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Abstract—Cooperative Intelligent Transportation Systems (C-
ITS) are gaining ground and are almost part of our everyday
life. Within these environments, huge amounts of messages are
exchanged. Besides, these messages should be secure in order to
ensure users’ privacy. Public Key Infrastructures (PKI) represent
the most common security solution. Due to the vehicles speed,
the communication with the PKI should be fully optimized.
The European Telecommunications Standards Institute (ETSI)
proposes a PKI architecture for C-ITS environments. However,
unlike most of security standards as IEEE 1609.2, there is
no Abstract Syntax Notation One (ASN.1) specification for the
used certificates. For this reason, in this paper, we propose an
ASN.1 definition for the ETSI certificate to help developers in its
implementation. In addition, we provide an extensive comparative
study of the different encoding schemes, applied to this proposal.

Index Terms—C-ITS, ETSI, Certificate, Encoding schemes,
ASN.1, Performance

I. INTRODUCTION

During the last years, Collaborative Intelligent Transporta-
tion Systems (C-ITS) have gained momentum and will soon
become essential to roads’ users through the different applica-
tions they offer. therefore, such applications have evolved and
become very greedy in terms of transmitted traffic and used
bandwidth. Consequently, huge amounts of data and messages
are exchanged continuously. Most of the exchanged messages
contain critical data that should be confidential. Furthermore,
numerous requested services require authentication to be ac-
cessed. To handle these security requirements, Public Key
Infrastructures (PKIs) represent the most common solution.

However, using security within vehicular communications
costs extra resources. Indeed, the use of wireless technologies
for communication such as cellular or ITS-G5/802.11p has
a strong impact on the network performance. For instance,
messages’ size represents a parameter that has to be seriously
considered. The chosen encoding scheme has a strong impact
on the size of the encoded data and on the encoding and
decoding times.

In most of security standards such as IEEE1609.2 [8] and
X509 [9], an Abstract Syntax Notation One (ASN.1) specifi-
cation, a chosen encoding scheme of the described protocol
and the used structures are provided. The goal of ASN.1 is
the unicity of implementations through the restriction of inter-
pretations and misunderstandings of the described standards
and protocols. Nonetheless, multiple structures of European
Telecommunications Standards Institute (ETSI) standards are
not defined in ASN.1. ETSI certificate [7], a major component

and player of security system is one of these non defined struc-
tures. Hence, in this paper we proposed an ASN.1 definition
of the ETSI certificate. Beyond this proposal, we provided
an extensive experimental study of the different encoding
schemes applied to this use case. To the best of our knowl-
edge, our work represent the first study that compares the
performances of such a number of encoding schemes in such
a context. Consequently, the contributions of this work are: (1)
the restriction of wrong interpretations and misunderstandings
of the ETSI certificate structure. Indeed, the definition of an
ASN.1 structure for the ETSI certificate will help developers
to follow the same constrictions and principles, accomplishing
the ETSI standard policy; (2) providing a comparative study
that allows the usage of the optimal encoding scheme, which
allows best performances; and (3) making easier extensions
on the certificate structure.

The rest of this paper is organized as follows: in Section II,
ASN.1 language description is provided, as well as its different
encoding schemes. Section III gives an overview of the related
works. Section IV describes our ASN.1 proposal for the ETSI
certificate and the followed experimental study that aims the
comparison of encoding schemes. Section V discusses the
obtained results. Finally, SectionVI concludes the paper and
introduces our future works.

II. ASN.1 AND DATA ENCODING
A. ASN.1 definition and utility

Abstract Syntax Notation One (ASN.1) is a standardized
language used to describe and to specify, in an abstract
way, data-structures, independently of the used platform and
the implementation language. Actually, it exists numerous
compilers that automatically translate ASN.1 structures into
other language’s syntax. Besides, in order to represent or store
ASN.1 data-structures as hexadecimal or binary values, the use
of ASN.1 encoding rules is needed. The latter are also used
for the exchange of abstract data in network computing, where
each ASN.1 structure becomes a protocol data unit (PDU) and
is encoded in a determined number of bytes.

An ASN.1 data-structure can be composed of multiple
ASN.1 structures. Thus, the resulting encoding will be the
concatenation of the encodings realized on all the structures
composing the root ASN.1 definition. The receiver is required
to have the ASN.1 definition, in order to be able to decode
the structure.



B. Encoding schemes

Numerous encoding rules for ASN.1 exist, e.g: BER, DER,
PER, and XER. The latter aim to define a data representation,
able of being transmitted as a transfer syntax. In other words,
the encoding rules define how an ASN.1 structures are encoded
into byte array forms, in order to be transmitted.

