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Abstract.

C++ is a vital part of particle physics as it allows for high level abstractions
while offering state of the art performance. In this article we will first intro-
duce the C++20 concepts, a major C++ usability enhancement. We will then
introduce Kiwaku, a new multidimensional arrays library taking advantage of
the most advanced C++ features at the time of writing, providing the user with
intuitive API while retaining state of the art performance. Multidimensional ar-
rays are a basic building block for many scientific experiments and simulations,
and particle physics is no exception. Using examples borrowed from Covfie
and ACTS libraries, and using data from the ATLAS CERN experiment, we will
show how Kiwaku offers good usability while having a negligible impact on
performance compared to using classic C++ std::arrays.

1 Introduction

Track reconstruction, also known as tracking, is a vital part of the HEP event reconstruction
process, and one of the largest consumers of computing resources. The upcoming HL-LHC
upgrade will increase the need for software able to make efficient use of the underlying het-
erogeneous hardware. However, this evolution should not imply the production of code un-
intelligible to most of its maintainers, hence the need to take care of usability for both end
users and developers.

C++ has long been a language of choice for efficient scientific computing tasks. The
Generative Programming paradigm [1], which relies on heavy type based template metapro-
gramming, provides a powerful solution for supporting multiple execution contexts [2]. Yet
templates are also usually blamed for unnecessarily large binary files, high code complexity
and difficult-to-understand error messages.

In this article, we will discuss recent developments made to the C++ language, helping
to define a new process for constructing libraries that are both efficient and easy to use. We
will first illustrate how C+420 concepts makes for better error reporting and overall code
clarity. We will then introduce Kiwaku [3], a new C++20 multidimensional arrays library
taking advantage of the most recent C++ usability improvements, yet providing portable
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performance [4] on various hardware such as CPUs and GPUs. We will finally discuss a
few proofs of concept, based on use-cases borrowed from the ACTS project [5], and more
specifically the Covfie [6] library, which provides magnetic field computation and Lorentz-
Euler track propagation.

2 A short glimpse into C++ usability

Inheritance-based object oriented programming can be easy to understand, write and main-
tain, at the expense of runtime performance. To make C++ code use modern hardware more
efficiently, template meta-programming proved necessary. Yet templates may turn into a
nightmare for non computer science experts, as the templated code can be very difficult to
grasp. It notoriously leads to painfully long and cryptic error messages and impedes code
readability and maintainability.

As an example, consider figure 1, which defines a function template get_nth, invokes
std::begin() on the parameter c. An argument of type std::list<float> will successfully com-
pile, since it has such a function. But calling our function with an int will lead to an error
message that prints the entire call stack and ultimately refers to fragments of code unknown
to the developer (the C++ standard library in this case). Part of the resulting error message is
reproduced in figure 2.

template <typename T>
auto get_nth(T const& c, int n) // Returns n—th element value

{
assert(n < std::size(c));
auto b = std::begin(c);
for(int i = 0; i<n; ++i) b++;
return =xb;

}

int main ()
{
std:: list <float> a{l, 2, 3, 4, 5};
auto x1 = get_nth(a, 2); // Compiles
auto x2 = get_nth(1l, 2); // Very long and cryptic error message

}

Figure 1. The templated ger_nth function leads to a non-user-friendly error message during compilation
when called with unsupported arguments, such as an int.

To mitigate this issue, the long awaited C++ concepts were introduced in C++20. They
provide a powerful and usable solution for adding constraints to templates, constraining the
set of arguments that are accepted as template arguments. When a templated function is
called with an argument not modeling the concept, the compiler will stop at the function
header and print an error message, clearly stating the location of the error and its cause. It
will not inspect the function implementation and instantiate the entire call stack as it would
have done otherwise.

C++ concepts can be refined using a pattern close to interface inheritance, meaning a con-
cept can be refined by another, and extended at will. The concept thusly defined subsumes the
concepts of its ancestors plus any directly specified concepts. It is then possible to overload
a function constrained by concepts, as the strongest constraint will always be chosen.

As an example, described in figure 3, let’s take our previous ger_nth function returning
the nth element of an array-like structure. We can avoid the previous cryptic error mes-
sage by defining a concept basic_container and requesting that our get_nth function only



main.cpp:24:12: error: no matching function for call to ’begin’
auto b = std::begin(c);
A

/gcc—12.2.0/include/c++/12.2.0/initializer_list:90:5: note: candidate
template ignored: could not match ’initializer_list <_Tp>’ against ’int’
begin(initializer_list <_Tp> __ils) noexcept
A

... 14 lines hidden ...
/gec—12.2.0/include/c++/12.2.0/bits /range_access.h:113:31: note: candidate
template ignored: could not match ’valarray <_Tp>’ against ’const.int’
template <typename _Tp> _Tpx begin(valarray <_Tp>&) noexcept;
A

/gec—12.2.0/include/c++/12.2.0/bits /range_access.h:114:37: note: candidate
template ignored: could not match ’const.valarray < Tp>’ against ’const.int’
template <typename _Tp> const _Tpx begin(const valarray < Tp>&) noexcept;
A

Figure 2. Part of the resulting very long and cryptic error message when figure 1 code gets compiled
with gce-12.2.0. We hid 14 lines out of the 29 lines of the full error message to save space.

accepts arguments that model this concept. When our function gets called with an argument
not matching the concept, the compiler will stop there and print an error message, without
descending further into the call hierarchy.

