Sylvain Joube
email: sylvain.joube@lisn.fr

Hadrien Grasland
email: hadrien.grasland@ijclab.in2p3.fr

David Chamont
email: david.chamont@ijclab.in2p3.fr

Joel Falcou
email: joel.falcou@lisn.fr

Joël Falcou

Kiwaku, a C++20 library for multidimensional arrays Application to ACTS tracking

de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Track reconstruction, also known as tracking, is a vital part of the HEP event reconstruction process, and one of the largest consumers of computing resources. The upcoming HL-LHC upgrade will increase the need for software able to make efficient use of the underlying heterogeneous hardware. However, this evolution should not imply the production of code unintelligible to most of its maintainers, hence the need to take care of usability for both end users and developers.

C++ has long been a language of choice for efficient scientific computing tasks. The Generative Programming paradigm [START_REF] Czarnecki | Generative Programming and Active Libraries[END_REF], which relies on heavy type based template metaprogramming, provides a powerful solution for supporting multiple execution contexts [START_REF] Masliah | Meta-Programming and Multi-stage Programming for GPGPUs[END_REF]. Yet templates are also usually blamed for unnecessarily large binary files, high code complexity and difficult-to-understand error messages.

In this article, we will discuss recent developments made to the C++ language, helping to define a new process for constructing libraries that are both efficient and easy to use. We will first illustrate how C++20 concepts makes for better error reporting and overall code clarity. We will then introduce Kiwaku [START_REF] Falcou | Kiwaku github repository[END_REF], a new C++20 multidimensional arrays library taking advantage of the most recent C++ usability improvements, yet providing portable performance [START_REF] Pennycook | A metric for performance portability[END_REF] on various hardware such as CPUs and GPUs. We will finally discuss a few proofs of concept, based on use-cases borrowed from the ACTS project [START_REF] Ai | A Common Tracking Software Project[END_REF], and more specifically the Covfie [START_REF] Swatman | Systematically Exploring High-Performance Representations of Vector Fields through Compile-Time Composition[END_REF] library, which provides magnetic field computation and Lorentz-Euler track propagation.

A short glimpse into C++ usability

Inheritance-based object oriented programming can be easy to understand, write and maintain, at the expense of runtime performance. To make C++ code use modern hardware more efficiently, template meta-programming proved necessary. Yet templates may turn into a nightmare for non computer science experts, as the templated code can be very difficult to grasp. It notoriously leads to painfully long and cryptic error messages and impedes code readability and maintainability.

As an example, consider figure 1, which defines a function template get_nth, invokes std::begin() on the parameter c. An argument of type std::list<float> will successfully compile, since it has such a function. But calling our function with an int will lead to an error message that prints the entire call stack and ultimately refers to fragments of code unknown to the developer (the C++ standard library in this case). Part of the resulting error message is reproduced in figure 2. To mitigate this issue, the long awaited C++ concepts were introduced in C++20. They provide a powerful and usable solution for adding constraints to templates, constraining the set of arguments that are accepted as template arguments. When a templated function is called with an argument not modeling the concept, the compiler will stop at the function header and print an error message, clearly stating the location of the error and its cause. It will not inspect the function implementation and instantiate the entire call stack as it would have done otherwise.

C++ concepts can be refined using a pattern close to interface inheritance, meaning a concept can be refined by another, and extended at will. The concept thusly defined subsumes the concepts of its ancestors plus any directly specified concepts. It is then possible to overload a function constrained by concepts, as the strongest constraint will always be chosen.

