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Chapter

Modeling of Diffusion-Collection
Mechanisms in Semiconductor
Devices Submitted to Ionizing
Radiation
Daniela Munteanu and Jean-Luc Autran

Abstract

When an ionizing particle passes through a semiconductor device, it transfers
energy and generates electron-hole pairs along its path. The excess carriers are subse-
quently transported throughout the semiconductor’s volume via ambipolar diffusion
until they either recombine or are collected and extracted typically by a biased contact
or a reverse-biased p-n junction. To predict the transient electrical behavior of com-
plementary metal-oxide semiconductor (CMOS) devices and circuits when exposed to
ionizing radiation and assess their soft error rate (SER), it is fundamental to accurately
model these diverse physical processes. In this chapter, we present a comprehensive
modeling and analysis of the diffusion and collection mechanisms of radiation-
induced charges through a semiconductor device. Analytical formulations of the col-
lected charge, collection current, and collection velocity are developed. These equa-
tions are further employed to establish an analytical formulation of the soft error rate
(SER), explaining its exponential dependence on the critical charge of the circuit. This
formulation also links the SER to various physical and technological parameters, as
well as to the characteristics of the radiation.

Keywords: complementary metal-oxide semiconductor (CMOS), critical charge,
diffusion-collection, metal-oxide-semiconductor field-effect transistor (MOSFET),
radiation effects, semiconductor, single event effects (SEE), soft error rate (SER)

1. Introduction

The Earth is constantly exposed to a continuous bombardment of cosmic rays, also
known as primary cosmic rays. These cosmic rays are a mixture of highly charged,
energetic particles, consisting mainly of protons, helium nuclei, and heavy ions [1].
They come from various regions of deep space as well as from the Sun and arrive at
Earth from all directions [2]. In the Earth’s upper atmosphere, the primary cosmic rays
interact with atmospheric particles. The result is the formation of extended atmo-
spheric showers, which produces secondary particles that reach sea level. At ground
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level, this produces a continuous flow of energy-distributed particles. Some of these
particles (such as muons, neutrons, protons, and pions) interact with the materials of
electronic devices and circuits and can cause undesirable effects on their operation or
performances [3]. An important category of effects consists of single-event effects
(SEEs), defined as any measurable or observable change in the state, operation, or
performance of a microelectronic device, element, subsystem, or system (digital or
analog), resulting from the impact of a single energetic particle [4].

An SEE is always triggered by the interaction of an incident particle with the target
material. During the interaction, the incident particle necessarily transfers energy to
the medium by electromagnetic or nuclear processes. As a result of these processes,
some or all of the energy of the incident particles is released into the medium [5].

There are three main sequential steps involved in the production of SEE in micro-
electronic devices. The first step is the charge deposition as a result of the particle
hitting the sensitive region of the device by one of two mechanisms: direct or indirect
ionization [6]. Direct ionization involves charged particles interacting primarily with
the electrons of the material’s atoms. A large number of excited energetic electrons
(delta rays), usually energetic enough to ionize other atoms, are produced by the
ionization mechanism. These electrons produce a cascade of secondary electrons,
which lose their energy and create electron-hole pairs along the path of the
particle. In this way, the deposited energy is essentially converted into electron-hole
pairs. The energy required to create an electron-hole pair depends on the band
gap of the material. In a silicon substrate, one electron-hole pair is created for
every 3.6 eV of energy lost by the particle. Other particles (e.g., neutrons) do not
ionize the matter they pass through and do not interact directly with the material.
However, these particles can produce SEEs because they are likely to undergo
nuclear reactions with atoms in the material. This mechanism is known as indirect
ionization. The result of these nuclear reactions is the production of recoils and
fragments that, like the charged particles, can deposit energy along their path by
direct ionization [6].

The second step in the production of SEEs is the transport of the charge produced
in the dense column of electron-hole pairs. Charges are transported by two main
mechanisms: the drift of the charge in the regions subjected to an electric field and the
ambipolar diffusion of the charge in the neutral zones. Finally, carriers generated in
the electron-hole pair column can undergo an additional physical mechanism: carrier
recombination with other mobile carriers in the lattice.

