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Abstract

The problem of estimating the temperatures and the heat transfer coefficient of a concentric tube heat exchanger coupled with
a heater is considered in this work. Measurements collected from the extremities of the exchanger tube are used to estimate
the heat distribution over the length of the exchanger, which induces a boundary estimation problem. This system, which is
part of any standard cooling plant, is particularly challenging due to the distributed nature of its variables. It is modeled by
a system of (2× 2) hyperbolic PDEs, coupled with an ODE at the boundary. To solve the estimation problem, we consider a
general class of systems consisting of a (2× 2) hyperbolic system coupled with a set of nX linear time-varying (LTV) ODEs at
the boundary. Both the PDE and the ODEs have uncertain parameters to be estimated. The objective is to estimate the PDE
states, the ODE states, and the parameters simultaneously with no assumption on the ODEs stability. We design a Luenberger
state observer, and our method is mainly based on the decoupling of the PDE estimation error states from that of the ODEs
via swapping design. We then derive the observer gains from the Lyapunov analysis of the decoupled system after proving
the boundedness of the swapping filters. We give sufficient conditions of the exponential convergence of the adaptive observer
through differential Lyapunov inequalities (DLIs). Finally, we apply the developed theory on the coupled heat exhanger-heater
model to evaluate the performance of the observer in numerical simulations.

Key words: Adaptive boundary observers, Parameter estimation, Hyperbolic partial differential equations, Linear
time-varying systems, Refrigeration systems.

1 Introduction

Refrigeration systems or human-made cooling systems
are used to cool a substance or a closed space by trans-
ferring heat from a cold reservoir to a hot reservoir by
means of an external mechanical intervention. These sys-
tems are found in many applications: food production,
gas and oil industries, air conditioning of houses, build-
ings, big centers, cars and many more [12]. A refriger-
ation system is usually composed of the following main
components: pumps, heat exchangers, heaters, expan-
sion valves, chillers and accumulators. These parts are
connected together to form what is called a refrigera-
tion cycle. In this paper, we consider the refrigeration
cycle shown on Figure 1. The objective of this cycle is to

Email addresses: mohammad.ghousein@univ-poitiers.fr
(Mohammad Ghousein),
emmanuel.witrant@gipsa-lab.grenoble-inp.fr
(Emmanuel Witrant).

cool some electrical equipment that generates a heating
power U(t) while functioning. A real test bench for this
system is already built at CERN [24] to cool the silicon
sensors of high energy physics experiments. It works as
follows: the cold fluid is pumped into the heat exchanger
inner tube. Flowing inside the exchanger, the cold fluid
gains energy from the hot fluid flowing in the opposite
direction. Inside the heater, the cold fluid absorbs the
heat from the electrical equipment and leaves the heater
with high temperature. The hot fluid then recirculates
back in the outer tube of the heat exchanger. At the
output of the exchanger, the hot fluid is cooled down by
the chiller and it is sent back to the pump to complete
one cycle of cooling. The role of the accumulator is to
maintain a desired output pressure at the hot side.

One component of this cycle that requires a special at-
tention in modeling and in control is the heat exchanger.
The temperatures and the other thermodynamical vari-
ables do not vary only with time but also along the
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Fig. 1. Schematic diagram of a cooling cycle

length. The heat exchanger thus has distributed parame-
ters and can spread along large distances and lead to sig-
nificant delays in the refrigeration loop. In order to have
low rates of energy consumption while maximizing the
heat transfer rates, the control and the estimation algo-
rithms must handle the distributed nature of the phys-
ical variables. Inside the heat exchanger, the hot fluid
and the cold fluid exchange energy through the wall in-
terface (see Figure 1). The parameter that controls this
transfer of energy is called the heat transfer coefficient
(HTC) and is usually difficult to estimate as it depends
on many thermodynamical variables. In our recent work
[15], we have solved the problem of estimating the dis-
tributed temperatures and the HTC of a concentric-tube
heat exchanger using only four temperature measure-
ments (provided by sensors placed at the extremities of
the exchanger). The heat exchanger was separated from
the other parts of the refrigeration network by assuming
that all the input/output temperatures of the heat ex-
changer are measured. The cost of this strategy of mod-
eling is to place four temperature sensors, at the inlets
and at the outlets of the heat exchanger.