As an example, described in figure 3, let's take our previous get_nth function returning the nth element of an array-like structure. We can avoid the previous cryptic error message by defining a concept basic_container and requesting that our get_nth function only main . cpp : 2 4 : 1 2 : e r r o r : no m a t c h i n g f u n c t i o n f o r c a l l t o ' b e g i n ' a u t o b = s t d : : b e g i n (c) ; ^~~~~~~~~/ gcc -1 2 . 2 . 0 / i n c l u d e / c + + / 1 2 . 2 . 0 / i n i t i a l i z e r _ l i s t : 9 0 : 5 : n o t e : c a n d i d a t e t e m p l a t e i g n o r e d : c o u l d n o t match ' i n i t i a l i z e r _ l i s t <_Tp> ' a g a i n s t ' i n t ' b e g i n (i n i t i a l i z e r _ l i s t <_Tp> _ _ i l s) n o e x c e p t . . . 14 l i n e s h i d d e n . . . / gcc -1 2 . 2 . 0 / i n c l u d e / c + + / 1 2 . 2 . 0 / b i t s / r a n g e _ a c c e s s . h : 1 1 3 : accepts arguments that model this concept. When our function gets called with an argument not matching the concept, the compiler will stop there and print an error message, without descending further into the call hierarchy.

It is then possible to refine our previous concept by making a stronger concept asking for the array-like argument to support random access. As shown on figure 3, we can now overload our function get_nth with our more specific concept random_access_container, with its code optimized for this kind of structure, since the strongest constraint will always be chosen by the compiler. This is a very welcomed and easy to use way to specialize functions according to fine-grained types.

Kiwaku: Applied C++20 for Data Management

Multidimensional arrays are an integral part of scientific computing. Research on libraries for multidimensional arrays has been abundant, giving rise to many designs.

• Some libraries are intended for a single use-case, such as Fastor [START_REF] Poya | A High Performance Data Parallel Tensor Contraction Framework: Application to Coupled Electro-Mechanics[END_REF] for tensors, Covfie for vector field benchmarks and md_span [START_REF] Hollman | Mdspan in C++: A Case Study in the Integration of Performance Portable Features into International Language Standards[END_REF] for managing conversions between ndimensional positions and in-memory locations.

• Some are exclusively dedicated to mathematical computations and linear algebra, like the Matrix Template Library [START_REF] Siek | Computing in Object-Oriented Parallel Environments[END_REF], Intel MKL [START_REF]Accelerate Fast Math with Intel oneAPI Math Kernel Library[END_REF], Eigen [START_REF] Eigen | libeigen) C++ linear algebra library[END_REF], NT2 [START_REF] Estérie | [END_REF] and the GNU Scientific Library [START_REF]GSL -GNU Scientific Library -GNU Project -Free Software Foundation[END_REF].

• Some of these libraries also act as C++ wrappers for other linear algebra libraries, like Armadillo [START_REF] Sanderson | Armadillo: A Template-Based C++ Library for Linear Algebra[END_REF] which can leverage OpenBLAS [START_REF] Xianyi | OpenBLAS: An optimized BLAS library[END_REF], LAPACK [START_REF]LAPACK Users' Guide -Third Edition[END_REF], ARPACK [START_REF] Lehoucq | ARPACK Users' Guide: Solution of Largescale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods[END_REF] and SuperLU [START_REF] Li | Newly Released Capabilities in the Distributed-Memory SuperLU Sparse Direct Solver[END_REF].

• Finally, some can be seen as complete ecosystems, having both mathematical, storage and analysis capabilities like the Kokkos ecosystem [START_REF]Kokkos Ecosystem -Part of the Exascale Project[END_REF] or the Dlib [START_REF]Dlib C++ Library[END_REF] library. These libraries all support CPU calculations, with automatic or manual vectorization. Some of them also support offloading work to a GPU or distributing it over a computing cluster.

With Kiwaku, we made the choice to explore what C++20 could allow in terms of usability while preserving performance. Kiwaku is only compatible with C++20 and onward and does not offer compatibility with previous C++ standards, allowing it to take advantage of all the new features from the C++20 standard, including the C++ concepts we previously introduced and older C++ features improved by C++20 such as constexpr if and constexpr functions. Furthermore, to obtain satisfactory performance, Kiwaku is based on generative meta-programming using C++ templates.

