices about market insur-

ance and self insurance are affected by wealth effects that have been investigated for

each instrument separately in the literature. In the following, we untangle their in-

terplay within our framework. In section 4.1, we highlight sufficient conditions under

which the complementarity between market insurance and self-insurance remains valid

when the loading factor is high. One key condition is that self-insurance is an inferior

good. Section 4.2 describes the conditions on the distribution of the global cost of

risk that enable this property to hold for individuals who are risk-averse and prudent.

Section 4.3 details the impact of self-insurance on this distribution, which can be de-

composed into an expected value effect and a volatility effect, and then returns to the

18The condition in Proposition 1 then means that he experiences such regret after suffering large
losses. Similarly, when loss x is in C(a) introduced in proposition 4, he does not regret his self-insurance
expenditures.
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notion of local weakness or strength of self-insurance and its interpretation in terms of

regret.

4.1 Complementarity of self-insurance and market insurance

Wealth effects are at work when we extend our problem beyond the CARA case.

In particular, a decrease in the loading factor σ under its upper bound σ̄ creates a

negative wealth effect, because of the increase in the insurance premium from 0 to

P̂ (D⋆(σ), a⋆(σ), σ) > 0. When self-insurance is an inferior good (as market insurance

under DARA preferences), this wealth effect reinforces the demand for self-insurance

induced by a decrease in σ, which confirms the complementarity between market in-

surance and self-insurance when σ is large. More formally, we obtain the following

result where A(wf ) ≡ −u′′(wf )/u
′(wf ) denotes the index of absolute risk aversion as a

function of the final wealth wf :

Proposition 7 If limx→x̄ ∂ ln f(x|a)/∂a > −A(w − x̄ − a∗(σ̄)) and self-insurance is

an inferior good in the absence of market insurance, then self-insurance and market

insurance are complementary when σ is close to σ̄.

The first assumption in Proposition 7 differs from that in Proposition 1, although

both assumptions have in common that an increase in a should not strongly affect

the probability distribution of the largest losses.19 The other assumption stipulates

that self-insurance is an inferior good in the absence of market insurance, and we now

examine why this may be the case.

4.2 Self-insurance as an inferior good

In the Ehrlich and Becker (1972)’s two-state model without market insurance, Dionne

and Eeckhoudt (1985) and Briys and Schlesinger (1990) show that self-insurance is an

inferior good when the individual displays decreasing absolute risk aversion (DARA).

Lee (2010) shows that this result is not robust in a continuum-of-loss framework and

shows that self-insurance can be either an inferior good or a normal good in the DARA

case. We detail in the following the effects at work in the continuum-of-loss setup and

we discuss the characteristics of loss distributions that make self-insurance an inferior

19The condition in Proposition 7 is a sufficient one that is more restrictive than the one in Proposition
1. It is compatible with fa(x|a) < 0 when x is close to x̄. In other words, similarly to the condition in
Proposition 1, an increase in self-insurance may reduce the probability of the largest losses, but “not
too much”.
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good for individuals who are risk-averse and prudent (i.e. assuming u′ > 0, u′′ < 0 and

u′′′ > 0).

Considering the global cost of risk z = x+a, the individual’s program in the absence

of market insurance is written as

max
a≥0

� a+x̄

a

u(w − z)dG(z|a) ≡ U(w, a),

where G(z|a) = F (z− a|a). Define a⋆(w) the optimal self-insurance level as a function

of initial wealth w in this problem without market insurance, with ∂U(w, a⋆)/∂a = 0

at an interior solution a⋆(w) > 0. The implicit function theorem yields

da⋆

dw
= −∂

2U(w, a)/∂w∂a

∂2U(w, a)/∂a2

where a = a⋆(w) and ∂2U(w, a)/∂a2 < 0. Hence da⋆/dw and ∂2U(w, a)/∂w∂a have

the same sign, and self-insurance is an inferior good in the absence of market insurance

if ∂2U(w, a)/∂w∂a < 0 . We have

∂2U(w, a)

∂w∂a
=

∂

∂a

[� a+x̄

a

u′(w − z)dG(z|a)
]
=

∂

∂a

[� a+x̄

a

v(z − w)dG(z|a)
]

where v(y) ≡ u′(−y), and thus v′(y) = −u′′(−y) > 0 and v′′(y) = u′′′(−y). Conse-

quently, if u′′′ > 0 (i.e., the individual is prudent), then ∂2U(w, a)/∂w∂a < 0 if an

increase in a reduces the expected utility of an individual with wealth z distributed

according to c.d.f. G(z|a) and with utility function v such that v′ > 0 and v′′ > 0 (i.e.

a risk-lover individual).

