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Synchronization of Turing patterns in complex
networks of reaction-diffusion systems set in

distinct domains
M.A. Aziz-Alaoui∗, Guillaume Cantin†, Alexandre Thorel∗

January 12, 2024

Abstract

We present an innovative complex network of reaction-diffusion systems set in distinct domains,
with boundary couplings. The complex network models the evolution of interacting populations
living in a heterogeneous and fragmented habitat, whose biological individuals migrate from one
patch to another. In our model, the displacements of individuals are described by mixed boundary
couplings, involving both the Neumann and Robin boundary conditions, which improve the mod-
eling of migrations by point-wise couplings. We investigate the cases of diffusion in isotropic and
anisotropic habitats and establish original sufficient conditions of synchronization in this complex
network model, for complete graphs, cyclic graphs and rings of nearest neighbors. In parallel,
we apply our theoretical framework to a nonlinear predator-prey model with Leslie-Gower-type
functional response and explore numerically the emergence of synchronization on heterogeneous
Turing patterns.

Key words. Reaction-diffusion; complex network; synchronization; Turing pattern; Robin
boundary condition.

1 Introduction
In this paper, we propose to study the dynamics of complex networks of reaction-diffusion systems of
the form 

∂Ui
∂t

= Di∆Ωi
Ui + f(Ui), (t, xi) ∈ (0,∞)× Ωi, (1)

∂Ui
∂νi

= 0, (t, xi) ∈ (0,∞)× ΓNi , (2)

∂Ui
∂νi

= −µi(xi)
∑
j∈Ni

(Ui − Uj) , (t, xi) ∈ (0,∞)× ΓRi , (3)

Ui(0, xi) = Ui,0(xi), xi ∈ Ωi, (4)

with i ∈ {1, . . . , n}. Here, n is a positive integer; the domains (Ωi)1≤i≤n are open, bounded and
connected sets included in RM with M ≥ 1. For each i ∈ {1, . . . , n}, we assume that the boundary
∂Ωi of Ωi is regular and can be split into two disjoint boundaries:

∂Ωi = ΓNi ∪ ΓRi , ΓNi ∩ ΓRi = ∅.
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The outward unit normal vector at point xi of ∂Ωi is denoted by νi(xi) or simply νi. The boundaries
ΓNi and ΓRi are associated with the boundary conditions (2) of Neumann type and (3) of Robin
type, respectively. The unknown functions (Ui)1≤i≤n are defined in (0,+∞)×Ω1, . . . , (0,+∞)×Ωn,
respectively, with values in Rm, where m is a positive integer; the functions (Ui)1≤i≤n model population
densities of interacting biological individuals; each domain Ωi, 1 ≤ i ≤ n, models the habitat of the
interacting species Ui = (Ui,1, . . . , Ui,m)>. These interacting species are subject to spatial mobility
within the domains (Ωi)1≤i≤n and between those domains, as will be soon explained. The matrices
(Di)1≤i≤n are diagonal and we assume that their diagonal coefficients Di,k, 1 ≤ k ≤ m, are positive.
The operators (∆Ωi

)1≤i≤n are multiple instances of the Laplace operator, defined as

∆Ωi = ∂2

∂x2
i,1

+ · · ·+ ∂2

∂x2
i,M

, 1 ≤ i ≤ n, (5)

where the space variable in Ωi is denoted by xi = (xi,1, . . . , xi,M )>. In equation (1), the diffusion term
Di∆Ωi

Ui models the spatial diffusion of Ui in the interior of the domain Ωi (1 ≤ i ≤ n). In addition,
the domains (Ωi)1≤i≤n are coupled in such a way that each domain Ωi, 1 ≤ i ≤ n, admits a finite
number of neighbors; we denote by Ni the set of indices j ∈ {1, . . . , n} such that Ωi is coupled with Ωj .
The connections between the domains (Ωi)1≤i≤n are symmetric, that is, j ∈ Ni if and only if i ∈ Nj
(1 ≤ i, j ≤ n); those connections determine the edges of a graph G , whose vertices are the domains
(Ωi)1≤i≤n (see Figure 1 below). If a domain Ωi is coupled with another domain Ωj (1 ≤ i, j ≤ n),
then we introduce a boundary coupling function µi, defined on the boundary ΓRi . In equation (3),
each boundary term −µi(xi)(Ui − Uj) of the sum over Ni models the spatial mobilities of species Ui
and Uj between Ωi and Ωj . We emphasize that if a domain Ωi is connected to two distinct domains
Ωj and Ωj′ (j, j′ ∈ Ni, j 6= j′), then the mobilities from Ωi to Ωj and from Ωi to Ωj′ start from the
same boundary ΓRi , although they could start from distinct boundaries ΓRi,j , ΓRi,j′ . We suppose that
there exists a positive constant µ0 such that µi(xi) ≥ µ0 for all xi ∈ ΓRi and all i ∈ {1, . . . , n}. We
also suppose that there exists a homeomorphism φi,j that maps ΓRi onto ΓRj , so that the boundary
coupling is defined by the Robin boundary condition (3), with the convention

Uj(xi) = Uj
(
φi,j(xi)

)
, xi ∈ ΓRi , 1 ≤ i, j ≤ n. (6)

We emphasize that the latter equation models the conservation of population during the mobility
between two domains Ωi and Ωj . In other words, we assume that biological individuals moving
from a given patch Ωi necessarily reach some other patch Ωj , hence do not leave the whole habitat.
Furthermore, we assume that the mobilities between two domains are instantaneous, although a time
delay could be introduced at this stage. However, for simplicity, we do not focus on this point in
the present paper. Next, the function f involved in the reaction-diffusion system (1) is a nonlinear
operator with values in Rm, which models the interactions between the biological species Ui,1, . . . ,
Ui,m living on domain Ωi (1 ≤ i ≤ n); the regularity of the function f will be detailed below. Finally,
the functions (Ui,0)1≤i≤n are initial conditions defined in Ω1, . . . , Ωn, respectively.

Related works. Although complex networks of dynamical systems determined by ordinary dif-
ferential equations have been studied for more than two decades (see for instance [16], [19], [22], [23]
or [38] and the references therein), the study of complex networks of dynamical systems determined
by partial differential equations is very recent. It has encountered a rapidly growing interest, due to
the rich dynamics of their trajectories and to the great number of real-world applications. Indeed,
various forms of synchronization, such as identical synchronization, have been studied in [3], [27], [35]
or [37] for complex networks determined by reaction-diffusion systems. The stability of persistence or
extinction equilibria in meta-population models have been studied in [9] for a panic model, in [8] for a
competing species system or in [34] for an epidemiological model. In [11], it has been proved that the
spatial diffusion of individuals in such meta-population models acts as a combination of short and long
range diffusion. In parallel, the dynamics of chemical reactions networks have been studied in [14], [15]
via the entropy framework; synchronization of unstable patterns in other chemical reactions networks
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Figure 1: Complex networks modeling a fragmented habitat with migrations of individuals between patches.
(a) Identical domains and simple point-wise couplings: individuals at point x ∈ Ω migrate towards the same
point x of a copy of Ω. (b)-(c) Distinct domains and realistic boundary couplings: individuals migrate from one
patch to another through their boundary by crossing a corridor. The graph topology underlying the complex
network can be weakly dense (b) or complete (c).

has been investigated in [25]. It is observed that the main research axis which motivates these works
is very often related to the synchronization phenomenon. Although innovative, these works however
suffer several limitations. Notably, the modeling of the couplings is often reductive. For instance,
displacements of individuals are roughly modeled by point-wise couplings in [8] and [9], whose ade-
quateness with biological observations can legitimately be criticized (see Figure 1(a)). Furthermore,
the local dynamics of the complex networks studied in these papers are often described by identical
systems defined in identical domains; the equations of these complex networks can be written in the
following form: 

∂Ui
∂t

= Di∆Ui + f(Ui)− µ
∑
j∈Ni

(Ui − Uj) (t, x) ∈ (0,∞)× Ω, (7)

∂Ui
∂νi

= 0, (t, x) ∈ (0,∞)× ∂Ω, (8)

Ui(0, x) = Ui,0(x), x ∈ Ω, (9)

where Ω denotes a single bounded domain included in RM . Compared with the model determined by
(1)-(2)-(3)-(4), we observe that the couplings are here integrated into the reaction-diffusion equation
(7), whereas they are defined by the Robin boundary condition (3) in our new model. Furthermore,
the boundary condition (8) of Neumann type is seen as incompatible with natural displacements of
biological individuals through the boundary of their habitat. Thus it appears highly relevant to study
the dynamics of complex networks for which a refined modeling of the couplings is expected.