Kiwaku provides both owning tables and non-owning views. The former manages its own memory allocation, like std::vector, while the latter points to a pre-existing allocation, like std::span. Those containers are defined with expressive and high level arguments. Linear algebra, expression templates and complex calculations are all out of scope for Kiwaku, as it is designed to solely be an efficient multidimensional arrays library providing optimized and easy to use traversal algorithms. It aims to provide a compatibility layer with pre-existing calculation libraries such as Intel MKL, Eigen and Kokkos. Multiple execution contexts are or will be also supported, including traditional CPUs, most GPUs with the help of SYCL [START_REF]SYCL -C++ Single-source Heterogeneous Programming for Acceleration Offload[END_REF], distributed computations through MPI [START_REF]MPI: Open Source High Performance Computing[END_REF] and vectorization using the Eve library [START_REF] Falcou | An Object Oriented SIMD Library[END_REF] [START_REF] Estérie | Boost.SIMD: Generic Programming for Portable SIMDization[END_REF].

Although Kiwaku may at first look like md_span, it differs greatly from it. Indeed, md_span only offers views on pre-existing allocations whereas Kiwaku offers views and tables, the later being allocated by default or with a user-defined allocator, useful for situations where GPU or distribution contexts are needed. Unlike md_span, Kiwaku also offers optimized traversal algorithms on its views and tables.

Kiwaku: Usability

When a generic function is invoked with an argument of invalid type, we want the error message to be as clear and concise as possible. As introduced earlier, C++20 concepts are particularly suited for this kind of task as they restrain the set of arguments allowed as template arguments, and immediately lead to an error when the given argument does not model the concept, without going down the whole call hierarchy, hence Kiwaku relies on them for its usability.

Let's say we want to make a square_each function that squares every element of a 2D Kiwaku view of floats, as depicted on figure 4. How does this generic function express what it expects as an argument? To start with, a Kiwaku view is represented by the concept kwk::concepts::view. We then add two more constraints for the view: we want the view to be 2-dimensional, and to contain floats. Then, we call the for_each function of Kiwaku to finally square each element of the view. Without C++20, we would not have been able to define clean concepts, thus a square_each function would have been much more complex to write for the end user. Kiwaku is engineered to give an easy to write and understand interface with other libraries and native C++ code. The creation of a Kiwaku view from a C++ array can be achieved in a single line of code, by specifying the shape of the desired view and its source. The data type is then automatically deduced from the source. Once the Kiwaku view is created, it can be used by other functions taking such a view as argument. The code of function demo_kiwaku_view from figure 4 demonstrates this process.

Kiwaku: Real life examples

Performance-wise, it is important that the use of Kiwaku only adds a barely noticeable overhead, if any. To assess this, we conducted two experiments: starting from pre-existing physics code examples of the Covfie magnetic field handling library, we evaluated the relative performance between equivalent code written with Kiwaku and classic standalone C++ code using std::arrays. The relevant code is available at [START_REF] Joube | Reference code used in this article, with full instructions for reproducible results[END_REF]. The first significant example we chose is a magnetic field rendered into a 2D image for the ATLAS detector [START_REF]ATLAS Experiment at CERN[END_REF], as seen on figure 5. The left image is a slice of the ATLAS magnetic field: colors indicate the magnetic field strength. A few charged particle track simulations with the Lorentz-Euler algorithm have been added to the right image. The vector field data is made available by the ACTS library. The benchmark consists in measuring the elapsed time for filling a 1024x1024 image with pixel colors representing the intensity of the magnetic field at each point of the detector.

In this example, the Kiwaku code is a little shorter than our standalone C++ code since Kiwaku provides the necessary functions to interpolate between its container's cells when a floating point position is asked by the user code. We were pleased yet a bit intrigued by the results of our benchmark, since the Kiwaku version proved to be slightly faster than the standalone version, consistently by about 10%, for every slice. This is most likely due to the compiler being able to optimize further the code generation by its knowledge of the full context in which each function was called for the Kiwaku version. Of course, we always automatically checked that the rendered image was exactly the same in both cases.