As detailed in the following section, self-insurance produces a change in the distri-

bution of the loss that can be described as the sum of a change in the expected value

of the global cost of risk and a mean-preserving change in this global cost (hereafter

called the mean-value effect and the volatility effect, respectively). The mean-value

effect is detrimental to the individual with utility v(z −w) if the expected value of his

final wealth decreases with a because v′ > 0. As regard to the volatility effect, it is

also detrimental to this risk-loving individual if the increase in a reduces the risk of his

wealth (in the sense of Rothschild and Stiglitz, 1970). Self-insurance is an inferior good

under the cumulated actions of these two effects as shown in the following section.
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4.3 Self-insurance and the distribution of risk

Consider two self-insurance levels a0 and a1 > a0, and let Zi be the random variable

corresponding to the global cost z when a = ai, for i = 0 and 1, with c.d.f. Gi(z) =

G(z|ai) and expected value mi = EZi. The expected value effect associated with the

change from Z0 to Z1 is the increase in expected cost given by

m1 −m0 = a1 − a0 − (EX0 − EX1),

where Xi is the random loss under self-insurance ai, for i ∈ {0, 1}. When m1 > m0,

by analogy with market insurance, this expected value effect may be interpreted as

the implicit loading of self-insurance. In other words, this is the decrease in expected

wealth that results from additional self-insurance expenses.

Let us define random variable Z2 = Z0 +m1 −m0 and G2 and m2 = EZ2, its c.d.f.

and expected value. Hence, Z2 is the residual global cost of risk when a = a0 after

compensating for the decrease in expected wealth when a changes from a0 to a1. By

construction, m2 = m1. The change from Z0 to Z1 when a increases from a0 to a1 may

then be decomposed into two steps as follows:

Z0
+m1−m0−−−−−→
step 1

Z2
+Z1−Z2−−−−−→
step 2

Z1,

where steps 1 and 2 correspond to the expected value effect and to the volatility effect,

respectively.

Fig. 7 illustrates this two-step decomposition when m0 < m1 (i.e., when there is a

positive implicit loading of self-insurance). G2(z) corresponds to a rightward shift of

G0(z). Fig. 7 is drawn in the case where Z1 is a mean-preserving contraction of Z2,

with only one crossing point between G1 and G2. In this case, the expected value effect

and the volatility effect cumulate, and self-insurance is an inferior good.

In Fig. 7, G1(z) > G0(z) if z ∈ (ẑ0, ẑ1).
20 We thus have F (z−a1|a1) > F (z−a0|a0)

for all z ∈ (ẑ0, ẑ1), or equivalently, using the RLF and defining ∆a ≡ a1−a0, x̂0 ≡ ẑ0−a1
and x̂1 ≡ ẑ1 − a1,

F (x|a1) = F (L−1(x|a1)|0) > F (x+∆a|a0) = F (L−1(x+∆a|a0)|0)

and thus L−1(x|a1) > L−1(x + ∆a|a0) implying L(L−1(x|a1)|a0) + a0 > x + a1 for

20If G1(z) < G0(z) for all z, then a0 would be obviously a better choice than a1 whatever the
individual’s preferences.
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Figure 7: Two-step decomposition of an increase in a from a0 to a1. Curve G2(z)
depicts the c.d.f. of Z2 and corresponds to a rightward shift of the c.d.f. of Z0, G0(z).
Curve G1(z) depicts the c.d.f. of Z1 which is a mean-preserving contraction of Z2.

all x ∈ (x̂0, x̂1). Following the interpretation in terms of regret introduced in Section

3.5, the individual who suffers a loss x ∈ (x̂0, x̂1) after spending a1 on self-insurance,

considers that he would have suffered a loss larger than x+ a1 − a0 with only a0 spent

on self-insurance, and thus doesn’t regret in retrospect having spent a1 rather than a0.

5 Conclusion

When the price of market insurance is high because of transaction costs, taxes or sol-

vency capital costs, subsidizing insurance may be a matter of governmental decision in

order to improve risk-sharing in the economy. The resulting change in insurance price

is likely to affect self-insurance, and this may be a concern for public decision-making.

