
HAL Id: hal-04401164
https://hal.science/hal-04401164v1

Preprint submitted on 17 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the robustness of discontinuous patterns in
degenerate reaction-diffusion systems with perturbed

hysteresis
Guillaume Cantin

To cite this version:
Guillaume Cantin. On the robustness of discontinuous patterns in degenerate reaction-diffusion sys-
tems with perturbed hysteresis. 2024. �hal-04401164�

https://hal.science/hal-04401164v1
https://hal.archives-ouvertes.fr
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degenerate reaction-diffusion systems with

perturbed hysteresis
Guillaume Cantin∗

January 17, 2024

Abstract

In this paper, we study the dynamics of a morphogenesis model which reproduces the forma-
tion of discontinuous patterns observed in numerous biological or ecological systems. This model
is determined by a degenerate reaction-diffusion system with hysteresis in the non-diffusive equa-
tion. We focus on the robustness of discontinuous patterns under the action of a perturbation of
the hysteresis process. We analyze the bifurcations of homogeneous stationary solutions to this
nonlinear model and prove that the trivial solution is the only one to resist to a perturbation of
strong intensity. We then prove an original result on the structural transformation of discontinuous
patterns, which are seen to react by acquiring a supplementary discontinuity jump under the effect
of a perturbation of small intensity. We interpret the supplementary jump for ecological systems as
the possible emergence of an invasive ecosystem. Numerical simulations and animations are finally
provided to guide intuition on the complex morphogenesis process of this dynamical system.

Key words. Morphogenesis – Degenerate reaction-diffusion system – Discontinuous pattern –
Hysteresis – Perturbation.

1 Introduction
The formation of patterns observed in numerous real-world biological and ecological systems, also
known as morphogenesis, has become a very important research topic in mathematical modeling and
in the study of nonlinear dynamical systems. Turing is now recognized as the first mathematician to
propose a mechanistic model, determined by a system of reaction-diffusion equations, for reproducing
morphogenesis in an activator-inhibitor chemical system [38]; the forms produced by his model are
now well-known as Turing patterns. Nowadays, morphogenesis is a vibrant topic that continues to
produce an active literature, in which reaction-diffusion systems play a central role. In these reaction-
diffusion systems, Turing patterns have been intensely studied. The literature on this subject is so
wide that it is impossible to cite every relevant paper. One can however refer to [21, 22, 24, 36], where
Turing patterns are proved to emerge in vegetation models, or to [29], where they are observed in a
neuron model. The case of reaction-diffusion systems with a discrete diffusion operator also reveals
the formation of remarkable patterns, as proved in [15]. Other related works on this subject can be
found in [19, 23, 30, 31, 33, 37, 39] and the references cited therein. In particular, it is well explained
how Turing patterns are continuous in space and it is often observed that they can take various forms
such as spots, spirals or labyrinths. Nonetheless, another type of patterns seems to have been less
investigated, namely, discontinuous patterns.
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Indeed, discontinuous patterns have been identified in several real-world systems, notably in micro-
biology [9, 26, 27], in forest ecosystems models [3, 6, 18, 20] or in competitive species models [2, 28].
It turns out that the reaction-diffusion systems in which discontinuous patterns are proven to appear
admit common properties. First, they are degenerate reaction-diffusion systems, that is, at least one
equation of the model is non-diffusive. In other words, one species of the system is sedentary, such as
trees in the forest model presented in [18] for instance, which are typically motionless individuals (it
is interesting to note that the population of individuals of the sedentary species can paradoxically be
capable of moving [10]). Furthermore, the non-diffusive equation admits a strong nonlinearity which is
not invertible. This nonlinearity is often related to a hysteresis process that acts in the system (see for
instance [1, 16, 17, 34]). Overall, discontinuous patterns seem to appear when the smoothing effect of
the diffusion operator [7, 13] is perturbed by the combination of a degeneracy in the diffusion process
and a non-invertible term. Note however that the case of non degenerate reaction-diffusion systems
with discontinuous coefficients could also reveal discontinuous patterns. Although the existence of dis-
continuous patterns has been recently studied in the aforementioned papers [2, 4, 9, 17, 20, 26, 27, 28],
their characteristic properties are far from being completely understood. Indeed, very recent results
have been established on the asymptotic behavior of the trajectories determined by these degenerate
reaction-diffusion systems. Notably, a result of non-existence of the global attractor for a degenerate
reaction-diffusion system with hysteresis has been proved in [3]. Meanwhile, the weak convergence
of the solutions to a forest model towards heterogeneous stationary solutions has been established in
[14] using the  Lojasiewicz-Simon gradient inequality, and the weak convergence of the solutions to a
simplified model towards discontinuous patterns has been proved in [4] using a macroscopic mass effect
under symmetry assumptions. In parallel, the local stability of the discontinuous patterns, that is,
their behavior under a perturbation of the initial condition, has been studied in numerous papers (for
instance in [9, 12, 17, 25]). But their structural stability, that is, their behavior under the effect of a
perturbation of the nonlinear function involved in the system, has not been analyzed.

Contribution. Therefore, to the best of our knowledge, the structural stability of the discontin-
uous patterns emerging in degenerate reaction-diffusion systems with respect to a perturbation has
never been analyzed. In this paper, it is precisely our aim to bring a new contribution to a better
understanding of the robustness of discontinuous patterns in this type of systems. To that aim, we
consider a generic model for the formation of discontinuous patterns and we focus on the structural
response of its solutions under the action of a smooth perturbation. The model we consider is written

∂u

∂t
= αw − qµ(u), ∂w

∂t
= δ∆w − βw + αu. (1)

As will be detailed below, the latter system is defined on a bounded domain Ω ⊂ R1; it is supplemented
with the Neumann boundary condition on ∂Ω and with a given initial condition (u0, w0) defined in Ω.
The first equation in (1), describing the evolution of a sedentary species, is non-diffusive and contains
a nonlinearity qµ(u) which is given by a non-invertible cubic function, perturbed by a smooth function
parametrized by µ. The second equation describes the evolution of a mobile species which interacts
with the first species. The unperturbed model has been studied, as a simplification of the forest model
presented in [18], in [3] where it has been proved that it cannot admit the global attractor, and in [4]
where the weak convergence of a non trivial set of solutions towards discontinuous patterns has been
established. Here, we focus on the effect of the perturbation on the stationary solutions to (1). We
investigate the bifurcations of homogeneous stationary solutions and prove that the trivial solution
is the only one to resist to a perturbation of strong intensity (Proposition 2). We then prove our
main result, which states that the perturbation transforms discontinuous patterns, by adding a second
discontinuity jump to the first discontinuity jump which is observed in the patterns of the unperturbed
model (Theorems 4 and 5). Our analysis of the stationary solutions relies on geometric methods, with a
careful analysis of a Hamiltonian system that admits a discontinuous right-hand side and is equivalent
to the problem of finding heterogeneous equilibria of (1). Our new theoretical results are illustrated
by numerical simulations and we provide additional animations along with this paper, so as to guide
intuition on the behavior of the dynamical system under study.
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Outline. Our paper is organized as follows. In Section 2, we present in detail the degenerate
reaction-diffusion system we are studying and the basic assumptions on the perturbation introduced
in the model. Local in time solutions and global solutions are then proven to exist. In Section 3, we an-
alyze, by geometric methods, the distribution of homogeneous and heterogeneous stationary solutions
to system (1) and their structural stability under the action of the perturbation. The emergence of
two-jumps discontinuous patterns is interpreted for the case of a forest ecosystem. Finally, in Section
4, we show numerical experiments that support our theoretical statements.

2 Preliminaries and setting of the problem
In this section, we present the degenerate reaction-diffusion model under study, the assumptions on the
perturbation introduced in the model, and basic results on the existence of local and global solutions.

Notations. Throughout this paper, the symbols ki, with i ∈ N, will denote positive constants. The
space of continuous (respectively continuously differentiable) functions defined on an interval I ⊂ R
with values in a Banach space X will be denoted C

(
I, X) (respectively C 1(I, X)). Let Ω denote

an open, connected and bounded subset of Rn, where n is a positive integer; we will assume that
its boundary is sufficiently regular. Lebesgue spaces on Ω will be denoted Lp(Ω) and Sobolev spaces
on Ω will be denoted W k,p(Ω), with p ∈ [1, ∞] and k ∈ N. Those functional spaces are Banach
spaces whose norms will be denoted ‖·‖Lp(Ω) and ‖·‖Wk,p(Ω) respectively. For p = 2, we simply note
Hk(Ω) = W k,2(Ω).

2.1 A generic model for the formation of discontinuous patterns
Various models reproducing the formation of discontinuous patterns in biological or ecological systems
take the form of a degenerate reaction-diffusion system with hysteresis in the non-diffusive equation
[18, 26, 28]. The following degenerate reaction-diffusion system unifies this variety of models:

∂u

∂t
= αw − qµ(u), (t, x) ∈ (0, +∞)× Ω,

∂w

∂t
= δ∆w − βw + αu, (t, x) ∈ (0, +∞)× Ω,

∂w

∂ν
= 0, (t, x) ∈ (0, +∞)× ∂Ω,

u(0, x) = u0(x), w(0, x) = w0(x), x ∈ Ω.