It is then possible to refine our previous concept by making a stronger concept asking for
the array-like argument to support random access. As shown on figure 3, we can now overload
our function get_nth with our more specific concept random_access_container, with its code
optimized for this kind of structure, since the strongest constraint will always be chosen by
the compiler. This is a very welcomed and easy to use way to specialize functions according
to fine-grained types.

3 Kiwaku: Applied C++20 for Data Management

Multidimensional arrays are an integral part of scientific computing. Research on libraries
for multidimensional arrays has been abundant, giving rise to many designs.

e Some libraries are intended for a single use-case, such as Fastor [7] for tensors, Cov-
fie for vector field benchmarks and md_span [8] for managing conversions between n-
dimensional positions and in-memory locations.

e Some are exclusively dedicated to mathematical computations and linear algebra, like the
Matrix Template Library [9], Intel MKL [10], Eigen [11], NT2 [12] and the GNU Scientific
Library [13].

e Some of these libraries also act as C++ wrappers for other linear algebra libraries, like
Armadillo [14] which can leverage OpenBLAS [15], LAPACK [16], ARPACK [17] and
SuperLU [18].

¢ Finally, some can be seen as complete ecosystems, having both mathematical, storage and
analysis capabilities like the Kokkos ecosystem [19] or the DIib [20] library. These libraries
all support CPU calculations, with automatic or manual vectorization. Some of them also
support offloading work to a GPU or distributing it over a computing cluster.

With Kiwaku, we made the choice to explore what C++20 could allow in terms of us-
ability while preserving performance. Kiwaku is only compatible with C++20 and onward
and does not offer compatibility with previous C++ standards, allowing it to take advantage



// basic_container concept definition
template <typename T>
concept basic_container = requires (T const& c)

{
{ std::size(c) };
{ std::begin(c) } —> std::forward_iterator;
{ std::end(c) } —> std:: forward_iterator;

}s

auto get_nth(basic_container auto const& c, int n) // General case

{
assert(n < std::size(c));
auto b = std::begin(c);
for(int i = 0; i<n; ++i) b++;
return xb;

Ik

// Refinement of basic_container into a more specific concept
template <typename T>
concept random_access_container = basic_container <T>

&& requires (T const& c, int i)

{
// All the above from concept basic_container
{ clil }; // And this expression must compile

}s

// Specialization , only for random_access_container types
auto get_nth(random_access_container auto const& c, int n)

{
assert(n < std::size(c));
return c[n];

}s

std:: list <float > b; get_nth(b, 2); // Call with basic_container
std :: array <float , 4> r; get_nth(r, 2); // Call with random_access_container

Figure 3. Examples of C++20 concept definition and refinement. Depiction of function overloading
according to these newly defined concepts.

of all the new features from the C++20 standard, including the C++ concepts we previously
introduced and older C++ features improved by C++20 such as constexpr if and constexpr
functions. Furthermore, to obtain satisfactory performance, Kiwaku is based on generative
meta-programming using C++ templates.

Kiwaku provides both owning tables and non-owning views. The former manages its own
memory allocation, like std::vector, while the latter points to a pre-existing allocation, like
std::span. Those containers are defined with expressive and high level arguments. Linear
algebra, expression templates and complex calculations are all out of scope for Kiwaku, as it
is designed to solely be an efficient multidimensional arrays library providing optimized and
easy to use traversal algorithms. It aims to provide a compatibility layer with pre-existing
calculation libraries such as Intel MKL, Eigen and Kokkos. Multiple execution contexts are
or will be also supported, including traditional CPUs, most GPUs with the help of SYCL [21],
distributed computations through MPI [22] and vectorization using the Eve library [23] [24].

Although Kiwaku may at first look like md_span, it differs greatly from it. Indeed,

md_span only offers views on pre-existing allocations whereas Kiwaku offers views and fa-
bles, the later being allocated by default or with a user-defined allocator, useful for situations



where GPU or distribution contexts are needed. Unlike md_span, Kiwaku also offers opti-
mized traversal algorithms on its views and tables.

3.1 Kiwaku: Usability

When a generic function is invoked with an argument of invalid type, we want the error
message to be as clear and concise as possible. As introduced earlier, C++20 concepts are
particularly suited for this kind of task as they restrain the set of arguments allowed as tem-
plate arguments, and immediately lead to an error when the given argument does not model
the concept, without going down the whole call hierarchy, hence Kiwaku relies on them for
its usability.