This is particularly the case in agriculture, when self-insurance creates detrimental ex-

ternalities, for instance when farmers use more pesticides to protect their crops against

pests attacks or when they replace rain-fed farming by irrigation and water resources

are scarce. Conversely, externalities would be favorable when self-insurance takes the

form of biodiversity preservation and ecosystem protection. When such important

matters are at stake, understanding how self-insurance choices react to changes in the

insurance price becomes particularly important.
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In their seminal paper, Ehrlich and Becker (1972) conclude that self-insurance and

market insurance are substitutes, and consequently, subsidizing market insurance would

tend to discourage policyholders from exerting self-insurance efforts. In the case of

agriculture, this means that subsidizing crop insurance would encourage farmers to

deviate from less profitable practices based on biodiversity preservation and ecosystem

protection, insofar as these technologies play a self-insurance role. In other words,

this suggests that favoring farmers’ access to market insurance could undermine the

consideration of environmental issues in public policy-making.

As shown in this paper, this would be an over-hasty conclusion. When the cost of

accidents is random, contrary to the model of Ehrlich and Becker (1972), then the com-

bination of market insurance and self-insurance goes through the design of the optimal

insurance policy. We have considered a model in which this optimal policy corresponds

to a straight-deductible contract, which opens the way to an adequate combination of

market insurance and self-insurance. Beyond the mere fact that self-insurance shifts

the probability distribution of losses leftwards, it has appeared that the substitutabil-

ity or complementarity between self-insurance and market insurance depends on which

levels of loss are less likely to occur when self-insurance expenses increase. When the

largest gains from self-insurance correspond to the upper tier of losses, as in the case

of proportional self-insurance, then self-insurance exerts risk coverage effects similar to

those of an insurance contract covering losses above a deductible, and it is therefore

substitutable to market insurance in that case. On the contrary, when self-insurance is

more effective in decreasing the probability of medium-sized losses and turning them

into small losses, then it is a natural complement to market insurance. In that case,

when the high price of insurance leads to a large deductible, reducing the deductible

by lowering the loading factor motivates the policyholder to self-insure more intensely.

More insurance then goes hand in hand with more self-insurance.
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Appendix

A Lemma 1

Lemma 1 The optimal solution to the individual’s problem a∗, D∗satisfies

� D

0

u′(w − x− P̂ (D, a, σ)− a)dF (x|a) = H(D, a, σ)u′(w −D − P̂ (D, a, σ)− a)

(4)� D

0+

u′(w − x− P̂ (D, a, σ)− a)Fa(x|a)dx = K(D, a, σ)u′(w −D − P̂ (D, a, σ)− a).

(5)

where

K(D, a, σ) ≡ 1

1 + σ
−
� x̄

D

Fa(x|a)dx, (6)

H(D, a, σ) ≡ 1

1 + σ
− [1− F (D|a)]. (7)

Proof

Maximizing Eu given by (1) w.r.t. D and a leads to the following first-order optimality

conditions

−[1− F (D|a)]u′(w −D − P̂ − a)− ∂P̂

∂D

∂Eu
∂w

= 0 (8)

and

F̄ ′(a)u(w − P̂ (D, a, σ)− a) +

� D

0+

u(w − x− P̂ − a)fa(x|a)dx

− Fa(D|a)u(w −D − P̂ − a)−

(
1 +

∂P̂

∂a

)
∂Eu
∂w

= 0 (9)

respectively, where

∂Eu
∂w

=F̄ (a)u′(w − P̂ (D, a, σ)− a) +

� D

0+
u′(w − x− P̂ − a)dF (x|a)

+ [1− F (D|a)]u′(w −D − P̂ − a), (10)
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∂P̂ (D, a, σ)

∂D
= −(1 + σ)[1− F (D|a)]. (11)

Integrating by parts and observing that F (x̄|a) = 1 for all a gives Fa(x̄|a) = 0, it comes

∂P̂ (D, a, σ)

∂a
= (1 + σ)

� x̄

D

(x−D)fa(x|a)dx = −(1 + σ)

� x̄

D

Fa(x|a)dx. (12)

Using (8), (10) and (11) gives

(1 + σ)

� D

0

u′(w− x− P̂ − a)dF (x|a) = u′(w−D− P̂ − a) (1− (1 + σ)[1− F (D|a)]) .

(13)

Integrating by parts the integral in (9) gives

� D

0+

u(w − x− P̂ − a)fa(x|a)dx =u(w −D − P̂ − a)Fa(D|a)− u(w − P̂ − a)F̄ ′(a)

+

� D

0+

u′(w − x− P̂ − a)Fa(x|a)dx.

Substituting in (9) and using (12) yields

� D

0+

u′(w − x− P̂ − a)Fa(x|a)dx =

[
1− (1 + σ)

� x̄

D

Fa(x|a)dx
]
∂Eu
∂w

. (14)

Furthermore, (8) and (11) give

∂Eu
∂w

=
u′(w −D − P̂ − a)

1 + σ
, (15)

and (14) and (15) yield

(1+σ)

� D

0+

u′(w−x−P̂−a)Fa(x|a)dx = u′(w−D−P̂−a)
[
1− (1 + σ)

� x̄

D

Fa(x|a)dx
]
.