(2)

Here, Ω is a one-dimensional bounded domain. The unknown functions u = u(t, x), w = w(t, x) are
defined in (0, +∞) × Ω, and the initial conditions u0, w0 are defined in Ω. ∆ denotes the Laplace
diffusion operator defined by ∆w = ∂2w

∂x2 . The outward normal vector to ∂Ω at point x is denoted by
ν(x). The parameters α, β, δ are positive coefficients, and qµ(u) is a smooth function defined by a
perturbation of a cubic:

qµ(u) = q(u) + µ p(u), q(u) = u(u2 − 1), u ∈ R, µ ≥ 0. (3)

The unknowns u(t, x) and w(t, x) correspond to densities of biological individuals; u(t, x) is a sedentary
species (e.g. trees) and w(t, x) is a mobile species (e.g. seeds).

Next, we assume that the perturbation p(u) is continuously differentiable in R and satisfies the
following properties:

∀s ∈ R, p(s) + p(−s) = 0, (4)
∀s ≥ 0, p(s) ≥ 0, (5)
∃M1 > 0, ∀s ∈ R, |p(s)|+ |p′(s)| ≤M1. (6)
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We also assume that q′µ(0) increases when µ increases in [0,+∞), is greater than α
β for µ sufficiently

large, and that the function qµ(u) admits a unique minimum mµ on ûµ ∈ R+, such that

mµ increases when µ increases in [0,+∞), (7)

mµ >
α2

β
ûµ for µ sufficiently large. (8)

Finally, we assume that there exists µ1 > 0 such that qµ(u) presents three monotone branches for
µ < µ1 and five monotone branches for µ > µ1.

With these assumptions, we easily prove the following lemma.

Lemma 1. For each µ ≥ 0, the function qµ(u) satisfies

qµ(u) + qµ(−u) = 0, (9)

for all u ∈ R. Furthermore, there exist µ2, µ3, µ4, such that

0 < µ1 < µ2 < µ3 < µ4

and for which the following properties hold.
(i) If 0 ≤ µ < µ1, then qµ(u) presents three monotone branches, admits three zeros and three

intersection points with the line α2

β u.
(ii) If µ1 < µ < µ2, then qµ(u) presents five monotone branches, admits five zeros but three

intersection points with the line α2

β u.
(iii) If µ2 < µ < µ3, then qµ(u) presents five monotone branches, admits five zeros and five

intersection points with the line α2

β u.
(iv) If µ3 < µ < µ4, then qµ(u) presents five monotone branches, admits a unique zero and five

intersection points with the line α2

β u.
(v) If µ4 < µ, then qµ(u) presents five monotone branches, admits a unique zero and a unique

intersection point with the line α2

β u.

A basic example of a perturbation p(u) satisfying the above assumptions is given by

p(u) = 20u
(1 + 10u2)2 , u ∈ R. (10)

Note that all the numerical computations presented in this paper where produced with this example.
We emphasize that the function qµ(u) derives from a potential Qµ(u) which can be written

Qµ(u) = u4

4 −
u2

2 + µ

∫ u

0
p(s)ds, u ∈ R. (11)

The number of zeros of the function qµ(u) obviously determines the number of local minima of the
potential Qµ(u). Hence, for 0 ≤ µ < µ1, Qµ(u) admits two local minima; for µ1 < µ < µ3, it admits
three local minima; for µ3 < µ, it admits a unique global minimum. The effect of the perturbation
parameter µ on the shapes of the function qµ(u) and of the potential Qµ(u) is illustrated in Figures
1 and 2. We observe that the critical values µ1 and µ3 determine a structural modification of the
potential Qµ(u). We will see below that the critical values µ2 and µ4, which alternate with µ1 and
µ3, determine a structural modification of the homogeneous stationary solutions of the degenerate
reaction-diffusion system (2).

Now, our aim is to prove that the degenerate reaction-diffusion system (2) admits local solutions.
To this end, we write it as a semi-linear equation in a proper Banach space.
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Figure 1: Effect of the perturbation parameter µ on the function qµ(u) defined by (3). (a)-(b) For 0 ≤ µ < µ1,
qµ(u) presents three monotone branches and admits three zeros. (c) For µ1 < µ < µ3, qµ(u) presents five
monotone branches and admits five zeros. (d) For µ3 < µ, qµ(u) presents five monotone branches and admits
a unique zero.
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Figure 2: Effect of the perturbation parameter µ on the potential Qµ(u) defined by (11). (a)-(b) For
0 ≤ µ < µ1, Qµ(u) admits two local minima. (c) For µ1 < µ < µ3, it admits three local minima. (d) For
µ3 < µ, it admits a unique global minimum.

2.2 Abstract formulation and local solutions
Following [40], we handle the degenerate reaction-diffusion system (2) in the Banach space X defined
by

X = L∞(Ω)× L2(Ω), (12)

equipped with the product norm

‖U‖X = ‖u‖L∞(Ω) + ‖w‖L2(Ω) , U = (u,w) ∈ X.

We consider the differential operator Λ defined as the realization of −δ∆ + β in L2(Ω) with the
Neumann boundary condition on ∂Ω. It is known that Λ is a positive definite self-adjoint and sectorial
operator, of angle strictly less than π

2 , with domain

D(Λ) = H2
N (Ω) =

{
w ∈ H2(Ω) ; ∂w

∂ν
= 0 on ∂Ω

}
.

Hence, the diagonal operator A = diag {1,Λ} is also a sectorial operator in X, with angle strictly less
than π

2 , and with domain D(A) = L∞(Ω) × D(Λ). Here, we emphasize that the domain of A is not
compactly embedded in X, although the domain of Λ is compactly embedded in L2(Ω). This is due to
the absence of diffusion in the first equation, and partly determines an original asymptotic behavior,
as proved in [3].
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Next, we consider an exponent η ∈
( 3

4 , 1
)
. The sectorial operator Λ admits a fractional power Λη

whose domain is given by

D(Λη) = H2η
N (Ω) =

{
w ∈ H2η(Ω) ; ∂w

∂ν
= 0 on ∂Ω

}
,

where H2η(Ω) is the interpolation space W 2η,2(Ω). We have the continuous embeddings

H2η(Ω) ⊂ C
(
Ω̄
)
⊂ L∞(Ω) ⊂ L2(Ω), (13)

and the norms ‖u‖D(Λη) and ‖Ληu‖L2(Ω) are equivalent. The diagonal operator A also admits a
fractional power Aη and its domain is given by D(Aη) = L∞(Ω)×H2η

N (Ω).
In this way, the degenerate reaction-diffusion system (2) can be written in an abstract form

dU

dt
+AU = Fµ(U), t > 0, (14)

where Fµ(U) is the nonlinear operator defined by

Fµ(U) =
(
αw − qµ(u) + u

αu

)
, U = (u,w) ∈ D(Aη). (15)

Note that the domain of the nonlinear operator Fµ is uniform with respect to the perturbation
parameter µ. Next, elementary computations show that Fµ satisfies the estimation∥∥Fµ(U)− Fµ(Ũ)

∥∥
X
≤ C1

(
1 + ‖U‖2X +

∥∥Ũ∥∥2
X

)∥∥Aη(U − Ũ)
∥∥
X

+ µC2
∥∥Aη(U − Ũ)

∥∥
X
, (16)

for all µ in R+ and all U, Ũ in D(Aη), with positive constants C1, C2. Therefore, by virtue of Theorem
4.1 in [40], we can state the existence of local in time solutions to the problem (14).

Theorem 1 (Local solutions). Let µ ≥ 0. For all U0 ∈ X, the Cauchy problem defined by (14) and
U(0) = U0 admits a unique local solution Uµ = (uµ, wµ) defined on [0, TU0 ] with TU0 > 0 in the function
space

uµ ∈ C
(
[0, TU0 ], L∞(Ω)

)
∩ C 1((0, TU0 ], L∞(Ω)

)
,

wµ ∈ C
(
(0, TU0 ], H2

N (Ω)
)
∩ C

(
[0, TU0 ], L2(Ω)

)
∩ C 1((0, TU0 ], L2(Ω)

)
.

2.3 Global solutions and continuous dynamical system
We continue by showing that local in time solutions to the degenerate reaction-diffusion system (2)
are global and determine a continuous dynamical system. The following proposition establishes an a
priori estimate for any local solution.

Proposition 1 (Dissipative estimate). Let µ ≥ 0. There exists a positive exponent λ and a positive
constant C3 such that, for all U0 ∈ X, the local in time solution Uµ of the Cauchy problem defined by
(14) and U(0) = U0, defined on [0, TU0 ] with TU0 > 0, satisfies

‖Uµ(t)‖X ≤ C3
(
e−λt ‖U0‖X + 1

)
, (17)

for all t ∈ [0, TU0 ].

Proof. Let U0 ∈ X. We denote by Uµ(t) the local in time solution to the degenerate reaction-diffusion
system (2) stemming from U0, defined on [0, TU0 ] with TU0 > 0. We introduce the energy function L
defined for t ≥ 0 by

L(t) = 1
2

∫
Ω

[
u2
µ(t) + w2

µ(t)
]
dx.
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The function L is continuously differentiable and we have

L̇(t) =
∫

Ω

∂uµ
∂t

(t)uµ(t)dx+
∫

Ω

∂wµ
∂t

(t)wµ(t)dx

= α

∫
Ω
uµ(t)wµ(t)dx−

∫
Ω
uµ(t)qµ

(
uµ(t)

)
dx

+ δ

∫
Ω
wµ(t)∆wµ(t)dx+ α

∫
Ω
uµ(t)wµ(t)dx− β

∫
Ω
w2
µ(t)dx.