Contributions. The model studied in this paper, which results from the latter observations,
represents the first contribution of our work: by improving the modeling of the geometry of the
domains and of the couplings, this new model better takes into account the heterogeneity of the
biological habitat and the complexity of the interactions occurring between distinct patches of the
environment. Indeed, the domains Ω1, . . . , Ωn involved in the complex network (1)-(2)-(3)-(4) are
fully distinct, in the sense that they can admit distinct sizes and distinct shapes. Furthermore, the
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Figure 2: The setting of ecological corridors can help restore biodiversity in an ecosystem whose habitat
is fragmented. (a) Ecological corridor connecting both sides of a road. Source: https://the-abc-ecological-
corridor.html. (b) Dense implementation of ecological corridors in a fragmented environment. Source: [39].

couplings between those domains are defined along their boundaries, which significantly improves
the modeling of individuals displacements, which were so far modeled by point-wise couplings in the
interior of the domains. Our second contribution corresponds to the mathematical analysis of this
new model. Indeed, our aim is to establish sufficient conditions on the numerous parameters involved
in equations (1)-(2)-(3)-(4), in order to guaranty the global synchronization of the local dynamics
on each domain Ωi, 1 ≤ i ≤ n. Reaching a synchronization state for interacting species systems is
relevant, since the dynamics of such systems are usually characterized by the coexistence of extinction
and persistence equilibria. Hence, a global synchronization state in the whole system is viewed as a
control strategy to avoid extinction, and can be set in place by setting ecological corridors, so as to
increase the connectivity of natural habitats and to avoid local extinction of several wildlife species.
Indeed, from the ecological point of view, this topic represents a major challenge, since it is observed
that anthropic activities exert a high pressure on the habitat of numerous wildlife species (see notably
[17, 26, 28, 29, 32, 39]). In particular, urban growth and extension of agricultural land profoundly
modify the landscape and the geometry of ecological habitats. One relevant strategy for mitigating
the effects of anthropization of natural spaces is to implement ecological corridors. We show in Figure
2(a) a picture of such an ecological corridor, that connects both sides of a road. Furthermore, a high
density of ecological corridors in a fragmented habitat can help restore wildlife (see Figure 2(b)).

To achieve our study of this innovative complex network model, we shall employ original methods,
involving a Poincaré-type inequality for mixed Neumann-Robin boundary conditions. Up to our knowl-
edge, such inequalities have never been used in previous related works. Furthermore, in researching
sufficient conditions of synchronization for the complex network model (1)-(2)-(3)-(4), we bring out
that the diffusion in an isotropic habitat described by the Laplace operator is not compatible with the
distinct geometries of the domains Ω1, . . . , Ωn. To overcome this delicate issue, we also address in
this paper the case of diffusion in an anisotropic habitat, by replacing the standard reaction-diffusion
equation (1) by the system of semi-linear equations

∂Ui
∂t

= Di∇Ωi
·Ai∇Ωi

Ui + f(Ui), (t, xi) ∈ (0,∞)× Ωi, (10)

where the matrices Ai, 1 ≤ i ≤ n, are square matrices of order M with real coefficients. Afterwards, we
apply our theoretical approach to a nonlinear predator-prey model with Leslie-Gower-type functional

4

https://goodbusinessforeveryone.blogspot.com/2016/07/the-abc-ecological-corridor.html
https://goodbusinessforeveryone.blogspot.com/2016/07/the-abc-ecological-corridor.html


response, given by
∂u

∂t
= d1∆u+ u(1− u)− Quv

u+A
,

∂v

∂t
= d2∆v + Sv

(
1− v

u+ C

)
, (11)

where u, v denote the densities of competing species and d1,d2, A, C S and Q denote positive constants.
This competing species model has been studied on a single domain in numerous papers (see for instance
[1], [2], [4], [5], [7], [20], [21], [33]). The dynamics of such competing species models have also been
studied in non-convex domains admitting a “dumbbell” shape [24, 12], which resembles a simple two-
nodes network. However, to the best of our knowledge, the dynamics of the nonlinear predator-prey
model (11) have never been studied in a complex network with boundary couplings of the form (3).
In the numerical part of our paper, we focus on the synchronization of heterogeneous Turing patterns,
which have been proved to appear in the Leslie-Gower model, in a diffusion-driven instability process.
We exhibit various forms of these patterns, mainly labyrinths and spots, and show how to synchronize
them. We emphasize that several other applications could be considered (including neural networks,
epidemiological networks, behavioral networks as cited before), which shows the wide potential of our
approach.

Outline. Our paper is organized as follows. In Section 2, after brief preliminaries for recalling
important lemmas, we expose the functional context which guarantees the existence and uniqueness of
global solutions to the complex network problem (1)-(2)-(3)-(4). Next, we establish sufficient conditions
of synchronization for the case of homothetic domains (Theorem 2), which are applied to complete
graph topologies (corollary 1), simple two-nodes networks (corollary 2), cyclic graphs and rings of
nearest neighbors topologies. We also investigate the situation of diffusion in an anisotropic habitat,
described by equation (10), which covers for instance the case of ellipsoid domains of distinct eccentric-
ities (Theorem 4). In section 3, we present several numerical simulations of the Leslie-Gower predator
prey model, in order to supplement our qualitative statements by quantitative experiments, which
suggest that synchronization of complex networks with boundary couplings might be more delicate to
reach than with point-wise couplings.

2 Complex networks of reaction-diffusion systems with bound-
ary couplings

In this section, we consider the complex network of reaction-diffusion systems determined by (1)-
(2)-(3)-(4). As presented in the introduction, each domain Ωi, 1 ≤ i ≤ n, of this complex network
admits a finite set Ni of neighbors. We denote by G = (V ,E ) the underlying graph: the set V of its
vertices corresponds to the domains Ω1, . . . , Ωn, and the set E of its edges is determined by the sets
of neighbors N1, . . . , Nn. An example of such a graph is illustrated in Figure 1(b).

2.1 Preliminaries
Let us here briefly present two important lemmas which shall be useful in the sequel of the paper.
We first recall a Poincaré-type inequality for mixed Neumann-Robin boundary conditions (see [31],
inequality (11.13) in Theorem 11.11).
Lemma 1. Let Ω be a bounded domain in RM with regular boundary ∂Ω. Assume that ∂Ω = Γ1 ∪Γ2,
where Γ2 has a positive measure, with Γ1 ∩ Γ2 = ∅. Let µ ∈ L∞(Γ2) be such that µ(x) ≥ µ0 for all
x ∈ Γ2, where µ0 denotes a positive constant. Then there exists a positive constant λP (Ω, µ) such that∫

Ω
|∇u|2 dx ≥ λP (Ω, µ)

∫
Ω
|u|2 dx, (12)

for all u ∈W 1,2(Ω) satisfying
∂u

∂ν
= 0 on Γ1,

∂u

∂ν
= −µ(x)u on Γ2.
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In the latter lemma, the positive constant λP is called the Poincaré constant; it depends on the
domain Ω and on the function µ (see Remark 3 below).

Next, recall that a complete graph is a graph in which every pair of distinct vertices is connected
by a unique edge. The following lemma establishes a necessary and sufficient condition for a connected
graph to be complete. Since its proof is elementary, we may omit it.

Lemma 2. Let G = (V ,E ) be a connected graph with a finite set V of n vertices (n ≥ 3) and a finite
set E of edges. For each i ∈ V , we denote by Ni the subset of vertices which are neighbors of i. Then
G is complete if and only if

Ni \ {j} = Nj \ {i}, (13)
for all i, j ∈ V such that i and j are neighbors.

2.2 Global solutions of the complex network problem
Before establishing sufficient conditions of synchronization in the complex network determined by
problem (1)-(2)-(3)-(4), we intend to prove the existence and uniqueness of global solutions. To that
aim, we consider the Banach space

Y =
(
Lp(Ω1)× · · · × Lp(Ωn)

)m
,

equipped with the usual product norm. Following [12] (Theorem 1.11), we require that the Lebesgue
exponent p satisfies p > M , where M denotes the dimension space of the domains Ω1, . . . , Ωn. We
then introduce the linear operator A defined by

A = diag {−Di∆Ωi
, 1 ≤ i ≤ n} , (14)

with the mixed boundary conditions (2) and (3). The domain D(A) of the linear operator A is included
in the space X defined as

X =
{
U = (Ui)1≤i≤n ∈

(
W 2,p(Ω1)× · · · ×W 2,p(Ωn)

)m ;

∂Ui
∂νi

= 0 on ΓNi ,
∂Ui
∂νi

= −µi(xi)
∑
j∈Ni

(Ui − Uj) on ΓRi

}
.

Next, we consider the function F defined for U ∈ X by

F (U) =
(
fk(Ui)

)>
1≤i≤n,1≤k≤m. (15)

The abstract formulation of the complex network problem (1)-(2)-(3)-(4) is written
dU

dt
+AU = F (U), t > 0,

U(0) = U0,
(16)

with U0 = (Ui,0)1≤i≤n ∈ X. Assuming that the function F is locally Lipschitz continuous on any
bounded set of Rn×m, we can apply Theorem 1.11 in [12] and conclude that the complex network
problem (1)-(2)-(3)-(4) admits global solutions.