The encoding rules follow a defined parametrization called
Type-Length-Value (TLV) as follows: (1) Type tag determines
the ASN.1 element that is being encoded, i.e. SEQUENCE,
CHOICE, INTEGER, etc. For example, the Type tag of
SEQUENCE structure is ‘30°g; (2) Length tag is build by
computing the length of the Value field; (3) Value tag is the
actual value of the specific structure or field. In the following,
we describe the main ASN.1 encoding schemes.

1) Basic Encoding Rules (BER): The ASN.1 Basic Encod-
ing Rules (BER) give one or multiple ways to represent any
ASN.1 structure as an octet string. Its encoding rules follow
the TLV policy and operate according to three methods:(1)
Primitive with definite-length encoding; (2) Constructed with
definite-length encoding; and (3) Constructed with indefinite-
length encoding. Simple non-string types employ the primitive
with definite-length method; structured types employ any con-
structed method; and simple string types employ any methods,
but, depending on whether the length of the value is known or
not; types derived by implicit tagging employ the method of
the underlying type. Finally, types derived by explicit tagging
employ the constructed methods [3].

2) Distinguished Encoding Rules (DER): The Distin-
guished encoding rules (DER) represent a subset of BER.
These encoding rules are one of the most popular encoding
formats, since they are used to encode and to store X.509
certificates in files [3]. Unlike BER, DER encodings have a
unique encoding for each ASN.1 value. By the fact that DER is
a subset of BER, one could BER-decode from a DER encoding
but not vice versa. This is due to the fact that for the same
ASN.1 value, BER have different encodings.

3) Packed Encoding Rules (PER) and Unaligned PER
(UPER ): Packed encoding rules, BASIC-PER or just PER
encoding rules rise from BER encoding style, but more com-
pacted. The aim of compacting the encodings occurred by the
fact that BER encodings frequently have possible redundant
octets. For instance, Boolean value has a fixed length. Thus,
if we suppress the ’Length’ of the TLV, one could still decode
it correctly as we know the type of value we are dealing with,
through the value of *Type’.

When a structure is encoded, one obtains an array of bytes.
However, not all the encoded structures always represent a
complete byte array value. For example, a structure repre-
sented in 6 bits, one can represent it as a byte (8 bits), or just
as a bit array of length 6. The Aligned PER version follows
the octet-aligned-bit-fields policy and will insert padding bits
to the unfulfilled octets, while in the Unaligned PER (UPER)
version, no padding bits are inserted [4].

4) Octet Encoding Rules (OER): OER represents a mix of
BER and PER. More precisely, OER follows the octet-aligned-

bit-fields policy, as Aligned PER. However, it removes "Type’
and ’Length’ tags [6].

5) Canonical Encoding Rules (CER): As DER, CER en-
coding rules, are a subset of BER. These encoding rules
produce an unequivocal transfer syntax for data structures
described by ASN.1. Whereas BER gives choices, such as
how data values may be encoded. CER -as DER- selects just
one encoding from those allowed by the basic encoding rules.
Eliminating, thus, the rest of the options [3]. CER and DER
differ in the set of restrictions that they place on the encoder.
The basic difference between them, is that DER uses definitive
length form and CER uses indefinite length form.

6) XML Encoding Rules (XER): XML encoding rules
(XER) represent verbose representations of ASN.1 structures.
These encoding rules were developed as a link between XML
and ASN.1. They are specially useful for interactions with
a system configured just to understand XML. XER encoding
rules attempt to bridge the gap by providing a textual encoding
of defined data structures using ASN.1 notation. Nevertheless,
it does not provide any user control over the produced style
of XML [5]. In the latter, the *Type’ tag is represented as the
name of the elements (SEQUENCE, CHOICE,...).

EXTENDED-XER (E-XER) is a variation of BASIC-XER
encodings. They increase verbosity by specifying a set of XER
encoding instructions associated with ASN.1 types. In absence
of XER encoding instructions, an EXTENDED-XER encoding
differs from a BASIC-XER encoding only because it provides
more encoders options.

III. RELATED WORKS

Several studies were been provided in order to compare
performances of encoding schemes. However, few ones have
targeted the ITS and vehicular environments.

Darren et al.[11] and authors in [12], have realized a perfor-
mance comparison between ASN.1 and XML. The conclusion
is that XML is not an effective solution for providing a human
readable and easy to parse data representation at the cost of
bigger encoding length. Therefore, this cannot be considered
as a practical option for ITS communications where the length
of encoded data needs to be as small as possible.