We can apply the Green formula and the Neumann boundary condition to deduce that∫
Ω
wµ(t)∆wµ(t)dx ≤ −

∫
Ω
|∇wµ(t)|2 dx ≤ 0.

Next, we easily prove that the following lower estimate holds for all s ∈ R:

sqµ(s) ≥ g1s
2 − g2,

where g1 is an arbitrarily large coefficient, provided g2 is sufficiently large. Indeed, elementary com-
putations lead to

sqµ(s)− (g1s
2 − g2) = s4 − s2 + µsp(s)− g1s

2 + g2

= s4 − (1 + g1)s2 + g2 + µsp(s)
≥ s4 − (1 + g1)s2 + g2

≥
(
s2 − 1 + g1

2

)2
+ g2 −

(1 + g1)2

4

≥ g2 −
(1 + g1)2

4 ,

where we have used assumptions (4) and (5) in order to minor µsp(s) by 0. Hence, if g1 is chosen
arbitrarily large, it suffices to choose g2 such that g2 − (1+g1)2

4 ≥ 0.
With this lower estimate, we deduce

L̇(t) ≤ 2α
∫

Ω
uµ(t)wµ(t)dx− g1

∫
Ω
u2
µ(t)dx− β

∫
Ω
w2
µ(t)dx+ g2|Ω|.

Now we apply the generalized Young inequality ab ≤ 1
2εa

2 + ε
2b

2, which is valid of all a, b ∈ R and all
ε > 0, to write ∫

Ω
uµ(t)wµ(t)dx ≤ 1

2ε

∫
Ω
u2
µ(t)dx+ ε

2

∫
Ω
w2
µ(t)dx, (18)

for any ε > 0. We choose ε = β
2α , which leads to

2α
∫

Ω
uµ(t)wµ(t)dx ≤ 2α2

β

∫
Ω
u2
µ(t)dx+ β

2

∫
Ω
w2
µ(t)dx. (19)

We obtain
L̇(t) ≤ −

(
g1 −

2α2

β

)∫
Ω
u2
µ(t)dx− β

2

∫
Ω
w2
µ(t)dx+ g2|Ω|.

Finally, we choose g1 so that g1 >
2α2

β and we denote

λ = min
(
g1 −

2α2

β
,
β

2

)
.
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We obtain
L̇(t) ≤ −2λL(t) + g2|Ω|.

Applying Gronwall lemma leads to

L(t) ≤ L(0)e−2λt + g2|Ω|
2 ,

which reduces to (∫
Ω

[
u2
µ(t) + w2

µ(t)
]
dx

)1/2
≤
(∫

Ω

[
u2

0 + w2
0
]
dx

)1/2
e−λt + k1,

which proves that
‖Uµ(t)‖L2(Ω)2 ≤ k2

(
‖U0‖L2(Ω)2 e

−λt + 1
)
. (20)

Afterwards, it remains to show how the dissipative estimate (20), which holds in L2(Ω)2, implies
the stronger estimate (17) in X. Indeed, it suffices to apply similar arguments as in the proof of
Proposition 11.1 in [40]. Hence, we can show that w and u satisfy respectively

‖wµ(t)‖L∞(Ω) ≤ k3

[
(1 + t−η)e−k4t ‖U0‖L2(Ω)2 + 1

]
, (21)

‖uµ(t)‖L∞(Ω) ≤ k5
(
e−k6t ‖U0‖X + 1

)
, (22)

for all t > 0.
Finally, we combine the dissipative estimates (20) and (22) to obtain (17), which completes the

proof.

With the dissipative estimate (17), we can directly state the existence of global solutions, that
determine a continuous dynamical system.

Theorem 2 (Global solutions and continuous dynamical system). Let µ ≥ 0. For all U0 ∈ X, the
Cauchy problem defined by (14) and U(0) = U0 admits a unique global solution Uµ(t, U0) = (uµ, wµ)
defined on [0,+∞) in the function space

uµ ∈ C
(
[0,+∞), L∞(Ω)

)
∩ C 1((0,+∞), L∞(Ω)

)
,

wµ ∈ C
(
(0,+∞), H2

N (Ω)
)
∩ C

(
[0,+∞), L2(Ω)

)
∩ C 1((0,+∞), L2(Ω)

)
.

Furthermore, the degenerate reaction-diffusion system (2) determines a continuous dynamical sys-
tem Sµ(t) defined in X by

Sµ(t)U0 = Uµ(t, U0), t ≥ 0. (23)

Remark 1 (Lack of compactness). Using the dissipative estimate (20), it can be shown that the
continuous dynamical system Sµ(t) admits an absorbing set Bµ ⊂ X which is bounded in D(A) (see
[40], Chapter 11, Section 4). However, we cannot show that the absorbing set Bµ is compact, hence it
turns out that the study of the asymptotic behavior of the dynamical system Sµ(t) cannot be described
by means of the global attractor.

2.4 Existence of a potential
To understand its dynamics, it is worth emphasizing that the behavior of the degenerate reaction-
diffusion system (2) is partly governed by the potential Hµ(u,w) defined by

Hµ(u,w) = β
w2

2 − αuw +Qµ(u), u, w ∈ R,

8



so that system (2) can be written under the gradient form

∂u

∂t
= −∂Hµ

∂u
,

∂w

∂t
= δ∆w − ∂Hµ

∂w
.

If the diffusion coefficient δ is null, then the degenerate reaction-diffusion system (2) reduces to a system
of ordinary equations, whose orbits are attracted to the local minima of the potential Hµ(u,w). But
when the diffusion coefficient δ is positive, the dynamics is completely modified. In particular, the
orbits can weakly converge towards discontinuous patterns, as will be analyzed in the sequel.

Next, it is easy to prove that Hµ(u,w) admits two local minima (u+
µ , w

+
µ ), (−u+

µ ,−w+
µ ) and a

unique saddle (0, 0) if 0 ≤ µ < µ2, three local minima (u+
µ , w

+
µ ), (0, 0), (−u+

µ ,−w+
µ ) and two saddles

(u−µ , w−µ ), (−u−µ ,−w−µ ) if µ2 < µ < µ4 and a unique global minimum (0, 0) if µ4 < µ. The effect of the
perturbation parameter µ on the energy levels of the potential Hµ(u,w) is illustrated in Figure 3.

−u+
µ

0 u+
µ

−w+
µ

0

w+
µ

u

w

0 ≤ µ < µ2

(a)

−u+
µ −u−

µ
0 u−

µ u+
µ

−w+
µ

−w−
µ

0
w−

µ

w+
µ

u

µ2 < µ < µ4

(b)

0

0

u

µ4 < µ

(c)

Figure 3: Effect of the perturbation parameter µ on the potential Hµ(u,w). (a) For 0 ≤ µ < µ2, Hµ(u,w)
admits two local minima (u+

µ , w
+
µ ), (−u+

µ ,−w+
µ ) and a unique saddle (0, 0). (b) For µ2 < µ < µ4, it admits

three local minima (u+
µ , w

+
µ ), (0, 0), (−u+

µ ,−w+
µ ) and two saddles (u−µ , w−µ ), (−u−µ ,−w−µ ). (c) For µ4 < µ, it

admits a unique global minimum (0, 0).

We will show in Section 3 that the critical points of the potential Hµ(u,w) correspond to the
homogeneous stationary solutions of the degenerate reaction-diffusion system (2). Hence, when µ
varies and crosses the critical values µ2 and µ4, a structural modification of the potential Hµ(u,w) is
observed. Note that this modification occurs after a delay in µ compared with the critical values µ1
and µ3 that provoke the modifications of the potential Qµ(u), as shown in Figure 2. In this paper, we
focus on the effect of a perturbation of small intensity on the dynamics of the degenerate reaction-
diffusion system (2), that is, a perturbation that generates a third local minimum in the potential
Hµ(u,w). The case of a strong perturbation will be briefly treated and we will show that it leads to
trivial dynamics. Therefore, the limiting value between the case of a small perturbation and that of a
strong perturbation is µ4.

Remark 2 (Lyapunov function). Note that the potential Hµ(u,w) can be used to construct a Lyapunov
function Lµ(u,w), defined as

Lµ(u,w) =
∫

Ω

[
δ

2 |∇w|
2 +Hµ(u,w)

]
dx.

The existence of a Lyapunov function highlights the dissipative nature of the degenerate reaction-
diffusion system (2). In [14], such a Lyapunov function has been considered for proving the weak
convergence of the orbits of a system similar to (2) towards stationary solutions.

9



3 Analysis of homogeneous and heterogeneous stationary so-
lutions

In this section, we focus on the effect of the perturbation parameter µ on the stationary solutions
of the degenerate reaction-diffusion system (2). First, we analyze the bifurcations of homogeneous
solutions. We exhibit a pitchfork bifurcation and two saddle-node bifurcations. Then, we study the
heterogeneous stationary solutions. We show that the degenerate reaction-diffusion system (2) admits
non trivial discontinuous patterns and that a bifurcation of heteroclinic orbits tests the robustness of
these patterns.