The third step is the collection of transported charges by elementary structures in
the device (such as biased contacts or reverse-biased junctions). This charge collection
process causes a parasitic transient current to be generated. This current is then
injected into the node of the circuit affected by the particle and can cause disturbances
in the circuit operation, such as SEEs.

Accurate modeling of these diverse physical processes is essential to predict the
transient electrical behavior of complementary metal-oxide semiconductor (CMOS)
devices and circuits when exposed to ionizing radiation and to assess their soft error
rate (SER). The SER is defined as the probability that an ionizing particle will cause a
transient error in the circuit that affects its operation, without causing permanent
damage [3, 6]. In this chapter, we focus on the mechanisms of diffusion and collection
of charges induced by energetic particles interacting with the materials of CMOS
devices and circuits. A large amount of simulation and modeling studies have been
carried out over the last 40 years in the field of radiation-induced diffusion-collection
of charges in CMOS devices [7–21]. However, there are always challenges to be

2

Advances in Semiconductor Physics and Devices



overcome concerning the calculation of the collection current and the evaluation of
the circuit SER. This chapter presents a comprehensive modeling and analysis of
radiation-induced charge diffusion and collection mechanisms through a semicon-
ductor device. The aim of our development, based on the fundamental equations of
diffusion-collection, is to reexamine some of the established results and to propose a
new modeling of the collected charge, the collection current, and the collection veloc-
ity. Two different approaches are proposed, depending on the formalisms considered
for the collection current: a pure diffusion current or a conduction current that
includes a collection velocity. The equations obtained for the collected charge are then
used to establish an analytical formulation of the soft error rate (SER), which explains
its exponential dependence on the critical charge of the circuit. The chapter is struc-
tured as follows: In Section 2, we present the principle of the diffusion-collection
model, and we recall the fundamental equations of the diffusion-collection mecha-
nisms of the radiation-induced charges. These equations are the starting point of our
modeling. Section 3 presents the diffusion-collection modeling based on the theory of
diffusion. We start with the theoretical case of a point source and develop analytical
expressions for the carrier density, diffusion current, and collected charge. The model
accuracy is then verified using random-walk drift-diffusion (RWDD) numerical sim-
ulation. Next, we consider the more realistic case of charges that are generated along
the path of an ionizing particle with a constant linear energy deposition, and we study
the diffusion-collection of these charges. A linear distribution of point charges is used
to emulate the particle track. An analytical formulation of the collected charge is
proposed and validated through RWDD simulation. The collected charge model is
then used to calculate the SER. In Section 4, the modeling of the collected charge and
current is developed within a formalism that includes a collection velocity. After
presenting the general case of a time- and position-dependent collection velocity, we
focus on two particular cases: a time-independent collection velocity and a constant
collection velocity. In the latter case, we show that the exponential form of the SER,
which has long been established empirically in the literature, can be obtained analyt-
ically. It relates the SER to various physical and technological parameters and the
characteristics of the radiation.

2. Principle of diffusion-collection modeling

As explained in the introduction, when a charged particle traverses through a
semiconductor material, the energy it releases is transformed into electron-hole pairs.
In the framework of the diffusion-collection model, these pairs are then organized
into a series of localized point charges, such as discrete clusters of electrons and holes,
concentrated within very tiny regions of the semiconductor material and distributed
along the particle track (Figure 1). The number of pairs immediately after the energy
deposition and pair formation is denoted as δn and δp for electrons and holes,
respectively, with δn = δp = δn0.

The physical mechanism through which these excess charges (electrons and
holes) are transported is ambipolar diffusion, particularly in the neutral zones of the
device where there is no electric field. The model then assumes that a three-
dimensional (3D) spherical diffusion law in the semiconductor domain governs
the transport of these excess carriers. In the case of electrons, the time and
space variation of the excess electron density ne (m

!3) is given by the following
equation [8]:
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∂ne r, tð Þ
∂t

!
ne r, tð Þ

τ
¼ D∇

2ne (1)

where τ is the electron lifetime, and D is the ambipolar diffusion coefficient. D is
obtained from Dn and Dp, the diffusion coefficients for electrons and holes, respec-
tively, as follows:

D ¼
2DnDp

Dn þDp
(2)

The solution of Eq. (1) gives the excess carrier density at the time t at a distance r
from the point of the initial charge deposition as follows:

ne t, rð Þ ¼
δn0

4πDtð Þ
3
2

e ! r2
4Dt!