(16)

B Proof of Proposition 1

In the CARA case, we may write u(w) = −e−αw where α > 0 is the index of absolute

risk aversion. Using u′(w) = −αu(w) and factorizing out u(w −D − P̂ (D, a, σ) − a),

28



equations (4) and (5) can be rewritten as

� D

0

e−α(D−x)dF (x|a) = H(D, a, σ), (17)

� D

0

e−α(D−x)Fa(x|a)dx = K(D, a, σ), (18)

respectively. Totally differentiating these equations, usingHD = f(D|a),Ha = Fa(D|a) =
KD, Ka = −

� x̄

D
Faa(x|a)dx, Hσ = Kσ = 1/(1 + σ)2, and collecting terms give

αH
dD

dσ
−
[� D

0

e−α(D−x)fa(x|a)dx− Fa(D|a)
]
da

dσ
=

1

(1 + σ)2
,

αK
dD

dσ
−
[� D

0

e−α(D−x)Faa(x|a)dx+
� x̄

D

Faa(x|a)dx
]
da

dσ
=

1

(1 + σ)2
,

which can be written as[
αH −A
αK −B

][
dD/dσ

da/dσ

]
=

1

(1 + σ)2

[
1

1

]
(19)

where

A =

� D

0

e−α(D−x)fa(x|a)dx− Fa(D|a),

B =

� D

0

e−α(D−x)Faa(x|a)dx+
� x̄

D

Faa(x|a)dx.

We have ∣∣∣∣∣αH −A
αK −B

∣∣∣∣∣ = α(AK −HB) = α∆

where

∆ ≡ K

[� D

0

e−α(D−x)fa(x|a)dx− Fa(D|a)
]
−H

[� D

0

e−α(D−x)Faa(x|a)dx+
� x̄

D

Faa(x|a)dx
]

(20)

is the determinant of the Hessian matrix of Eu evaluated at a maximum of this function
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(i.e. at D = D∗(σ) and a = a∗(σ)). We thus have ∆ > 0 and solving (19) yields[
dD/dσ

da/dσ

]
=

1

α∆(1 + σ)2

[
−B A

−αK αH

][
1

1

]

=
1

α∆(1 + σ)2

[
A−B

α(H −K)

]
,

hence

dD⋆

dσ
=

� D

0
e−α(D−x)fa(x|a)dx− Fa(D|a)−

[� D

0
e−α(D−x)Faa(x|a)dx+

� x̄

D
Faa(x|a)dx

]
α∆(1 + σ)2

(21)

and
da⋆

dσ
=

� D

0
e−α(D−x)[f(x|a)− Fa(x|a)]dx

(1 + σ)2∆
=

� x̄

D
[Fa(x|a)− f(x|a)] dx

(1 + σ)2∆
(22)

in which a = a⋆(σ) and D = D⋆(σ). The first expression of da⋆/dσ in (22) is obtained

by replacing H and K by the optimal values given by (17) and (18) respectively, while

the second expression is obtained replacing H and K by the definitions of functions

H(·) and K(·) given by (7) and (6) respectively. From this latter expression, and since

we have D⋆(σ) > x̂(a) when σ is large enough which implies Fa(x|a) < f(x|a) for all
x ∈ [D, x̄], it comes

� x̄

D∗(σ)

[Fa(x|a∗(σ))− f(x|a∗(σ))] dx < 0

and thus da⋆/dσ < 0 when σ < σ̄, σ close to σ̄. We also have dD⋆/dσ > 0 when σ is

close to σ̄ since D∗(σ̄) = x̄ and D∗(σ) < x̄ when σ < σ̄.

C Proof of Proposition 2

We have D⋆′(σ) > 0 when σ is close to 0 since D∗(0) = 0 and D∗(σ) > 0 when σ > 0.

We may write F (x|a) = F̄ (a) + [1− F̄ (a)]H(x|a), where H(x|a) is is the c.d.f. of the

loss conditionally on a loss occurring, with H(0|a) = 0 and H(x̄|a) = 1. Hence, we

have Fa(x|a) = F̄ ′(a)[1 −H(x|a)] + [1 − F̄ (a)]Ha(x|a) and f(x|a) = [1 − F̄ (a)]h(x|a)
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where h(x|a) = Hx(x|a). We may write

� x̄

0+

[Fa(x|a)− f(x|a)] dx = F̄ ′(a)

� x̄

0

[1−H(x|a)]dx

+ [1− F̄ (a)]

� x̄

0

Ha(x|a)dx− [1− F̄ (a)], (23)

using
� x̄

0
h(x|a)dx = 1, and

a∗(0) ∈ argmin
a

[1− F̄ (a)]

� x̄

0

xh(x|a)dx+ a

= argmin
a

[1− F̄ (a)]

� x̄

0

[1−H(x|a)]dx+ a.