3.1 Bifurcations of homogeneous stationary solutions
The homogeneous stationary solutions of the degenerate reaction-diffusion system (2) are the solutions
of the following system

αw − qµ(u) = 0, −βw + αu = 0, (24)
which is equivalent to

w = α

β
u, w = 1

α
qµ(u).

The solutions of the latter system are obviously determined by the intersection points of the function
qµ(u) with the line α2

β u (or equivalently between the function 1
αqµ(u) and the line α

βu). The effect of
the perturbation parameter µ on the number of these intersection points is illustrated in Figure 4.

0

0

u

0 ≤ µ < µ2

1
αqµ(u)
α
βu

(a)

0

0

u

µ2 < µ < µ4

(b)

0

0

u

µ4 < µ

(c)

Figure 4: The number of intersection points between the function qµ(u) and the line α2

β
u (or equivalently

between the function 1
α
qµ(u) and the line α

β
u) determines the number of stationary homogeneous solutions for

the degenerate reaction-diffusion system (2). (a) For 0 ≤ µ < µ2, the degenerate reaction-diffusion system (2)
admits three homogeneous stationary solutions. (b) For µ2 ≤ µ < µ4, it admits five homogeneous stationary
solutions. (c) For µ4 ≤ µ, it admits a unique homogeneous stationary solution.

The following proposition enumerates the stationary homogeneous solutions with respect to the
perturbation parameter µ.

Proposition 2. The following assertions hold.
(i) If 0 ≤ µ < µ2, then the degenerate reaction-diffusion system (2) admits three homogeneous

stationary solutions O(0, 0), U+
µ (u+

µ , w
+
µ ), −U+

µ (−u+
µ ,−w+

µ ).
(ii) If µ2 < µ < µ4, then it admits five homogeneous stationary solutions O(0, 0), U+

µ (u+
µ , w

+
µ ),

−U+
µ (−u+

µ ,−w+
µ ), U−µ (u−µ , w−µ ) and −U−µ (−u−µ ,−w−µ ).

(iii) If µ > µ4, then it admits a unique homogeneous stationary solution O(0, 0).
Furthermore, U+

µ and −U+
µ are linearly stable for all µ ∈ [0, µ4), whereas U−µ and −U−µ are unstable

for all µ ∈ (µ2, µ4); the trivial solution O(0, 0) is unstable if µ < µ2 and stable if µ > µ2.
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Proof. First, assertions (i), (ii) and (iii) are direct consequences of Lemma 1.
Next, let Ū denote a homogeneous stationary solution of the degenerate reaction-diffusion system

(2). The stability of Ū can be analyzed by considering the spectrum σ(Ā) of the operator Ā defined by
Ā = A − F ′(Ū), where F ′(Ū) denotes the Fréchet derivative of the function F . Indeed, Ū is linearly
stable if and only if

σ(Ā) ⊂ {z ∈ C ; <z > 0} . (25)
Hence, we compute

Ā = A− F ′(Ū) =
(
q′µ(ū) −α
−α −δ∆ + β

)
.

We then consider the spectrum problem

(λ− Ā)U = P, λ ∈ C, U ∈ D(Ā), P ∈ X.

Denoting U = (u,w)> and P = (p1, p2)>, we obtain{[
λ− q′µ(ū)

]
u+ αw = p1,

αu+
[
λ+ δ∆− β

]
w = p2,

which leads to [
α2 −

(
λ− q′µ(ū)

)
(λ+ δ∆− β)

]
w = αp1 −

(
λ− q′µ(ū)

)
p2. (26)

If λ = q′µ(ū), then equation (26) reduces to

αw = p1.

Thus w does not belong to H2
N (Ω) for all p1 in L∞(Ω). We can deduce that q′µ(ū) ∈ σ(Ā). As

q′µ(u−µ ) < 0 and q′µ(−u−µ ) < 0, we obtain that U−µ and −U−µ are unstable for all µ ∈ (µ2, µ4).
It remains to analyze the stability of O, U+

µ and −U+
µ . Let us assume that λ 6= q′µ(ū). We denote

by (ωn)n≥0 the sequence of eigenvalues of the Laplace operator −∆ in L2(Ω) equipped with Neumann
boundary condition on ∂Ω; this sequence is strictly increasing and its first element is null. With these
notations, λ ∈ σ(Ā) if and only if λ is a solution to one of the following equations:

α2 −
(
λ− q′µ(ū)

)
(λ− δωn − β) = 0, n ≥ 0,

or equivalently
λ2 −

(
q′µ(ū) + δωn + β

)
λ+ q′µ(ū)(δωn + β)− α2 = 0, n ≥ 0. (27)

The discriminant Dn of the latter equation satisfies

Dn =
(
q′µ(ū)− (δωn + β)

)2 + 4α2 > 0,

which guarantees that (27) admits two real roots λn1 and λn2 , for all n ≥ 0. These roots satisfy

λn1 + λn2 = q′µ(ū) + δωn + β, λn1 × λn2 = q′µ(ū)(δωn + β)− α2.

If ū is equal to u+
µ or −u+

µ , then q′µ(ū) > 0. Hence, λn1 × λn2 > 0 if and only if

ωn <
β

δq′µ(ū) ×
[
α2

β
− q′µ(ū)

]
. (28)

Furthermore, if ū = ±u+
µ , then we have q′µ(ū) > α2

β . Therefore, condition (28) is never satisfied. It
follows that λn1 > 0 and λn2 > 0 for all n ≥ 0, which proves that U+

µ and −U+
µ are linearly stable.

Similarly, if ū = 0, we have q′µ(ū) > α2

β for µ > µ2 and q′µ(ū) < α2

β for µ < µ2. We can deduce that
O is unstable for µ < µ2 and linearly stable for µ > µ2. The proof is complete.
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We emphasize that the homogeneous stationary solutions of the reaction-diffusion system (2) ex-
actly coincide with the critical points of the potential Hµ(u,w) defined by (2.4). More precisely, the
local minima of the potential Hµ(u,w) correspond to the homogeneous stationary solutions of (2)
which are linearly stable, whereas the saddles of Hµ(u,w) correspond to the homogeneous stationary
solutions of (2) which are unstable. A bifurcation diagram showing the distribution and the stability
of these homogeneous stationary solutions is depicted in Figure 5.

0 µ4

µ

w

µ2

w+
µ

−w+
µ

w−
µ

−w−
µ

Figure 5: Bifurcation diagram showing the distribution and the stability of the homogeneous stationary
solutions of the degenerate reaction-diffusion system (2). A pitchfork bifurcation occurs at µ = µ2, where
the trivial stationary solution O(0, 0) becomes linearly stable, while the two unstable stationary solutions
U−µ (u−µ , w−µ ), −U−µ (−u−µ ,−w−µ ) appear. Two saddle-node bifurcations occur simultaneously at µ = µ4, where
the linearly stable solutions U+

µ (u+
µ , w

+
µ ), −U+

µ (−u+
µ ,−w+

µ ) merge with the unstable solutions U−µ (u−µ , w−µ ),
−U−µ (−u−µ ,−w−µ ).

We observe that a pitchfork bifurcation occurs at µ = µ2, where the trivial stationary solution O
becomes linearly stable, while the two unstable stationary solutions U−µ , −U−µ appear. Afterwards, two
saddle-node bifurcations occur simultaneously at µ = µ4, where the linearly stable solutions U+

µ , −U+
µ

merge with the unstable solutions U−µ , −U−µ . Obviously, the pitchfork bifurcation and the saddle-
node bifurcations occurring at µ = µ2 and µ = µ4 respectively are local bifurcations. It will turn
out that two global bifurcations take place in background between µ2 and µ4. Indeed, a bifurcation
of heteroclinic orbits occurring at µ̄ ∈ (µ2, µ4) shall be discovered by analyzing the structure of the
heterogeneous stationary solutions of the degenerate reaction-diffusion system (2). Furthermore, we
shall see that the bifurcation of heteroclinic orbits precedes the vanishing of particular patterns joining
two opposite values −a and a, over a critical threshold µ∗(a) ∈ (µ2, µ̄), depending on the amplitude
between these opposite values.

3.2 Existence of heterogeneous stationary solutions
Heterogeneous stationary solutions

(
u(x), w(x)

)
of the degenerate reaction-diffusion system (2) are the

solutions of the following elliptic problem
0 = αw(x)− qµ

(
u(x)

)
, x ∈ Ω,

0 = δ∆w(x)− βw(x) + αu(x), x ∈ Ω,
∂w

∂ν
(x) = 0, x ∈ ∂Ω.

(29)
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Without loss of generality, we can write Ω = (−`, `) with ` > 0. It is convenient to write ∆w = ẅ and
to introduce the variable v = ẇ, so that system (29) can be rewritten

0 = αw(x)− qµ
(
u(x)

)
, x ∈ Ω,

v̇(x) = β

δ
w(x)− α

δ
u(x), x ∈ Ω,

ẇ(x) = v(x), x ∈ Ω,

v(−`) = v(`) = 0.