t
τ

! "

(3)

To maintain the analytical nature of the model, we neglect carrier recombination
in Eq. (3). This is an important approximation, but it simplifies the calculations in the
following to a considerable extent. The new excess carrier density equation is as
follows:

ne t, rð Þ ¼
δn0

4πDtð Þ
3
2

e!
r2
4Dt (4)

As explained above, the charge transported by ambipolar diffusion is then
collected by collecting structures of CMOS devices. The charge collected at point P
(Figure 1) by a small surface contact, which does not develop an electric field in the
semiconductor, can be evaluated using Eq. (4). The charge is calculated by integrating
the current density at point P over the surface of the contact and over time, from 0 to
infinity. At this point, two different formalisms can be chosen to evaluate the current
density: the theory of diffusion or the general electrokinetic formulation of the con-
duction. In the following, we present models of collected charge, collected current,
and SER, using both formalisms successively.

Figure 1.
Principle of the diffusion-collection modeling of radiation-induced charges.
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3. Diffusion-collection modeling based on the theory of diffusion

3.1 Collected charge from a point source

We start with the theoretical case of a point source of radiation-induced charges
located at t = 0 at the O point within the semiconductor, as illustrated in Figure 2. The
point charge contains a number δn0 of carrier in-excess resulting from a punctual
energy transfer that creates electron-hole pairs. In the following, we detail only the
case of electrons, but the transport of holes can be treated similarly. The charge qδn0 is
transported by diffusion and the variation in time and space of the excess carrier
density is given by Eq. (4) if neglecting the carrier recombination process. To calcu-
late the collected charge at the P point of the collecting contact, we assume in the
following that the current density is expressed in the diffusion theory formalism.

3.1.1 Diffusion current and collected charge modeling

The diffusion current density is given by the following:

Jdiff
##!

r, tð Þ ¼ qD∇
!

neð Þ (5)

The flow of charges transported by diffusion is collected at the surface of the
semiconductor by a very small area contact centered at the P point, as shown in
Figure 2. The integration of the current density (Eq. (5)) over the contact area gives
the collected current as follows:

Idiff r, tð Þ ¼
ðð

AC

Jdiff
##!

r, tð Þ dS
#!

≈qACD
∂ne r, tð Þ

∂r
(6)

where AC is the contact area. To avoid numerical integration in Eq. (6), we assume
that the contact is sufficiently “small” compared to all other geometric dimensions.
The diffusion current can also be calculated according to Eq. (6) as follows:

Figure 2.
Schematical illustration of the 3D spherical diffusion of a point charge and collection by a small surface collecting
contact.
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Idiff r, tð Þ
%
%

%
% ¼

qACδn0

4πDð Þ
3
2

&
r

2t
5
2

& e!
r2
4Dt ¼ qACne r, tð Þ &

r

2t
(7)

From the collected current, the charge collected at the contact at the P point can be
obtained by integrating Eq. (7) over time as follows:

qdiffcol r, tð Þ ¼
ðt

0
Idiff r, t0ð Þdt0 ¼

qACδn0

2 πð Þ
3
2r2

&
r

2t
5
2

& Γ
3
2
,

r2

4Dt

& '

(8)

where Γ(a, x) is the upper incomplete gamma function [22]. As time tends toward
infinity, the gamma function in Eq. (8) becomes equal to

ffiffiffi

π
p

=2 . In this case, the
amount of charge collected reaches its maximum value given by the following:

qdiffcol rð Þ ¼ qδn0 &
AC

4πr2
(9)

The total charge collected at the P point, resulting from the initial charge δn0 at the
O point and given by Eq. (9), obviously no longer depends on time but still depends
on the distance between the O point and the contact.