Bittl et al.[13] proposed a performance comparison of
encoding schemes for C2X communications based on ETSI
standards. In their experiment, the computation time, the
memory footprint and the encoded data length, were the three
considered parameters of the performance evaluation for each
encoding scheme. The evaluated data structure was ETSI
Secured Message [7], considering the following encoding
schemes: binary, Protocol Buffers (Protobuff) [2], Efficient
XML Interchange (EXI) [1] and ASN.1. The authors con-
cluded that ASN.1 encoding outperformed Protobuff and EXI
encodings but not binary encoding. Besides, ASN.1 encoding
scheme has better results for data length. However, this paper
does not provide any details about programming language
and especially on how the certificate and secured message
have been defined for each syntax, which brings questions
about structure optimizations. Furthermore, they used only



Unaligned PER ASN.1 encoding scheme, which is restrictive
considering the number of existing ASN.1 encoding schemes,
especially, because UPER is not the most optimal one.

IV. PROPOSAL OF ASN.1 STRUCTURE FOR ETSI
CERTIFICATE

In this section we present and detail our ASN.1 proposal
for the ETSI certificate and the performance study that we
conducted in order to compare the different encoding schemes.

A. ASN.I certificate

ETSI certificate is described by the standard ETSI TS
103097 [7]. It is composed of six principal structures :

« Version: represents the version of the certificate, currently
version 2.

o SignerInfo: contains relevant information about the au-
thority signing the certificate. This field is needed in order
to identify the signer when checking the signature of the
certificate.

o SubjectInfo: specifies the type of the subject owning the
certificate, e.g. ITS station (ITSS) or PKI authority and
its name (subject name).

o SubjectAttribute: comprises data used by security func-
tions and includes:

— The verification public key used to generate Elliptic
Curve Digital Signature Algorithm (ECDSA) signa-
tures.

— The encryption public key used for the Elliptic Curve
Integrated Encryption Scheme (ECIES) encryption.

— The reconstruction value containing an ECCPoint (in
the case of using implicit certificates).

— The assurance level associated to the certificate.

— The list of Specific Service Permissions (SSPs) as-
sociated to the certificate

« ValidityRestriction: specifies the validity of the certificate.
Two types of validity restriction are defined in this field:
(1) time restrictions and (2) region restrictions.

o Signature: covers all the mentioned fields and performed
using the private verification key of the authority de-
scribed in SignerInfo.

The different structures of ETSI TS 103097 standard are
described by the meaning of a syntax derived from IETF RFC
2246 [10] and from IEEE 1609.2-2012 [8]. However, due to
this syntax ambiguity, the implementation of these structures
can lead to numerous interpretations. In other words, multiple
implementations can be derived from this description (even
those that do not respect the standard ). Our motivation behind
this work is the proposal of an ASN.1 structure that allows a
correct implementation of the certificate.

Listing 1 contains our ASN.1 proposal for the ETSI cer-
tificate. This proposal accurately reflects the one described
by ETSI TS 103097 except for few details. These changes
were provided in order to secure the generation and use of the
certificate. Indeed, due to the flexibility of these structures,
they are subject to erroneous generation or to manipulation

for malicious purposes. These changes are as follows:

(1) According to the ETSI TS 103097 standard [7] the
signerInfoType can be one of the following: (1) self; (2)
certificate digest with SHA256; (3) certificate digest with other
algorithms; (4) certificate; or (5) certificate chain. However, in
the section dedicated to this structure, it is clearly explained
that this type have to be only one of the three following : (1)
self; (2) certificate digest with SHA256; or (3) certificate digest
with an other algorithm. In order to avoid that users choose
wrongly unauthorized types, in our proposal, we restricted the
choice of the signerInfoType to only authorized types.

(2) [7] describes SubjectAttributes as a vector of variable
length which can contain different types of SubjectAttributes.
However, it is clearly explained further, that this structure
does not support two SubjectAttributes of the same type.
Furthermore, a verification key and an assurance level Sub-
jectAttribute are mandatory. In order to be compliant with
these conditions and to avoid wrong SignerInfo generations,
a sequence of multiple SubjectAttributes is defined, including
the verification key and assurance level SubjectAttributes as
mandatory and the rest as optional.

(3) In the last structure, according to the type of the certificate,
an ITS Application IDentifier List (ITS AID List) or an ITS
AID Service Specific Permissions (SSP) List is defined, but
never both. Even though, as it is defined in the standard, it is
possible to generate both of them. To remedy this problem,
we define, in the list of SubjectAttributes an attribute called
ITSList which consists of a choice between the two different
list structures.