(30)

It would be easy to solve the latter system if the function qµ(u) was invertible. However, as shown in
Lemma 1, the function qµ(u) is not monotone, hence it is not invertible. At the contrary, there exist
infinitely many functions ψ defined in R, which are inverses of qµ and thus satisfy

ψ ◦ qµ(u) = qµ ◦ ψ(u) = u,

for all u ∈ R. Among these inverses ψ, none is continuous everywhere on R; some are piecewise
continuous and monotone, whereas others admit an infinite number of discontinuity points and are
not monotone. Now, let ψ denote one possible inverse of qµ. Assume that ψ is piecewise continuous
on R and consider the following system of ordinary differential equations:

v̇ = β

δ
w − α

δ
ψ(αw), ẇ = v. (31)

The latter system admits in its first equation a discontinuous right-hand side, thus should be solved
by appropriate methods (see notably [11]). In particular, its orbits can admit singular points where
they are continuous but not differentiable.

Obviously, if (v, w) is a solution of system (31) defined on the domain Ω, which moreover satisfies
the condition

v(−`) = v(`) = 0, (32)

then it determines a solution (u,w) of system (30) by setting u = ψ(αw). As we shall see in the next
section, the existence of such a solution depends on the perturbation parameter µ. Since there is an
infinite number of choices for the inverse ψ, we can obtain an infinite number of heterogeneous solutions
(u,w) of the degenerate reaction-diffusion system (2). We will now focus on particular solutions, which
are monotone and discontinuous with respect to the space variable x ∈ Ω.

3.3 Existence and robustness of discontinuous patterns
Since the degenerate reaction-diffusion system (2) possibly admits infinitely many heterogeneous sta-
tionary solutions, we are interested in this section in finding those which are discontinuous. The
following definition specifies what we call discontinuous pattern.

Definition 1. An heterogeneous stationary solution {u(x), w(x)}x∈Ω of the degenerate reaction-
diffusion (2) such that u is discontinuous is called a discontinuous pattern.

To construct discontinuous patterns, we first observe that system (31) can be rewritten, for any
inverse ψµ of qµ, as a Hamiltonian system

v̇ = ∂Kµ

∂w
, ẇ = −∂Kµ

∂v
, (33)

where Kµ(v, w) is the potential defined by

Kµ(v, w) = β

2δw
2 − 1

2v
2 − α

δ
Ψµ(αw), (34)
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with Ψµ given by

Ψµ(s) =
∫ s

0
ψµ(ξ)dξ. (35)

For simplicity, we consider only those inverses ψµ which are monotone and piecewise continuous and
analyze three cases, distinguishing very small perturbations (obtained for 0 ≤ µ < µ2), small pertur-
bations (obtained for µ2 < µ < µ4) and strong perturbations (obtained for µ4 < µ).

3.3.1 Case of a very small perturbation

We assume in this subsection that 0 ≤ µ < µ2. Let mµ = qµ(ûµ) denote the minimum of qµ on R+

(note that mµ < 0). We have the following lemma.

Lemma 2. For each µ ∈ [0, µ2), the function qµ possesses a one-parameter family{
ψσµ
}
−|mµ|≤σ≤|mµ|

of piecewise continuous and monotone inverses, admitting a unique discontinuity jump.
Furthermore, for each ε > 0, one can find σ > 0 such that∥∥ψ0

µ − ψσµ
∥∥
L∞(R) < ε. (36)

Proof. Let µ ∈ [0, µ2) and s ∈ R. If |s| > |mµ|, there exists a unique u0(µ) ∈ R such that qµ
(
u0(µ)

)
= s.

Otherwise, if |s| ≤ |mµ|, then there exist at least three values u1(µ), u2(µ), u3(µ) ∈ R such that

u1(µ) < u2(µ) < u3(µ),
qµ
(
u1(µ)

)
= qµ

(
u2(µ)

)
= qµ

(
u3(µ)

)
= s,

u1(µ) < ûµ, u3(µ) > ûµ

(see Figure 4(a), where the cubic function 1
αqµ(u) crosses the line α

βu at three points). Now, for each
σ ∈ [− |mµ| , |mµ|], we set

ψσµ(s) =


u0(µ) if |s| > |mµ| ,
u1(µ) if − |mµ| ≤ s < σ,

u2(µ) if s = σ,

u3(µ) if σ < s ≤ |mµ| .

(37)

In this way, ψσµ is monotone and piecewise continuous, with a unique discontinuity jump at s = σ.
Finally, it is seen that ψσµ varies continuously with σ, which leads to (36).

Two possible inverses ψ0
µ and ψσµ with σ > 0 are shown in Figure 6. Note that in the family {ψσµ},

ψ0
µ is the only inverse of qµ which is symmetric with respect to 0, that is,

ψ0
µ(s) + ψ0

µ(−s) = 0,

for all s ∈ R.
We can now begin our research of discontinuous patterns to the degenerate reaction-diffusion system

(2), which are monotone and discontinuous. To that aim, we establish the phase portrait of the
Hamitonian system (33). Next, we look in this phase portrait for orbits which join the axis {v = 0},
to ensure that condition (32) is fulfilled.

We first analyze the orbits of the Hamitonian system (33) obtained with the particular inverse ψ0
µ

of qµ. For convenience, we denote this system by (K0
µ), that is

(K0
µ)⇔ (33) with the particular inverse ψ0

µ of qµ. (38)
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0

0

s

0 ≤ µ < µ2, σ = 0

ψ0
µ(s)

α2

β s

(a)

0 σ

0

s

0 ≤ µ < µ2, σ > 0

ψσ
µ(s)

α2

β s

(b)

Figure 6: Two possible piecewise continuous and monotone inverses ψ0
µ and ψσµ of qµ in the case 0 ≤ µ < µ2.

In the family {ψσµ}, ψ0
µ is the only inverse of qµ which is symmetric with respect to 0.

The phase portrait of the (K0
µ) is shown in Figure 7(a). Recall that in this phase portrait, each orbit is

parametrized by x ∈ Ω = (−`, `). By evaluating the energy levels of the potential (34), we easily prove
that the Hamiltonian system (K0

µ) admits three critical points: (0, 0) is a center encircled by periodic
orbits, and (0,−w+

µ ), (0, w+
µ ) are saddles, connected by two heteroclinic orbits. To join the two saddles,

an orbit {v(x), w(x)}x∈Ω needs an infinite space Ω, which is excluded by assumption. In the region
delimited by the heteroclinic orbits, a continuous band of periodic orbits encircles the center (0, 0).
The space Ω = (−`, `) necessary to join two successive points of the axis {v = 0} along one of these
orbits varies increasingly from 0 (for the stationary point (0, 0)) to +∞ (for the heteroclinic orbits).
Hence, for each bounded domain Ω = (−`, `), a continuous orbit {v(x), w(x)}x∈Ω can always be found
that fulfills condition (32). Moreover, for such an orbit, the component w(x) is always monotone with
respect to x ∈ Ω = (−`, `) and joins a negative value w(−`) to a positive value w(`). Finally, by
setting u(x) = ψ0

µ

(
αw(x)

)
, the pair {v(x), w(x)}x∈Ω determines a heterogeneous stationary solution

{u(x), w(x)}x∈Ω. Since ψ0
µ admits a discontinuity jump at s = 0, the component u(x) also admits a

discontinuity jump. We obtain the following proposition.

Proposition 3. Let µ ∈ [0, µ2) and a, b ∈ R be such that w+
µ < b < 0 < a < w+

µ . Then the degenerate
reaction-diffusion system (2) admits a discontinuous pattern {u(x), w(x)}x∈Ω such that w is continuous
and monotone on Ω, satisfies w(−`) = b, w(`) = a and u is piecewise continuous on Ω, with a unique
discontinuity jump.

We show in Figure 7(b) a discontinuous pattern {u(x), w(x)}x∈Ω obtained for b = −a with 0 < a <
w+
µ : its component w(x) joins −a to a and its component u(x) admits a unique discontinuity jump at

x = 0.
We emphasize that the discontinuous pattern {u(x), w(x)}x∈Ω whose existence is established by

Proposition 3 has been obtained by choosing ψ0
µ as an inverse qµ. It is thus natural to ask how a choice

of another inverse ψσµ with σ 6= 0 affects the construction of the discontinuous pattern. We show in
Figure 8 the phase portrait of the Hamiltonian system (33) obtained for ψσµ with σ > 0. We observe
that the two saddles (0,−w+

µ ) and (0, w+
µ ) are not connected by heteroclinic orbits as in the case σ = 0.