The corresponding FOC gives

−F̄ ′(a∗(0))

� x̄

0

[1−H(x|a∗(0))]dx− [1− F̄ (a∗(0))]

� x̄

0

Ha(x|a∗(0))dx+ 1 = 0. (24)

When σ → 0, D∗(σ) → 0 and thus, using (23) and (24),

� x̄

D∗(σ)

[Fa(x|a∗(σ))− f(x, a∗(σ))] dx→
� x̄

0+

[Fa(x|a∗(0))− f(x|a∗(0))] dx = F̄ (a∗(0)).

When F̄ (a∗(0)) > 0, using (22) and ∆ > 0 then gives a⋆′(σ) > 0 when σ is close to 0.

When F̄ (a) = 0 for all a, we also obtain a⋆′(σ) = 0 when σ → 0. Indeed, suppose

the contrary, i.e. a⋆′(σ) ≤ 0 when σ → 0, σ > 0. Let ψ⋆(σ) ≡ ψ(D⋆(σ), a⋆(σ)) where

ψ(D, a) ≡
� x̄

D

[Fa(x|a)− f(x|a)] dx. (25)

We know from (22) in the proof of Proposition 1 that a⋆′(σ) and ψ⋆(σ) have the same

sign. We have ψ⋆(0) = F̄ (a∗(0)) = 0 and

ψ⋆′(σ) = −[Fa(D
⋆(σ)|a⋆(σ))− f(D⋆(σ)|a⋆(σ))]D⋆′(σ)

+ a⋆′(σ)

� x̄

D⋆(σ)

[Faa(x|a⋆(σ))− fa(x|a⋆(σ))]dx. (26)

F̄ (a) = F (0|a) = 0 for all a gives Fa(0|a) = 0 implying Fa(x|a) → 0 when x→ 0 since

x 7→ Fa(x|a) is right-continuous. Also, as F (x̄|a) = 1 for all a, we have Fa(x̄|a) = 0 for
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all a and thus
� x̄

0
fa(x|a)dx = Fa(x̄|a)− Fa(0|a) = 0. Consequently

� x̄

D⋆(σ)

[Faa(x|a⋆(σ))− fa(x|a⋆(σ))]dx→
� x̄

0

Faa(x|a⋆(0))dx ≤ 0

when σ → 0 since Faa(x|a) ≤ 0. As a⋆′(σ) ≤ 0 when σ → 0, the second term of (26)

is thus non-negative. Furthermore, D⋆′(σ) → +∞ when σ → 0 because the numerator

in (21) goes to a positive limit whereas the numerator goes to zero. We thus have

−[Fa(D
⋆(σ)|a⋆(σ))− f(D⋆(σ)|a⋆(σ))]D⋆′(σ) → f(0|a⋆(0))D⋆′(0)

when σ → 0, and thus ψ⋆′(σ) → +∞ when σ → 0. Using ψ⋆(0) = 0 yields ψ⋆(σ) > 0

when σ > 0, σ close to 0, hence a⋆′(σ) > 0 when σ → 0, σ > 0, a contradiction.

D Proof of Proposition 3

(21) can be written as
dD⋆

dσ
=
A(D, a)−B(D, a)

α∆(1 + σ)2

where D = D⋆(σ), a = a⋆(σ), and

A(D, a) ≡
� D

0

e−α(D−x)[fa(x|a)− Faa(x|a)]dx,

B(D, a) ≡ Fa(D|a) +
� x̄

D

Faa(x|a)dx.

Let

ϕ(x|a) ≡ fa(x|a)− Faa(x|a). (27)

We have f(x|a) = 0 for all a when x ≥ x̄ and thus fa(x̄|a) = 0 because f(x|a) is

twice-differentiable at x = x̄. Furthermore, we have F (x|a) = 1 for all a and x ≥ x̄,

which implies Faa(x̄|a) = 0. Hence, we have ϕ(x̄|a) = 0 for all a. For any x, a such

that ϕ(x|a) < 0, we have fa(x|a) < 0 (because Faa(x|a) ≤ 0 for all x), and thus

ϕx(x|a) = fax(x|a) − faa(x|a) ≤ 0 under the condition postulated in the Proposition.