(4) ValidityRestrictions field, should contain a time Valid-
ityRestriction and can contain a region ValidityRestriction.
The certificate can comprise multiple ValidityRestrictions in
a vector of variable length. Nonetheless, it could not comprise
two time restrictions. But, the structure proposed by the
standard does not fullfill this condition. To remedy this issue,
we define the ValidityRestrictions field as a vector of variable
length which can contain only one time ValidityRestriction.
It is a choice between all the restrictions of type time. In
addition, the vector can comprise unlimited number of region
restrictions.

(5) In the last structure, a region Validity Restriction could be
of different types, such as: circular, rectangular or polygonal.
The rectangular region is defined as a composition of multiple
rectangles, at least one and maximum of six. However, the
proposed structure does not guarantee this condition. Our so-
lution remedy this problem, by requiring at least one rectangle
as well as limiting the maximum number of rectangles to six.
(6) According to [7], different compression modes for Elliptic
Curve Cryptography (ECC) Points are used. However, the
following restrictions have to be followed: For the Verification
Key and the Encryption key, © — coordinate — only type
should not be used; In Signature field, the r field is an
ECC Point and does not support uncompressed type; finally,
the reconstructionValue has no constraints in terms of type
of compression. To avoid confusion and wrong generations,
in our solution, we propose the usage of three ECC Point



structures, one for each described type.

Listing 1: ASNI1 definition of the ETSI certificate

Certificatel03097 DEFINITIONS AUTOMATIC TAGS
:= BEGIN
IMPORTS
Uint8, Uintle,
TwoDLocation,

HashedId8, Time32,

CircularRegion, Duration,
RectangularRegion, HashAlgorithm,
SubjectAssurance, SymmAlgorithm

FROM IEEE1609dot2BaseTypes {iso (1)

identified-organization(3) ieee(111)

standards-association-numbered-series-

standards (2) wave-stds (1609)dot2 (2)

base (1) base-types(2)}

Certificate ::= SEQUENCE ({

version Version,

signerInfo SignerInfo,

subjectInfo SubjectInfo,
subjectAttributes SubjectAttributes,
validityRestrictions ValidityRestrictions,
signature Signature

}

Version ::= Uint8
SignerInfo ::= CHOICE {
self NULL,

certificateDigestSHA256
CertificateDigestSHA256,

certificateDigestOtherAlgorithm
CertificateDigestOtherAlgorithm

}

CertificateDigestSHA256 ::=

CertificateDigestOtherAlgorithm ::=
algorithm HashAlgorithm,
digest HashedId8
}

SubjectInfo ::= SEQUENCE ({
subjectType SubjectType,
subjectName UTF8String (SIZE(0..32))

}

SubjectType ::= ENUMERATED {
enrollment-credential (0),
authorization-ticket (1),
authorization—authority(2),
enrollment-authority (3),
root-ca (4),
crl-signer (5)

}

SubjectAttributes ::= SEQUENCE ({
verificationKey VerificationKey,
encryptionKey EncryptionKey OPTIONAL,
assurancelevel SubjectAssurance,
reconstructionValue RecontructionEccPoint

OPTIONAL,
itsList ITSList,

HashedId8
SEQUENCE

}

PublicKey ::= SEQUENCE ({

algorithm PublicKeyAlgorithm,

key EccPoint

}

PublicKeyAlgorithm ::= ENUMERATED ({
ecdsa-nistp256-with-sha256(0),
ecies-nistp256 (1),

{

}
EccPoint ::= CHOICE {
compressed-y-0 OCTET STRING
compressed-y—-1 OCTET STRING
uncompressed SEQUENCE {
x OCTET STRING (SIZE
y OCTET STRING (SIZE

(SIZE
(SIZE

(32)),
(32)),

(32)),
(32))
}

}

RecontructionEccPoint ::=

x—coordinate-only OCTET STRING

compressed-y-0 OCTET STRING (SIZE

compressed-y—-1 OCTET STRING (SIZE

uncompressed SEQUENCE {
x OCTET STRING (SIZE
y OCTET STRING (SIZE

CHOICE {

(SIZE (32)),
(32)),
(32)),

(32)),
(32))