Now, only one saddle admits a homoclinic orbit that encircles a continuous band of periodic orbits. In
this continuous band of periodic orbits, we can as previously extract small orbits {v(x), w(x)}x∈Ω that
join two successive points of the axis {v = 0}. But if σ is sufficiently far from 0, then the existence of
an orbit {v(x), w(x)}x∈Ω connecting b < 0 to a > 0 is compromised as soon as b and a are separated
by the homoclinic orbit. For example, we have depicted in red in Figure 8 an orbit that joins −a to a,
which exists for σ = 0, but not any longer for σ sufficiently far from 0.
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0

−w+
µ

−a

0

a

w+
µ

v

w

0 ≤ µ < µ2, σ = 0

(a)

−` 0 `

−a

0

a

Ω

0 ≤ µ < µ2, σ = 0

u(x)

w(x)

(b)

Figure 7: (a) Phase portrait of the Hamiltonian system (33) obtained with ψ0
µ. In the region delimited by

the heteroclinic orbits that join the saddles (0−w+
µ ) and (0, w+

µ ), a continuous band of periodic orbits encircles
the center (0, 0). The space Ω = (−`, `) necessary to join two successive points of the axis {v = 0} along one
of these orbits varies increasingly from 0 (for the stationary point (0, 0)) to +∞ (for the heteroclinic orbits).
(b) By setting u(x) = ψ0

µ

(
αw(x)

)
, each solution {v(x), w(x)}x∈Ω of the Hamiltonian system (33) determines

a heterogeneous stationary solution {u(x), w(x)}x∈Ω of the degenerate reaction-diffusion system (2), such that
u is piecewise continuous on Ω, with a unique discontinuity jump.

0

−w+
µ

−a

0

a

w+
µ

v

w

0 ≤ µ < µ2, σ > 0

Figure 8: Phase portrait of the Hamiltonian system (33) obtained for ψσµ with σ > 0. The two saddles
(0,−w+

µ ) and (0, w+
µ ) are not connected by heteroclinic orbits as in the case σ = 0. Now, only one saddle

admits a homoclinic orbit that encircles a continuous band of periodic orbits. If σ is too large, then the
existence of an orbit {v(x), w(x)}x∈Ω connecting −a < 0 to a > 0 is compromised.

However, Lemma 2 guarantees that for σ > 0 sufficiently small, an inverse ψσµ can be chosen
arbitrarily close to ψ0

µ. Hence, it is seen that two distinct discontinuous patterns {u0(x), w0(x)}x∈Ω
and {uσ(x), wσ(x)}x∈Ω can be constructed and are arbitrarily close to each other. Therefore, we
can conclude that the degenerate reaction-diffusion system (2) admits a continuum of discontinuous
patterns. We obtain the following theorem.

Theorem 3 (Continuum of discontinuous patterns). For each µ ∈ [0, µ2), the degenerate reaction-
diffusion system (2) admits an infinite number of discontinuous patterns with a unique discontinuity
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jump. Furthermore, for each ε > 0, one can find two distinct discontinuous patterns {u0(x), w0(x)}x∈Ω,
{uσ(x), wσ(x)}x∈Ω such that ∥∥u0 − uσ

∥∥
L∞(R) +

∥∥w0 − wσ
∥∥
L∞(R) < ε.

3.3.2 Case of a small perturbation

We continue with the case of a perturbation of small intensity, by assuming that µ2 < µ < µ4. We
recall that in this case, the degenerate reaction-diffusion system (2) admits five homogeneous stationary
solutions O, −U−µ , U−µ , −U+

µ , U+
µ . It turns out that this case exhibits rich dynamics.

As previously, we aim to solve the Hamiltonian system (33) and extract from its phase portrait
orbits which satisfy condition (32). To this end, we identify again a one-parameter family {ψσµ} of
inverses of qµ, which now admit two discontinuity jumps.

Lemma 3. For each µ ∈ (µ2, µ4), there exist σmin < σmax such that the function qµ possesses a
one-parameter family {

ψσµ
}
σmin≤σ≤σmax

of piecewise continuous and monotone inverses, admitting two discontinuity jumps.
Furthermore, for each ε > 0, one can find σ ∈ (σmin, σmax) such that σ 6= 0 and∥∥ψ0

µ − ψσµ
∥∥
L∞(R) < ε. (39)

We skip the proof of Lemma 3, since it is very similar to that of Lemma 2. We only indicate that
the values σmin and σmax are determined by the components −u−µ , u−µ of the homogeneous stationary
solutions −U−µ , U−µ respectively. We show in Figure 9 two inverses ψ0

µ and ψσµ with σ > 0. Note that
in the family {ψσµ}, ψ0

µ is the only inverse of qµ whose both discontinuity jumps coincide with −u−µ ,
u−µ .

−u−µ 0 u−µ

0

s

µ2 < µ < µ4, σ = 0

ψ0
µ(s)

α2

β s

(a)

− σ 0 σ

0

s

µ2 < µ < µ4, σ > 0

ψσ
µ(s)

α2

β s

(b)

Figure 9: Two possible piecewise continuous and monotone inverses ψ0
µ and ψσµ of qµ when µ2 < µ < µ4. In

the family {ψσµ}, ψ0
µ is the only inverse of qµ whose both discontinuity jumps coincide with the components

−u−µ , u−µ of the homogeneous stationary solutions −U−µ , U−µ respectively.

We can now establish the phase portrait of the Hamiltonian system (33) obtained with the particular
inverse ψ0

µ of qµ. As in (38), we denote again this system by (K0
µ). By evaluating the energy levels

of the potential (34), we easily obtain its phase portrait, which is given in Figures 10(a), 11(a) and
11(b) for different values of µ. We observe that it presents five critical points: (0,−w−µ ) and (0, w−µ )
are centers, encircled by continuous bands of periodic orbits; (0,−w+

µ ), (0, 0) and (0, w+
µ ) are saddles,
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which appear under the effect of the pitchfork bifurcation described in Section 3.1. Now, it is seen that
a bifurcation of heteroclinic orbits occurs as µ increases from µ2 to µ4. Indeed, if µ is sufficiently near
µ2, then the saddle (0, 0) admits two homoclinic orbits that encircle the centers (0,−w−µ ), (0, w−µ ), as
shown in Figures 10(a) and 11(a). When µ increases, these homoclinic orbits grow, until µ reaches
a critical value µ̄, where they become heteroclinic orbits connecting the saddle (0, 0) to the saddles
(0,−w+

µ ) and (0, w+
µ ). When µ increases over µ̄, the heteroclinic orbits become homoclinic again, but

now they are attached to the saddles (0,−w+
µ ) and (0, w+

µ ), as shown in Figure 11(b). This bifurcation
of heteroclinic orbits is also schematized in Figure 13. We obtain the following proposition.

Proposition 4 (Bifurcation of heteroclinic orbits). There exists µ̄ ∈ (µ2, µ4) such that the Hamitonian
system (K0

µ) defined by (38) admits a bifurcation of heteroclinic orbits at µ̄. If µ ∈ (µ2, µ̄), then the
Hamitonian system (K0

µ) admits two homoclinic orbits attached to the saddle (0, 0). If µ ∈ (µ̄, µ4),
then the Hamitonian system (K0

µ) admits two homoclinic orbits attached to the saddles (0,−w+
µ ) and

(0, w+
µ ).

0

−a

0

a

hh′

o

o′

v

w
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Figure 10: (a) Phase portrait of the Hamiltonian system (K0
µ) defined by (38), for µ2 < µ < µ∗(a). The

saddle (0, 0) admits two homoclinic orbits that encircle the centers (0,−w−µ ), (0, w−µ ). If the domain Ω is
sufficiently large, then for each a ∈ (0, w+

µ ), an orbit {v(x), w(x)}x∈Ω connecting (0,−a) and (0, a) exists. (b)
Each orbit {v(x), w(x)}x∈Ω connecting (0,−a) and (0, a) determines a discontinuous pattern {u(x), w(x)}x∈Ω
such that u(x) admits two discontinuity jumps.

Now that a bifurcation of heteroclinic orbits is identified to occur at µ̄, we aim to highlight another
structural modification of the dynamics of the Hamiltonian system (K0

µ) that occurs between µ2 and
µ̄. Indeed, let a ∈ (0, w+

µ ) and assume that we are looking again for an orbit of the Hamiltonian system
(K0

µ) that connects the points (0,−a) and (0, a). If µ is sufficiently near µ2 and if the domain Ω is
sufficiently large, then we can prove that such an orbit {v(x), w(x)}x∈Ω exists.

Theorem 4 (Existence of particular discontinuous patterns). For each a ∈ (0, w+
µ ), there exists

µ∗(a) ∈ (µ2, µ̄) such that, for each µ ∈
(
µ2, µ

∗(a)
)
, the Hamiltonian system (K0

µ) defined by (38)
admits an orbit {v(x), w(x)}x∈Ω connecting the points (0,−a) and (0, a), provided Ω is sufficiently
large.

Furthermore, each orbit {v(x), w(x)}x∈Ω of the Hamiltonian system (K0
µ) connecting the points

(0,−a) and (0, a) determines a discontinuous pattern {u(x), w(x)}x∈Ω such that u(x) admits two dis-
continuity jumps.

Proof. Let µ ∈ (µ2, µ̄). The Hamiltonian system (K0
µ) admits two homoclinic orbits (o), (o′) of

small amplitude attached to the saddle (0, 0) (the homoclinic orbits (o) and (o′) are shown in Figure
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10(a)). These homoclinic orbits are encircled by two heteroclinic orbits (h) and (h′) of large amplitude
that connect the saddles (0,−w+

µ ) and (0, w+
µ ) (the heteroclinic orbits (h) and (h′) are also shown

in Figure 10(a)). Between the homoclinic orbits (o), (o′) and the heteroclinic orbits (h), (h′), there
exists a continuous band of periodic orbits {v(x), w(x)}. Let us denote by S (−a, a) the space which
is necessary for such an orbit to connect two points (0,−a) to (0, a). Obviously, S (−a, a) varies
continuously with a. Moreover, we have

lim
a→w+

µ

S (−a, a) = +∞,

since if a = w+
µ , the orbit {v(x), w(x)} coincides with one of the large heteroclinic orbits that connect

the saddles (0,−w+
µ ) and (0, w+

µ ). Now, we denote by h+
µ the maximum height of the small homoclinic

orbit that is attached to the saddle (0, 0) in the half-plane {v > 0}. It is seen that h+
µ tends to 0 as µ

tends to µ2. Hence, one can find µ sufficiently near µ2 such that a > h+
µ . As before, we have

lim
a→h+

µ

S (−a, a) = +∞.

