
HAL Id: hal-04400815
https://hal.science/hal-04400815

Submitted on 17 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blockchain-Based Solution for Detecting and Preventing
Fake Check Scams

Badis Hammi, Sherali Zeadally, Yves Christian Elloh Adja, Manlio Del
Giudice, Jamel Nebhen

To cite this version:
Badis Hammi, Sherali Zeadally, Yves Christian Elloh Adja, Manlio Del Giudice, Jamel Nebhen.
Blockchain-Based Solution for Detecting and Preventing Fake Check Scams. IEEE Transactions on
Engineering Management, 2022, 69 (6), pp.3710-3725. �10.1109/TEM.2021.3087112�. �hal-04400815�

https://hal.science/hal-04400815
https://hal.archives-ouvertes.fr


1

Blockchain Based Solution For Detecting and
Preventing Fake Check Scams

Badis Hammi∗, Sherali Zeadally†, Yves Christian Elloh Adja‡, Manlio Del Giudice§¶, Jamel Nebhen‖
∗EPITA School of Engineering and Computer Science

badis.hammi@epita.fr
†University of Kentucky, USA

szeadally@uky.edu
‡Telecom Paris, France

elloh.adja@telecom-parist.fr
§University of Rome, Link Campus, Italy

m.delgiudice@unilink.it
¶Paris School of Business
m.delgiudice@psbedu.paris

‖Prince Sattam bin Abdulaziz University, KSA
j.nebhen@psau.edu.sa

Abstract—Fake check scam is one of the most common attacks
used to commit fraud against consumers. This fraud is particu-
larly costly for victims because they generally lose thousands
of dollars as well as being exposed to judicial proceedings.
Currently, there is no existing solution to authenticate checks
and detect fake ones instantly. Instead, banks must wait for a
period of more than 48 hours to detect the scam. In this context,
we propose a blockchain-based scheme to authenticate checks
and detect fake check scams. Moreover, our approach allows the
revocation of used checks. More precisely, our approach helps
the banks to share information about provided checks and used
ones, without exposing the banks’ customers’ personal data. We
demonstrate a proof of concept of our proposed approach using
Namecoin and Hyperledger blockchain technologies.

Index Terms—Authentication, Blockchain, Fake check, Hyper-
ledger Fabric, Integrity, Namecoin, Security

I. INTRODUCTION

In our current society, checks represent one of the dominant
payment methods. A check is an order written by a depositor
instructing the bank to pay a specific amount to a recipient
from the depositor’s bank account. Unfortunately, numerous
malicious scammers exploit some flaws in the banking system
to commit frauds. Indeed, frauds employing fake checks are
growing rapidly and cost billions of dollars. The number of
complaints received by the Federal Trade Commission’s (FTC)
Consumer Sentinel database (Sentinel) and the Internet Fraud
Complaint Center (IC3) more than doubled between 2014 and
2017, rising from 12,781 to 31,980 [1], [2]. In this work,
we focus on fake check scams. This fraud is achieved by:
(1) targeting people mainly through some email scam; (2)
establishing a relationship (a business relationship most of the
time); (3) sending them overpaid counterfeit paycheck, and
finally (4) asking for the overpayment.

Fake check scam has more disastrous consequences on
the victims than many other attacks (e.g., phishing, malware

spread, and so on). According to the US Better Business Bu-
reau (BBB) [1], the Postal Inspection Service reports stopping
fake checks with a face value of $62 billion from entering
the United States in fiscal year 2017 and another 13,724
counterfeit postal money orders totaling over $14 million in
2017 alone [1]. The survey for 2016 saw the first increase
in check fraud losses since 2008. During 2016, check frauds
cost the banks (worldwide) $789 million, an increase of more
than 25 percent from the $615 million reported losses in
2014 [1]. The average loss to consumers in general from
counterfeit checks was $1,008 in 2017 and the loss to a victim
in the military was $2,200 on average [3].The Federal Trade
Commission (FTC) reports that consumers lost more than $28
million to fake check scams in 2019 alone. The median loss
reported was $1,988. That’s more than six times the median
loss on all frauds tracked by the FTC [4]. The FBI’s Internet
Crime Complaint Center (IC3) database reports 16,368 victims
of advanced fee scams that lost a collective $57.8 million
in 2017 [2], [5]. Besides, check fraud occurrences are likely
vastly underreported. Only an estimated 29% of fraud victims
report to any sort of authority such as the Federal Trade
Commission or BBB [6] and less than 1 in 10 victims ever
report to law enforcement [1].

In addition to the financial and psychological harm, the
victims, are most of the time, exposed to judicial proceedings
because in the eyes of the law, they tried to scam the bank
[7], [2].

To the best of our knowledge, there is no method designed
to specifically protect users from fake check scams. In this
context, we believe that the best solution to protect users is the
detection of fake checks well before they are cashed. Certainly,
there are some measures to detect the authenticity of the
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physical checks12 (e.g. check’s edges, MICR line, bank logo
and paper quality). Nonetheless, con artists excel in the art of
trickery and create very realistic checks especially today when
numerous scammers use professional printers and magnetic
ink. Moreover, currently, numerous banks propose to users
to print their checks themselves which removes the physical
protections from the checks. Consequently, the check authen-
tication solution implemented must be more effective and each
bank must ensure that the submitted check is provided by a
real trusted authority before cashing it. Nevertheless, designing
such a solution is very challenging due to the following
difficulties3:

Data sharing between banks: before paying a check, each
bank (Cashing-Bank) must ensure that the check was
really provided by a trusted authority (another bank). This
verification is possible if each bank shares information
about its provided checks. In other words, when a bank
provides a checkbook to a customer, it shares the infor-
mation about the customer and the provided checks. But
no bank will share such information with other banks,
mainly because of: (1) user privacy: since the users have
engaged with this bank and not with another bank; and
(2) commercial competition: if users’ information are
accessible freely by other banks, nothing prevents any
bank from contacting these people and offering them its
services. Thus, it is necessary to design a sharing
system which ensures that the customers’ data is not
revealed to third parties.

Non-modification of existing protocols: any proposal that
requires any modification in the existing bank protocols
such as the modification of the check format to add some
data or a modification in the payment procedure, will
have a chain reaction on numerous parts or protocols of
the banking ecosystem. Such consequences make banks
resist the adoption of such proposals. It is therefore
mandatory that the proposed mechanism does not
modify any of the existing protocols, solutions, or
procedures and must seamlessly integrate into the
current banking ecosystem.

Management of the sharing mechanism: if a data sharing
mechanism is deployed and used by banks to ensure the
authenticity of checks, several issues will arise: (1) who
will maintain and manage the mechanism (infrastructure,
protocol, and so on) ? (2) how will the participating banks
share the management fees ? (3) who decides on the
evolution of the mechanism ? (4) where will the stored
data be kept ? (5) who can access the stored data ?
(6) how can this data be accessed ? (7) if one bank
decides not to use the mechanism anymore, how will this
affect the other banks. Consequently, it is mandatory
to design a lightweight and low-cost sharing system

1https://www.consumer.ftc.gov/articles/how-spot-avoid-and-report-fake-
check-scams

2https://www.aarp.org/money/scams-fraud/info-04-2011/scam-alert-fake-
checks.html

3In the remainder of this paper, we use the term Providing-Bank to refer to
the bank that provides the check and the term Cashing-Bank to refer to the
bank that receives and pays the check.

that does not impose a burden on third parties that
deploy it and the system should be adaptable to handle
different conditions.

Scalability : considering the number of banks as well as the
large number of customers, we need to propose a highly
scalable mechanism that can handle such a load.

Authentication: in the proposed system, third parties must
ensure that the shared information is provided by the
corresponding trusted bank. More precisely, the Cashing-
Bank must ensure that the shared data was provided
by the Providing-Bank, and it must also ensure that
the Providing-Bank is trustworthy. Accordingly, it is
necessary to equip the sharing system with an effective
authentication method.