}
}
VerificationKey ::= PublicKey
EncryptionKey ::= SEQUENCE ({
supported-symm-alg SymmAlgorithm,
public-key PublicKey
}
ITSList ::= CHOICE {

its—-aid-1list ITS-AID-LIST,
its-aid-ssp-list ITS-AID-SSP-LIST
}

ITS-AID-LIST ::= SEQUENCE OF ITS-AID

ITS-AID ::= INTEGER
ITS-AID-SSP-LIST ::= SEQUENCE OF ItsAidSsp
ItsAidSsp ::= SEQUENCE ({

its-aid ITS-AID,

service-specific-permissions OCTET STRING
(SIZE(0..31))

}

ValidityRestrictions ::= SEQUENCE {

timeOfValidation ValidityRestrictionTime,

region ValidityRestrictionRegion OPTIONAL,

}

ValidityRestrictionTime ::=
timeEnd Time32,
timeStartAndEnd TimeStartAndEnd,
timeStartAndDuration TimeStartAndDuration
}

TimeStartAndEnd ::= SEQUENCE ({
startValidity Time32,
endValidity Time32

}

TimeStartAndDuration ::=
startvValidity Time32,
duration Duration

}
ValidityRestrictionRegion ::= CHOICE {
circularRegion CircularRegion,
rectangularRegion RectangularRegions,
polygonalRegion PolygonalRegion,
identifiedRegion IdentifiedRegion,

CHOICE {

SEQUENCE {

}
RectangularRegions ::=
RectangularRegion

PolygonalRegion ::= SEQUENCE SIZE(3..12) OF
TwoDLocation
IdentifiedRegion ::= SEQUENCE ({

regionDictionary RegionDictionary,
regionIdentifier Uintle,

SEQUENCE SIZE(1..6) OF



localRegion INTEGER
}

RegionDictionary ::=
iso-3166-1(0),
un-stats (1)

}

Signature ::=
EcdsaP256Signature ::=
r SignatureEccPoint,
s OCTET STRING (SIZE

}

SignatureEccPoint ::=

ENUMERATED {

EcdsaP256Signature
SEQUENCE {

(32))

CHOICE {

x—-coordinate-only OCTET STRING (SIZE (32)),
compressed-y-0 OCTET STRING (SIZE (32)),
compressed-y-1 OCTET STRING (SIZE (32))

}
END

B. Performance study

1) Overall context, experimental framework and scenarios:
We consider the case of a C-ITS environment, in which two
ITSS communicate. Within a communication, a message is
encoded by the first station, transmitted and finally decoded
by the second one. For authentication purposes, the message
contains the sender’s certificate. Knowing that certain mes-
sages are sent extensively and periodically over a wireless
network characterized by its components’ high speed, it is
very important to choose the optimal data encoding scheme for
transmission. To that aim, we realized an extensive experimen-
tal campaign that study and compare the different encoding
schemes. The latter are : Binary in BigEndian form, PER,
UPER, DER, BER, OER, COER, XER, CXER and EXER.
To the best of our knowledge, this work is the first that
aims to compare all these encoding schemes in a cooperative
ITS use case. This study concerns only the ETSI certificate.
It considers only the encoding of certificate, without taking
into account the structure of the message (secured messages)
including this certificate.

For our experimentations, we used two computers; sender
and receiver. Both have the same technical features, namely
Intel® Xeon® CPU ES5-1607 v3 @ 3.10GHz (quad-core)
with 8 Giga bytes of RAM. The implementation of the
described ASN.1 structure was realized using OSS Nokalva
compiler!. The latter generates also the Java code of the
conceived certificate and provides Java libraries that support all
the ASN.1 encoding rules. Consequently, we can also encode
and decode the created Java objects. For detailed scenarios,
as described by Algorithm 1, the sender generates a random
certificate. The randomization covers all the fields of the cer-
tificate. After, the generated certificate is encoded sequentially
with the mentioned encodings schemes( Binary, PER, UPER,
DER, BER, OER, COER, XER, CXER and EXER). For each
encoding, the size of the encoded certificate as well as the time
of the encoding are stored. In order to get accurate results and
deeply feature encodings from time and size perspectives, we
realized numerous experimentations by varying, the number

Iwww.oss.com/asn1/products/asn1-java/asnl-java.html

Algorithm 1: Sender

Declaration:
X: Integer
Enc: Tab[10] String
EncT: Tab[10] Files
EncS: Tab[10] Files
Cert: Obj

1: procedure ENCODEANDSENDCERIFICATE

foriinl: X do

Cert <+ GENERATERANDOMCERTIFICATE()

for j in 1 : Length(Enc) do
ENCODE(ENC[1], CERT)
SAVEENCODINGTIME(EncT[4])
SAVEENCODINGSIZE(EncS|[j])

8: end procedure

of generated certificates, defined by the X parameter. Thus, X
takes the following values: 10, 102, 103, 10%, 10° and 106.
Consequently, we realized six experimentations, each realizes
encoding and decoding following 10 encoding schemes.