Hence, S (−a, a) is bounded by below between h+
µ and w+

µ . We introduce

Smin = min
h+
µ≤a≤w+

µ

S (−a, a).

Next, assume that Ω is sufficiently large, so that its length satisfies |Ω| ≥ Smin. Then an orbit
{v(x), w(x)}x∈Ω exists that connects the points (0,−a) and (0, a).

Finally, we set
u(x) = ψ0

µ

(
αw(x)

)
, x ∈ Ω.

Since ψ0
µ admits two discontinuity jumps, by virtue of Lemma 3, we can conclude that u(x) also admits

two discontinuity jumps. The proof is complete.
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Figure 11: (a) Phase portrait of the Hamiltonian system (K0
µ) defined by (38), for µ∗(a) < µ < µ̄. The

saddle (0, 0) admits two homoclinic orbits that encircle the centers (0,−w−µ ), (0, w−µ ), but no orbit connects the
points (0,−a) and (0, a). (b) Phase portrait of the Hamiltonian system (K0

µ) defined by (38), for µ̄ < µ < µ4.
Two homoclinic orbits that encircle the centers (0,−w−µ ), (0, w−µ ) are now attached to the saddles (0,−w+

µ )
and (0, w+

µ ). No orbit connects the points (0,−a) and (0, a).

The discontinuous patterns whose existence is established by Theorem 4 have been constructed with
a particular choice for an inverse ψ0

µ of of qµ. By choosing other inverses ψσµ with σ 6= 0, arbitrarily
close to ψ0

µ, we can prove, as in Theorem 3, the existence of a continuum of discontinuous patterns.
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Theorem 5. Assume that µ is sufficiently near µ2 and that Ω is sufficiently large. Then for each
ε > 0, one can find two distinct discontinuous patterns {u0(x), w0(x)}x∈Ω, {uσ(x), wσ(x)}x∈Ω such
that ∥∥u0 − uσ

∥∥
L∞(R) +

∥∥w0 − wσ
∥∥
L∞(R) < ε,

where u0(x) and uσ(x) admit two discontinuity jumps.

We skip the proof of the latter theorem, since it is very similar to that of Theorem 3.
Now, if µ ∈

(
µ∗(a), µ̄

)
, then the existence of discontinuous patterns {u(x), w(x)}x∈Ω such that

w(x) connects (0,−a) to (0, a) and u(x) admits two discontinuity jumps is not guaranteed, even if
Ω is large (see Figure 11(a)). Finally, if µ ∈ (µ̄, µ4), then these discontinuous patterns cannot exist,
whatever the value of a and the size of the domain Ω are (see Figure 11(b)). Roughly speaking, if such
an orbit would exist, then it should cross the homoclinic orbits that encircle the centers (0,−w+

µ ) and
(0, w+

µ ), which is excluded, since two orbits of an autonomous system cannot cross each other.

Remark 3 (Interpretation in ecology). We recall that the degenerate reaction-diffusion system (2) has
been obtained as a simplification of the forest model presented in [18]. The convergence of its orbits
towards a discontinuous pattern admitting a unique discontinuity jump has been interpreted in [18] as
the formation of an ecotone, that is, the frontier between the forest and a neighbor ecosystem. In the
simplified forest model, u(t, x) and w(t, x) correspond to the densities of trees and seeds respectively.
Hence, the upper level of a one-jump discontinuous pattern corresponds to the area occupied by the
forest, and the lower level corresponds to a neighbor ecosystem without trees. The existence of discon-
tinuous patterns admitting two discontinuity jumps suggests that the perturbation of the dynamics of
a forest ecosystem can lead to the emergence of an intermediate ecosystem between the forest and the
neighbor ecosystem. Furthermore, if the intensity of the perturbation increases, then the intermedi-
ate ecosystem can spread over the forest ecosystem, which reproduces the invasion of the initial forest
ecosystem by a new ecosystem. The invading ecosystem can take the form of a savanna-like degraded
forest, as suggested in [5]. Numerical simulations shown in Section 4 illustrate this ecosystem invasion
process.

3.3.3 Case of a strong perturbation

We end our research of discontinuous patterns with the case of a strong perturbation, for which we
assume that µ4 < µ. In this case, the degenerate reaction-diffusion system (2) admits (0, 0) as a unique
homogeneous stationary solution. By a reasoning similar to the cases of small perturbations, we can
establish the phase portrait of the Hamiltonian system (33), for each inverse ψµ of qµ. If the inverse
is chosen monotone and piecewise continuous, then it is easily seen that the Hamiltonian system (33)
admits a saddle as unique critical point (see Figure 12). Therefore, no orbit connecting two points of
the axis {v = 0} can be found, and no discontinuous pattern can be constructed.

Overall, the effect of a variation of the perturbation parameter µ on the dynamics of the Hamiltonian
system (33) obtained with a monotone and piecewise continuous inverse ψµ of qµ is schematized as a
bifurcation diagram in Figure 13 (where we abstract from the singular points of the orbits of system
(33)). A pitchfork bifurcation occurs at µ2; particular patterns vanish at µ∗(a); a bifurcation of
heteroclinic orbits occurs at µ̄; finally, two simultaneous saddle-node bifurcations take place at µ4.
Roughly speaking, discontinuous patterns admitting a unique discontinuity jump exist for a very small
perturbation. If the intensity of the perturbation increases, then the discontinuous patterns survive
and admit two discontinuity jumps. But if the intensity of the perturbation increases too much, these
discontinuous patterns seem to vanish.

Remark 4 (Restricted choice of inverses). We emphasize that in this section, the research of hetero-
geneous solutions has been realized by analyzing the dynamics of the Hamiltonian system (33) with a
restricted choice of an inverse ψµ of qµ, since we have only considered monotone and piecewise con-
tinuous inverses. This restriction does not diminish the existence results of discontinuous patterns.
However, an infinite number of other inverses ψµ of qµ could be considered as well. For example,
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µ4 < µ

Figure 12: Phase portrait of the Hamiltonian system (33) obtained with a monotone and piecewise continuous
inverse ψµ of qµ. The only critical point is a saddle at (0, 0). No orbit connecting two points of the axis {v = 0}
can be found, and no discontinuous pattern can be constructed.

µ
0 µ2 µ∗(a) µ̄ µ4

−a

a

w

Pitchfork

bifurcation

Remarkle

patterns

vanish

Heteroclinic

bifurcation

Saddle-node

bifurcations

Figure 13: Bifurcation diagram showing the dynamics of the Hamiltonian system (33) obtained with a mono-
tone and piecewise continuous inverse ψµ of qµ. A pitchfork bifurcation occurs at µ2; particular discontinuous
patterns connecting −a to a exist for µ < µ∗(a) but vanish for µ > µ∗(a) (hence they are depicted in green for
µ < µ∗(a) and in red for µ > µ∗(a)); a bifurcation of heteroclinic orbits occurs at µ̄; finally, two simultaneous
saddle-node bifurcations take place at µ4.

among these other inverses, completely discontinuous inverses could have been investigated. It is left
as an open question for further research to determine if those inverses which have not been considered
here could also lead to the discovery of discontinuous patterns.

4 Numerical simulations
In this section, our aim is to illustrate our theoretical results by numerical simulations. Animations
of the degenerate reaction-diffusion system (2), in a one-dimensional or two-dimensional domain, are
also provided on the website https://pagesperso.ls2n.fr/˜cantin-g/robustness.html. We solve
numerically the degenerate reaction-diffusion system (2) with four initial conditions and with various
values of the perturbation parameter µ, so as to show that the orbits are attracted to discontinuous
patterns. As proved in Theorems 3 and 5, these discontinuous patterns admit a unique discontinuity
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jump for very small values of µ, and bifurcate to discontinuous patterns admitting two discontinuity
jumps when µ increases.

The numerical integration of the degenerate reaction-diffusion system (2) has been performed using
a splitting numerical scheme of Strang type [35], with α = 1, β = 1, δ = 10, ` = 125 and with the
perturbation function given by (10).

4.1 Linear initial condition
We begin with numerical simulations of the degenerate reaction-diffusion system (2) stemming from a
simple linear initial condition (u0, w0) given by

u0(x) = w0(x) = 2x
`
, −` < x < `. (40)

We experiment several values of the perturbation parameter: µ ∈ {0, 0.5, 5}. The results are depicted
in Figures 14–16.
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Figure 14: Numerical simulation of the degenerate reaction-diffusion system (2) stemming from the linear
initial condition (40), with µ = 0. The orbit is attracted to a discontinuous pattern admitting a unique
discontinuity jump.