Theorem 1. Assume that the function F given by (15) is locally Lipschitz continuous on any bounded
set of Rn×m. Then there exists γ ∈ (0, 1) such that the complex network problem (1)-(2)-(3)-(4) admits
global solutions in the space Xγ ⊂ Y generated by the fractional power Aγ , and determines a dynamical
system S (t), defined for all U0 ∈ Xγ and all t ≥ 0 by

S (t)U0 = U(t, U0), (17)

where U(t, U0) denotes the unique solution of the Cauchy problem (16) in Xγ .
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Here, we assume moreover that the continuous dynamical system S (t) admits a compact phase
space Φ ⊂ Y , which is bounded in D(A). We emphasize that this compactness requirement is fulfilled
for a wide class of reaction-diffusion systems (see for instance [36]) and often follows from some dissi-
pative estimations of the solutions. Along with the latter assumptions on the phase space Φ, we easily
verify that the functions (fk)1≤k≤m satisfy the following globally Lipschitz condition:

‖fk(v)− fk(w)‖L2(Ω) ≤ Lk ‖v − w‖L2(Ω) , 1 ≤ k ≤ m, (18)

for all v, w in Φ, with Lk > 0. This globally Lispchitz condition shall be very useful in the rest of
the paper, for establishing sufficient conditions of synchronization of the complex network problem
(1)-(2)-(3)-(4).

2.3 Sufficient conditions of synchronization
In this section, we investigate sufficient conditions for the complex network model with boundary cou-
plings (1)-(2)-(3)-(4) to synchronize. Let us first specify the definition of synchronization for complex
networks of reaction-diffusion systems. We distinguish partial synchronization of a subset of nodes in
the network, and global synchronization in the whole network. Since the domains Ω1, . . . , Ωn underly-
ing the complex network model (1)-(2)-(3)-(4) are non-identical, we are led to transport the solutions
in a common arbitrary domain, hence the following definition differs from the identical synchronization
studied for instance in [8].

Definition 1. Let Ω be a bounded domain in RM . We say that two nodes i and j synchronize in Ω
if there exist two homeomorphisms φi and φj mapping Ω onto Ωi and Ωj , respectively, such that for
any U0 ∈ X, the solution U(t, U0) of the complex network problem (1)-(2)-(3)-(4) satisfies

lim
t→+∞

∥∥Ũi(t, x)− Ũj(t, x)
∥∥
L2(Ω)m = 0,

where Ũi(t, x) = Ui
(
t, φi(x)

)
and Ũj(t, x) = Uj

(
t, φj(x)

)
for all x ∈ Ω and all t > 0.

We say that the complex network partially synchronizes in Ω if there exist at least one pair of nodes
(i, j) that synchronizes in Ω.

We say that the complex network globally synchronizes in Ω if every pair of nodes synchronizes.

Note that the homeomorphism φi,j defined in (6), that maps ΓRi onto ΓRj , can be defined as the
continuation of the composition φj ◦ φ−1

i that maps Ωi onto Ωj .
We are now ready to investigate sufficient conditions of synchronization in the complex network

(1)-(2)-(3)-(4). In the sequel, we focus on two situations: first, we establish a theorem for the syn-
chronization of two nodes in a network of homothetic domains; we deduce several statements of global
synchronization for complete graph topologies, cyclic graphs and rings of nearest neighbors graph
topologies. Next, we consider the more general case of non-homothetic domains, for which we are
led to replace the diffusion operator in an isotropic habitat by a generalized diffusion operator for an
anisotropic habitat.

2.3.1 Synchronization conditions for a complex network of homothetic domains

We first investigate the case where the domains Ω1, . . . , Ωn of the complex network problem (1)-(2)-
(3)-(4) are homothetic, that is, admit the same shape, with possibly distinct sizes. To that aim, we
fix

Ω = Ω1, ΓR = ΓR1 , ΓN = ΓN1 , (19)

and consider n− 1 homotheties H2, . . . , Hn mapping Ω1 onto Ω2, . . . , Ωn, respectively:

Ωi = Hi(Ω1), 2 ≤ i ≤ n. (20)
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Examples of such homothetic domains can be viewed in Figures 8, 10 below. For each i ∈ {2, . . . , n},
the homothety factor of Hi is positive and denoted by hi. We assume that the homotheties preserve
the splitting of the boundaries of each domain Ωi, that is

ΓNi = Hi(ΓN1 ), ΓRi = Hi(ΓR1 ), 2 ≤ i ≤ n. (21)

Given an initial condition U0 ∈ Xγ , we denote by

U(t, x) =
(
U1(t, x), . . . , Un

(
t,Hn(x)

))>
the solution of problem (1)-(2)-(3)-(4) starting from U0. For all x ∈ Ω and all t > 0, we set

Ũ1(t, x) = U1(t, x), Ũi(t, x) = Ui
(
t,Hi(x)

)
, 2 ≤ i ≤ n. (22)

In addition, we assume that the functions (fk)1≤i≤n,1≤k≤m satisfy the global Lipschitz condition (18),
with Lk > 0. The following theorem establishes sufficient conditions on the parameters involved in the
complex network (1)-(2)-(3)-(4) for two nodes to synchronize.

Theorem 2. Let assumptions (18) and (20) hold. Suppose that two neighbor nodes i and j of the
complex network (1)-(2)-(3)-(4) satisfy

Di,k

h2
i

= Dj,k

h2
j

, (23)

Di,k

hi
µi
(
Hi(x)

)
= Dj,k

hj
µj
(
Hj(x)

)
, (24)

for each k ∈ {1, . . . ,m} and for all x ∈ ΓR. Suppose moreover that

Ni \ {j} = Nj \ {i}. (25)

Finally, suppose that
Di,kλP (Ω, µi)

h2
i

>
1 + Lk

2

2 , (26)

for each k ∈ {1, . . . ,m}, where λP (Ω, µi) is the Poincaré constant determined by Lemma 1.
Then the two nodes i and j of the complex network synchronize in Ω.

(a) (b) (c) (d) (e)

Figure 3: Particular graph topologies guaranteeing partial synchronization or global synchronization. (a) In an
arbitrary graph topology, two nodes admitting the same neighbors (depicted in red) synchronize. (b) Complete
graph. (c) Cyclic graph. (d) Ring of 4-nearest neighbors. (e) Ring of 6-nearest neighbors.

The proof of Theorem 2 relies of the following technical lemma, which establishes an estimate of
the boundary terms modeling the migrations of individuals between two neighbor nodes.
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Lemma 3. Let assumption (20) hold. Suppose that two neighbor nodes i and j of the complex network
(1)-(2)-(3)-(4) satisfy (23) and (24) for each k ∈ {1, . . . ,m} and for all x ∈ ΓR. Then we have

Di,k

h2
i

(
∂Ũi,k
∂ν

(t, x)− ∂Ũj,k
∂ν

(t, x)
)[

Ũi,k(t, x)− Ũj,k(t, x)
]

= −(2 + |Si,j |)
Di,k

hi
µi
(
Hi(x)

) ∣∣Ũi,k(t, x)− Ũj,k(t, x)
∣∣2

− Di,k

hi
µi
(
Hi(x)

) ∑
l∈Mi,j

[
Ũi,k(t, x)− Ũl,k(t, x)

][
Ũi,k(t, x)− Ũj,k(t, x)

]
+ Di,k

hi
µi
(
Hi(x)

) ∑
l∈Mj,i

[
Ũj,k(t, x)− Ũl,k(t, x)

][
Ũi,k(t, x)− Ũj,k(t, x)

]
(27)

for all t ≥ 0 and all x ∈ ΓR, where Mi,j denotes the set of neighbors of i which are not neighbors of
j, Mj,i denotes the set of neighbors of j which are not neighbors of i, Si,j denotes the set of common
neighbors of i and j and |Si,j | its cardinal.

Proof of Lemma 3. Let k ∈ {1, . . . ,m} and i, j ∈ {1, . . . , n}. For short, we denote

u(t, xi) = Ui,k(t, xi), (t, xi) ∈ (0,+∞)× Ωi,
v(t, xj) = Uj,k(t, xj), (t, xj) ∈ (0,+∞)× Ωj

and
ũ(t, x) = Ũi,k(t, x), ṽ(t, x) = Ũj,k(t, x), (t, x) ∈ (0,+∞)× Ω.

We examine the boundary terms of Robin type on ΓR. We have:

∂ũ

∂ν
(t, x) = ν(x) · ∇Ωũ(t, x)

= hi × νi
(
Hi(x)

)
· ∇Ωiu

(
t,Hi(x)

)
= hi ×

∂u

∂νi

(
t,Hi(x)

)
= −hi µi

(
Hi(x)

) ∑
l∈Ni

[
u
(
t,Hi(x)

)
− Ul,k

(
t,Hi(x)

)]
,

which leads to
∂ũ

∂ν
(t, x) = −hi µ̃i(x)

∑
l∈Ni

[
ũ(t, x)− Ul,k

(
t,Hi(x)

)]
, (28)

where µ̃i is defined on ΓR by µ̃i(x) = µi
(
Hi(x)

)
; similarly, we have

∂ṽ

∂ν
(t, x) = −hj µ̃j(x)

∑
l∈Nj

[
ṽ(t, x)− Ul,k

(
t,Hj(x)

)]
.