This implies ϕ(x′|a) < 0 for all x′ > x, which contradicts ϕ(x̄|a) = 0. Hence ϕ(x|a) ≥ 0

for all x ∈ (0, x̄), which gives

A(D, a) ≡
� D

0

e−α(D−x)ϕ(x|a)dx ≥ 0.
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Furthermore, we have B(0, a) =
� x̄

0
Faa(x|a)dx < 0, B(x̄, a) = 0 and ∂B(D, a)/∂D =

fa(D|a) − Faa(D|a) = ϕ(D|a) ≥ 0, which implies B(D, a) < 0 for all D ≤ x̄. We

deduce A(D, a)−B(D, a) > 0 and thus dD⋆/dσ > 0 for all σ ∈ (0, σ̄).

E Proof of Proposition 4

We know from (22) and (25) that a⋆′(σ) and ψ⋆(σ) ≡ ψ(D⋆(σ), a⋆(σ)) have the same

sign, and from Propositions 1 and 2 that ψ⋆(0+) > 0, ψ⋆(σ̄) = 0 and ψ⋆(σ̄−) < 0. Let

σ̂ ≡ inf{σ : ∀σ′ ∈ [σ, σ̄], ψ⋆(σ′) ≤ 0} so that a⋆(σ̂) is a local maximum, and suppose

that a⋆(·) reaches another local maximum at σ̃ < σ̂. Then, it must also reach a local

minimum at σ0 ∈ (σ̃, σ̂), with a⋆(σ0) < a⋆(σ̃) and a⋆(σ0) < a⋆(σ̂), and we must have

ψ⋆(σ̂) = ψ⋆(σ̃) = ψ⋆(σ0) = 0 with ψ⋆′(σ̂) < 0, ψ⋆′(σ̃) < 0 and ψ⋆′(σ0) > 0 where, using

(26),

ψ⋆′(σ) = −[Fa(D
⋆(σ)|a⋆(σ))− f(D⋆(σ)|a⋆(σ))]D⋆′(σ)

for σ ∈ {σ̃, σ0, σ̂}. As D⋆′(σ) > 0, ψ⋆′(σ) and Fa(D
⋆(σ)|a⋆(σ)) − f(D⋆(σ)|a⋆(σ)) have

opposite signs. From (ii), a⋆(σ0) < a⋆(σ̃), a⋆(σ0) < a⋆(σ̂), and ψ⋆′(σ̂) < 0 and ψ⋆′(σ̃) <

0, we have D⋆(σ̂) ∈ C(a⋆(σ̂)) ⊆ C(a⋆(σ0)) and D⋆(σ̃) ∈ C(a⋆(σ̃)) ⊆ C(a⋆(σ0)). Also, as
σ̃ < σ0 < σ̂ and D⋆(σ) is non-decreasing, we have D⋆(σ̃) ≤ D⋆(σ0) ≤ D⋆(σ̂) and since

C(a⋆(σ0)) is convex, D⋆(σ0) ∈ C(a⋆(σ0)), implying ψ⋆′(σ0) < 0, a contradiction.

F Proof of Proposition 5

In this section, we consider the case where the upper limit of the loss may depend on the

self-insurance effort, i.e. x̄(a), with x̄′(a) ≤ 0. We thus have C(a) = [x̃(a), x̄(a)], with

x̃′(a) ≥ 0, x̄′(a) ≤ 0, and D⋆(σ̄) = x̄(a⋆(σ̄)) by definition of σ̄, and D⋆(σ) < x̄(a⋆(σ))

for all σ < σ̄.

We know from (22) and (25) that a⋆′(σ) and ψ⋆(σ) ≡ ψ(D⋆(σ), a⋆(σ)) have the same

sign, and from Proposition 2 that ψ⋆(0+) > 0. Suppose that a⋆(·) is not monotonic,

i.e. that it reaches a local maximum at σ̃ < σ̄. Then, either it reaches a local minimum

at σ0 ∈ (σ̃, σ̄), or it is monotonically decreasing over [σ̃, σ̄]. In the first case, we must

have ψ⋆(σ̃) = ψ⋆(σ0) = 0 with ψ⋆′(σ̃) < 0 and ψ⋆′(σ0) > 0 where, using (26),

ψ⋆′(σ) = −[Fa(D
⋆(σ)|a⋆(σ))− f(D⋆(σ)|a⋆(σ))]D⋆′(σ)