Contributions of this work

We believe, like many other researchers [8], [9], [10], that
blockchain represents a very promising technology for the
development of decentralized and resilient security solutions.
Therefore, in this paper we propose an effective blockchain-
based mechanism that helps the banks to share informa-
tion about provided checks. More specifically, our approach
helps to verify the authenticity of a given check, without
exposing the banks’ customers’ personal data. Following this
verification, the Cashing-Bank can decide to continue the
transaction or to abort it. Moreover, our proposed approach
is cost-efficient, and it does not affect the existing bank’s
procedures while checking the authenticity of checks. The
proposed approach should also not need any additional infras-
tructure management. We implemented our approach using the
public blockchain Namecoin. Its evaluation demonstrates its
ability in meeting the necessary requirements. To evaluate the
performance of our proposed approach, we also deployed our
check’s authentication scheme based on the private blockchain
Hyperledger.

The rest of the paper is organized as follows: Section II
describes the fake check scam. In section III we describe our
approach for detecting fake checks. Then, Section IV discusses
and analyzes our proposed approach. Section V discusses the
Hyperledger implementation and analyzes the results obtained.
Finally, section VI concludes the paper and identifies future
research perspectives.

II. FAKE CHECK SCAM

In a fake check scam, a con artist asks a victim to deposit a
check which is usually for more than what the victim is owed.
Then, asks the victim to wire some of the money back. The
scammers always have a good story to explain the overpay-
ment [2], [7], [11]. We cite a typical real scenario4 depicted in
Figure 1: a person that we call Alice sends an advertisement
informing that she is available for giving math courses for
secondary-school level, through an advertisements website
such as craigslist.org. A scammer contacts her pretending that
he is interested for his child. Both parties exchange by email
or even by phone in order to agree on the place, the amount

4True story
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(e.g. 500$) and the dates (which are often not confirmed
straightaway). Afterwards, the scammer, pretends to act in
good faith by paying Alice in advance, sends her a fake
check, but, with an amount much higher than the agreed one
(e.g. 2000 $). The scammer explains the check overpayment
by being outside the country and by being his last check,
explaining that he owes his child’s nanny the overpayment
(e.g. 1500 $), and asks gently Alice to make a money order or
a wire transfer to the nanny. Consequently, Alice cashes the
check and sends the overpayment to the scammer thinking she
is doing it for the nanny. Legally, a person is responsible for
the check he/she is depositing. Hence, it is Alice which will
refund the check as well as the bank’s fine and fees.

This fraud is possible because of the check payment pro-
tocol used in the banking ecosystem. Indeed, the deposited
check goes through several steps: (1) without verification
of the check, the Cashing-Bank credits the account of the
customer that deposits the check within one working day from
the date of deposit. In some countries this credit is provided
only if the amount of the check does not exceed a known
threshold. For example, in France this threshold is 3000e. If
the check exceeds this amount, a portion of the check’s amount
is credited while waiting for the next step to be executed. (2)
the Cashing-Bank sends the check to the Providing-Bank for
money collection. (3) If all goes well, the customer can receive
the amount stated on the check. But if the check is unpaid,
bounced, irregular or fake, the Cashing-Bank will re-issue the
corresponding amount from the customer’s account who also
pays additional fees (according to the bank and the country
policy, a fine or judicial proceedings can be considered) [1].
The Float is the amount of time it takes for money to move
from one account to another. It ranges from 48 hours until
several weeks, depending on the banks involved and their
mutual agreements, e.g. in the USA The processing of the
check through the Federal Reserve System may take up to
three or more business days. When the check is presented,
the countdown for the midnight rule begins [12], [2]. A check
deposited on a Friday may not be returned until the following
Wednesday or even later, which is in compliance with Uniform
Commercial Code (UCC) [2]. In the case of a fake check scam,
it is only when the amount of the transaction is claimed from
the Providing-Bank that the fraud is discovered which gives
the scammer all the time to do the fraud.

Fake checks drive many types of scams such as those
involving phony prize wins, fake jobs, mystery shoppers,
online classified ad sales, payment for a sold item and many
others. We describe some of the most common ones below
[2], [13].

Mystery shopping scam: con artists lure victims by send-
ing spams or posting ads for mystery shoppers in classified job
advertisements5. When victims respond to the ads, they are
led to believe that they have been hired as mystery shoppers
to evaluate the services of money transfer companies (e.g.
MoneyGram). Victims are then sent checks that appear to
be from legitimate companies and instructed to deposit the
checks in their bank accounts, then withdraw most of the

5https://www.consumer.ftc.gov/articles/0053-mystery-shopper-scams

money and wire it to someone else (often a purported fellow
mystery shopper). Victims are told to keep several hundred
dollars of the money as payment. When the checks are later
discovered to be phony, the banks reverse the deposit and
the victims are left liable for the money withdrawn, usually
several thousand dollars6. This occurs in addition to a potential
fee and judicial proceedings. Another form of this fraud, is
a scammer who sends spam emails informing the potential
victim that he/she has inherited a large amount of money but
he/she cannot cash it by himself/herself because of family (or
other) problems, and hires the victim to cash it for him while
keeping a compensation.

Fake job scam: as we have described earlier in this
section, this scam typically starts with a victim responding
to an online posting (spam message), or the victim may have
posted information online, to seek a job. Either way, the victim
eventually gets "hired" by the con artist and receives emails or
phone calls with instructions. Similar to the mystery shopping
scam, the victim then receives a legitimate looking check and
is told to cash it, wire some portion of the proceeds to a third
party and keep the remainder as payment [14], [1].

Unexpected check scam: typically this fraud starts with a
spam email inviting victims to participate in a fake lottery or to
play a simple online game. This event triggers the delivery of
a "surprise" check to the victims’ door. The scammers inform
that a part of the prize must be used as fees [1].

The checks are fake but they look real especially considering
that there is no physical protection on the check. They look
so real that even bank tellers may be fooled. The companies
whose names appear may be real, but someone has dummied
up the checks without their knowledge. Moreover, for money
savings, numerous people print their own checks7.

Fraud is a major problem in business [15] and bank fraud
is extremely dangerous for the organizational development
of a bank [16]. In particular, fake checks is one of the
biggest challenges faced by financial institutions. The main
reason is that technology has made it progressively easy
for criminals to create realistic counterfeit and false checks.
According to Chhabra et al. [17] "technological advancements
enable criminal actors to perpetrate innovative frauds that are
very difficult to detect. Since most banking systems accept
scanned copies of checks for clearance, identifying erasable
ink alterations and printed signatures on digital images can be
very challenging".

To the best of our knowledge, there is no existing check
authentication method that relies solely on Information Tech-
nology (IT) resources. Rose et al. [2] provided generic hints on
how machine learning can be applied to detect fake checks.
The authors discussed concerns in the detection of physical
errors on the check’s shape/design (e.g. logo) which makes it
unreliable if the adversary prints good quality checks. Simi-
larity, Kumar et al. [18] proposed an automated methodology
for the forensic authentication of bank checks. To determine
check authenticity, a support vector machine was used to verify

6Financial Industry Regulatory Authority: www.finra.org/
7https://www.thebalance.com/before-you-print-your-own-checks-315315
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Figure 1: Fake check scam scenario

the color and texture characteristics extracted from images of
genuine and fake checks.

The Official Gazette of the United States Patent Office
reported several advanced methods for effectively blocking
the counterfeiters and preventing continuing check fraud. For
example, U.S. Pat. No. 3,829,133 [19] explains a type of check
which integrates a masked individual code recognized only to
the authorized drawer of the check who has advance knowl-
edge of the key by which the individual code is determined.
U.S. Patent No, 4,231,593 [20] defines a check having first and
second coatings: the first one is electrically conductive and the
other one electrically non-conductive. The main advantage of
this method is to avoid any tentative to alter checks. U.S. Pat.
No. 5,371,798 [21] defines a method of making a check by
dividing the clear band of the check into two parallel portions:
one portion printed with ferrous beaded ink and the other
portion printed with non-ferrous inks. The goal of this method
is to distinguish the authentic checks.