3.1.2 Verification by RWDD numerical simulation

We performed extensive numerical random walk drift-diffusion simulations to
validate the diffusion current and collected charge models presented in Eqs. (7)–(9).
These simulations included point sources of particles positioned at various distances
from the collecting contact. We recall that the random-walk drift-diffusion (RWDD)
model is a particle Monte Carlo technique. It effectively combines drift and diffusion
processes using a random-walk algorithm that mimics the Brownian motion [23–25].
In the context of RWDD, the trajectory of an ionizing particle passing through the
semiconductor region of devices is represented as a sequence of charge packets dis-
tributed along a linear segment. The length of this segment is equal to the range of the
ionizing particle within the material. The precision of this charge discretization is
guaranteed by adjusting the level of “granularity.” This can be fine-tuned by choosing
the packet size, which in practice typically ranges from 1 to 100 elementary charges.
The transport and the recombination of the electron and hole charge packets begin
immediately after the particle passes through the device. Excess carriers undergo both
diffusion and drift within the preexisting “background” electric field that existed
before the particle impact in the equilibrium state. The drift-diffusion motion from
time t to t + ∆t of a charge packet located at r(t) is calculated as follows [23–25]:

r tþ ∆tð Þ ¼ r tð Þ þ μtE0 r tð Þð Þ þN3 0, 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffi

2D∆t
p

(10)

where μ is the carrier ambipolar mobility, N3(0,1) is a 3D standard normal random
vector (i.e., a triplet of reals between 0 and 1 distributed following the normal distri-
bution [26]), and E0 is the electric field before the particle strike. To account for the
simplifying assumptions previously made in current and charge modeling, in the
present RWDD simulation, there is no electric field, and the recombination process is
neglected. A pure 3D ambipolar diffusion process is then simulated by the numerical
code. During each time step of the simulation, the collected current resulting from the
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initial radiation-induced charge is calculated based on the transport dynamics of the
minority charge packets described by Eq. (10). We use the continuity equation at the
collector contact to estimate this collected current. Then, the transient current is
directly computed from the number of carriers Δn that reach this contact during the
time step Δt as I tð Þ ¼ q& ∆n=∆t. More details about this simulation method and its
practical implementation using an object-oriented programming language can be
found in [23–25].

An illustration of the charge transport simulation after the generation of electron-
hole pairs in the particle Monte Carlo RWDD approach is shown in Figure 3. In this
simulation, we consider a radiation-induced punctual charge δn0 of 10,000 electrons
located at 1 μm from a collecting contact of surface AC = 0.2& 0.2 μm2. Figure 3 shows
a sequence of four different moments captured at t = 0, 0.1, 1, and 3 ps after the
punctual charge generation, visually illustrating the progression of the RWDD charge
transport process. Carriers are transported according to a 3D spherical diffusion law in
all directions. Some of these carriers that either reach or cross the contact surface
during the simulation run are collected at the contact.

We use RWDD simulation to verify and validate the analytical modeling of the
collected charge given by Eqs. (8) and (9). Figure 4 shows the time evolution of the

Figure 3.
Distributions of charges in a vertical section along the x-y plane (z = 0) at t = 0, 0.1, 1 and 3 ps after the deposition
of 10,000 electrons at position (0, 0, 0). Charges are transported following Eq. (10) with D* = 533 cm2/s,
Δt = 0.1 ps, and E0 = 0 (pure diffusion law). The surface of the collecting contact is in the x-z plane, perpendicular
to the figure.
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charge collected by the contact given by Eq. (8) and by RWDD simulation with the
parameters considered in Figure 3. We observe good agreement between the two
curves shown in Figure 4. In addition, the maximum collected charge predicted by
Eq. (9) closely matches that obtained in the RWDD simulation. This demonstrates the
validity of Eqs. (8) and (9) in describing the time dependence of the collected charge.
Figure 4 also shows the stochastic nature of the RWDD curve due to the small amount
of charge collected, which is about a few tens of electrons at the end of the transient.

3.2 Collected charge from a particle track

We consider now the more realistic case of charges that are generated along the
path of an ionizing particle with a constant linear energy deposition. We examine a
simplified scenario, as shown in Figure 5, in which an ionizing particle strikes the

Figure 4.
Time evolution of the charge collected by a small contact (AC = 0.2 & 0.2 μm2) located at 1 μm from the initial
deposition of 10,000 electrons (see Figure 3) analytically predicted by Eq. (8) and numerically computed using
the Monte Carlo RWDD simulation code.

Figure 5.
Schematic representation of a particle impact in the semiconductor region of a circuit. The particle track is treated
as a set of point charges δn0 uniformly distributed along a straight segment of length L.
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semiconductor surface perpendicularly. It enters the semiconductor at location I,
moves through the semiconductor over a path equal to its range, and stops at
location S.