In this paper, we consider the coupled heat exchanger -
heater model shown on Figure 1. The advantage of in-
troducing the heater in the model, compared to previous
designs such as [31,15], is to dispense one (costly) sensor
at the hot inlet of the exchanger. However, introducing
the heater complicates the adaptive observer design be-
cause the resulting model becomes a coupled PDE/ODE
system. In this case, the PDE system models the heat
exchanger and the ODE system models the heater as we
show on Figure 1. Before presenting our observer design,
we give a summary of the related works on boundary
estimation for coupled hyperbolic PDE/ODE systems.

The problem of estimating the states of hyperbolic PDEs
coupled with ODEs is relatively new. A Luenberger ob-
server for systems of linear and quasi-linear hyperbolic
systems coupled with linear time-invariant (LTI) ODEs
at the boundary is proposed by [8]. The hyperbolic PDEs
are homogeneous i.e. the propagation is only in one di-

rection and the LTI ODEs are assumed asymptotically
stable. This approach was later extended by [13] to linear
hyperbolic systems coupled with possibly unstable LTI
systems. The idea is to keep the same observer architec-
ture as in [8] and to use a non-diagonal quadratic Lya-
punov function instead of a diagonal one. Sufficient con-
ditions for the exponential stability of the observer are
obtained, involving bilinear matrix inequalities. These
methods, relying on the stability property derived by
[27], [5], use dissipative boundary conditions to stabilize
the estimation error. One drawback of using this kind
of boundary conditions is that it imposes some restric-
tions on the magnitude of the coupling between the sys-
tem states. This limitation can be overcome using the
so-called backstepping-method. An invertible Volterra
transformation then maps the original system into a
target system with the desired stability properties, for
which static boundary control and observer gains are
synthesized to ensure the system convergence to a de-
sired set in finite time. An observer for LTI systems
with arbitrary constant delay in the sensor measure-
ment, where the delay is interpreted as a first order trans-
port equation and a backstepping observer is designed
on the resulting coupled LTI-PDE system, is synthesized
by [20]. This approach was later extended to hyperbolic
systems coupled with an LTI system at the boundary
[17], including heterodirectional transport [10] and a ro-
bust feedback perspective [11]. The mentioned results so
far do not consider having unknown (or largely varying)
parameters in the system, as it is the case formost practi-
cal applications. The refrigeration cycle considered here
is an example of such applications, as an important coef-
ficient, the HTC, is not known. This motivates the need
for adaptive estimators.

The role of the adaptive estimator is to generate simul-
taneous estimates of the states and of the parameters.

While some results on adaptive observers for infinite
dimensional systems can be traced back to the 1990s
[9,4], the research interest for adaptive observers for hy-
perbolic PDEs is mostly more recent. Combined pa-
rameter estimation and observer design for a generic
class of transport PDEs is considered by [26], where a
computationally-efficient method for hyperbolic systems
using the time-delay equivalency is also proposed. Adap-
tive design for hyperbolic PDEs is more formally con-
sidered in [25], to analyze and control crowd dynamics
using a Lyapunov method. Backstepping methods have
been considered by [6], in an output-feedback stabiliza-
tion perspective, and by [21] for a system of hyperbolic
PDEs representing a process of oil well drilling. A swap-
ping design was introduced in this framework by [3] and
a global perspective is provided by [2]. Linearizing the
dynamics as a set of hetero-directional hyperbolic PDE,
adaptive methods for traffic congestion control are pro-
posed by [29].

Fewer results can be found on adaptive design for sys-
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tems of ODEs coupled with hyperbolic PDEs. Adapta-
tion to fluctuations in the transport parameter for hy-
perbolic - ODE systems without in-domain couplings of
the PDEs and with constant (in space) parameters can
be addressed using the time-delay approach proposed
by [30]. A (2×2) hyperbolic system coupled with an un-
certain LTI system is considered by [1] and an adaptive
observer is designed for the LTI part. An adaptive ob-
server for a set of hyperbolic PDEs coupled with lin-
ear time varying (LTV) ODEs is considered by [14]: un-
known parameters are only present on the ODEs side
and the PDEs have a single direction of propagation.