The analysis of the aforementioned patents leads to the
conclusion that although each method may be useful in
detecting fake checks, they are outdated and represent only
a physical security which make them non effective currently,
where banks’ customers can print their own checks. There is,
therefore, a need to develop a fake check detection method
that can meet the needed requirements and that can be easily
integrated into existing bank equipment to be effective and
therefore adoptable.

III. PROPOSED APPROACH

The main goal of our approach is to provide banks with
a powerful mechanism that allows the instant authenticity

verification of a given check and hence avoid the current float
period of more than 48 hours.

A scammer can create a fake check according to two
methods:

1) By considering random information.
2) By considering real information of an already cashed

check.
This work is an extension of our previous work [22] where
we presented a method to detect fake checks. However, our
previous work did not consider the second case where the
scammer uses real data to create a fake check. Thus, the
detection approach cannot detect the scam which makes it
ineffective. To address this drawback in our previous approach,
we propose an extension to it so that the extended approach
could detect all possible check scams.

A. Background

Our approach relies mainly on (1) a blockchain and (2)
Lagrange Interpolating Polynomial. In this section we briefly
describe these concepts.

Blockchain is not a new concept to banks. Indeed, numerous
studies [23], [24], [25], [26] have described the challenges and
opportunities of implementing blockchain technology in the
banking sector (e.g. Central Bank Digital Currency (CBDC),
Payment Clearing and Settlement (PCS) systems operated
by central banks, Assets transfer and ownership, Audit trail,
Regulatory compliance (Regulation)). Industry participants see
an opportunity to apply blockchain to their products and
services and develop coordinated solutions that could help
overcome existing industry challenges by providing greater
transparency and improving conduct [27]. Nonetheless, to the
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best of our knowledge, no works on the detection of fake
checks have been proposed (blockchain-based or Information
Technology (IT-based) in general).

1) Blockchain: A blockchain is defined as a distributed
database (ledger) that maintains a permanent and tamper-
proof record of transactional data. A blockchain is completely
decentralized by relying on a peer-to-peer network. More
precisely, each node of the network maintains a copy of the
ledger to prevent a single point of failure. All copies are
updated and validated simultaneously [10].

Blockchain technology was created to solve the double
spending problem in cryptocurrency [28]. However, currently,
numerous works explore blockchain applications in multiple
use cases and use them as a secure way to create and
manage a distributed database and maintain records for digital
transactions of all types [29], [30], [31], [32], [33], [34], [35].

The blockchain ledger is composed of multiple blocks, and
each block is composed of two parts. The first part represents
the transactions or facts (that the database must store), which
can be of any type such as monetary transactions, health data,
system logs, traffic information, and so on. The second part
is called the header and contains information about its block
(e.g. timestamp, hash of its transaction, as well as the hash
of the previous block). Thus, the set of existing blocks forms
a chain of linked and ordered blocks. The longer the chain,
the harder is to falsify it. Indeed, if a malicious user wants to
modify or swap a transaction on a block, first, the user must
modify all the following blocks because they are linked with
their hashes. Second, the user must change the version of the
blockchain that each participating node stores [10], which is
very hard to achieve.

The core task of a blockchain network is to ensure that the
trustless nodes in the network agree on a single tamper-proof
record of transactions. Thus, to jointly address the problems
of trust, anonymity, scalability, poor synchronization and to
prove the honest validation of blocks, consensus mechanisms
are deployed [36]. There are numerous consensus algorithms
that have been proposed in the past few years such as
Byzantine Fault Tolerant (BFT) [37], [38], [39], State Machine
Replication (SMR) based BFT [40], [41], [42], DLS [39],
Viewstamped Replication (VR) [43], Paxos [44], [45], and
many others.

In this paper, we use Namecoin8 blockchain to imple-
ment our approach.Namecoin uses the Nakamoto consensus.
Nakamoto [28] proposed a permissionless consensus protocol
based on a framework of cryptographic block-discovery racing
game also known as Proof of Work (PoW). From a single
node’s perspective, the Nakamoto consensus protocol defines
three major procedures [46]:
(1) Chain validation: provides a Boolean judgment on

whether a given chain of blocks has the valid structural
properties. It checks if each block in the chain provides a
valid PoW solution and no conflict between transactions
as well as the historical records exists.

(2) Chain comparison and extension: compares the length
of a set of chains, which may be either received from

8https://namecoin.org

peer nodes or locally proposed. It guarantees that an
honest node only adopts the longest proposal among the
candidates’ views of the blockchain.

(3) PoW solution searching: defines a cryptographic puzzle-
solving procedure in a computation-intensive manner
which is hard to compute but easy to verify. A PoW
is requested for each block validation. The difficulty of
the mathematical challenge can be adapted according to
the time needed to validate a block and to the miners’
computation power [10].

2) Lagrange polynomial interpolation: Lagrange polyno-
mials allow to interpolate a series of points by a polynomial
which passes exactly through these points. More thoroughly,
given a set of points (xj , yj) with no two xj values equal, the
Lagrange polynomial is the polynomial of lowest degree that
assumes for each value xj , the corresponding value yj . Thus,
the function coincides at each point [47], [48]. Equation 1
defines the Lagrange polynomial associated with these points.

L(X) =

n∑
j=0

yj lj(x), lj(x) =

n∏
j=0,j 6=i

X − xj

xi − xj
(1)

Equation 1 can also be written as described by Equation 2
[48].

L(x) =

n∏
j=0

(x− xj) (2)

B. System’s functioning

Our approach helps the banks to share information about
provided checks in order to verify their authenticity during the
payment all without exposing any of the customer’s personal
data. The proposed scheme relies on a public blockchain. Also,
we need to choose a hash algorithm as well as a signature
algorithm. In this paper we consider using (1) Namecoin
blockchain, (2) SHA-256 as a hash algorithm and (3) Elliptic
Curve Digital Signature Algorithm (ECDSA).

Our system uses two phases of the check’s lifecycle: (1)
the check provision and (2) the withdrawal operation. Our
approach requires that each Providing-Bank owns a key pair
with the public key certified by a trusted authority, i.e., each
bank must own a certificate, accessible by any third party.

1) Check provision phase: When a bank creates a check-
book for a customer, it must share the information related to
the customer and the checkbook through a public blockchain.
More precisely, for each provided checkbook, the bank creates
a data structure related to this checkbook called Checkbook’s
Authentication Information (CAI) and adds it to the public
blockchain through a transaction. The CAI data structure is
composed of three fields (1) a Lagrange polynomial (2) a hash
and (3) a cryptographic signature, as shown in Table I.