The particle loses the energy ΔE energy along the [IS] segment of length L. The
particle creates along its track a total number of pairs given by the following:

N ¼
∆E

Ee,h
(11)

where Ee,h is the energy required to create an electron-hole pair in the target
semiconductor material.

The particle track is treated as a set of point charges δn0 uniformly distributed
along the straight segment [IS]. With the particle track divided in this way, the
equations developed previously in the case of the diffusion from a point charge can be
used here to calculate the collected charge on the contact centered at the P point. In
the following, we assume that the particle has a constant LET, which means that the
generated charge is deposited uniformly along its track. Under this assumption, each

Figure 6.
Distributions of charges in a vertical section along the x-y plane (z = 0) at t = 0, 0.1, 0.5, and 2 ps after the
deposition of 10,000 electrons along a 1.5-μm length track located at 0.75 μm from the contact. Other simulation
parameters are the same as reported in the caption of Figure 3.
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elementary segment of length dℓ carries an elementary charge δn0 considered
punctual. Then, δn0 is calculated from the total number of pairs N as follows:

δn0 ¼
N

L
& dℓ ¼

∆E

Ee,hL
& dℓ (12)

where ℓ and dℓ are defined in Figure 5.

The total collected charge at P point, Qdiff
col , can be now calculated by integrating

Eq. (9) along the entire particle track, with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℓ
2
0 þ ℓ

2
q

as follows:

Qdiff
col ¼

qACN

4πL

ðL

0

dℓ

ℓ
2
0 þ ℓ

2 (13)

From (13), the total collected charge at P point is given by the following:

Qdiff
col ¼ Qdiff

0 & arctan
L

ℓ0

& '

(14)

with

Qdiff
0 ¼

qACN

4πLℓ0
(15)

Eq. (14) has been validated by RWDD numerical simulation. We have considered
an incident particle with a track of 1.5 μm hitting the semiconductor at a distance of
0.75 μm from the contact. A sequence of four different moments captured at t = 0, 0.1,
0.5, and 2 ps after the charge generation is shown in Figure 6. As in the case of a point
charge, this series of figures shows the transport of the radiation-induced charge by a
spherical diffusion law. A part of the diffused charge is finally collected by the small

Figure 7.
Collected charge versus the distance ℓ0 from the collecting contact to the particle track of length L (see Figure 5).
The collected charge is analytically calculated using Eq. (14) and numerically computed using the Monte Carlo
RWDD simulation code.
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contact area. Next, we have been able to compare the numerical simulation and the
analytical model of the collected charge given by Eqs. (14) with (15) through system-
atic RWDD simulations for different values of ℓ0 and L. The results are shown in
Figure 7 for four values of the track length L. A very good agreement was obtained
between the collected charge calculated with the analytical model and that simulated
using the Monte-Carlo RWDD code, as shown in Figure 7.

3.3 SER modeling

To determine the SER of the circuit, we use the notion of critical charge, which is a
key parameter for assessing the susceptibility to radiation of the circuit. The critical
charge Qcrit is the minimum amount of collected charge required to trigger a transition
from a logical low to a logical high state or vice versa at a sensitive node of the circuit
[3, 6]. In the following, we will focus on the case where the collected charge is equal to
the critical charge of the circuit. Eq. (15) shows that the collected charge is a function
of the position ℓ0 between the track and the contact. We define ℓcrit as the distance ℓ0

for which Qdiff
col ¼ Qcrit as follows:

Qdiff
col ¼ Qcrit ¼

qACN

4πLℓcrit
& arctan

L

ℓcrit

& '

(16)

According to Eq. (16), a particle hitting the semiconductor at a distance ℓ0 smaller
than ℓcrit will result in a collected charge greater than Qcrit, thus, causing a change of
state of the circuit (i.e., an error). Otherwise, a particle track located at a distance
greater than ℓcrit will not trigger an error. Therefore, the critical surface within which
the passage of an ionizing particle will trigger an error is the surface of the disk with a
radius equal to ℓcrit and centered on the small contact. The SER of the circuit, that is,
the rate at which errors occur at the sensitive node defined by the small area contact
centered at the P point, can then be calculated from the following eq. [21]:

SER ¼ πℓ2
critF (17)

where F is the particle flux (in m!2 s!1).
Usually, the critical charge Qcrit is a known value for a given circuit, a value that

can be obtained by various types of simulation such as mixed-mode, TCAD, or circuit-
level simulations. Using this value in Eq. (16), the value of ℓcrit and therefore of the
SER can be calculated. Eq. (16) with the unknown ℓcrit is a transcendental equation
that can be solved numerically to obtain ℓcrit but which has no analytical solution. The
numerical solving of Eq. (16) can be performed using the dichotomy or Newton-
Raphson methods [27].