9



We obtain, applying assumption (23):

Di,k

h2
i

[
∂ũ

∂ν
(t, x)− ∂ṽ

∂ν
(t, x)

]
= Di,k

h2
i

∂ũ

∂ν
(t, x)− Dj,k

h2
j

∂ṽ

∂ν
(t, x)

= −Di,k

hi
µ̃i(x)

∑
l∈Ni

[
ũ(t, x)− Ul,k

(
t,Hi(x)

)]
+ Dj,k

hj
µ̃j(x)

∑
l∈Nj

[
ṽ(t, x)− Ul,k

(
t,Hj(x)

)]
= −Di,k

hi
µ̃i(x)

(
ũ(t, x)− ṽ(t, x)

)
− Di,k

hi
µ̃i(x)

∑
l∈Ni\{j}

[
ũ(t, x)− Ul,k

(
t,Hi(x)

)]
+ Dj,k

hj
µ̃j(x)

(
ṽ(t, x)− ũ(t, x)

)
+ Dj,k

hj
µ̃j(x)

∑
l∈Nj\{i}

[
ṽ(t, x)− Ul,k

(
t,Hj(x)

)]
.

Now, the boundary convention (6) guarantees that∑
l∈Ni\{j}

Uk,l
(
t,Hi(x)

)
=

∑
l∈Ni\{j}

Uk,l
(
t,Hl(x)

)
,

and analogously ∑
l∈Nj\{i}

Uk,l
(
t,Hj(x)

)
=

∑
l∈Nj\{i}

Uk,l
(
t,Hl(x)

)
.

Next, by virtue of assumption (24), we obtain:

Di,k

h2
i

[
∂ũ

∂ν
(t, x)− ∂ṽ

∂ν
(t, x)

]
= −2Di,k

hi
µ̃i(x)

(
ũ(t, x)− ṽ(t, x)

)
− Di,k

hi
µ̃i(x)

∑
l∈Si,j

(
ũ(t, x)− ṽ(t, x)

)
− Di,k

hi
µ̃i(x)

∑
l∈Mi,j

[
ũ(t, x)− Ũl,k(t, x)

]
+ Di,k

hi
µ̃i(x)

∑
l∈Mj,i

[
ṽ(t, x)− Ũl,k(t, x)

]
= −(2 + |Si,j |)

Di,k

hi
µ̃i(x)

(
ũ(t, x)− ṽ(t, x)

)
− Di,k

hi
µ̃i(x)

∑
l∈Mi,j

[
ũ(t, x)− Ũl,k(t, x)

]
+ Di,k

hi
µ̃i(x)

∑
l∈Mj,i

[
ṽ(t, x)− Ũl,k(t, x)

]
,

where |Si,j | denotes the cardinal of the set Si,j . Multiplying both sides of the latter equality by(
ũ(t, x)− ṽ(t, x)

)
leads to (27), which completes the proof of Lemma 3.

We are now ready to present the proof of Theorem 2.

Proof of Theorem 2. We use the same notations as in the proof of Lemma 3 and consider the energy
functional defined by

Ei,j,k(t) = 1
2

∫
Ω
|ũ(t, x)− ṽ(t, x)|2 dx. (29)

10



We easily compute its derivative:

dEi,j,k
dt

(t) =
∫

Ω

∂(ũ− ṽ)
∂t

(ũ− ṽ)dx

=
∫

Ω

(
∂ũ

∂t
− ∂ṽ

∂t

)
(ũ− ṽ)dx,

where we omit the variables t and x under the integral symbol in order to lighten our notations.
Elementary computations show that

∇Ωũ(t, x) = hi∇Ωiu
(
t,Hi(x)

)
, (t, x) ∈ (0,+∞)× Ω, (30)

from which it follows that

∆Ωũ(t, x) = h2
i∆Ωi

u
(
t,Hi(x)

)
, (t, x) ∈ (0,+∞)× Ω. (31)

We can deduce that

∂ũ

∂t
(t, x) = ∂u

∂t

(
t,Hi(x)

)
= Di,k∆Ωi

u(t,Hi(x)
)

+ fk
(
u(t,Hi(x))

)
= Di,k

h2
i

∆Ωũ(t, x) + fk
(
ũ(t, x)

)
,

for all (t, x) ∈ (0,+∞)× Ω. Similarly, we have

∂ṽ

∂t
(t, x) = Dj,k

h2
j

∆Ωṽ(t, x) + fk
(
ṽ(t, x)

)
, (t, x) ∈ (0,+∞)× Ω.

We obtain, by virtue of assumption (23):

dEi,j,k
dt

(t) = Di,k

h2
i

∫
Ω

∆Ω(ũ− ṽ)(ũ− ṽ)dx+
∫

Ω

(
fk(ũ)− fk(ṽ)

)
(ũ− ṽ)dx. (32)

Since ũ and ṽ satisfy a mixed Neumann-Robin boundary condition, we have, by virtue of Green’s
formula: ∫

Ω
∆Ω(ũ− ṽ)(ũ− ṽ)dx = −

∫
Ω
|∇Ω(ũ− ṽ)|2 dx+

∫
ΓR

∂(ũ− ṽ)
∂ν

(ũ− ṽ)ds

= −
∫

Ω
|∇Ω(ũ− ṽ)|2 dx+

∫
ΓR

(
∂ũ

∂ν
− ∂ṽ

∂ν

)
(ũ− ṽ)ds,

where ν = ν1 denotes the outward unit normal vector of ∂Ω = ∂Ω1.
Next, assumption (25) means that the nodes i and j admit only common neighbors, which implies

that Mi,j = Mj,i = ∅ and Si,j = Ni \ {j} = Nj \ {i}, where the sets Mi,j , Mj,i and Si,j are defined
in Lemma 3. Therefore, we can apply Lemma 3 and we obtain

Di,k

h2
i

(
∂ũ

∂ν
− ∂ṽ

∂ν

)
(ũ− ṽ) = −(2 + |Si,j |)

Di,k

hi
µ̃i(x) |ũ− ṽ|2 ≤ 0

on ΓR, from which we deduce∫
Ω

∆Ω(ũ− ṽ)(ũ− ṽ)dx ≤ −
∫

Ω
|∇Ω(ũ− ṽ)|2 dx.

11



Now, we use the Poincaré inequality (see Lemma 1) to write∫
Ω
|∇Ω(ũ− ṽ)|2 dx ≥ λP (Ω, µi)

∫
Ω
|ũ− ṽ|2 dx,

with λP (Ω, µi) > 0, which leads to

Di,k

h2
i

∫
Ω

∆Ω(ũ− ṽ)(ũ− ṽ)dx ≤ −Di,kλP (Ω, µi)
h2
i

∫
Ω
|ũ− ṽ|2 dx. (33)

In parallel, we apply the Young inequality ab ≤ a2

2 + b2

2 , which is valid for all a, b in R, and
assumption (18) to obtain∫

Ω

(
fk(ũ)− fk(ṽ)

)
(ũ− ṽ)dx ≤ 1

2 ‖fk(ũ)− fk(ṽ)‖2L2(Ω) + 1
2 ‖ũ− ṽ‖

2
L2(Ω) ,

which leads to ∫
Ω

(
fk(ũ)− fk(ṽ)

)
(ũ− ṽ)dx ≤ (1 + Lk

2)Ei,j,k(t). (34)

Combining the inequalities (33) and (34), equation (32) becomes

dEi,j,k
dt

(t) ≤ −2Di,kλP (Ω, µi)
h2
i

Ei,j,k(t) + (1 + L2
k)Ei,j,k(t). (35)

Applying Gronwall lemma leads to

Ei,j,k(t) ≤ Ei,j,k(0) exp
{
−
(

2Di,kλP (Ω, µi)
h2
i

− (1 + L2
k)
)
t

}
,

for each k ∈ {1, . . . ,m} and for all t ≥ 0, which guarantees that

lim
t→+∞

∥∥Ũi(t)− Ũj(t)∥∥L2(Ω)m = 0,

provided (26) holds. The proof is complete.