We assume that the bank’s entity which executes the check’s
provision task can provide basic protocol primitives in order
to recover the information required to create the CAI structure
and send it to the blockchain. Algorithm 1 shows such an API,
while Algorithm 2 describes the whole process.
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Field Size (bytes)

Lagrange Polynomial Variable
Hash(Lagrange polynomial||Full
name||Providing-Bank||Account number) 32
Signature(Full name||Full
Address||Providing-Bank||Routing number||Account
number||Lagrange polynomial) 64

Table I: Checkbook’s Authentication Information data struc-
ture

Algorithm 1: Basic operations provided by the bank’s
entity which executes the CAI creation

1: Function GETFIRST(Checkbook chBook ) : Integer
// returns the number of the first check in the
checkbook

2: Function GETLAST(Checkbook chBook ) :Integer
// returns the number of the last check in the
checkbook

3: Function GETCHECKNB(Check ch ) : Integer // returns
the check’s number

4: Function GETNAME(CustomerProfile customer) : String
// returns the customer’s full name recorded by
the Providing-Bank

5: Function GETADDRESS(CustomerProfile customer) : String
// returns the customer’s full address recorded
by the Providing-Bank

6: Function GETACCOUNTNB(CustomerProfile customer) :
Integer // returns the customer’s account number
recorded by the Providing-Bank

7: Function LAGRANGEINTERPOLATIONFCT(Integer Coef1,
Integer Coef2) : [ ] Integer // returns the Lagrange
polynomial created using the coefficients: Coef1
and Coef2

8: Function SENDTRANSACTION(Blockchain bc, DataStructure
CAI) // send a blockchain transaction containing
the CAI data structure

Lagrange polynomial field

The checkbooks provided by banks contain generally either
50 or 100 checks. Besides, the customer uses only one check
for cashing at a time. Therefore, our scheme must be able
to verify the authenticity of each check individually. In this
context, considering a solution where each check is registered
individually in the blockchain will be costly because it requires
as many blockchain transactions as existing checks. To address
this issue, we use Lagrange polynomials as an aggregation
for all the checks that the checkbook owns. For example, we
consider a checkbook that contains four checks having the
following numbers: E = {2, 3, 4, 5}. Considering the Equation
2, the Lagrange polynomial built according to this set will be:

L(x) = (x− 2)(x− 3)(x− 4)(x− 5)

= x4 − 14x3 + 71x2 − 154x+ 120
(3)

All the elements of the set E are roots of the computed polyno-
mial L(x) described by Equation 3. Consequently, following
this logic, our scheme must build a Lagrange polynomial for
each provided checkbook using its check numbers. However,
we need to build Lagrange polynomials of degree 100 (or
50), which takes time and consumes CPU resources, and

requires a large space on the CAI structure9. To optimize this
step, especially when we know that the check numbers of a
checkbook are always consecutive, we compute the Lagrange
polynomial considering only the upper and lower bounds of
the interval composed by the check numbers. The resulting
polynomial10 will be used in the verification phase by testing if
the check number is in the interval composed by the two roots
of the Lagrange polynomial. If we consider the last example
of the set E. The Lagrange polynomial created according to
its upper and lower bounds ([2, 5]) is as described by Equation
4:

L(x) = (x− 2)(x− 5)

= x2 − 7x+ 10
(4)

The two roots of L(x) are 2 and 5. Thus, all the elements of
E will be in the interval composed by the polynomial roots
([2, 5]). Hence, if a Lagrange polynomial is built according to
the numbers of the first and last checks of a checkbook, all
the checks’ numbers of the corresponding checkbook will fit
into the interval built by the two roots of the polynomial.

The Lagrange polynomial field of the CAI is structured as
depicted by Equation 511.

〈Polynomial degree (n), [xn](L(x)), [xn−1](L(x)),

..., [x](L(x)), [x0](L(x))〉
(5)

For example, if we consider the polynomial described by
Equation 4, the Lagrange polynomial field of the CAI data
structure is 〈2, 1,−7, 10〉.

Most programing languages (e.g. C, C++, Java) require an
integer to be stored in four bytes. In this context, the Lagrange
polynomial field of the CAI will have a size of 16 bytes12.
Other programming languages such as Python use more space
to represent integers. Therefore, the size of the Lagrange
polynomial field of the CAI will depend on the programming
language used.

Hash field

The hash field contains a hash computed on the following
fields

• Lagrange polynomial: the computed polynomial.
• Full Name: the customer’s full name.
• Providing-Bank: the bank that provided the checkbook.
• Account number: the customer’s account number.

The check contains the data used to compute the hash. This
hash field serves as the landmark to find the block containing
the corresponding CAI on the blockchain.

9Each coefficient must be stored as an integer. Considering the polynomial
degree (100), this field will have at least 404 bytes).

10The resulting polynomial will always be of degree 2 because it is a
Lagrange Interpolation using two coefficients (the upper and lower bounds).

11[xn](L(x)) indicates the coefficient corresponding to xn, thus the first
coefficient of the polynomial.

12(3 integer coefficients × 4 bytes per integer) + 4 bytes for the integer
representing the polynomial’s degree.
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Figure 2: Check example

Algorithm 2: CAI creation and sharing through the
blockchain

Declaration:
Const bankName: String // Providing-Bank’s name
Const routingNb: Integer // routing/transit number
used by the bank
chBook: Checkbook // the newly created checkbook
customerX: CustomerProfile // the profile of the
customer owner of the newly created checkbook
bc: Blockchain // the used blockchain

1: SENDTRANSACTION(bc, CAI_CREATION(chBook,
customerX)) // send a blockchain transaction
containing the CAI data structure

2: function CAI_CREATION(chBook, customerX)
3: lPolynomial← LAGRANGEINTERPOLATIONFCT(

GETFIRST(chBook), GETLAST(chBook));
4: hash←

SHA-256(CONCATENATE(GETNAME(customerX),
bankName, GETACCOUNTNB(customerX))) // applies
SHA-256 hash algorithm on the set of defined
parameters

5: signature←
ECDSA(CONCATENATE(GETNAME(customerX),
GETADDRESS(customerX), bankName, routingNb,
GETACCOUNTNB(customerX), lPolynomial),
bankPrivateKey) // applies ECDSA signature
algorithm on the set of defined parameters using
the bank’s private key

6: CAI ← MAKEARRAY(lPolynomial, hash, signature)
// creates the CAI data structure

7: return CAI
8: end function

Signature field

The signature is provided on the information shared by all the
checks of the checkbook. Figure 2 illustrates the various types
of information:
• Full Name: the customer’s full name.
• Full Address: the customer’s address.
• Providing-Bank: the bank that provided the checkbook.
• Routing number: generally composed of nine digits. It

identifies the location where the account was opened.
• Account number: the customer’s account number.

• Lagrange polynomial: the computed polynomial.

The signature is performed using the private key corresponding
to the certificate of the Providing-Bank.

The data structure is stored in a public blockchain, which
means that any third party can access this data. However, only
a hash and a signature are stored. Since the hash function
behind the signature is not reversible, it is impossible to
recover the customer’s data (data that was hashed/signed).

2) Revocation/Usage of a check: When a deposited check is
cashed, the latter must be tagged as "no more valid" because it
has already been used. In the same context, if the bank wishes
to revoke a check or a checkbook following some reason such
as check theft, the corresponding check must be tagged as "no
more valid" because it has been revoked.

In contrast to the checkbook logic, where all the checks have
consecutive numbers and are provided at the same time, the
usage of checks for payment is completely random. Indeed,
some customers will use their checks regularly, while others
will spend numerous months or years to exhaust a checkbook.
Thus, it is mandatory to keep track of each used check
individually in order to avoid it being used again or more
thoroughly, in order to avoid that the valid data of a used
check from being used again for one or more fake checks.

Consequently, for each cashed check, the providing-bank
must share the information related to the customer and the
check through the public blockchain. More precisely, for each
cashed/revoked check, the bank creates a data structure called
Check Validity Information (CVI) and adds it to the public
blockchain through a transaction. The CVI data structure is
composed of two fields (1) a hash and (2) a cryptographic
signature, as shown in Table II.

Since multiple checks belonging to different checkbooks can
have the same number, the hash field serves as the landmark
(feature) to find the block containing the corresponding CVI
on the blockchain. It contains a hash computed on the fol-
lowing fields: (1) Check number: the cashed/revoked check
number, (2) Full Name, (3) Providing-Bank and (4) Account
number.
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Field Size (bytes)

Hash(Check number||Full
name||Providing-Bank||Account number) 32
Signature(Check number||Full name||Full
Address||Providing-Bank||Routing number||Account
number) 64

Table II: Check Validity Information (CVI) data structure

The signature field ensures that the CVI was created by the
Providing-Bank, since it can be verified using the Providing-
Bank’s public key. The signature of the CVI covers the same
fields considered by the CAI’s signature. In addition, it also
covers the Check number field. Algorithm 3 describes the
CVI creation and sharing operation13.