As another example, we choose the Lorentz-Euler algorithm for charged particle track simulation in a magnetic field. The particles were moving in the same ACTS magnetic field, and our benchmark measured the elapsed time for a given quantity of particles moved a given number of iterations. Like before, we ensured that the results between our two code versions were identical. This time, the standalone version proved to be slightly faster by about 3%.

Kiwaku: Future work

The Kiwaku library is designed to offer optimized traversal algorithms for its tables and views, in the most usable way possible. It is not made to handle linear algebra calculations so it will provide an interface with other math libraries such as Intel MKL, Kokkos and Eigen. It will offer multiple specific traversal algorithms such as Hilbert, Morton, row/column-major and its extension to 3 and more dimensions. The slicing of views and tables according to userspecified dimensions is already supported. Kiwaku currently only supports CPU execution, but multiple execution contexts will soon be available, such as parallel CPU execution with an underlying OpenMP [START_REF]The OpenMP API specification for parallel programming[END_REF] layer, vectorization with the SYCL library and GPU execution with the SYCL backend. It will also provide the user with tools to create his own execution context, extending Kiwaku's basic context types at will. In the more distant future, Kiwaku will also use MPI to allow execution on a cluster of servers, allowing execution contexts to be stacked on top of each other, having for example a GPU SYCL context run on each distributed node of an MPI context.

Conclusion

We have shown how the recent developments made to the C++ standard enable libraries to be more usable and easier to understand and maintain, while preserving performance. This is partly achieved by using C++ concepts, constexpr functions and constexpr if, based on the Generative Programming paradigm and template metaprogramming. We then introduced Kiwaku, a C++20 library for multidimensional arrays using the most recent available and supported features of C++ at the time of writing. It is aimed at maximizing usability while retaining the runtime performance for which C++ is known. We showed that, on top of offering good usability, the performance of Kiwaku for two physics examples borrowed from the ACTS and Covfie libraries were on par with C++ code only using std::arrays [START_REF] Joube | Reference code used in this article, with full instructions for reproducible results[END_REF].

Figure 1 .

 1 Figure 1. The templated get_nth function leads to a non-user-friendly error message during compilation when called with unsupported arguments, such as an int.

Figure 2 .

 2 3 1 : n o t : c a n d i d a t e t e m p l a t e i g n o r e d : c o u l d n o t match ' v a l a r r a y <_Tp> ' a g a i n s t ' c o n s t ␣ i n t ' t e m p l a t e <typename _Tp> _Tp * b e g i n (v a l a r r a y <_Tp>&) n o e x c e p t ; / gcc -1 2 . 2 . 0 / i n c l u d e / c + + / 1 2 . 2 . 0 / b i t s / r a n g e _ a c c e s s . h : 1 1 4 : 3 7 : n o t e : c a n d i d a t e t e m p l a t e i g n o r e d : c o u l d n o t match ' c o n s t ␣ v a l a r r a y <_Tp> ' a g a i n s t ' c o n s t ␣ i n t ' t e m p l a t e <typename _Tp> c o n s t _Tp * b e g i n (c o n s t v a l a r r a y <_Tp>&) n o e x c e p t ; Part of the resulting very long and cryptic error message when figure 1 code gets compiled with gcc-12.2.0. We hid 14 lines out of the 29 lines of the full error message to save space.

/Figure 3 .

 3 Figure 3. Examples of C++20 concept definition and refinement. Depiction of function overloading according to these newly defined concepts.

#Figure 4 .

 4 Figure 4. Definition of a function taking a Kiwaku view as argument, and applying the Kiwaku for_each to each element o the view.

Figure 5 .

 5 Figure 5. Magnetic field rendering for the ATLAS detector, with a few particle tracks added to the right image.