Our contribution in this paper is to propose an adaptive
estimator for a (2×2) hyperbolic system coupled with
LTV ODEs at the boundary. The novelty of our design
is to consider unknown parameters in the PDEs domain
as well as in the ODE dynamics. In addition, the hyper-
bolic PDEs are hetero-directional: the two PDE states
are propagating in opposite directions with a distributed
coupling between them. All the states and parameters
are estimated simultaneously in one step and without as-
sumption on the asymptotic stability of the LTV ODEs.
The proposed adaptive observer is evaluated on the es-
timation of the temperatures and the HTC of a coupled
heat exchanger-heater system.

The paper is organized as follows. We formulate the es-
timation problem in Section 2. The adaptive observer
design is detailed in Section 3. In Section 4 we present
numerical simulations of the observer on an unstable toy
plant. Section 5 is dedicated to the observer evaluation
on the refrigeration cycle of Figure 1, and the paper is
concluded in Section 6.

Notations. The symbol Sn
+ denotes the set of real n×

n symmetric positive definite matrices. For a symmetric
matrixA, positive and negative definiteness are denoted,
respectively, by A ≻ 0 and A ≺ 0. For a vector z ∈ Rn,∣∣z∣∣ is the euclidean norm. Let V ⊆ Rn and f : [0, 1] 7−→

V , we denote by ||f ||L2([0,1])n =

√∫ 1

0

∣∣f(x)∣∣2dx the L2

norm of f . If f ∈ L2([0, 1])n, then ||f ||L2([0,1])n < +∞.
∂t and ∂x denote the partial derivatives with respect to
space and time, respectively.

2 Problem statement

Consider the following (2× 2) hyperbolic system evolv-
ing in {(t, x) | t ≥ 0, x ∈ [ 0, 1] } and coupled with nX
ordinary differential equations at the boundary x = 0:

∂tu(x, t) + λ1(x)∂xu(x, t) = σ1(x)v(x, t) + ϕ1(x, t)θ1
(1)

∂tv(x, t)− λ2(x)∂xv(x, t) = σ2(x)u(x, t) + ϕ2(x, t)θ2
(2)

u(0, t) = CX(t) (3)

v(1, t) = V (t) (4)

Ẋ(t) = A(t)X(t) +B(t)U(t) +D(t)v(0, t) + ψ(t)θ3
(5)

where u(x, t) and v(x, t) are the states, [u, v] T : [ 0, 1] ×
[ 0,+∞) → R2. λ1(x) > 0 and λ2(x) > 0 are the PDEs
transport velocities, considered as C1([0, 1];R) known
functions. σ1(x) and σ2(x), some C0([0, 1];R) known
functions, are the PDEs in-domain coupling terms.
ϕ1(x, t) : [ 0, 1] × [ 0,+∞) → R1×nθ1 is a set of known
bounded filters for the unknown parameters θ1 ∈ Rnθ1 .
Similarly, ϕ2(x, t) : [ 0, 1] × [ 0,+∞) → R1×nθ2 is a set
of known bounded filters for the unknown parameters
θ2 ∈ Rnθ2 . V (t) is a known boundary input acting on
the right boundary of (2). X(t) : [ 0,+∞) → RnX is
the ODE vector of states. θ3 ∈ Rnθ3 are the ODE un-
known parameters. The PDE (1) is coupled with the
ODE (5) at the left boundary through the output ma-
trix C ∈ R1×nX . U(t) : [ 0,+∞) → Rnu is the known
ODE input vector. The ODE matrices A(t) ∈ RnX×nX ,
B(t) ∈ RnX×nu , D(t) ∈ RnX×1 and ψ(t) ∈ RnX×nθ3

are are assumed to be known, bounded and piece-wise
continuous in time.