Remark 1 (Non-identical internal dynamics and near-synchronization). We emphasize that the func-
tion f involved in the reaction-diffusion system (1) is the same on all the domains Ω1, . . . , Ωn, which
means that the internal dynamics of the complex network are identical on each patch of the fragmented
environment. The case of non-identical dynamics can be studied by replacing Equation (1) by

∂Ui
∂t

= Di∆ΩiUi + fi(Ui), (t, xi) ∈ (0,∞)× Ωi,

where the function fi now depends on the index i of the domain Ωi (1 ≤ i ≤ n). In particular, this
dependence can model local variations of internal parameters, and fi can be written under the form

fi(Ui) = f(Ui, λi), 1 ≤ i ≤ n,

with λi ∈ Rp. In this case, the Lipschitz condition (18) becomes

‖fi,k(v)− fj,k(w)‖L2(Ω) ≤ Li,j,k
(
‖v − w‖L2(Ω) + ‖λi − λj‖Rp

)
,

with Li,j,k > 0. Recently, it has been proved in [10] that this situation leads to near-synchronization,
which is a relaxed form of synchronization.
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Remark 2 (Interpretation of assumption (23)). If the domains Ωi and Ωj in Theorem 2 are isometric,
then the homothety factors hi and hj are both equal to 1. In that case, condition (23) simply becomes

Di,k = Dj,k,

for all k ∈ {1, . . . ,m}. The latter condition means that for each k, the species Ui,k and Uj,k living in
the domains Ωi and Ωj, respectively, should diffuse at the same rate in their respective habitat, in order
to synchronize, which is conform to intuition. However, it does not imply that two distinct species Ui,k1

and Ui,k2 of the same domain Ωi should diffuse at the same rate. Since spatial heterogeneity patterns
such as Turing patterns usually appear as the diffusion rates are very distinct, then assumption (23)
seems to be compatible with the emergence of Turing patterns. This compatibility will be experimented
with a numerical approach in Section 3.

Next, if the domains Ωi and Ωj in Theorem 2 are not isometric, then assumption (23) means that
synchronization can occur if the species which live in a large domain diffuse at a greater rate than the
species which live in a small domain; this interpretation is also conform to intuition.

Remark 3 (Interpretation of assumption (26)). As mentioned previously, we emphasize that the
Poincaré constant λ(Ω, µi) in the synchronization condition (26) depends on the domain Ω and on
the boundary coupling function µi. More specifically, according to Corollaries 2.2 and 2.3 in [12] (see
also [13] or [30]), λ(Ω, µi) decreases if the size of Ω increases, whereas it increases if µi increases (in
the sense that µ1

i ≤ µ2
i if µ1

i (x) ≤ µ2
i (x) for all x ∈ ΓRi ). Therefore, the synchronization condition

(26) is more likely to be fulfilled in small domains, connected with strong boundary couplings. It is
worth noting that the synchronization of complex networks with point-wise couplings of the form (7)-
(8)-(9) is not influenced by the size of the domains, as proved in [8] for instance. Roughly speaking,
boundary couplings of the form (3) are able to synchronize the local dynamics in a neighborhood of the
boundaries; if the domains are small, this boundary synchronization can extend to the whole domain.

As a direct consequence of Theorem 2 and Lemma 2, we obtain the following corollary, which
establishes sufficient conditions for a complex network, whose underlying graph is complete, to globally
synchronize.

Corollary 1. Let assumptions (18) and (20) hold. Suppose furthermore that the graph G underlying
the complex network problem (1)-(2)-(3)-(4) is a complete graph, and that assumptions (23)-(24)-(26)
hold for each i, j ∈ {1, . . . , n} and each k ∈ {1, . . . ,m}. Then the complex network globally synchronizes
in Ω.

In the case of two-nodes network, the following corollary is also directly obtained from Theorem 2.

Corollary 2. Let assumptions (18) and (20) hold with n = 2. Suppose furthermore that assumptions
(23)-(24)-(26) hold for i = 1, j = 2 and for each k ∈ {1, . . . ,m}. Then the two-nodes network globally
synchronizes in Ω.

2.3.2 Synchronization conditions for cyclic graphs and rings of nearest neighbors

Corollaries 1 and 2 describe the global synchronization of a complex network whose underlying graph
is complete. However, the complete graph topology requirement is rather restrictive. Indeed, from the
ecological point of view, fragmented habitats are rarely densely connected, so that the corresponding
graph topology is often far from the complete graph topology. Hence, it is important to investigate the
dynamics of a complex network whose underlying graph is not complete. In this section, we analyze
two other important configurations. The first configuration corresponds to a cyclic graph. We recall
that a cyclic graph is a graph with n vertices, that can be numbered in such a way that node i is
connected only to nodes i − 1 mod(n) and i + 1 mod(n) (see Figure 3(c)). The second configuration
corresponds to a ring of 2K-nearest neighbors [6]. If K is an integer such that 1 ≤ K ≤ n

2 , we say that
the graph G is a ring of 2K-nearest neighbors if it admits n vertices that can be numbered in such a
way that i is connected only to i± j mod(n) for each j ∈ {1, . . . ,K} (for example, a ring of 4-nearest
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neighbors and a ring of 6-nearest neighbors are depicted in Figure 3 (d) and (e), respectively). The
following Theorem proves that such graph topologies, although weakly densely connected, can globally
synchronize.
Theorem 3. Let assumptions (18) and (20) hold. Suppose that the graph G underlying the complex
network (1)-(2)-(3)-(4) is a cyclic graph or a ring of 2K-nearest neighbors (with K ≥ 1). Finally,
assume that each pair (i, j) of nodes satisfies (23), (24) and (26).

Then the complex network (1)-(2)-(3)-(4) globally synchronizes in Ω.

Proof. Assume for simplicity that the graph G underlying the complex network problem (1)-(2)-(3)-(4)
is a cycle. Renumbering the vertices of the graph G if necessary, we can without loss of generality
assume that the sets of neighbors are given by

N1 = {n, 2}, Ni = {i− 1, i+ 1} for 2 ≤ i ≤ n− 1, Nn = {n− 1, 1}. (36)

Now, let k ∈ {1, . . . , n}. We consider the total energy function along the cyclic graph G defined by

Ek(t) =
n−1∑
i=1

Ei,i+1,k(t) + En,1,k(t), (37)

where Ei,j,k(t) is defined as in (29). For 1 ≤ i ≤ n− 1, we compute as in the proof of Theorem 2:

dEi,i+1,k

dt
(t) =

∫
Ω

(
∂Ũi,k
∂t
− ∂Ũi+1,k

∂t

)(
Ũi,k − Ũi+1,k

)
dx

= −Di,k

h2
i

∫
Ω

∣∣∇Ω
(
Ũi,k − Ũi+1,k

)∣∣2 dx
+ Di,k

h2
i

∫
ΓR

∂
(
Ũi,k − Ũi+1,k

)
∂ν

(
Ũi,k − Ũi+1,k

)
ds

+
∫

Ω

(
fk(Ũi,k)− fk(Ũi+1,k)

) (
Ũi,k − Ũi+1,k

)
dx.

Similarly, we have
dEn,1,k
dt

(t) = −Dn,k

h2
n

∫
Ω

∣∣∇Ω
(
Ũn,k − Ũ1,k

)∣∣2 dx
+ Dn,k

h2
n

∫
ΓR

∂
(
Ũn,k − Ũ1,k

)
∂ν

(
Ũn,k − Ũ1,k

)
ds

+
∫

Ω

(
fk(Ũn,k)− fk(Ũ1,k)

) (
Ũn,k − Ũ1,k

)
dx.

Now, we examine the sum of the integral terms

Di,k

h2
i

∫
ΓR

∂
(
Ũi,k − Ũi+1,k

)
∂ν

(
Ũi,k − Ũi+1,k

)
ds, 1 ≤ i ≤ n− 1,

and
Dn,k

h2
n

∫
ΓR

∂
(
Ũn,k − Ũ1,k

)
∂ν

(
Ũn,k − Ũ1,k

)
ds.

Since (23) and (24) are satisfied for each pair (i, j) of nodes, we have:
n−1∑
i=1

Di,k

h2
i

∫
ΓR

∂
(
Ũi,k − Ũi+1,k

)
∂ν

(
Ũi,k − Ũi+1,k

)
ds+ Dn,k

h2
n

∫
ΓR

∂
(
Ũn,k − Ũ1,k

)
∂ν

(
Ũn,k − Ũ1,k

)
ds

= D1,k

h2
1

∫
ΓR

{
n−1∑
i=1

∂
(
Ũi,k − Ũi+1,k

)
∂ν

(
Ũi,k − Ũi+1,k

)
+
∂
(
Ũn,k − Ũ1,k

)
∂ν

(
Ũn,k − Ũ1,k

)}
ds.
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Next, since the graph G is cyclic, the neighbors of each vertex are given by (36). Hence, the boundary
condition (3) leads to:

D1,k

h2
1

∫
ΓR

{
n−1∑
i=1

∂
(
Ũi,k − Ũi+1,k

)
∂ν

(
Ũi,k − Ũi+1,k

)
+
∂
(
Ũn,k − Ũ1,k

)
∂ν

(
Ũn,k − Ũ1,k

)}
ds

= D1,k

h1

∫
ΓR

µ̃1(x)
[
− 2(Ũ1,k − Ũ2,k)2 − (Ũ1,k − Ũn,k)(Ũ1,k − Ũ2,k) + (Ũ2,k − Ũ3,k)(Ũ1,k − Ũ2,k)

− 2(Ũ2,k − Ũ3,k)2 − (Ũ2,k − Ũ1,k)(Ũ2,k − Ũ3,k) + (Ũ3,k − Ũ4,k)(Ũ2,k − Ũ3,k)
− 2(Ũ3,k − Ũ4,k)2 − (Ũ3,k − Ũ2,k)(Ũ3,k − Ũ4,k) + (Ũ4,k − Ũ5,k)(Ũ3,k − Ũ4,k)
. . .