To express the solution of Eq. (16) analytically, we use a well-known approxima-
tion for the arctan function as follows:

arctan xð Þ≈
π

2
&

x

1þ xj j
(18)

We set

x ¼
L

ℓcrit
(19)
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Then, Eq. (16) becomes.

x2 ! Bx! B ¼ 0 (20)

where B is given by the following:

B ¼
8L2Qcrit

qACN
(21)

The positive solution of the second-degree polynomial in Eq. (20) directly gives
ℓcrit as follows:

ℓcrit ¼
2L

Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 þ 4B
p (22)

The SER can be then calculated from Eqs. (17) and (22) as follows:

SER ¼ πℓ2
critF ¼

4πL2F

Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 þ 4B
p) *2 (23)

We have compared the SER given by Eq. (23) with the SER obtained as the exact
solution of Eq. (16) solved numerically by the dichotomy method. Figure 8 shows the
results of this comparison for three particle track lengths. In this figure, the SER is
plotted as a function of critical charge for both calculation methods. A good agreement
between the analytical model and the numerical solution is obtained, in particular for
large values of the critical charge.

Figure 8.
Soft-error rate as a function of the critical charge calculated from the analytical model of Eq. (23) and from the
numerical solving of Eq. (16). Simulation parameters are as follows: AC = 0.1 μm2, N = 1.38 & 106,
D = 61 cm2 s!1, and F = 10!3 cm!2 h!1.
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4. Diffusion-collection based on the collection velocity

As explained before, the general kinetic formulation of conduction is a second
formalism that can be used to calculate the density of the current collected at the
contact coming from the charges generated along the ionizing particle track. In this
section, we will use this formalism to express the current density and the collected
charge, as well as the SER of the circuit. This formalism introduces the notion of
collecting velocity, which leads to several approximations related to its dependence on
time and space, as we will see below.

4.1 Conduction current

In the general kinetic formulation of conduction, the current density is given by
the following:

Jcond
##! ¼ qnv

!
(24)

where n is the electron density, and v is the electron diffusion velocity. We use
Eq. (24) for the carriers of density ne transported by diffusion from the particle track
to the P point. These carriers are collected by crossing the collection surface of the
contact in the absence of an electric field and are uniquely transported by the diffu-
sion process. Their diffusion velocity is therefore referred to as vcol for “collection
velocity.” The collected current is obtained by integrating Eq. (24) over the surface AC

of the collected contact as follows:

Icond r, tð Þ ¼ qACvcol r, tð Þne r, tð Þ (25)

The current density, whether expressed in diffusion theory or in the general
formulation of conduction theory, must be the same. Therefore, Eqs. (5) and (24)
must be equal as follows:

qD∇
!

neð Þ ¼ qne vcol
#! (26)

which results in the following equation for the collection velocity:

vcol
#! ¼ D

∇
!

neð Þ
ne

(27)

From Eq. (27), vcol can be also rewritten as follows:

vcol r, tð Þ ¼
r

2t
(28)

Eq. (28), which gives the general formula for the collection velocity, indicates that
vcol depends on both the time and the distance between the particle track and the
charge collection contact. Inserting the collection velocity expression (28) into
Eq. (25) gives the collection current as follows:

Icond r, tð Þ ¼ qACne r, tð Þ &
r

2t
(29)
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It is obvious that integrating the collection current given by Eq. (29) over time
from 0 to infinity will give the same collected charge as that given by Eq. (9). In this
case, the calculation of the total charge and the SER will also be the same as that
described in the previous section. We therefore obtain the same collected charge using
both formalisms for the current density. This is, of course, an expected result. In fact,
the interest in using this second formalism based on the collection velocity lies in the
fact that several approximations can be made to this collection velocity to simplify the
calculation of the collected charge and of the SER. In the following, we will focus on
these approximations of the collection velocity.