The goal is to estimate the distributed states of the PDEs
u(x, t) and v(x, t), the ODE state X(t) and the param-
eters θ1, θ2 and θ3 using the boundary measurements:
y1(t) = u(1, t) and y2(t) = v(0, t). The schematic dia-
gram of the plant (1)-(5) is shown on Figure 2. Some ob-
vious conditions are necessary for the feasibility of this
estimation problem. For example, if the output matrix
C is equal to zero, no information about the ODE dy-
namics X(t) is measured by the sensor at x = 1 and
hence the estimation of the ODE state will not be pos-
sible. Analogous conditions can be deduced for ϕ1(x, t),
ϕ2(x, t) and ψ(t). We will discuss the feasibility condi-
tions for the estimation problem in the next sections.
It is also helpful to discuss the reasons that can cause
the plant (1)-(5) to be unstable in open loop, i.e. when
V (t) = 0 and U(t) = 0. One reason is the PDE couplings
σ1(x) and σ2(x). If these couplings are large enough, the
plant (1)-(5) is unstable in open loop. The second rea-
son is the stability of the ODE dynamics: if A(t) is not
stable then the whole plant (1)-(5) is unstable in open
loop. These reasons are the key points in stabilizing the
observation error dynamics. Note that we do not assume
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that the plant is stable, i.e. we assume no conditions on
the magnitude of σ1(x) and σ2(x) neither on the eigen-
values of A(t). The observer architecture must take into
account all these stability issues.

3 Adaptive observer design

We define the dynamics of the adaptive observer as fol-
lows:

∂tû(x, t) + λ1(x)∂xû(x, t) = σ1(x)v̂(x, t) +m1(x, t)

+ ϕ1(x, t)θ̂1(t)− py1(x, t)
(
û(1, t)− y1(t)

)
− py2

(x, t)
(
v̂(0, t)− y2(t)

)
(6)

∂tv̂(x, t)− λ2(x)∂xv̂(x, t) = σ2(x)û(x, t) +m2(x, t)

+ ϕ2(x, t)θ̂2(t)− ry1
(x, t)

(
û(1, t)− y1(t)

)
− ry2

(x, t)
(
v̂(0, t)− y2(t)

)
(7)

û(0, t) = q
(
v̂(0, t)− y2(t)

)
+ CX̂(t) (8)

v̂(1, t) = V (t) (9)

˙̂
X(t) = A(t)X̂(t) +B(t)U(t) + ψ(t)θ̂3(t)

+D(t)v̂(0, t)− L(t)(û(1, t)− y1(t))
(10)

The estimates of the states are denoted by hat. py1
(x, t),

py2
(x, t), ry1

(x, t) and ry2
(x, t) are the PDE observer

gains, varying in space and time. L(t) ∈ RnX×1 is the
ODE observer gain, time-varying since the ODE dy-
namics are LTV. m1(x, t) and m2(x, t) are two feedback
functions related to the parameters (to be defined later).
q ̸= 0 is a known parameter that can be chosen arbitrar-
ily. The observer architecture (6)-(10) is of Luenberger
type. The measurements y1(t) and y2(t) are injected in
the PDEdomain and in theODEdynamics to correct the
observer dynamics using linear gains. We define now the
observation errors: ũ(x, t) = u(x, t) − û(x, t), ṽ(x, t) =

v(x, t)− v̂(x, t), X̃(t) = X(t)− X̂(t), θ̃1(t) = θ1 − θ̂1(t),

θ̃2(t) = θ2 − θ̂2(t) and θ̃3(t) = θ3 − θ̂3(t). The error dy-
namics can then be calculated from subtracting the ob-
server equations (6)-(10) from the plant equations (1)-
(5) to have:

∂tũ(x, t) + λ1(x)∂xũ(x, t) = σ1(x)ṽ(x, t)−m1(x, t)

+ ϕ1(x, t)θ̃1(t)− py1(x, t)ũ(1, t)− py2(x, t)ṽ(0, t)
(11)

∂tṽ(x, t)− λ2(x)∂xṽ(x, t) = σ2(x)ũ(x, t)−m2(x, t)

+ ϕ2(x, t)θ̃2(t)− ry1(x, t)ũ(1, t)− ry2(x, t)ṽ(0, t)
(12)

ũ(0, t) = qṽ(0, t) + CX̃(t) (13)

ṽ(1, t) = 0 (14)

˙̃X(t) = A(t)X̃(t) + ψ(t)θ̃3(t) +D(t)ṽ(0, t)− L(t)ũ(1, t)
(15)

The goal is to find the proper observer gains py1
(x, t),

py2(x, t), ry1(x, t), ry2(x, t) and L(t), the adequate adap-

tive laws of the parameters θ̂1(t), θ̂2(t) and θ̂3(t), and
the two feedback functions m1(x, t) and m2(x, t), in or-
der to stabilize the error dynamics in (11)-(15).