For µ = 0, we observe that the orbit is attracted to a discontinuous pattern admitting a unique
discontinuity jump (Figure 14). For µ = 0.5, the orbit is attracted to a discontinuous pattern admitting
two discontinuity jumps (Figure 15). Finally, for µ = 5, the discontinuous pattern vanishes and the
orbit is attracted to the trivial equilibrium (Figure 16).

Remark 5 (Invading ecosystem). As discussed in Remark 3, these numerical simulations illustrate
the possible spreading process of an invading ecosystem over an originally existing ecosystem. If the
perturbation if small, both the initial and the new ecosystems coexist. But if the perturbation increases
and overcomes a certain threshold, the invasion can be complete.

4.2 Periodic-linear initial condition
Oscillations in time and space are of particular interest for better understanding the dynamics of
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Figure 15: Numerical simulation of the degenerate reaction-diffusion system (2) stemming from the linear
initial condition (40), with µ = 0.5. The orbit is attracted to a discontinuous pattern admitting two disconti-
nuity jumps.
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Figure 16: Numerical simulation of the degenerate reaction-diffusion system (2) stemming from the linear
initial condition (40), with µ = 5. The orbit is attracted to the trivial equilibrium.

biological and ecological systems (see for instance [8], [32]). Hence, it is relevant to experiment the
behavior of the degenerate reaction-diffusion system (2) with initial conditions admitting such oscilla-
tions. Here, we present numerical simulations of the degenerate reaction-diffusion system (2) stemming
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from an initial condition (u0, w0) such that u0 is periodic and w0 is linear:

u0(x) = cos
(
θx

`

)
, w0(x) = 4x

`
, −` < x < `, (41)

with θ > 0. We test two values of the perturbation parameter: µ ∈ {0, 1}. The results are shown in
Figures 17, 18.
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Figure 17: Numerical simulation of the degenerate reaction-diffusion system (2) stemming from the periodic-
linear initial condition (41), with µ = 0. The initial oscillations of u0 are modified and the orbit converges to
a form that admits several discontinuous patterns, each with a unique discontinuity jump.

For µ = 0, we observe that the initial oscillations of u0 are modified. Several oscillations completely
vanish, whereas others resist and progressively take the form of a discontinuous pattern (on a total of
8 initial oscillations, only 5 resist and become a discontinuous pattern). Therefore, the orbit converges
to a form that admits several discontinuous patterns, each with a unique discontinuity jump (Figure
17). Next, for µ = 1, the discontinuous patterns are perturbed. Several patterns now exhibit two
discontinuity jumps (Figure 18).

4.3 Periodic initial condition
Next, we present numerical simulations of the degenerate reaction-diffusion system (2) stemming from
an initial condition (u0, w0) such that u0 and w0 are periodic:

u0(x) = cos
(
θx

`

)
, w0(x) = 2 cos

(
θ′x

`

)
, −` < x < `, (42)

with θ > 0, θ′ > 0 such that θ 6= θ′. In this way, u0 and w0 do not have the same phase nor the
same amplitude. We experiment two values of the perturbation parameter: µ ∈ {0, 1}. The results
are shown in Figures 19, 20.

For µ = 0, we observe that the orbit converges to a form that admits several discontinuous patterns
with a unique discontinuity jump, in which uµ and wµ are still synchronized, although u0 and w0 do
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Figure 18: Numerical simulation of the degenerate reaction-diffusion system (2) stemming from the periodic-
linear initial condition (41), with µ = 1. The orbit converges to a form that admits several discontinuous
patterns, some of them with one discontinuity jump, some others with two discontinuity jumps.
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Figure 19: Numerical simulation of the degenerate reaction-diffusion system (2) stemming from the periodic
initial condition (42), with µ = 0. Although u0 and w0 do not have the same phase, the orbit converges to
a form that admits several discontinuous patterns with a unique discontinuity jump in which uµ and wµ are
synchronized. A transient pattern is observed at the centre of the domain and vanishes after a long period,
whereas other patterns are persistent.
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not have the same phase. Next, for µ = 1, the discontinuous patterns are still synchronized, but they
now admit two discontinuity jumps.

The final number and location of these discontinuous patterns seem to be very difficult to predict,
thus represents an interesting perspective for further research.
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Figure 20: Numerical simulation of the degenerate reaction-diffusion system (2) stemming from the periodic
initial condition (42), with µ = 0. The orbit converges to a form that admits several discontinuous patterns
with two discontinuity jumps in which uµ and wµ are still synchronized.

4.4 Random initial condition
We end this section with a numerical simulation of the degenerate reaction-diffusion system (2) starting
from a randomly generated initial condition, with µ = 1. The results are depicted in Figure 21. We
observe that discontinuous patterns admitting two discontinuity jumps appear at several places of the
domain. The locations of these patterns seem to be very sensitive to the initial condition and very
difficult to predict.

5 Conclusion
In this paper, we have investigated the dynamics of a degenerate reaction-diffusion system with hystere-
sis in its non-diffusive equation, perturbed by a smooth function. This degenerate reaction-diffusion
system is a generic model for the formation of discontinuous patterns arising in biology or in ecology.
We have analyzed by geometric methods the effect of the perturbation on the stationary solutions.
Our main results are the following:

• we studied the bifurcations of homogeneous stationary solutions and proved that the trivial
equilibrium is the only homogeneous stationary solution capable of withstanding a strong per-
turbation;

• we studied the effect of the perturbation on the heterogeneous stationary solutions and showed
how discontinuous patterns with a single discontinuity jump are transformed into patterns with
two discontinuity jumps;
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Figure 21: Numerical simulation of the degenerate reaction-diffusion system (2) stemming from a random
initial condition, with µ = 1. The orbit converges to a form that admits several discontinuous patterns with
two discontinuity jumps.

• we have proved that the discontinuous two-jumps patterns vanish when the perturbation exceeds
a certain threshold.

Several numerical simulations and animations have been provided to support our theoretical results.
However, these new results were obtained under a restrictive assumption. Indeed, the existence of
discontinuous patterns with two discontinuity jumps, proved in this paper (Theorems 4 and 5), was
established by considering a strict subset of the huge set of inverses of the hysteresis process. Hence, it
remains many choices of inverses to explore. Therefore, we believe that the study of this morphogenesis
model will produce in a near future a great number of original results and will further reveal rich
dynamics.

Acknowledgments
The author is sincerely grateful to the anonymous reviewers for the useful comments which greatly
improved the presentation of this paper.

References
[1] T. Aiki and E. Minchev. A prey-predator model with hysteresis effect. SIAM Journal on Mathematical

Analysis, 36(6):2020–2032, 2005.
[2] D. Aronson, A. Tesei, and H. Weinberger. A density-dependent diffusion system with stable discontinuous

stationary solutions. Annali di Matematica Pura ed Applicata, 152:259–280, 1988.
[3] G. Cantin. Non-existence of the global attractor for a partly dissipative reaction-diffusion system with

hysteresis. Journal of Differential Equations, 299:333–361, 2021.
[4] G. Cantin. How hysteresis produces discontinuous patterns in degenerate reaction–diffusion systems.

Asymptotic Analysis, pages 1–16, 2022.

27



[5] G. Cantin, B. Delahaye, and B. M. Funatsu. On the degradation of forest ecosystems by extreme events:
Statistical model checking of a hybrid model. Ecological Complexity, 53:101039, 2023.

[6] G. Cantin, A. Ducrot, and B. M. Funatsu. Mathematical modeling of forest ecosystems by a reaction–
diffusion–advection system: impacts of climate change and deforestation. Journal of Mathematical Biology,
83(6):1–45, 2021.

[7] R. S. Cantrell and C. Cosner. Spatial ecology via reaction-diffusion equations. John Wiley & Sons, 2004.
[8] Y. Cao, A. Lopatkin, and L. You. Elements of biological oscillations in time and space. Nature Structural

& Molecular Biology, 23(12):1030–1034, 2016.
[9] S. Cygan, A. Marciniak-Czochra, G. Karch, and K. Suzuki. Stable discontinuous stationary solutions to

reaction-diffusion-ode systems. Communications in Partial Differential Equations, pages 1–33, 2023.
[10] A. Einav, J. J. Morgan, and B. Q. Tang. Indirect diffusion effect in degenerate reaction-diffusion systems.

SIAM Journal on Mathematical Analysis, 52(5):4314–4361, 2020.
[11] A. F. Filippov. Differential equations with discontinuous righthand sides: control systems, volume 18.

Springer Science & Business Media, 2013.
[12] S. Härting, A. Marciniak-Czochra, and I. Takagi. Stable patterns with jump discontinuity in systems with

Turing instability and hysteresis. Discrete and Continuous Dynamical Systems, 37(2):757–800, 2016.
[13] D. Henry. Geometric theory of semilinear parabolic equations, volume 840. Springer, 2006.
[14] S. Iwasaki. Asymptotic convergence of solutions to the forest kinematic model. Nonlinear Analysis: Real

World Applications, 62:103382, 2021.
[15] J.-H. Kim and J.-H. Park. Fully nonlinear Cucker–Smale model for pattern formation and damped

oscillation control. Communications in Nonlinear Science and Numerical Simulation, 120:107159, 2023.
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