4.2 Time-independent, position-dependent collection velocity

A first approximation used in many studies [10, 13, 14, 19] is to include a time-
independent collection velocity in the expression (25) for the collection current as
follows:

Icond r, tð Þ ¼ qACvcol rð Þne r, tð Þ (30)

where ne(r,t) is given by Eq. (4). Integrating (30) over time gives the collected
charge in the conduction current formalism as follows:

qcondcol r, tð Þ ¼
ðt

0
Icol r, t

0ð Þdt0 ¼
qACvcol rð Þδn0

4 πð Þ
3
2Dr

& Γ
1
2
,

r2

4Dt

& '

(31)

As time tends toward infinity, the gamma function in Eq. (31) becomes equal to
ffiffiffi

π
p

, and the collected charge reaches its maximum value given by the following:

qcondcol rð Þ ¼ qδn0 &
ACvcol rð Þ
4πDr

(32)

The amount of charge collected given by Eq. (32) must equal the amount of charge
given by Eq. (9). This results in the following equation for the collection velocity:

vcol rð Þ ¼
D

r
(33)

As expected, this collection velocity is independent of time and depends only on
the position r. To simplify the calculations, Eq. (33) can be used to obtain an averaged
velocity along the track as follows:

vavcol ¼
1
L
&
ðL

0

D

r
dℓ ¼

D

L
&
ðL

0

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℓ
2
0 þ ℓ

2
q dℓ ¼

D

L
arsinh

L

ℓ0

& '

(34)

The maximum collected charge given by Eq. (32) becomes:

qcondcol rð Þ ¼ δn0 &
ACvavcol
4πDr

¼ qδn0 &
AC

4πLr
arsinh

L

ℓ0

& '

(35)

The total collected charge is obtained, similar to Eq. (13) and using (12), by
integrating Eq. (35) along the entire particle track from 0 to L as follows:
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Qcond
col ¼

qACNvavcol
4πDL

ðL

0

dℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℓ
2
0 þ ℓ

2
q ¼

qACN

4πL2 & arsinh
L

ℓ0

& '+ ,2

(36)

The total collected charge is then given by the following:

Qcond
col ¼ Q0 & arsinh

L

ℓ0

& '+ ,2

(37)

where

Q0 ¼
qACN

4πL2 (38)

Next, we calculate the SER according to the relation (17) in the same way as in

Section 3.3. The length ℓcrit is obtained by setting the condition Qcond
col ¼ Qcrit in

Eq. (37), which leads to the following equation for ℓcrit:

ℓcrit ¼
L

sinh
ffiffiffiffiffiffiffi

Qcrit
Q0

q) * (39)

The SER can be then calculated from Eqs. (17) and (39) as follows:

SER ¼ πℓ2
critF ¼

πL2F

sinh
ffiffiffiffiffiffiffi

Qcrit
Q0

q) *h i2 (40)

The SER derived from Eq. (40) and that calculated by the numerical solving of
Eq. (16) were compared in detail, as shown in Figure 9. Three values of particle track
length were considered in this figure. A very good agreement between the analytical
model and the numerical solution is observed over the whole range of critical charge
values. This shows that assuming a time-independent collection velocity with a value
averaged over the track length leads to an acceptable approximation of the SER
compared to the exact numerical solution. The advantage of this assumption is that it
simplifies the calculation of the SER and provides an analytical solution.

4.3 Constant collection velocity

A second approximation, more restrictive than the previous one, is to consider a
constant collection velocity (a single numerical value that therefore does not depend
on time or position) in the expression of the collected charge (32) [21]. We denote as
vCOL this constant velocity. Eq. (32) becomes as follows:

qcondcol rð Þ ¼ qδn0 &
ACvCOL
4πDr

(41)

The total collected charge is obtained by integrating Eq. (41) along the entire
particle track from 0 to L as follows:

Qcond
col ¼

qACNvCOL
4πDL

ðL

0

dℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℓ
2
0 þ ℓ

2
q ¼ Q0 & arsinh

L

ℓ0

& '

(42)
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where

Q0 ¼
qACNvCOL

4πDL
(43)

The next step is to calculate ℓcrit that is obtained by setting the condition Qcond
col ¼