The first step in the design is to decouple the PDE esti-
mation errors (ũ(x, t), ṽ(x, t)) from the ODE estimation

error X̃(t) and from the parameters estimation errors

θ̃1(t), θ̃2(t) and θ̃3(t). This is done using the swapping
design method.

3.1 Swapping design

The idea of the swapping design method is to write the
PDE estimation errors (ũ(x, t), ṽ(x, t)) as a linear com-

bination of the ODE estimation error X̃(t) and the pa-

rameters estimation errors θ̃1(t), θ̃2(t) and θ̃3(t) as fol-
lows:

E(x, t) =W (x, t)− T (x, t)X̃(t)−R(x, t)θ̃(t) (16)

where W (x, t) =
(
w1(x, t), w2(x, t)

)⊤
, E(x, t) =(

ũ(x, t), ṽ(x, t)
)⊤

, θ̃(t) =
(
θ̃1(t), θ̃2(t), θ̃3(t)

)⊤
, T (x, t) =(

T1(x, t), T2(x, t)
)⊤

and

R(x, t) =

[
R11(x, t) R12(x, t) R13(x, t)

R21(x, t) R22(x, t) R23(x, t)

]
.

w1(x, t) and w2(x, t) are two PDEs to be defined later.
T1(x, t) and T2(x, t) : [ 0, 1] × [ 0,+∞) → R1×nX are

the swapping filters of the ODE estimation error X̃(t).
R11(x, t) and R21(x, t) : [ 0, 1] × [ 0,+∞) → R1×nθ1 ,
R12(x, t) and R22(x, t) : [ 0, 1] × [ 0,+∞) → R1×nθ2 ,
R13(x, t) and R23(x, t) : [ 0, 1] × [ 0,+∞) → R1×nθ3 are
the swapping filters of the parameter estimation errors
θ̃1(t), θ̃2(t) and θ̃3(t), respectively. By substituting (11)-
(15) in (16), one can verify that the systems W (x, t),
T (x, t) and R(x, t) obey the following set of partial dif-
ferential equations:

W (x, t) :



∂tw1(x, t) + λ1(x)∂xw1(x, t) = σ1(x)w2(x, t)

−p1(x)w1(1, t)

∂tw2(x, t)− λ2(x)∂xw2(x, t) = σ2(x)w1(x, t)

−p2(x)w1(1, t)

w1(0, t) = qw2(0, t), w2(1, t) = 0

(17)

T (x, t) :



∂tT1(x, t) + λ1(x)∂xT1(x, t) = σ1(x)T2(x, t)

−p1(x)T1(1, t)− T1(x, t)A(t)

∂tT2(x, t)− λ2(x)∂xT2(x, t) = σ2(x)T1(x, t)

−p2(x)T1(1, t)− T2(x, t)A(t)

T1(0, t) = qT2(0, t)− C, T2(1, t) = 0

(18)
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R1(x, t) :



∂tR11(x, t) + λ1(x)∂xR11(x, t) =

σ1(x)R21(x, t)− p1(x)R11(1, t)− ϕ1(x, t)

∂tR21(x, t)− λ2(x)∂xR21(x, t) =

σ2(x)R11(x, t)− p2(x)R11(1, t)

R11(0, t) = qR21(0, t), R21(1, t) = 0

(19)

R2(x, t) :



∂tR12(x, t) + λ1(x)∂xR12(x, t) =

σ1(x)R22(x, t)− p1(x)R12(1, t)

∂tR22(x, t)− λ2(x)∂xR22(x, t) =

σ2(x)R12(x, t)− p2(x)R12(1, t)− ϕ2(x, t)

R12(0, t) = qR22(0, t), R22(1, t) = 0

(20)

R3(x, t) :



∂tR13(x, t) + λ1(x)∂xR13(x, t) =

σ1(x)R23(x, t)− p1(x)R13(1, t)− T1(x, t)ψ(t)

∂tR23(x, t)− λ2(x)∂xR23(x, t) =

σ2(x)R13(x, t)− p2(x)R13(1, t)− T2(x, t)ψ(t)