From the receiver side, as described by Algorithm 2, the
station decodes each received certificate. Then, For each
encoding scheme, it stores the decoding time.

Algorithm 2: Receiver

Declaration:
DecT': Tab[10] Files > Files storing decoding times
Cert: Obj > Certificate

1: procedure RECEIVEANDDECODECERIFICATE

2 Cert < RECEIVECERTIFICATE()

3: DECODE(CERT)

4 SAVEDECODINGTIME(DecT [cert.encoding])
5. end procedure

We are aware about the difference of performance between
computers such as those used in our experimentations and
real On Board Units (OBU). We are also aware about the
fact that the obtained results depends on the used language
(Java) and are different when using other languages. However
the goal of our study is the comparison of the different
encoding schemes. Consequently, the comparison is fair since
all encodings and decodings are realized on the same basis,
language and material.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we present the different results that we
obtained through our evaluations. The latter covers: (1) en-
coding time, (2) decoding time, (3) certificate’ size and (4)
encoding and decoding speeds. For each metric, we compare
the obtained results of ASN.l1 encodings with Binary, the
actual used encoding. Knowing that our material is powerful
compared to the one used on board of vehicles, we consider
an accuracy of at least 10~8, in order to show differences that
can occur in a limited material.

> Nb of wanted certificates

> Available encoding schemes
> Files storing encoding times
> Files storing encoding sizes
> Certificate



Encoding || T. enc. Aver- | T. enc. Var. T. enc. SD T. dec. Aver- | T. dec. Var. T. dec SD Size Size Var. | Size SD

age (ms) age (ms) average

(bytes)

Binary 0.01833026 0.0006636195 | 0.02576081 0.04438053 0.02209007 0.1486273 200.4964 479.9544 | 21.90786
UPER 0.01918138 0.0002978974 | 0.01725971 0.02672955 0.0004372456 | 0.02091042 187.3701 468.7203 | 21.64995
PER 0.02144488 0.0005857316 | 0.02420189 0.03450128 0.003040983 | 0.05514511 192.3701 468.7203 | 21.64995
DER 0.02054847 0.001949473 | 0.04415283 0.02232729 0.002396427 | 0.04895331 251.0994 632.6233 | 25.152
BER 0.02057498 0.001595099 | 0.03993869 0.03037089 0.0020046642 | 0.04477323 251.0994 632.6233 | 25.152
OER 0.01834905 0.0005165277 | 0.02272725 0.02283728 0.0007253007 | 0.02693141 198.3701 468.7203 | 21.64995
COER 0.01405544 0.0004534607 | 0.02129462 0.01549953 0.0005262207 | 0.0229395 198.3701 468.7203 | 21.64995
XER 0.03533994 0.001298747 | 0.03603814 0.09933497 0.00264926 0.05147096 1924.137 5959.503 | 77.19782
CXER 0.02967197 0.001009983 | 0.03178023 0.08626314 0.002176599 | 0.04665404 1496.422 2496.244 | 49.96243
EXER 0.04752311 0.001929555 | 0.0439267 0.18197 0.005501827 | 0.0741743 1880.13 5251.959 | 72.4704

TABLE I: Statistics (Average, Variance and Standard Deviation) of the obtained results with 108 certificates

A. Encoding Time

Figure 1.a describes the evolution of the encoding times
sums2, over the different realized experimentations, for each
different encoding scheme. We can note that, (1) for number
of generated certificates taken between 10 and 103, the sum of
the different encoding times is very close. (2) From 103 to 10°
the differences between the encoding times begin to be shaped.
(3) Finally, from 10° and up, we obtain two groups, XML
encodings group and the rest. The second group contains close
values following the next ranking (the first has the shortest
encoding time, thus the best one): (1) COER, (2) Binary, (3)
OER, (4) UPER, (5) DER, (6) BER, (7) PER, (8) CXER, (9)
XER, (10) EXER.