Qcrit in Eq. (42), as explained in the previous sections. The length ℓcrit is given in this
case by [21] the following:

ℓcrit ¼
L

sinh Qcrit
Q0

) * (44)

Finally, the SER can be calculated from Eqs. (17) and (44) as [21]:

SER ¼ πℓ2
critF ¼

πL2F

sinh Qcrit
Q0

) *h i2 (45)

As explained in [21], the expression of the SER (45) including a constant value for
the collection velocity makes it possible to mathematically demonstrate the exponen-
tial dependence of the SER on the critical charge, proposed more than 20 years ago by
Hazucha and Svensson in [28] as follows:

SER ¼ kFAC & e!
Qcrit
QS (46)

Figure 9.
Soft-error rate as a function of the critical charge calculated from the analytical model of Eq. (40) and from the
numerical solving of Eq. (16). Simulation parameters are as follows: AC = 0.1 μm2, N = 1.38 & 106,
D = 61 cm2 s!1, and F = 10!3 cm!2 h!1.
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where κ and QS are two fitting parameters. This SER formula has been established
empirically based on experimental data and is used extensively in the field of SEEs in
CMOS circuits. This formula was demonstrated in [21] starting from the fundamental
equations of diffusion-collection. Indeed, in Eq. (44), the sinh function can be written
as follows:

sinh xð Þ ¼
ex ! e!x

2
(47)

Assuming that Qcrit ≫Q0, Eq. (44) becomes as follows:

ℓcrit ¼ 2L& e!
Qcrit
Q0 (48)

and then the SER is given in this case by the following:

SER ¼ 4πL2F & e!
Qcrit
Q0=2 (49)

Thus, we find an exponential dependence of the SER on the critical charge such as
that of Eq. (44) that has been proposed empirically in the literature [28]. Eq. (49)
clearly shows that this exponential dependence has a physical basis, being the result
of the collection-diffusion mechanism of radiation-induced charges in the
semiconductor.

In Figure 10, we compare the SER calculated by the exponential expression (49)
with the SER obtained by the numerical solution of Eq. (16). We observe that the
exponential expression matches the exact value of SER over a limited range of critical
charge values (between 1.2 and 2.1 fC for L = 1.5 μm). This range varies as a function
of track length, and the collection velocity vCOL can be considered as a fitting param-
eter in this case.

Figure 10.
Soft-error rate as a function of the critical charge calculated from the analytical model of Eq. (49) and from the
numerical solving of Eq. (16). Simulation parameters are as follows: AC = 0.1 μm2, L = 1.5 μm, N = 1.3 8 & 106,
D = 61 cm2 s!1, F = 10!3 cm!2 h!1, and vCOL = 4.6 & 105 cm s!1 (in Eq. (49)).
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Figure 11.
Summary of the diffusion-collection model developed in this work.
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5. Conclusion

In this chapter, we presented a comprehensive modeling and analysis of the
mechanisms of radiation-induced charge diffusion and collection through a semicon-
ductor device. Our development proposes a new model of the collected charge, col-
lection current, collection velocity, and soft error rate based on the fundamental
diffusion-collection equations. The successive stages of the development are summa-
rized in Figure 11, including the most important equations of the model. As shown in
this figure, we have considered two different formalisms for the collection current: a
pure diffusion current and a conduction current that includes a collection velocity.
First, we considered the theoretical case of a point charge source and developed a
model for the charge collected by a small contact. Second, this charge was used to
model the charge collected in the more realistic case of charges generated along the
track of an ionized particle crossing the device. The equations obtained for the col-
lected charge were then used to establish an analytical formulation of the error rate as
a function of the critical charge of the circuit. Two approximations can be used to
simplify the calculations and obtain analytical expressions in the case of the formalism
that includes a collection velocity. A first approximation is the use of a time-
independent collection velocity and the integration of an average of this velocity along
the particle track into the expression for the collected charge. Our results showed that
this assumption leads to an acceptable approximation of the SER compared to the
exact numerical solution. A second approximation is the use of a constant collection
velocity, which results in an analytical expression of the SER with an exponential
dependence on the critical charge. This type of dependence has been proposed empir-
ically in previous works. Our model showed that there is a physical basis for this
exponential expression, which results from the charge collection and diffusion mech-
anism of the radiation-induced charges in the semiconductor.
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