R13(0, t) = qR23(0, t), R23(1, t) = 0

(21)

with the following gains:

py1
(x, t) =p1(x)− T1(x, t)L(t), (22)

py2(x, t) =T1(x, t)D(t) (23)

ry1
(x, t) =p2(x)− T2(x, t)L(t) (24)

ry2
(x, t) =T2(x, t)D(t) (25)

m(x, t) =−R(x, t)
˙̂
θ(t) (26)

where m(x, t) = (m1(x, t),m2(x, t))
⊤. p1(x) and p2(x)

are the static observer gains on the PDE side (to be de-
termined later). We can infer from (16) that the PDE
estimation error E(x, t) is the sum of three errors: 1)
W (x, t), which is the estimation error due to the un-
known initial conditions (u0(x),v0(x)) of the plant (1)-

(5). 2) T (x, t)X̃(t), which is proportional to the ODEs

estimation error X̃(t) and 3) R(x, t)θ̃(t), which is pro-

portional to the parameters estimation errors θ̃(t). The
goal is to find the observer gains p1(x), p2(x) and L(t)
that drive the estimation error to zero. In fact, we aim
to obtain sufficient conditions that can guarantee the

exponential convergence of the error in the
∣∣X̃∣∣2+∣∣θ̃∣∣2+

||E(., t)||2(L2([0,1]))2 norm. This norm is simply the sum

of the L2 norms of the PDEs and of the ODEs. From
(16), in order to prove the exponential convergence of

the {E(x, t), X̃(t), θ̃(t)} system, it is sufficient to prove

the exponential convergence of the {W (x, t), X̃(t), θ̃(t)}
system and the boundedness of the filters T (x, t) and
R(x, t). Before starting the error stability analysis of the

{W (x, t), X̃(t), θ̃(t)} system, we first analyze the dy-

namics of X̃(t) and define the adaptive laws for estimat-
ing the parameters θ1, θ2 and θ3.

3.2 ODE error dynamics and the parameter estimation
laws

We evaluate (16) at x = 1 and x = 0, then substitute
ṽ(0, t) and ũ(1, t) in (15) to obtain:

˙̃X(t) =

(
A(t) +K(t)T̃ (t)

)
X̃(t)−K(t)w̃(t)

+

(
K(t)Φ(t) + Ψ(t)

)
θ̃(t)

(27)

whereK(t) = (L(t),−D(t)), w̃(t) = (w1(1, t), w2(0, t))
⊤,

T̃ (t) = (T1(1, t), T2(0, t))
⊤,

Ψ(t) = [0nX×nθ1
0nX×nθ2

ψ(t)] and

Φ(t) =

[
R11(1, t) R12(1, t) R13(1, t)

R21(0, t) R22(0, t) R23(0, t)

]
.

For the parameters updates, after evaluating (16) at x =
1 and x = 0, and using the superposition principle (i.e.

fixing w̃ = 0 and X̃(t) = 0) we obtain the following
linear regressor equation

ỹ(t) = −Φ(t)θ̃(t) (28)

which relates the estimation error ỹ(t) =
(
ũ(1, t), ṽ(0, t)

)⊤
at the boundary to the parameter estimation errors
θ̃(t), weighted by the regressor Φ(t). Equation (28) sug-
gests the following normalized parameter adaptation
algorithm:

˙̂
θ(t) = − ˙̃

θ(t) = − Pθ(t)Φ
⊤(t)

1 + ||Φ⊤(t)Φ(t)||2
ỹ(t) (29)

Ṗθ(t) = βPθ(t)−
Pθ(t)Φ

⊤(t)Φ(t)Pθ(t)

1 + ||Φ⊤(t)Φ(t)||2
(30)

where Pθ(t): [0,+∞) 7−→ Rnθ×nθ with nθ = nθ1 +nθ2 +
nθ3 and β > 0 is the forgetting factor. The initial con-

ditions θ̂(0) = θ̂0 and Pθ(0)=Pθ,0=P
T
θ,0 are chosen arbi-

trarily. The adaptive law (29)-(30) is a continuous-time
recursive least square estimator with a forgetting factor
(see [19] for various linear regression estimation tech-

niques). Now, we compute the dynamics of θ̃(t) in the

(W (x, t), X̃(t), θ̃) variables by inserting (16) into (29):

˙̃
θ(t) =

Pθ(t)

1 + ||Φ⊤(t)Φ(t)||2

[
− Φ⊤(t)Φ(t)θ̃(t)

− Φ⊤(t)T̃ (t)X̃(t) + Φ⊤(t)w̃(t)

]
.