For more precision on the obtained results, Table I describes
the average, the variance and the standard deviation (SD)
of encoding time, decoding time and size of the generated
certificates for all the used encoding schemes. The first 3
columns describe statistics on the obtained encoding time as
follows: (1) COER have 0.01405544 milliseconds (ms) of
average, 0.0004534607 of variance and 0.02129462 ms of SD.
(2) Binary, slower than COER with 0.00427482 ms, thus hav-
ing an average of 0.01833026 ms, 0.0006636195 of variance
which represent the biggest variance after XML encodings
(XER, CXER and EXER) and DER, and finally 0.02576081
ms of SD. (3) OER with 0.01834905 ms, thus, slower with
only 0.00001879 ms than Binary. (4) UPER with 0.01918138
ms of average encoding time, thus, slower than Binary with
0.00085112 ms. A variance of 0.0002978974, and an SD of
0.01725971 ms. UPER has the smallest obtained variance and
SD values. Consequently, we can conclude that UPER is the
most stable for encoding. (5) DER with 0.02054847 ms of
average (0.00221821 ms slower than Binary), 0.001949473 of
variance and 0.04415283 ms of SD. The latter are the biggest
obtained values, leading DER to be the most unstable encoding
scheme. (6) BER, very close to DER with 0.02057498 ms of
average, 0.00224472 ms slower than Binary. (7) PER, with
0.02144488 ms of average time, thus 0.00311462 ms slower

2Since the messages are sent continuously by an OBU, we believe that using
the sum for comparison is more explicit for highlighting times’ differences
than the average

than Binary. (8) CXER, having 0.02967197 ms of average
time, thus, 0.01134171 ms slower than Binary. (9) XER,
slower than Binary with 0.01700968 ms by having 0.03533994
ms of average. (10) Finally, EXER, with 0.04752311 ms of
average time (0.02919285 ms slower than Binary).

Even if the interval composed by the SD [Average —
SD, Average + SD] is very narrow, we can not have an
accurate idea of the obtained encoding times values. Thus,
Figure 2.a describes the boxplot realized on the encoding
time values of the experimentation involving the generation
of 109 certificates. For clarity purposes, we focus only on the
small interval [0,0.1] ms, which includes more than 75% of
all values. A boxplot is a statistical graphical representation,
where, (1) the minimum, (2) first quartile, (3) median, (4) third
quartile, and (5) the maximum of a statistical population. Thus
Figure 2.a highlights where most of encoding times values are
concentrated.

B. Decoding Time

Figure 1.b describes the evolution of the decoding times
sums, over the different realized experimentations, for each
different encoding scheme. We can note that, (1) when the
number of generated certificates is between 10 and 103, the
sum of the different decoding times is almost invariant. (2)
From 103 to 10° the differences between the decoding times
begin to be shaped. (3) Finally, from 10° an up, we obtain,
contrarily to encoding times case, a clear ranking of the
different sums.

The 5,6 and 7" Columns of Table I describe the
average, variance and SD of the obtained decoding times.
One can note that the obtained ranking is different from
the ranking of encoding times: (1) COER keeps the first
place of the ranking with an average time of 0.01549953 ms,
which means 0.028881 ms shorter than Binary. (2) DER, with
0.02232729 ms of average time (0.02205324 ms shorter than
Binary). (3) OER, having 0.02283728 ms, thus 0.02154325
ms less than Binary. (4) UPER, having 0.02672955 ms of
average (0.01765098 ms less than Binary). It has a variance
of 0.0004372456 and 0.02091042 of SD. As in the case of
encoding, variance and SD values are the smallest obtained,
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Fig. 1: Evolution of the sum of: (a) Encoding times; (b) Decoding times

witnessing of UPER’s stability. (5) BER, with 0.03037089
ms of average time (0.01400964 ms less than Binary). (6)
PER, having 0.03450128 ms of average time. Which means
0.00987925 less than Binary. (7) Binary, with 0.04438053 ms
of average time, having a variance of 0.02209007 and an SD
of 0.1486273 ms. We can note that this decoding time is worst
than all ASN.1 schemes, except XML ones. (8) CXER, with
0.08626314 ms of average time, which means 0.04188261 ms
more than Binary. (9) XER, having 0.09933497 ms of average
(0.05495444 ms more than Binary). Finally (10) EXER with
0.18197 ms of average time. Thus, 0.1375895 ms more than
the reference encoding.

Figure 2.b describes the boxplot realized on the decoding
time values of the experimentation involving the generation
of 10° certificates. For clarity purposes, we focus only on the
small interval [0,0.1] ms, which includes more than 75% of
the values.