Algorithm 3: CVI creation and sharing through the
blockchain

Declaration:
check: Check // the cashed/revoked check

1: SENDTRANSACTION(bc, CVI_CREATION(check,
customerX)) // send a blockchain transaction
containing the CVI data structure

2: function CVI_CREATION(check, customerX)
3: hash← SHA-256(CONCATENATE(GETCHECKNB(check),

GETNAME(customerX), bankName,
GETACCOUNTNB(customerX))) // applies SHA-256
hash algorithm on the set of defined parameters

4: signature←
ECDSA(CONCATENATE(GETCHECKNB(check),
GETNAME(customerX), GETADDRESS(customerX),
bankName, routingNb, GETACCOUNTNB(customerX)),
bankPrivateKey) // applies ECDSA signature
algorithm on the set of defined parameters using
the bank’s private key

5: CV I ← MAKEARRAY(hash, signature) // creates
the CVI data structure

6: return CV I
7: end function

3) Withdrawal operation phase: When a customer deposits
a check in a Cashing-Bank, a few verifications are done before
triggering any operation in order to ensure the payment. These
verification operations can be achieved (1) by the human
agent who handles the check through a dedicated Human
Machine Interface (HMI) available on the system or (2) by the
ATM machine since it is designed to work through text/image
recognition. The program that runs the described verifications
can be deployed on (1) the bank’s terminals (computers and
ATM machines) through a software update or (2) on a server
managed by the bank and thus the bank’s terminals will simply
be used as input interfaces. Hence, the bank infrastructure
must host at least one up-to-date copy of the used blockchain.
Moreover, we assume that the bank’s entity which executes the
verification scheme, can provide basic protocol primitives in
order to recover any information required from the blockchain
and from the deposited check. Algorithm 4 presents the API,
Algorithm 5 describes the whole verification process, and
Figure 3 describes a check’s lifecycle when our approach is

13Due to space limitations, we do not re-define the parameters used by
Algorithm 2.

Algorithm 4: Basic operations provided by the bank’s
entity which executes the check’s verification process
1: Function GETCHECKNB(Check ch ) : Integer // returns

the check’s number
2: Function GETNAME(Check ch) : String // returns the

customer’s full name from the deposited check
3: Function GETADDRESS(Check ch) : String // returns the

customer’s full address from the deposited check
4: Function GETACCOUNTNB(Check ch) : Integer // returns

the customer’s account number from the deposited
check

5: Function GETROUTINGNB(Check ch) : Integer // returns
the bank’s routing number from the deposited
check

6: Function GETBANKNAME(Check ch) : String // returns
the bank’s name from the deposited check

7: Function GETLAGRANGEPOLYNOMIAL(DataStructure CAI) :
[ ] Integer // returns the Lagrange polynomial from
the CAI

8: Function RESOLVEDEG2EQUATION([ ] Integer polynomial )
: [ ] Integer // resolves an equation of the second
degree and returns an array with the found
solutions sorted in ascending order

9: Function ISEXISTINGTRANSACTION(Blockchain bc, String
hashCAI ,String hashCV I) : Boolean // verifies if
the blockchain at least have a block which
contains a transaction which in turn contains
the needed CAI or CVI

10: Function GETCAIORCVI(Blockchain bc, String hashCAI ,
String hashCV I ) : DataStructure // Browses the
blockchain and verifies simultaneously if the
browsed block contains the needed CAI or the
CVI. It returns the first structure found (CAI
or CVI)

11: Function ERROR(String errorMessage ) // returns and
error message

used (we did not consider the step of the payment between
banks).

Our proposed scheme must ensure that the deposited check
is authentic by relying on the CAI data structure. The scheme
must also ensure that it has not been revoked or cashed by re-
lying on the CVI data structure. Considering that browsing the
blockchain is a costly operation regarding the execution time,
for optimization purposes, when browsing the blockchain, for
each treated block, we simultaneously verify if it contains the
CAI or the CVI of the deposited check.

When we add an information to a blockchain, the informa-
tion is always added to the end of the blockchain (chained
to the last block). Accordingly, the blockchain’s block that
contains the CAI of a checkbook is always situated before
the block that contains the CVI of a check belonging to the
respective checkbook. In other words, if a check has been
already cashed/revoked, the CVI position is always after the
CAI. Hence, knowing that the blockchain browsing goes from
the end toward the beginning, while browsing the blockchain,
if our verification scheme finds the CAI first it means that the
check is authentic and that has not been used or revoked. But
if it finds the CVI first, it means that the check is no longer
valid because it was used or revoked.

The verification operations are provided as follows: first,
the information corresponding to the customer’s full name, the
Providing-Bank’s name and the customer’s account number,
which are available on the check, are concatenated and then
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Algorithm 5: Check verification process
Declaration:
ch: Check // the deposited check
bc: Blockchain // the used blockchain

1: procedure CHECKVERIFICATION(ch, bc)
2: hashCAI ← SHA-256(CONCATENATE(GETNAME(ch), GETBANKNAME(ch), GETACCOUNTNB(ch)));
3: hashCV I ← SHA-256(CONCATENATE(GETCHECKNB(ch),GETNAME(ch), GETBANKNAME(ch), GETACCOUNTNB(ch)));
4: if (ISEXISTINGTRANSACTION(bc, hashCAI , hashCV I)) then
5: CI ← GETCAIORCVI(bc, hashCAI , hashCV I)
6: if CI.hash == hashCV I // the CVI found first

then
7: signatureData← CONCATENATE(GETCHECKNB(ch),GETNAME(ch) GETADDRESS(ch), GETBANKNAME(ch),

GETROUTINGNB(ch), GETACCOUNTNB(ch));
8: if ECDSA_VERIFY(signatureData, BankPublicKey) then

// applies ECDSA signature verification algorithm on the set of defined parameters using
the bank’s public key

9: ERROR("Check has already been cashed or revoked ")

10: else
11: if CI.hash == hashCAI // the CAI found first

then
12: signatureData← CONCATENATE(GETNAME(ch) GETADDRESS(ch), GETBANKNAME(ch), GETROUTINGNB(ch),

GETACCOUNTNB(ch), GETLAGRANGEPLYNOMIAL(CAI));
13: if ECDSA_VERIFY(signatureData, BankPublicKey) then

14: polynomialRoots← RESOLVEDEG2EQUATION(GETLAGRANGEPLYNOMIAL(CAI));
15: if (GETCHECKNB(ch) ≥ polynomialSolutions[0] AND GETCHECKNB(ch) ≤ polynomialSolutions[1]) then

16: CHECKPAYMENTOPERATION(ch) // triggers the check payment operation

17: else
18: ERROR("Failure in the check’s authentication ")

19: else
20: ERROR("Failure in the bank’s authentication")