− 2(Ũn,k − Ũ1,k)2 − (Ũn,k − Ũn−1,k)(Ũn,k − Ũ1,k) + (Ũ1,k − Ũ2,k)(Ũn,k − Ũ1,k)
]
ds.

We can rearrange the terms which are contained in the brackets and write:

D1,k

h2
1

∫
ΓR

{
n−1∑
i=1

∂
(
Ũi,k − Ũi+1,k

)
∂ν

(
Ũi,k − Ũi+1,k

)
+
∂
(
Ũn,k − Ũ1,k

)
∂ν

(
Ũn,k − Ũ1,k

)}
ds

= D1,k

h1

∫
ΓR

µ̃1(x)
[
− (Ũ1,k − Ũ2,k)2 + 2(Ũ1,k − Ũ2,k)(Ũn,k − Ũ1,k)− (Ũn,k − Ũ1,k)2

− (Ũ2,k − Ũ3,k)2 + 2(Ũ2,k − Ũ3,k)(Ũ1,k − Ũ2,k)− (Ũ1,k − Ũ2,k)2

− (Ũ3,k − Ũ4,k)2 + 2(Ũ3,k − Ũ4,k)(Ũ2,k − Ũ3,k)− (Ũ2,k − Ũ3,k)2

. . .

− (Ũn,k − Ũ1,k)2 + 2(Ũn,k − Ũ1,k)(Ũn,k − Ũn−1,k)− (Ũn,k − Ũn−1,k)2
]
ds

= D1,k

h1

∫
ΓR

µ̃1(x)
[
− (Ũ1,k − Ũ2,k − Ũn,k + Ũ1,k)2

− (Ũ2,k − Ũ3,k − Ũ1,k + Ũ2,k)2

− (Ũ3,k − Ũ4,k − Ũ2,k + Ũ3,k)2

. . .

− (Ũn,k − Ũ1,k − Ũn,k + Ũn−1,k)2
]
ds.

Therefore, we have

D1,k

h2
1

∫
ΓR

{
n−1∑
i=1

∂
(
Ũi,k − Ũi+1,k

)
∂ν

(
Ũi,k − Ũi+1,k

)
+
∂
(
Ũn,k − Ũ1,k

)
∂ν

(
Ũn,k − Ũ1,k

)}
ds ≤ 0.

It follows that the derivative of the total energy Ek given by (37) can be simplified and written

dEk
dt

(t) =
n−1∑
i=1

{
−Di,k

h2
i

∫
Ω

∣∣∇Ω
(
Ũi,k − Ũi+1,k

)∣∣2 dx}− Dn,k

h2
n

∫
Ω

∣∣∇Ω
(
Ũn,k − Ũ1,k

)∣∣2 dx
+
n−1∑
i=1

{∫
Ω

(
fk(Ũi,k)− fk(Ũi+1,k)

) (
Ũi,k − Ũi+1,k

)
dx

}
+
∫

Ω

(
fk(Ũn,k)− fk(Ũ1,k)

) (
Ũn,k − Ũ1,k

)
dx.
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Hence, arguing as in the proof of Theorem 2, we can write

dEk
dt

(t) ≤
n−1∑
i=1

{
−
(

2Di,kλP (Ω, µi)
h2
i

− (1 + L2
k)
)
Ei,i+1,k

}
−
(

2Dn,kλP (Ω, µn)
h2
n

− (1 + L2
k)
)
En,1,k,

which leads to
dEk
dt

(t) ≤ −C∗kEk(t),

for all t ≥ 0, where C∗k is the positive constant defined by

C∗k = min
{

min
1≤i≤n−1

[
2Di,kλP (Ω, µi)

h2
i

− (1 + L2
k)
]
, 2Dn,kλP (Ω, µn)

h2
n

− (1 + L2
k)
}
.

Finally, we apply Gronwall lemma to write

Ek(t) ≤ Ek(0)e−C
∗
kt,

for all t ≥ 0 and all k ∈ {1, . . . ,m}, which proves that the complex network (1)-(2)-(3)-(4) globally
synchronizes in Ω. This completes the proof for a cyclic graph.

The case of a ring of 2K-nearest neighbors is treated analogously.

2.3.3 Synchronization conditions for non-homothetic domains

We now investigate the case of non-homothetic domains. We observe that the proof of Theorem
2 mostly relies on equation (30), which expresses how the gradient is modified under the action of
a given transformation. However, equation (30) is characteristic from homotheties, thus cannot be
fulfilled for a general planar transformation (as for instance, a transformation that maps an ellipse
onto an another ellipse of distinct eccentricity). Therefore, we are led to consider a modification of the
Laplace diffusion operator involved in equation (1), so as to guaranty that equations (31) and (28),
which are obtained from (30), are still fulfilled under the action of a non-homothetic transformation.

To that aim, we consider a complex network of semi-linear equations determined by (10) instead of
(1); the Neumann and Robin boundary conditions (2)-(3) and the initial condition (4) are conserved,
where the derivative with respect to the outward normal unit vector is now defined by

∂Ui
∂νi

(t, xi) = νi(xi) ·Ai∇Ωi
Ui(t, xi), (38)

with t > 0 and xi ∈ ∂Ωi (see for instance equation (2.23) in [36]). For simplicity, we assume that
the matrices Ai involved in equation (10) are invertible and diagonal; this assumption guarantees
commutativity with the gradient operator, that is

(Ai∇Ωi
)u = ∇Ωi

(Aiu), (39)

for all u ∈W 1,p(Ωi). Note that the existence and uniqueness of global solutions to the complex network
determined by (10)-(2)-(3)-(4) can be treated as in Section 2.2. Next, we set as before Ω = Ω1, Γ = Γ1
and suppose that there exists a family (Bi)2≤i≤n of n − 1 planar transformations mapping Ω onto
Ω2, . . . , Ωn, respectively, preserving the boundaries ΓRi , ΓNi (2 ≤ i ≤ n). We assume that for each
i ∈ {2, . . . , n}, the transformation Bi satisfies the property

∇Ω(u ◦ Bi) = Bi (∇Ωi
u) ◦ Bi, (40)

for all u ∈ W 1,p(Ωi), where the matrix Bi is invertible and diagonal. Unlike the case of homotheties,
the planar tranformation is likely to rotate the outward normal vector νΩ; thus we denote

νΩi ◦ Bi(x) = Θi(x)νΩ(x), x ∈ Ω, 2 ≤ i ≤ n, (41)
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where Θi(x) is a square matrix of order 2.
The following theorem establishes sufficient conditions of synchronization for two nodes of the

complex network determined by problem (10)-(2)-(3)-(4).
Theorem 4. Let assumptions (18), (39) and (40) hold. Suppose moreover that two neighbor nodes i
and j of the complex network (10)-(2)-(3)-(4) satisfy equation (25) and the following conditions:

Di,k(B−1
i )2Ai = Dj,k(B−1

j )2Aj = diag {α1,k, . . . , αM,k} , (42)
Di,kB

−1
i Θiµi ◦ Bi = Dj,kB

−1
j Θjµj ◦ Bj , (43)

γkλP (Ω, µi) >
1 + L2

k

2 , (44)

for each k ∈ {1, . . . , n}, where diag {α1,k, . . . , αM,k} is a diagonal matrix of order M with positive
coefficients, and γk = min {α1,k, . . . , αM,k}.

Then the two nodes i and j of the complex network determined by the semi-linear equations (10),
the boundary conditions (2)-(3) and the initial conditions (4) synchronize.
Proof. Let k ∈ {1, . . . ,m} and i, j ∈ {1, . . . , n}. We use the same notations as before for u, ũ, v and
ṽ, and show the steps which differ with the proof of Theorem 2.

We consider again the energy functional defined by

Ei,j,k(t) = 1
2

∫
Ω
|ũ(t, x)− ṽ(t, x)|2 dx,

and compute its derivative:
dEi,j,k
dt

(t) =
∫

Ω

(
∂ũ

∂t
− ∂ṽ

∂t

)
(ũ− ṽ)dx.

Using equations (39) and (40), we easily compute
∂ũ

∂t
= Di,k∇ · (B−1

i )2Ai∇ũ+ fk(ũ),

∂ṽ

∂t
= Dj,k∇ · (B−1

j )2Aj∇ũ+ fk(ṽ).

By virtue of (42) and Green’s formula, we deduce that
dEi,j,k
dt

(t) =
∫

Ω

[
α1,k

∂2(ũ− ṽ)
∂x2

1
(ũ− ṽ) + · · ·+ αM,k

∂2(ũ− ṽ)
∂x2

M

(ũ− ṽ)
]
dx

+
∫

Ω

(
fk(ũ)− fk(ṽ)

)
(ũ− ṽ)dx

≤ −γk
∫

Ω
|∇(ũ− ṽ)|2 dx+Di,k

∫
ΓR

∂(ũ− ṽ)
∂ν

(ũ− ṽ)ds

+
∫

Ω

(
fk(ũ)− fk(ṽ)

)
(ũ− ṽ)dx.