(31)

Note that (27) and (31) are coupled with the PDEs of
theW (x, t) system at the right boundary x = 1 through
w1(x, t) and at the left boundary x = 0 through w2(0, t).
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However, theW (x, t) system in (17) is totally decoupled
from the ODE dynamics. This is because W (x, t) is the
error due to the unknown initial conditions of the PDE
plant {u(x, t), v(x, t)}. This estimation error is always
present independently from the ODE states and the pa-
rameters.

The observer gains p1(x), p2(x) and L(t) are designed
to guarantee the exponential convergence of the er-

ror system {E(x, t), X̃(t), θ̃(t)} in the
∣∣X̃∣∣2+∣∣θ̃∣∣2+

||E(., t)||2(L2([0,1]))2 norm. For this design, we first study

the stability of the decoupled W (x, t) system, then the
boundedness of the filters T (x, t) and R(x, t) and finally

the stability of the {W (x, t), X̃(t), θ̃(t)} system. After

these steps, the stability of the {E(x, t), X̃(t), θ̃(t)}
system is easily deduced from (16), as shown in the next
sections.

3.3 Stability of the W (x, t) system

The problem of finding the gains p1(x) and p2(x) that
stabilize the W (x, t) system is solved by [23]. We re-
call these results here, adapted to our framework. Us-
ing an invertible Volterra backstepping transformation,
W (x, t) is mapped into a stable target system Γ(x, t) =
(γ1(x, t), γ2(x, t))

T :

Γ(x, t) :


∂tγ1(x, t) + λ1(x)∂xγ1(x, t) = 0

∂tγ2(x, t)− λ2(x)∂xγ2(x, t) = 0

γ1(0, t) = qγ2(0, t)

γ2(1, t) = 0

(32)

The Γ(x, t) system is a cascade stable system. The PDE
in γ2(x, t) is decoupled from γ1(x, t) and has a zero
boundary condition at x = 1. γ2(x, t) converges to zero

after the transport time tF2 =
∫ 1

0
1

λ2(x)
dx is passed. Af-

ter the time tF2, γ1(x, t) has a zero boundary condition

at x = 0 and it takes a time tF1 =
∫ 1

0
1

λ1(x)
dx to con-

verge to zero. So the system Γ(x, t) converges to zero
(γ1 = γ2 = 0) in a finite-time equals to tF = tF1 + tF2.
One can also show, using a quadratic Lyapunov function

of the form V (t) =
∫ 1

0

(
q1γ

2
1(x, t)+ q2γ

2
2(x, t)

)
dx, q1 > 0

and q2 > 0, that the Γ(x, t) system is exponentially
stable in the ||Γ(., t)||2(L2([0,1]))2 norm. Therefore, Γ(x, t)

is exponentially stable in the L2 norm and its equilib-
rium (γ1 = γ2 = 0) is reached in a finite time equals to
tF . These stability characteristics are transferred to the
W (x, t) system by the invertibility of the backstepping
transformation. The backstepping transformations that

map W (x, t) into Γ(x, t) and vice-versa are [23]:

W (x, t) = Γ(x, t)−
∫ 1

x

P∗(x, ξ)Γ(ξ, t)dξ (33)

Γ(x, t) =W (x, t) +

∫ 1

x

R∗(x, ξ)W (ξ, t)dξ (34)

with

P∗(x, ξ) =

[
P 11
∗ (x, ξ) P 12

∗ (x, ξ)

P 21
∗ (x, ξ) P 22

∗ (x, ξ)

]

R∗(x, ξ) =

[
R11

∗ (x, ξ) R12
∗ (x, ξ)

R21
∗ (x, ξ) R22

∗ (x, ξ)

]
.