for σ ∈ {σ̃, σ0}. As D⋆′(σ) > 0, ψ⋆′(σ) and Fa(D
⋆(σ)|a⋆(σ)) − f(D⋆(σ)|a⋆(σ)) have
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opposite signs. As ψ⋆′(σ̃) < 0 and ψ⋆′(σ0) > 0, we have D⋆(σ̃) ∈ C(a⋆(σ̃)) and D⋆(σ0) /∈
C(a⋆(σ0)), hence D⋆(σ̃) ≥ x̃(a⋆(σ̃)) and D⋆(σ0) < x̃(a⋆(σ0)). From x̃′(a) ≥ 0 and

a⋆(σ̃) > a⋆(σ0), we have x̃(a⋆(σ̃)) ≥ x̃(a⋆(σ0)), and thus D⋆(σ̃) > D⋆(σ0), which

contradicts σ̃ < σ0 and D⋆′(σ) > 0.

In the second case, we haveD⋆(σ̃) ≥ x̃(a⋆(σ̃)) as in the first case, and usingD⋆(σ̄) =

x̄(a⋆(σ̄)), (17), (18) and (20), we get H(D⋆(σ̄), a⋆(σ̄), σ̄) = K(D⋆(σ̄), a⋆(σ̄), σ̄) = 1/(1+

σ̄) and

∆ →

[� x̄(a⋆(σ̄))

0

e−α[x̄(a⋆(σ̄))−x][fa(x|a⋆(σ̄))− Faa(x|a⋆(σ̄))]dx

]
/(1 + σ̄) ̸= 0

when σ → σ̄, and thus, from (21) and (22), D⋆′(σ) → 1/α(1 + σ̄) > 0 and a⋆′(σ) → 0

when σ → σ̄. As a⋆(·) is monotonically decreasing over [σ̃, σ̄], we have ψ⋆(σ) < 0 for

all σ ∈ (σ̃, σ̄), and from (25) and (26), ψ⋆(σ̄) = ψ(x̄(a⋆(σ̄)), a⋆(σ̄)) = 0 and

ψ⋆′(σ̄) = −[Fa(x̄(a
⋆(σ̄))|a⋆(σ̄))− f(x̄(a⋆(σ̄))|a⋆(σ̄))]D⋆′(σ̄) = 0.

Since ψ⋆(σ) < 0 for σ close to σ̄ and ψ⋆′(σ̄) = ψ⋆(σ̄) = 0, we thus must have

ψ⋆′′(σ̄) < 0. Furthermore, using (26), D⋆(σ̄) = x̄(a⋆(σ̄)) and Fa(x̄(a
⋆(σ̄))|a⋆(σ̄)) −

f(x̄(a⋆(σ̄))|a⋆(σ̄)) = 0 yields

ψ⋆′′(σ̄) = −D⋆′(σ̄)2
∂

∂x
[Fa(x|a⋆(σ̄))− f(x|a⋆(σ̄))]|x=x̄(a⋆(σ̄))

−D⋆′(σ̄)a⋆′(σ̄)
∂

∂a
[Fa(x|a⋆(σ̄))− f(x|a⋆(σ̄))]|a=a⋆(σ̄).

Using a⋆′(σ̄) = 0 and ψ⋆′′(σ̄) < 0 gives ∂
∂x
[Fa(x|a⋆(σ̄)) − f(x|a⋆(σ̄))]|x=x̄(a⋆(σ̄)) > 0.

As Fa(D
⋆(σ̄)|a⋆(σ̄)) − f(D⋆(σ̄)|a⋆(σ̄)) = 0, we deduce Fa(x|a⋆(σ̄)) − f(x|a⋆(σ̄)) < 0 if

x < D⋆(σ̄), and thus C(a⋆(σ̄)) = {D⋆(σ̄)} = {x̄(a⋆(σ̄))}, i.e. x̃(a⋆(σ̄)) = x̄(a⋆(σ̄)). As

D⋆′(σ) > 0, we have D⋆(σ̃) < D⋆(σ̄). Furthermore, x̃′(a) ≥ 0 and a⋆(σ̃) > a⋆(σ̄) gives

x̃(a⋆(σ̄)) ≤ x̃(a⋆(σ̃)), hence D⋆(σ̃) < x̃(a⋆(σ̃)), a contradiction.

G Proof of Proposition 6

Using F (L(x|a), a) = F (x|0) and Fx(x|a) = f(x|a) > 0 for all x ∈ (0, x̄) shows that

L(x|a) is increasing, with L(x|a) → x̄ when x → x̄ and L(x|a) → 0 when x → 0.
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Differentiating F (x|a) = F (L−1(x|a)|0) yields

Fa(x|a) = f(L−1(x|a)|0)L−1
a (x|a),

f(x|a) = f(L−1(x|a)|0)L−1
x (x|a).