21:

else
22: ERROR("Check does not exist") // no CAI or CVI was found

23: end procedure

hashed. We call this hashCAI. Second, the information corre-
sponding to the check’s number, the customer’s full name, the
Providing-Bank’s name and the customer’s account number
are concatenated and then hashed. We call this hashCVI.
Third, our scheme browses the blockchain to find the block
containing the CAI whose hash field is equivalent to the
computed hashCAI or the block containing the CVI whose
hash field is equivalent to the computed hashCVI. As de-
scribed above, for optimization purposes, the CAI and CVI
search are done simultaneously for each searched block of
the blockchain: (1) if no block is found (no CAI nor a CVI),
it means that no transaction was performed by the check’s
Providing-Bank to record the checkbook, thus, the check is
fake and the payment operation aborts. (2) if the CVI is
found first, the system must authenticate it beforehand. Indeed,
since it is a public blockchain, the system must ensure that
it is the Providing-Bank that provided that transaction and
not another entity. In this case, our verification scheme uses
the data (check’s number, customer’s full name, customer’s
full Address, Providing-Bank, Check’s routing number and
customer’s account number) that exists in the deposited check
to verify the CVI’s signature relying on the bank’s public key
(available on the bank’s published certificate). If the CVI’s
signature is verified, then it indicates that the check is not

fake, but that it has already been cashed or revoked. If the
CVI’s signature verification fails, then it means that it is not the
Providing-Bank that added this CVI structure and the CAI/CVI
research process must continue. (3) If the CAI is found
first, the system must authenticate it beforehand (must ensure
that the CAI was created and added to the blockchain by
the Providing-Bank). To achieve this, the verification scheme
concatenates the data (customer’s full name, customer’s full
Address, Providing-Bank, Check’s routing number, customer’s
account number) obtained from the check with the Lagrange
polynomial which is in the retrieved CAI structure, and uses
this set of data (check information + the polynomial) to
verify the CAI’s signature using the bank’s public key. If
the signature verification fails, the payment operation aborts.
Fourth, once the signature has been verified, considering that
each check has been verified individually, the verification
scheme resolves the Lagrange polynomial of the CAI. Then,
the scheme verifies if the number of the deposited check fits
into the interval represented by the polynomial’s roots (as
described in Section III-B1.a). If the verification succeeds, the
payment operation is initiated.
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Figure 3: Check’s lifecycle when our detection approach is applied: (1) creates the checkbook; (2) creates checkbook’s CAI;
(3) stores CAI; (4) provides the checkbook; (5) pays with a check; (6) deposits the check; (7) creates the hash field relying on
the check’s data; (8) searches for CVI or CAI; (9’) CVI found; (10’) verifies CVI signature; (11’) if CVI is valid then payment
procedure stops, else back to (8); (9") CAI found; (10") verifies CAI signature and check number; (11") if CAI is valid then
go to (12), else, go back to (8); (9”’) No CVI and No CAI found; (10”’) payment procedure stops; (12) pays the check; (13)
sends the cashed check; (14) retrieves the amount of the payed check; (15) creates CVI for the cashed check; (16) stores CVI.

IV. IMPLEMENTATION, EVALUATION AND DISCUSSION

A. Implementation

To implement our approach, we opted for Namecoin
blockchain [49]. Namecoin is a fork of Bitcoin which aims to
provide a decentralized Domain Name Service (DNS). Indeed,
it implements the top level domain .bit, which is independent
of the Internet Corporation for Assigned Names and Numbers
(ICANN)14. Table III presents the main features of Namecoin.

Data field Feature
Type Public blockchain

Feature Fork of Bitcoin
Average transaction fee 0.00032 $

Block time 9 min 40 sec
Transaction avg /h 21

Blockchain dimension 6.34 GB

Table III: Namecoin features (19/01/2021)

We opted for Namecoin for three main reasons:

1) It allows data storage in the form of key/value pair. Users
have the possibility to store values up to 520 bytes in
size, which is more than sufficient to host the CAI/CVI
structures.

2) The daily volume of transactions is relatively weak, which
facilitates the data search in the blockchain.

14https://www.icann.org

3) Transactions fees are very low cost - the average
transaction fee is about $0.00032 USD (accessed on
19/01/2021)15.

For the hash function we use SHA-256 because it represents
one of the recommended hash algorithms by the National
Institute of Standards and Technology (NIST)16 [50].

For the signature algorithm we opted for Elliptic Curve
Digital Signature Algorithm (ECDSA) [51], [52]. ECDSA has
several advantages over traditional signature algorithms such
as Rivest Shamir Adleman (RSA) especially concerning key
sizes and signature time [53], [54], [55].

B. Evaluation framework and scenarios

Regarding the evaluation framework, we used Multichain17

to simulate the Namecoin blockchain. Multichain is an open
source blockchain platform which helps in the design and
deployment of blockchain applications. It is fully configurable
according to the user’s needs, and it can therefore be setup to
reproduce the same functions as any other blockchain. We used
this feature to simulate a Namecoin blockchain. Currently18 the
Namecoin blockchain includes 542, 258 blocks. To simulate
the Namecoin blockchain, for our experiments, we used a
blockchain with 500000 blocks.

15https://bitinfocharts.com/namecoin/
16https://csrc.nist.gov/Projects/Hash-Functions
17https://www.multichain.com
1819th of January 2021
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The program that shares the new issued checkbook’s data
(applicable to the Providing-Bank) as well as the authenti-
cation verification program (applicable to the Cashing-Bank)
were developed using Python language, version 2.7. For cryp-
tographic operations, we used OpenSSL library, version 1.1.1a.

To the best of our knowledge, there is no other check
authentication method that rely solely on Information Tech-
nology (IT) resources. Thus, we cannot compare the efficiency
of our method with another existing method. Moreover, since
our approach verifies if a check’s record already exists in the
blockchain, there are no false positives or false negatives.

knowing that searching a block in the blockchain is made in
a sequential method (block by block), the authentication time
of a check depends on the position of the block including its
corresponding CAI (or CVI) in the blockchain. Accordingly,
we were interested in measuring this time for different cases
: (1) the needed block is at the beginning of the blockchain;
(2) the needed block is in the middle of the blockchain; (3)
the needed block is at the end of the blockchain; and (4) the
check’s record does not exist in the blockchain (fake check).
For each scenario we executed 100 tests, where we measured
the time needed to find the block. Each test is applied on a
different block. More specifically, for the first scenario, the
needed blocks were between the blocks 1 and 1000. For the
second scenario, the needed blocks were between the blocks
225000 and 226000. For the third scenario, the needed blocks
where between the blocks 499000 and 500000.

We are aware that the search time depends mainly on the
processing power of the machine used as well as the program-
ing language (e.g. C is faster than Python)used. However, we
wanted to compare the different discussed cases using the same
language and host. We performed all tests using the following
testbed: the host system has an Intel(R) Quad-Core i7 CPU
3.80 GHZ with 16 GB of RAM. It executes an up-to-date
version of the KALI Linux 4.12.0 distribution.

C. Evaluation results

1) Adversary model: Any probabilistic polynomial time
adversary A can create a fake check with a high physical
quality. A can create the check using random data or using
real data of other real checks. Moreover A can get access to
the transactions’ data stored in the blockchain because it is a
public blockchain. Finally, since we use a public blockchain,
A can also send transactions to the blockchain about false
checks.

2) Formal validation: To evaluate the safety and robustness
of our proposed approach, we have provided a formal valida-
tion. We used Scyther [56], a tool for the automatic verification
of security protocols. In the latter, a security protocol is defined
as an interaction among different roles. Each role is played by
an agent, and described by a sequence of events (send, receive,
and so on).