We use again the Poincaré inequality (1) to write

−γk
∫

Ω
|∇(ũ− ṽ)|2 dx ≤ −2γkλP (Ω, µi)Ek.

In parallel, applying again (42), we compute:

Di,k

(
∂ũ

∂ν
− ∂ṽ

∂ν

)
= Di,kν · (B−1

i )2Ai∇ũ−Dj,kν · (B−1
j )2Aj∇ṽ

= Di,kB
−1
i Θiνi ·Ai(∇u) ◦ Bi −Dj,kB

−1
j Θjνj ·Aj(∇v) ◦ Bj

= Di,kB
−1
i Θi

∂u

∂νi
−Dj,kB

−1
j Θj

∂v

∂νj
.
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Next, from (3), (25) and (43), we deduce as in the proof of Theorem 2 that(
Di,kB

−1
i Θi

∂u

∂νi
−Dj,kB

−1
j Θj

∂v

∂νj

)
(ũ− ṽ) ≤ 0.

Finally, using (18) and combining the above inequalities leads to

dEi,j,k
dt

(t) ≤ −2γkλP (Ω, µi)Ek(t) + (1 + L2
k)Ek(t).

Applying Gronwall lemma as for Theorem 2 completes the proof.

Remark 4 (Interpretation of assumption (40)). Note that assumption (40) is satisfied for a wide class
of planar transformations, such as, for instance, the transformation defined by

(x1, x2) ∈ R2 7−→ (ϕx1, ψx2),

with ϕ 6= 0, ψ 6= 0 and ϕ 6= ψ, which maps an ellipse onto another ellipse of distinct eccentricity (in
that case, we have M = 2). Numerical experiments shown in Figure 9 illustrate the synchronization
of such non-homothetic domains.

Remark 5. Assumptions (42), (43) and (44) can be viewed as generalizations of assumptions (23),
(24) and (26), respectively. Therefore, their interpretation is analogous (see Remarks 2 and 3). Fur-
thermore, statements similar to Corollaries 1 and 2 can easily be deduced from Theorem 4, for complete
graphs and two-nodes networks.

Finally, it is easily seen that Theorem 3 also extends to the case of anisotropic diffusion for cyclic
graphs and rings of nearest neighbors. We obtain the following theorem.

Theorem 5. Let assumptions (18), (39) and (40) hold. Suppose that the graph G underlying the
complex network (10)-(2)-(3)-(4) is a cyclic graph or a ring of 2K-nearest neighbors (with K ≥ 1).
Finally, assume that each pair (i, j) of nodes satisfies (42), (43) and (44).

Then the complex network (10)-(2)-(3)-(4) globally synchronizes in Ω.

3 Numerical simulations
In this section, our aim is to underpin our theoretical statements by numerical experiments and to
explore in a quantitative approach the validity of the assumptions made in Theorem 2 and 4. Of
particular interest, as discussed in Remark 3, is the influence of the sizes of the domains Ω1, . . . , Ωn
and of the coupling strengths µ1, . . . , µn, involved in the complex networks (1)-(2)-(3)-(4) or (10)-(2)-
(3)-(4), on the Poincaré constants λP (Ωi, µi) appearing in the synchronization assumptions (26) and
(44).

To that aim, we consider the predator-prey model with Leslie-Gower-type functional response,
given by the following system of two reaction-diffusion equations:

∂u

∂t
= d1∆u+ u(1− u)− Quv

u+A
,

∂v

∂t
= d2∆v + Sv

(
1− v

u+ C

)
, (45)

in a bounded domain Ω ⊂ R2; u and v denote the densities of preys and predators, respectively. The
parameters A, C, Q, S, d1 and d2 are positive constants. Various forms of the latter model have been
studied in several papers on a single domain (see for instance [1], [2], [4], [5], [7], [21]). In particular,
the emergence of Turing patterns in this reaction-diffusion system has been analyzed in [4].

Here, we consider complex networks with boundary couplings, of the form (1)-(2)-(3)-(4) or (10)-(2)-
(3)-(4), and with point-wise couplings, of the form (7)-(8)-(9), built with n instances of the predator-
prey model (45). Following [4], we fix A = 0.15, C = 0.28, Q = 0.575, S = 0.26, d1 = 1, d2 = 35
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and present several numerical simulations which show how to globally synchronize Turing patterns
on each node of the network. Our computations have been performed on the calculation server of
the VELO research team (Laboratoire des Sciences du Numérique, Nantes Université, France), in a
GNU/LINUX environment, using a finite elements splitting method and the free and open-source
software FreeFem++ [18]. First, we present a case of synchronization in large domains with point-
wise couplings. Next, we experiment the effect of the boundary couplings on small domains and on
a complete graph network. We then explore the case of non-homothetic domains with diffusion in an
anisotropic habitat. Finally, we test the possibility to globally synchronize a network whose underlying
graph is a cyclic graph of four nodes.

3.1 Synchronization in large domains with point-wise couplings
In our first numerical simulation, we show how to synchronize two identical domains with point-wise
couplings of the form (7).

(a) Without coupling
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(b) With point-wise couplings
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Figure 4: Turing instability with labyrinths patterns in a two-nodes network of predator-prey models with
Leslie-Gower-type functional response (illustration of Subsection 3.1). (a) In absence of coupling, the solutions
converge towards distinct Turing patterns. (b) With point-wise couplings, the Turing patterns are synchronized.

The domains Ω1 and Ω2 are circles of radius 200. The state variables are (u1, v1) on domain Ω1
and (u2, v2) on domain Ω2. In Figure 4, we illustrate the possible synchronization by showing the pair
(u1, u2). Note that the dynamics of the pair (v1, v2) is similar. The initial conditions are given for
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(x1,1, x1,2) ∈ Ω1 and (x2,1, x2,2) ∈ Ω2, respectively by

u1,0(x1,1, x1,2) = 0.1 + 0.1
(
1.1 + cos(x1,1 + x1,2)

)
,

v1,0(x1,1, x1,2) = C + 0.1
(
1.1 + cos(x1,1 + x1,2)

)
,

u2,0(x2,1, x2,2) = 0.1 + 0.1
(
1.1 + sin(0.8x2,1 + 0.7x2,2)

)
,

v2,0(x2,1, x2,2) = C + 0.1
(
1.1 + sin(0.8x2,1 + 0.7x2,2)

)
.

(46)

In absence of coupling, that is µ ≡ 0, we observe that the solutions converge towards distinct Turing
patterns of labyrinths type (see Figure 4(a)). A careful watch on these Turing patterns convinces on
their synchronization when the coupling strength is set to µ ≡ 0.3 (see Figure 4(b)). This shows
that, in the case of point-wise couplings, a weak coupling strength is sufficient to synchronize the local
dynamics, even in large domains.

3.2 Effect of the boundary couplings for small domains
In our second numerical simulation, we show how to synchronize two identical domains with boundary
couplings of the form (3).
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Figure 5: Components u1, u2 of the initial conditions defined by (46) (illustration of Subsection 3.2).

The domains Ω1 and Ω2 are now circles of radius 20, thus 10 times smaller than in the first
simulation. The Robin type boundaries ΓR1 and ΓR2 of Ω1 and Ω2, respectively cover more than 3
quarters of the whole boundaries (from −5π/6 to 5π/6, depicted with black thick lines in Figure 7
(b)). The state variables are again (u1, v1) on domain Ω1 and (u2, v2) on domain Ω2. In Figures 5-6-7,
we illustrate the possible synchronization by showing again the pair (u1, u2). The initial conditions
are again given by (46) (see Figure 5). In absence of coupling, that is µ1 = µ2 ≡ 0, we observe1 that
the solutions converge towards distinct Turing patterns of spots type (see Figure 7(a)). When the
coupling strengths are set to µ1 = µ2 ≡ 30, thus 100 times stronger than in the first simulation, these
Turing patterns are significantly modified, but they are synchronized (see Figure 7(b); note that, due
to symmetry, the synchronization is viewed with a “mirror” effect). Other numerical experiments show
that this synchronization does not occur in larger domains, with a weaker coupling strength, or with
smaller Robin type boundaries ΓR1 and ΓR2 . These observations confirm the discussion on the Poincaré
constants λP (Ω, µi) given in Remark 3.

3.3 Four domains complete graph network
Our third simulation explores the case of a small four nodes network, whose underlying graph is
complete, so that assumption (25) is fulfilled for each pair of nodes. We vary the geometry of the

1Animations showing the temporal evolution can be freely visualized at https://pagesperso.ls2n.fr/˜cantin-g/
turingpatterns.html.