Let’s say we want to make a square_each function that squares every element of a 2D
Kiwaku view of floats, as depicted on figure 4. How does this generic function express
what it expects as an argument? To start with, a Kiwaku view is represented by the concept
kwk::concepts::view. We then add two more constraints for the view: we want the view to
be 2-dimensional, and to contain floats. Then, we call the for_each function of Kiwaku to
finally square each element of the view. Without C++20, we would not have been able to
define clean concepts, thus a square_each function would have been much more complex to
write for the end user.

#include <kwk/kwk.hpp>

// Only expects a 2D kiwaku view of floats: constraint via C++20 concepts
void square_each (kwk:: concepts ::view<kwk:: 2D, kwk::as<float>> auto& view)

{
// For each value of v: square the value
kwk:: for_each( [](auto& e) { e = e; }, view);

}

void demo_kiwaku_view (floatx data, int width, int height)

{
kwk::view v { kwk::size = kwk:: of_size (width, height), kwk::source = data };
square_each(v);

}

Figure 4. Definition of a function taking a Kiwaku view as argument, and applying the Kiwaku for_each
to each element o the view.

Kiwaku is engineered to give an easy to write and understand interface with other libraries
and native C++ code. The creation of a Kiwaku view from a C++ array can be achieved in a
single line of code, by specifying the shape of the desired view and its source. The data type is
then automatically deduced from the source. Once the Kiwaku view is created, it can be used
by other functions taking such a view as argument. The code of function demo_kiwaku_view
from figure 4 demonstrates this process.

3.2 Kiwaku: Real life examples

Performance-wise, it is important that the use of Kiwaku only adds a barely noticeable over-
head, if any. To assess this, we conducted two experiments: starting from pre-existing physics
code examples of the Covfie magnetic field handling library, we evaluated the relative perfor-
mance between equivalent code written with Kiwaku and classic standalone C++ code using
std::arrays. The relevant code is available at [25].



Figure 5. Magnetic field rendering for the ATLAS detector, with a few particle tracks added to the right
image.

The first significant example we chose is a magnetic field rendered into a 2D image for the
ATLAS detector [26], as seen on figure 5. The left image is a slice of the ATLAS magnetic
field: colors indicate the magnetic field strength. A few charged particle track simulations
with the Lorentz-Euler algorithm have been added to the right image. The vector field data is
made available by the ACTS library. The benchmark consists in measuring the elapsed time
for filling a 1024x1024 image with pixel colors representing the intensity of the magnetic
field at each point of the detector.

In this example, the Kiwaku code is a little shorter than our standalone C++ code since
Kiwaku provides the necessary functions to interpolate between its container’s cells when
a floating point position is asked by the user code. We were pleased yet a bit intrigued by
the results of our benchmark, since the Kiwaku version proved to be slightly faster than the
standalone version, consistently by about 10%, for every slice. This is most likely due to
the compiler being able to optimize further the code generation by its knowledge of the full
context in which each function was called for the Kiwaku version. Of course, we always
automatically checked that the rendered image was exactly the same in both cases.

As another example, we choose the Lorentz-Euler algorithm for charged particle track
simulation in a magnetic field. The particles were moving in the same ACTS magnetic field,
and our benchmark measured the elapsed time for a given quantity of particles moved a given
number of iterations. Like before, we ensured that the results between our two code versions
were identical. This time, the standalone version proved to be slightly faster by about 3%.

3.3 Kiwaku: Future work

The Kiwaku library is designed to offer optimized traversal algorithms for its tables and
views, in the most usable way possible. It is not made to handle linear algebra calculations so
it will provide an interface with other math libraries such as Intel MKL, Kokkos and Eigen.
It will offer multiple specific traversal algorithms such as Hilbert, Morton, row/column-major
and its extension to 3 and more dimensions. The slicing of views and tables according to user-
specified dimensions is already supported. Kiwaku currently only supports CPU execution,
but multiple execution contexts will soon be available, such as parallel CPU execution with
an underlying OpenMP [27] layer, vectorization with the SYCL library and GPU execution
with the SYCL backend. It will also provide the user with tools to create his own execution
context, extending Kiwaku’s basic context types at will. In the more distant future, Kiwaku
will also use MPI to allow execution on a cluster of servers, allowing execution contexts



to be stacked on top of each other, having for example a GPU SYCL context run on each
distributed node of an MPI context.

4 Conclusion

We have shown how the recent developments made to the C++ standard enable libraries to
be more usable and easier to understand and maintain, while preserving performance. This
is partly achieved by using C++ concepts, constexpr functions and constexpr if, based on
the Generative Programming paradigm and template metaprogramming. We then introduced
Kiwaku, a C++20 library for multidimensional arrays using the most recent available and
supported features of C++ at the time of writing. It is aimed at maximizing usability while
retaining the runtime performance for which C++ is known. We showed that, on top of
offering good usability, the performance of Kiwaku for two physics examples borrowed from
the ACTS and Covfie libraries were on par with C++ code only using std::arrays [25].
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