Listing 1: Scyther code of the providing bank role
usertype String;
usertype Polynomial;

protocol FakeCheckAuth(ProvidingBank,
Blockchain, CashingBank) {

const bankName: String;
const routingNum: String;

hashfunction sha256;
function Concatenate;

role ProvidingBank {
fresh lPolynomial: Polynomial;
const costumerName;
const costumerAccountNB;
const costumerAddress;

macro h = sha256(lPolynomial, bankName,
costumerName, costumerAccountNB);

macro signedDataHash = sha256(lPolynomial,
bankName, costumerName,
costumerAccountNB, routingNum,
costumerAddress);

macro ecdsa =
{signedDataHash}sk(ProvidingBank);

send_1(ProvidingBank, Blockchain,
(lPolynomial, h, ecdsa));

claim_pb1(ProvidingBank, Alive);
claim_pb2(ProvidingBank, Weakagree);
claim_pb3(ProvidingBank, Niagree) ;

send_3(ProvidingBank, CashingBank,
{ProvidingBank,(costumerName,
costumerAddress, costumerAccountNB)}k
(ProvidingBank,CashingBank));

claim_pb4(ProvidingBank, Secret,
costumerName);

claim_pb5(ProvidingBank, Secret,
costumerAddress);

claim_pb6(ProvidingBank, Secret,
costumerAccountNB);

}

The Scyther code relies on three roles: the ProvidingBank,
the Blockchain, and the CashingBank. To comply with the
Scyther operation mode, we model our approach as follows:
(1) the providing bank sends the CAI to the blockchain. (2) the
cashing bank receives the CAI from the Blockchain. The check
is physically sent from the cashing bank to the providing bank
for money collection. Thus, the information on the check is
accessible only by these two banks. In our formal validation,
we model this step as a secure exchange using symmetric
cryptography between the two banks.

Listing 1 describes the Scyther code of the providing bank’s
role. The claim event types are the goals of the formal
validation. For the authentication of the providing bank by
the blockchain, we used three authentication claim types,
which are “Alive”, “Weakagree”, and “Niagree”. To explain
these claims, we assume that A is the initiator and B is the
responder.
• Alive claim: We consider that a protocol guarantees to

A aliveness of B if, whenever A completes a run of the
protocol, apparently with B, then the latter has previously
been running the protocol [57].
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• Weakagree: We consider that a protocol guarantees to A
weak agreement with B if, whenever A completes a run
of the protocol, apparently with B, then the latter has
previously been running the protocol, apparently with A
[57].

• Niagree: we consider that a protocol guarantees to A
non-injective agreement with B on a set of data items
(variables) if, whenever A completes a run of the pro-
tocol, apparently with B, then the latter has previously
been running the protocol, apparently with A, and B was
acting as the responder in its run, and the two agents
agreed on the data values corresponding to all the data
items [57].

Listing 2: Scyther code of the Blockchain role
role Blockchain {
// Parameters declaration .....

recv_1(ProvidingBank, Blockchain,
(lPolynomial, h, ecdsa));

send_2(Blockchain, CashingBank, (lPolynomial,
h, ecdsa));

claim_bc1(Blockchain, Alive);
claim_bc1(Blockchain, Weakagree);
claim_bc3(Blockchain, Niagree) ;
}

Listing 2 depicts the Scyther code of the blockchain’s role. We
define the same three authentication claims (Alive, Weakagree
and Niagree). Figure 4 shows a screenshot of the execution
of our formal validation code where only the authentication
claims were activated. In the screenshot presented, the first,
second, and third columns represent the protocol name, the
role concerned (ProvidingBank and Blockchain), and a unique
identifier of the claim respectively. The fourth column repre-
sents the claim type with the parameters. The two last columns
(status and comments) show the result of the verification
process (Fail or Ok), and a short description. The “No attack
within bounds“ should be interpreted as: ”Scyther did not find
any attacks by reaching the bound” [57]. As we can see, the
validation proves that the tested part of our protocol is safe
and secure.

Figure 4: Formal validation results of the authentication claims
between the providing bank and the blockchain

Listing 3: Scyther code of the cashing bank role

role CashingBank {
// Parameters declaration .....

recv_2(Blockchain, CashingBank, (lPolynomial,
h, ecdsa));

claim_cb1(CashingBank, Alive);
claim_cb2(CashingBank, Weakagree);
claim_cb3(CashingBank, Niagree) ;

recv_3(ProvidingBank, CashingBank,
{ProvidingBank,(costumerName,
costumerAddress, costumerAccountNB)}k
(ProvidingBank,CashingBank));

claim_cb4(CashingBank, Secret, costumerName);
claim_cb5(CashingBank, Secret,

costumerAddress);
claim_cb6(CashingBank, Secret,

costumerAccountNB);
}
}

Listing 3 describes the Scyther code of the cashing bank’s
role. First, we define the claims of the authentication with the
blockchain. Figure 5 shows a screenshot of the execution of
the formal validation code where we verify the authentication
claims between the blockchain and the providing bank. The
results highlight the security and robustness of this phase.

Figure 5: Formal validation results of the authentication claims
between the cashing bank and the blockchain

Moreover, Listing 1 and Listing 3 define the interaction of
the check sent from the cashing bank to the providing bank.
We define the Secret claim on the client’s personal data that
the check contains. Figure 6 is a screenshot of the execution of
the formal validation code where we verify the secrecy claims
between the cashing bank and the providing bank. The results
highlight the security and robustness of this phase.

3) Security and performance requirements evaluation: In
this section we focus on the evaluation of the security features,
performance features and the design challenges discussed ear-
lier (Section I) of our proposed check authentication approach:
Data sharing between banks: for each checkbook a CAI
is shared. The CAI structure protects the users’ data from
exposure because it only includes a hash and a cryptographic
signature, which are non-reversible. The Cashing-Bank is
aware of the check’s owner data through the deposited check.
However, this is not unique to our approach because it is also
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Figure 6: Formal validation results of the secrecy claims
between the cashing bank and the providing bank

the case with existing bank’s protocols today.
Management of the sharing mechanism: our approach relies
on a public blockchain which is fully autonomous. The bank
does not need to manage any additional infrastructure. Further-
more, sending transactions or reading them from a blockchain
represents a process that can be easily integrated and handled.
Non-modification of existing protocols: our approach does
not require any modification of the existing banking protocols
such as modifying the check’s format, adding some physical
security feature on the checks or the ATMs or modifying the
communication protocol between the different banks. It only
requires an additional verification before executing the usual
payment protocol and an additional action after providing a
new checkbook or cashing a check.
Scalability: our system relies on a public blockchain, which,
in turn, relies on a peer-to-peer network. It is known that peer-
to-peer networks are one of the best solutions to achieve high
scalability [58]. Furthermore, numerous studies [59], [60],
[61], [62] have demonstrated the scalability of blockchains.
Other works [63], [64], [65] focused on Bitcoin and showed its
highly scalability. In our work, we used Namecoin, a Bitcoin
fork. Hence, it inherits its high scalability.
Availability: the totally decentralized architecture of
blockchains makes them robust against Denial of Service/
Distributed Denial of Service (DoS/DDoS) attacks. Indeed,
services are duplicated and distributed over different network
nodes. That is to say, even if an attacker manages to block a
node, it cannot block all the other nodes.
Authentication: our approach provides an authentication of
the deposited check after browsing a blockchain to find the
check’s record. This removes the possibility of false negatives
and false positives from our scheme and makes it highly
reliable. It allows the authentication of a legitimate check and
the detection of a fake one. Moreover, even if the adversary
stores transactions related to a fake check, the authentication
process is fully reliable because it only authenticates the
checks that are signed using the providing bank’s private key.
Finally, if the adversary uses a fake check that contains the
information of another real check, the detection system will
detect it thanks to the CVI structure that is signed by the
providing bank’s private key. However, if the check was not
used by the legitimate user yet, then the detection system
authenticates it as a good check and the scammer can use it

for one time. But this case have a low probability to happen.
4) Financial cost: Regarding the financial cost, we believe

that each security service provided needs a cost, as long as
it remains lower than the potential damages (a fake check
scam generally costs several hundreds of dollars of damages).
In our approach, for each created checkbook, a blockchain
transaction is needed. Then, one transaction for each deposited
(or revoked) check. For example, if we consider the example
of a checkbook that has 100 checks. When all these checks are
used, the checkbook costs 101 transactions. The transaction’s
cost depends on the blockchain used. However, this cost
remains negligible compared to the potential damages. We
recommended the use of Namecoin whose transaction’s fees
are around $0.00077 USD. Thus, if we consider the last
example, one checkbook of 100 checks costs 101×0.00077$ =
0.077$, which is a negligible fee. Moreover, the time needed
to consume all the checks of a checkbook in order to reach
this fee is highly variable according to the consumers and can
vary from a few days to several years.