Differentiating the identity L−1(L(x|a)|a) = x yields

L−1
a (L(x|a)|a) = −La(x|a)/Lx(x|a),

L−1
x (L(x|a)|a) = −1/Lx(x|a)

that hold for all x ∈ [0, x̄], implying

L−1
a (x|a) = −La(L

−1(x|a)|a)/Lx(L
−1(x|a)|a),

L−1
x (x|a) = −1/Lx(L

−1(x|a)|a).

Consequently, we have

Fa(x|a)− f(x|a) = − f(L−1(x|a)|0)
Lx(L−1(x|a)|a)

[La(L
−1(x|a)|a) + 1)].

We have L−1(x|a) ∈ [x, x̄] and thus L−1(x|a) → x̄ when x→ x̄. Similarly, L−1(x|a) → 0

when x→ 0. Consequently, when x is close to 0 or x̄, we have Fa(x|a)− f(x|a) < 0 iff

La(x|a) > −1.

H Proof of Proposition 7

Let P ⋆(σ) ≡ P̂ (D⋆(σ), a⋆(σ), σ) and define â(σ) as the solution to

max
a

� x̄

0

u(w − x− P ⋆(σ)− a)dF (x|a).

In words, â(σ) is the optimal self-insurance expense when the individual pays

P ⋆(σ) > 0 and is not covered by the insurance contract (with P ⋆(σ) > 0 if σ < σ̄

and P ⋆(σ̄) = 0 since D⋆(σ̄) = x̄). Let σ < σ̄. If self-insurance is an inferior good in

the absence of market-insurance, we have â(σ) > a⋆(σ̄). Hence, we have a⋆(σ) > a⋆(σ̄)

if a⋆(σ) > â(σ) with a⋆(σ̄) = â(σ̄). Let

V (D, a, σ) =

� D

0

u(w − x− P ⋆(σ)− a)dF (x|a) + [1− F (D|a)]u(w −D − P ⋆(σ)− a),
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and let a∗∗(D, σ) = argmaxa V (D, a, σ). We have a∗∗(x̄, σ) = â(σ), and since

(∂Eu/∂a)|D=D⋆(σ) − (∂V/∂a)|D=D⋆(σ) = −P̂a(D
⋆(σ), a, σ)(∂Eu/∂w)|D=D⋆(σ) ≥ 0

when a = a⋆(σ), we have a⋆(σ) > a∗∗(D⋆(σ), σ). Hence, a sufficient condition for

a⋆(σ) > â(σ) = a∗∗(x̄, σ) is given by a∗∗(D⋆(σ), σ) > â(σ). This is the case if function

D → a∗∗(D, σ) is decreasing. The F.O.C for a∗∗(D, σ) is

∂V

∂a
= −

� D

0

u′(w − x− P ⋆(σ)− a)dF (x|a)− [1− F (D|a)]u′(w −D − P ⋆(σ)− a)

+

� D

0

u(w − x− P ⋆(σ)− a)fa(x|a)dx− Fa(D|a)u(w −D − P ⋆(σ)− a)

= 0,

and using the implicit function theorem yields

∂a∗∗(D, σ)

∂D
= − ∂2V (D, a, σ)/∂a∂D

∂2V (D, a, σ)/∂a2

∣∣∣∣
a=a⋆∗(D,σ)

.

From the S.O.C, we have ∂2V/∂a2|a=a⋆∗(D,σ) < 0, and thus D → a∗∗(D, σ) is de-

creasing if ∂2V/∂a∂D|a=a⋆∗(D,σ) < 0 where

∂2V/∂a∂D = [1− F (D|a)]u′′(w −D − P ⋆(σ)− a) + Fa(D|a)u′(w −D − P ⋆(σ)− a).

We have ∂2V/∂a∂D < 0 if Fa(D|a)/[1− F (D|a)] < A(w −D − P ⋆(σ)− a). Using

l’Hospital rule, this condition holds when D → x̄ if

lim
x→x̄

−fa(x|a)
f(x|a)

= − lim
x→x̄

∂ ln f(x|a)
∂a

< A(w − x̄− a⋆(σ̄)).

Under this condition, we have a⋆(σ̄) < â(σ) < a∗∗(D⋆(σ), σ) < a∗(σ) if σ < σ̄ when

self-insurance is an inferior good in the absence of market insurance. In that case,

self-insurance and market insurance are complementary when σ is close to σ̄.
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