C. Certificate’s size

The last 3 columns of Table I describe statistics of the ob-
tained size values. Figure 2.c describes the boxplot realized on
the size values of the experimentation involving the generation
of 1 million certificates. From these results we can conclude
the following ranking: (1) UPER, with 187.3701 bytes of
average size, thus, smaller by 13.1263 bytes from Binary. (2)
PER, having 192.3701 bytes of average size and thus 8.1263
bytes smaller than Binary. (3) COER and OER with 198.3701
bytes of average size, 2.1263 bytes smaller than the reference.
(5) Binary with 200.4964 bytes of average size. (6) DER and
BER, having 251.0994 bytes of average size, thus, 50.603
bytes more than the average size of Binary. (8) and very far,
CXER with 1496.422 bytes of average size, having 1295.926
bytes more than the average size of Binary. (9) EXER with

1880.13 bytes. Consequently, it has 1679.634 bytes more than
the reference. Finally (10) XER with 1924.137 bytes, which
means 1723.641 bytes more than the reference.

D. Encoding and decoding speeds

In this section, we discuss encoding and decoding speeds of
the different encoding schemes. A speed is calculated accord-
ing to the average values using the equation Speed = %

If we sort these speeds in order to get a ranking of how
fast are the different schemes, we obtain the following rank-
ing. For encoding: (1) the fastest encoding scheme is XER,
with 54446.53 Bytes/millisecond (B/ms); (2) CXER having
a speed of 50432.18 B/ms; (3) EXER, with 39562.44 B/ms;
(4) COER having a speed of 14113.4 B/ms; (5) DER with
12219.86 B/ms. (6) BER with 12204.11 B/ms; (7) Binary with
10938 B/ms; (8) OER having 10810.92 B/ms; (9) UPER with
9768.333 B/ms and finally (10) PER with 8970.444 B/ms.
For decoding: (1) the fastest decoding scheme is always XER,
with 19370.19 B/ms; (2) CXER with 17347.18 B/ms; (3)
COER having a speed of 12798.46 B/ms; (4) DER with
11246.3 B/ms; (5) EXER with 10332.09 B/ms; (6) OER
having 8686.24 B/ms; (7) BER having a speed of 8267.766
B/ms; (8) UPER having 7009.849 B/ms of speed; (9) PER
with 5575.738 B/ms, and finally (10) Binary having a speed
of 4517.666 B/ms

To summarize, according to needs, the choice of the encod-
ing scheme could be different. Indeed, COER realizes the best
encoding and decoding times, UPER realizes enormous size
savings. We can also note that XML encodings are very fast
comparing to other encodings but completely not adapted to
this use case.

We recall that the experimentations were realized on pow-
erful computers compared to those used on board of vehicles.
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Fig. 2: Boxplot of: (a) Encoding time; (b) Decoding Time, (c ) Size
Thus, in real OBUs, values’ differences are more important ACKNOWLEDGMENT

than those we obtained. However, the comparison still fair,
since all encodings and decodings are realized on the same
basis, language and material.

VI. CONCLUSION AND FUTURE WORKS

For security purposes, the main transmitted ETSI ITS
messages include sender’s certificate. Generally, security stan-
dards have their own ASN.1 specifications, e.g. IEEE 1609.2
certificate, in order to make easy their implementation and
avoid their wrong understanding. However, currently, there is
no existing ASN.1 definition for ETSI certificates. For this
reason, in this paper we proposed an ASN.1 definition for the
ETSI certificate as described in the standard ETSI TS 103097
[7]. This proposal accurately reflects the one described by
the standard and allows a secure generation of the certificate.
Indeed, due to the ambiguity of the used description language,
the described structures are subject to erroneous generation or
manipulation.

Beyond this proposal, we provided an extensive study of
the different encoding schemes. To the best of our knowledge,
it represents the first study that compares the performances
of numerous ASN.l1 encoding schemes and compare them
to Binary encoding scheme in a C-ITS context. This study
proves clearly that some ASN.1 encoding schemes are more
performant than Binary encoding scheme and their application
enhance the networks’ performances.

For future works, at a short term, we plan to submit our
ASN.1 definition to ETSI in order to be used for the standard
description. We also intend to specify an ASN.1 structure for
the ETSI secured message and to provide a performance study
on which encoding could be the most suitable for it. At a
long term perspective, we plan to provide an experimental
implementation of the described structures, in a real C-ITS
environment and to provide an extensive analysis of their
usage.

This work is part of SCOOP@F project. SCOOP@F is a
nationwide deployment project, led by the french government
and involving numerous industrial partners (e.g. French car
manufacturers: Renaults, PSA), road management companies
(e.g. SANEF) and research institutions (e.g. Telecom Paris-
Tech, Cerema). This is the largest experiment in Europe, with
the deployment of approximately 3,000 intelligent vehicles
over 2,000 km of connected roads.
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