We are aware that the evolution of cryptocurrency rate
represents an issue. However, according to studies such as
[66] and [67], the evolution of the cryptocurrencies rates will
become more stable over time [10]. Finally, the transaction’s
fees can be added to the account maintenance cost each time
the customer asks for a new checkbook.

5) Numerical results: : In this section we present the
numerical results related to the time consumption of our
approach. As described in Section IV-B, we were interested in
measuring the time taken for the check’s authentication pro-
cess described by Algorithm 5 (including all the algorithm’s
steps), for different cases of the needed block’s position.
Since we are interested in measuring the time needed for our
approach to provide a response regarding the needed block
position on the blockchain, we did not consider the case for
a revoked bank certificate. Figure 7 shows the average and
standard deviation over the 100 tests for each scenario.

Regarding the scenario where the needed CAI is in a block
located at the end of the blockchain (between the positions
[499000,500000]), the average authentication time is 0.30
seconds (s) with a standard deviation of 0.15 s. This time
was expected considering that the search in a blockchain starts
with the last block. For the second scenario, where the needed
block is in the middle of the blockchain (between the positions
[225000,226000]), the average authentication time is 420.84
s with a standard deviation of 20.03 s. We note the costly
nature of the blockchain search operation, especially when
our approach does not look for transactions’ blocks’ identifiers
(ID), but browse the data of each transaction of each block.
This cost is more important for the next scenario, where the
needed block is at the beginning of the blockchain (between
the positions [1,1000]), since the average authentication time
is 1469.68 s with a standard deviation of 80.40 s. Finally,
for the scenario where the needed CAI does not exist in the
blockchain, the time it takes to obtain a response is 1476.21 s
which is almost exactly the same time as the last scenario, with
a similar standard deviation of 75.50 s. Nonetheless, even if
the execution of the check’s authentication process can spend a
few minutes in some cases, it remains very far from the current
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Figure 7: Execution time of the check’s authentication process
according to the position in the blockchain of the block that
owns the needed CAI (Namecoin implementation)

float time of more than 48 hours. Furthermore, it protects the
banks and especially the customers from being scammed.

In this work, we have developed a proof of concept and
evaluated it on a simple machine with a high level interpreted
language (Python) known to have execution times higher than
many other programming languages such as C and C++. A
bank is likely to have more powerful machines with a better
implementation ( for instance, we did not apply any advanced
or optimized block searching method).

V. IMPLEMENTATION ON A PRIVATE BLOCKCHAIN

The design of our approach requires a public (permis-
sionless) blockchain. In this section, we wanted to analyze
the impact of a private (permissioned) blockchain adoption.
Even if our approach detects the fake checks before they
are cashed and in a record time in comparison to the float
time of at least 48 hours. In some cases, the response is
still being obtained in few minutes, according to the needed
block position. Knowing that the search operation in the
permissioned blockchain Hyperledger Fabric is optimized,
we wanted to analyze its impact on our approach. Later on,
we discuss how this implementation affects the security and
performance requirements discussed above.

Fabric is a modular and extensible open-source system
for deploying and operating permissioned blockchains and
it is one of the Hyperledger projects hosted by the Linux
Foundation19 [68]. It has a highly modular and configurable
architecture, enabling innovation, versatility and optimization
[69].

In a public or permissionless blockchain, peers make
part of the network anonymously. Private or permissioned
blockchains, on the other hand, run a blockchain among

19www.hyperledger.org

a set of known, identified participants. Hence, this type of
blockchain provides a way to secure the interactions among
a group of entities that have a common goal but they do not
fully trust each other [68] (e.g., the participating banks in our
approach).

We used the same testbed described in Section IV-B to
implement our approach relying on the Hyperledger Fabric
blockchain. We implemented Hyperledger Fabric version 1.4.
We implemented our proposed detection and verification algo-
rithms using JavaScript because Fabric offers (among other)
a ready to use JavaScript API to manage the blockchain. We
re-executed the same scenarios described in Section IV-B, that
is: (1) the needed block is at the beginning of the blockchain;
(2) the needed block is in the middle of the blockchain; (3)
the needed block is at the end of the blockchain; and (4)
the check’s record does not exist in the blockchain (fake
check). Also, for each scenario we executed 100 tests, and we
measured the time needed to find the block and to execute the
detection algorithm for each test when applied on a different
block. Figure 8 shows the average and standard deviation over
the 100 tests conducted for each scenario.

Figure 8: Execution time of the check’s authentication process
according to the position in the blockchain of the block that
owns the needed CAI (Hyperledger Fabric implementation)

When CAI is in a block located at the end of the blockchain
(between the positions [499000,500000]), the average authen-
tication time is 755.59 milliseconds (ms) with a standard
deviation of 9.43 ms. For the second scenario, when the needed
block is in the middle of the blockchain (between the positions
[225000,226000]), the average authentication time is 754.62
ms with a standard deviation of 7.51 ms. For the scenario
where the needed block is at the beginning of the blockchain
(between the positions [1,1000]), the average authentication
time is 766.06 ms with a standard deviation of 27.32 ms.
Finally, for the scenario where the needed CAI does not exist
in the blockchain, the time taken to obtain a response is 752.31
ms with a standard deviation of 9.62 ms. It is worth noting that,
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in contrast with the Namecoin implementation, the position of
the block has no impact on the searching time. Moreover,
the results obtained are in the order of milliseconds. The
reason for the better results compared with those obtained
before (through the public blockchain implementation) is
explained by the architecture of Hyperledger Fabric which
implements an additional database layer. Indeed, each peer
locally maintains the ledger in the form of the append-only
blockchain and as a snapshot of the most recent state in a
key-value store [68]. More precisely, it stores one tuple of
the form (key, value, version) for each unique entry of the
blockchain in a state database. Hence, the state database is
simply an indexed view into the chain’s transaction log [69].
Accordingly, searching for blocks’ transactions in Hyperledger
Fabric blockchain is as optimized as the search process in a
database.

State database options include LevelDB and CouchDB.
LevelDB is the default state database embedded in the peer
process. CouchDB is an optional alternative external state
database that provides additional query support permitting rich
queries [69]. In our implementation we used CouchDB as a
state database.

However, implementing such a private blockchain will not
satisfy the needed requirements, and especially the infrastruc-
ture management requirement. Indeed, we stated that the pro-
posed approach must be lightweight and low-cost and must not
represent a burden for third parties that deploy it. However, the
deployment of the Hyperledger Fabric by all the participating
banks will involve additional work. Moreover, this approach
will also require banks to deploy additional human resources
in order to set up and maintain such infrastructures.

VI. CONCLUSION AND FUTURE WORKS

Fake checks continue to be one of the most common instru-
ments used to commit fraud against consumers. This fraud is
very costly for victims because they generally lose thousands
of dollars as well as being liable to judicial proceedings.
Fake check scam continues to exist because of the existing
check payment protocol, which credits the customers’ accounts
before verifying the authenticity of the deposited checks and
their owners.

To the best of our knowledge, currently, there is no IT
authentication scheme which helps in the authentication of
legitimate checks as well as the detection of fake ones. In
this context, we propose in this paper, a blockchain based
scheme which allows the authentication of checks almost
instantly after their deposit, thus avoiding the current float
time of more than 48 hours as well as the bilateral procedures
initiation between the banks involved, making them saving
time and resources. Our proposed scheme is low cost, easy to
implement, and it satisfies all the needed requirements as well
as overcome the challenges we have discussed.

In our future works we will focus on reducing the CAI/CVI
searching time. We will investigate how to use more advanced
membership query techniques such as Bloom filters as well
as advanced blockchain searching methods such as parallel
processing.
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