20

https://pagesperso.ls2n.fr/~cantin-g/turingpatterns.html
https://pagesperso.ls2n.fr/~cantin-g/turingpatterns.html


0 8 16 24 32 40
0

8

16

24

32

40

u1(t, x), t = 50

0

0.1

0.2

0.3

0.4

0.5

0 8 16 24 32 40
0

8

16

24

32

40

u2(t, x), t = 50

0

0.1

0.2

0.3

0.4

0.5

0 8 16 24 32 40
0

8

16

24

32

40

u1(t, x), t = 100

0

0.1

0.2

0.3

0.4

0.5

0 8 16 24 32 40
0

8

16

24

32

40

u2(t, x), t = 100

0

0.1

0.2

0.3

0.4

0.5

0 8 16 24 32 40
0

8

16

24

32

40

u1(t, x), t = 150

0

0.1

0.2

0.3

0.4

0.5

0 8 16 24 32 40
0

8

16

24

32

40

u2(t, x), t = 150

0

0.1

0.2

0.3

0.4

0.5

0 8 16 24 32 40
0

8

16

24

32

40

u1(t, x), t = 200

0

0.1

0.2

0.3

0.4

0.5

0 8 16 24 32 40
0

8

16

24

32

40

u2(t, x), t = 200

0

0.1

0.2

0.3

0.4

0.5

Figure 6: Turing instability with spots patterns in a two-nodes network of predator-prey models with Leslie-
Gower-type functional response (illustration of Subsection 3.2). In absence of coupling, the solutions converge
towards distinct Turing patterns.

domains by considering egg-shape domains, as depicted in Figure 8. The state variables are (u1, v1)
on domain Ω1, (u2, v2) on domain Ω2, (u3, v3) on domain Ω3 and (u4, v4) on domain Ω4. In Figure 8,
we illustrate the possible synchronization by showing the tuple (u1, u2, u3, u4). The initial conditions
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Figure 7: Turing instability with spots patterns in a two-nodes network of predator-prey models with Leslie-
Gower-type functional response (illustration of Subsection 3.2). With boundary couplings (along the black thick
frontier of the domains), the Turing patterns are modified but synchronized. We observe that synchronization
occurs very quickly, before the convergence to equilibrium.

are given as in (46) in the domains Ω1 and Ω2, and
u3,0(x3,1, x3,2) = 0.1 + 0.1

(
1.1 + sin(0.6x3,1 + 0.1x3,2)

)
,

v3,0(x3,1, x3,2) = C + 0.1
(
1.1 + sin(0.35x3,1 + 0.82x3,2)

)
,

u4,0(x4,1, x4,2) = 0.1 + 0.1
(
1.1 + sin(0.06x4,1 + 0.91x4,2)

)
,

v4,0(x4,1, x4,2) = C + 0.1
(
1.1 + sin(0.535x4,1 + 0.082x4,2)

)
,

(47)
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in Ω3 and Ω4. The observations are similar to the second simulation: in absence of coupling, the
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(b) With boundary couplings
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Figure 8: Turing instability with spots patterns in a four-nodes network of predator-prey models with Leslie-
Gower-type functional response, whose underlying graph is complete (illustration of Subsection 3.3). (a) In
absence of coupling, the solutions converge towards distinct Turing patterns. (b) With boundary couplings
(along the black thick frontier of the domains), the Turing patterns are modified but synchronized.

solutions converge to distinct Turing patterns; when the coupling strengths are set to µ1 = µ2 = µ3 =
µ4 ≡ 30, these Turing patterns are modified, but synchronized, according to Theorem 2 (with the same
“mirror” effect as in Figure 7(b)). Note that in the case of a four nodes network, the synchronization
towards equilibrium occurs faster (t = 5800) than in the case of a two nodes network (t = 7800).
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(a) Without coupling
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(b) With boundary couplings
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Figure 9: Turing instability with spots patterns in a two-nodes network of non-homothetic domains (illus-
tration of Subsection 3.4). (a) In absence of coupling, the solutions converge towards distinct Turing patterns.
(b) With boundary couplings (along the black thick frontier of the domains), the Turing patterns are modified
but synchronized.

3.4 Non-homothetic domains
Our next simulation experiments the synchronization in a two-nodes network of non-homothetic do-
mains, with the semi-linear equation (10). The matrix A1 is the identity matrix, whereas the matrix
A2 is given by A2 = diag {4/9, 9/4}. The elliptic domains Ω1 and Ω2 are depicted in Figure 9 and
the initial conditions are given by (46). The domain Ω1 is mapped onto the domain Ω2 under the
action of the transformation given by (x1, x2) 7→ (2/3x1, 3/2x2), which fits with matrix A2, so that
assumptions (42) and (43) are fulfilled. Roughly speaking, synchronization in such non-homothetic
domains is possible only if the diffusion rates vary in space according to the shapes of the domains.
Here, the domain Ω1 is wide along the horizontal axis, whereas the domain Ω2 is narrow along the same
axis. Hence, for reaching a synchronization state, the species u1, v1 living in Ω1 must move quickly
along the horizontal axis while the species u2, v2 must move slowly along the same axis. Otherwise,
synchronization cannot occur. As in Subsections 3.1 and 3.2, the state variables are (u1, v1) on domain
Ω1 and (u2, v2) on domain Ω2. In Figure 9, we illustrate the possible synchronization by showing the
pair (v1, v2), since the forms of the Turing patterns are more precise than for the pair (u1, u2). As
before, the solutions converge towards Turing patterns in absence of coupling. If the couplings are
activated, these Turing patterns are much modified, but they are synchronized, although the domains
are not homothetic, which illustrates Theorem 4.
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3.5 Synchronization in non-convex domains with a cyclic graph
In our last simulation, we test the possibility to synchronize a complex network whose underlying graph
topology is not complete. Hence we consider a cyclic graph of four nodes. Moreover, we experiment a
non-convex shape, so as to show that our results can be applied to any shape of spatial domain, and
not only to disks, elliptic domains or other convex domains. The domains Ω1, Ω2, Ω3, Ω4, which are
shown in Figure 10, admit a non-convex “C” shape; the initial conditions are again given by (46)-(47).

The results of the simulation are depicted in Figure 10. In absence of coupling, the solutions
converge towards distinct spot patterns. If the couplings are activated, these patterns are modified,
but they are synchronized (according to Theorem 3), although the graph topology underlying the
complex network is not complete.

From the ecological point of view, this example shows that a global synchronization state can
be reached with only a weakly densely connected network. This suggests that a control strategy for
maintaining coexistence and avoiding extinction can be successfully set in place in a fragmented habitat
with a relevant distribution of ecological corridors.

4 Conclusion and perspectives
In this paper, we have studied a new type of complex networks of reaction-diffusion systems, in which
the domains are non-identical, and the couplings are defined along the boundaries of the domains. We
have proved that it is possible to synchronize the local dynamics of such complex networks, provided
the domains are roughly not too large, and the couplings are strong enough, independently of the
shapes and sizes of the domains. We have established the following properties:

• synchronization can occur between two nodes, if the two nodes admit only common neighbors;

• synchronization can be global if the graph underlying the complex network is a complete graph,
a cyclic graph, or a ring of nearest neighbors;

• compared with complex networks with point-wise couplings, our numerical experiments show
that the synchronization with boundary couplings is more delicate to reach.

Our theoretical results have been applied to a complex network of competing species living in a
fragmented habitat. The migrations of biological individuals from one patch of the fragmented habitat
to another are supported by connections between two nodes of the corresponding network, which model
ecological corridors. Our numerical simulations show that the local dynamics of the complex network
can be controlled. In particular, spatial instabilities such as Turing patterns are perturbed by the
boundary couplings, but they can be synchronized.

In a future paper, we aim to deepen our work in several directions. First, it is natural to wonder
whether the sufficient conditions considered in Theorems 2, 3 and 4 are necessary or not, so as to
complete our synchronization statements with non-synchronization theorems. Next, the migrations
of biological individuals between two patches of their fragmented habitat have been here assumed
to occur instantaneously, for simplicity; hence, a relevant perspective would be to consider a time
delay on these spatial migrations. Finally, the couplings of the complex network (1)-(2)-(3)-(4) have
been designed in such a manner that a patch Ωi admitting several neighbors Ωj1 , Ωj2 , . . . , Ωjp

(with
p = |Ni|), is connected to these neighbors by corridors that share the same boundary ΓRi . Hence,
it would be relevant to relax this constraint, so that a corridor connecting a pair of patches (Ωi,Ωj)
admits its own starting boundary ΓRi,j , with possibly ΓRi,j 6= ΓRi,j′ if j, j′ ∈ Ni are such that j 6= j′. In
this way, equation (3) would be rewritten

∂Ui
∂νi

= −µi,j(xi)(Ui − Uj), (t, xi) ∈ (0,∞)× ΓRi,j , j ∈ Ni, (48)
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(a) Without coupling
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(b) With boundary couplings
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Figure 10: Turing instability with spots patterns in a cyclic four-nodes network (illustration of Subsection
3.5). (a) In absence of coupling, the solutions converge towards distinct Turing patterns. (b) With boundary
couplings (along the black thick frontier of the domains), the Turing patterns are modified but they are
synchronized.

which improves the modeling of the connections in the complex network and can lead to original
behaviors that have not been observed in the present work. Overall, we believe that a further study of
such complex networks of reaction-diffusion systems will reveal again rich dynamics in a near future.
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