P∗(x, ξ) is called the direct backstepping kernel and
R∗(x, ξ) is called the inverse backstepping kernel.
Both kernels are defined on the triangular domain
L = {(x, ξ), 0 ≤ x ≤ ξ ≤ 1}. The equations of P∗(x, ξ)
and R∗(x, ξ) are defined in [23] (more precisely equa-
tions (67)-(74) for P∗(x, ξ) and equations (81)-(88) for
R∗(x, ξ) in [23]). The observer gains are derived from
the equations of P∗(x, ξ) as:

p1(x) = −λ1(1)P 11
∗ (x, 1),

p2(x) = −λ1(1)P 21
∗ (x, 1)

(35)

The couplings σ1(x), σ2(x) and q are encapsulated in
P∗(x, ξ), which is the base for calculating the observer
gains p1(x) and p2(x) in (35). The observer gains cancel
the effects of the couplings and allow the transforma-
tion from W (x, t) to Γ(x, t). Finally, the stability of the
W (x, t) system is summarized by the following theorem.

Theorem 1 ([23]) Consider the systemW (x, t) system
in (17) with initial conditions w0

1, w
0
2 in L2[0, 1] and with

observer gains (35). The equilibrium w1 ≡ w2 ≡ 0 is
exponentially stable in the L2 sense, and the equilibrium

is reached in finite time tF =
∫ 1

0

(
1

λ1(x)
+ 1

λ2(x)

)
dx.

3.4 Boundedness of the T (x, t) and the R(x, t) filters

Since the filters T (x, t) and R(x, t) have the same cou-
pling architecture, we first prove the boundedness of
T (x, t) (in the L2 sense), then the boundedness ofR(x, t)
follows exactly in the same way.

Lemma 1 The system T (x, t) is mapped by the R∗(x, ξ)
inverse backstepping transformation to the following tar-
get system

η(x, t) :


∂tη1(x, t) + λ1(x)∂xη1(x, t) = −η1(x, t)A(t)
∂tη2(x, t)− λ2(x)∂xη2(x, t) = −η2(x, t)A(t)
η1(0, t) = qη2(0, t)− C, η2(1, t) = 0

(36)
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with η1(x, t) and η2(x, t) : [ 0, 1] × [ 0,+∞) → R1×nX .

PROOF. We begin by writing the T (x, t) and the
η(x, t) systems in the index format, for all 1 ≤ i ≤ nX :

∂tT
i
1(x, t) + λ1(x)∂xT

i
1(x, t) = σ1(x)T

i
2(x, t)

−p1(x)T i
1(1, t)−

∑nX

j=1 T
j
1 (x, t)aji(t)

∂tT
i
2(x, t)− λ2(x)∂xT

i
2(x, t) = σ2(x)T

i
1(x, t)

−p2(x)T i
1(1, t)−

∑nX

j=1 T
j
2 (x, t)aji(t)

T i
1(0, t) = qT i

2(0, t)− ci, T i
2(1, t) = 0

(37)


∂tη

i
1(x, t) + λ1(x)∂xη

i
1(x, t) = −

∑nX

j=1 η
j
1(x, t)aji(t)

∂tη
i
2(x, t)− λ2(x)∂xη

i
2(x, t) = −

∑nX

j=1 η
j
2(x, t)aji(t)

ηi1(0, t) = qηi2(0, t)− ci, ηi2(1, t) = 0

(38)

The transformation that maps T i(x, t) into ηi(x, t) is

ηi1(x, t) = T i
1(x, t) +

∫ 1

x

R11
∗ (x, ξ)T i

1(ξ, t)dξ

+

∫ 1

x

R12
∗ (x, ξ)T i

2(ξ, t)dξ

(39)

ηi2(x, t) = T i
2(x, t) +

∫ 1

x

R21
∗ (x, ξ)T i

1(ξ, t)dξ

+

∫ 1

x

R22
∗ (x, ξ)T i

2(ξ, t)dξ

(40)

This transformation is obtained by differentiating (39)
and (40) with respect to time, replacing them in (37),
then integrating by parts to get

∂tη
i
1(x, t) = −λ1(x)∂xT i

1(x, t) + σ1(x)T
i
2(x, t)

−
nX∑
j=1

T j
1 (x, t)aji(t)− T i

1(1, t)

[
p1(x) + λ1(1)R

11
∗ (x, 1)

+

∫ 1

x

[
p1(ξ)R

11
∗ (x, ξ) + p2(ξ)R

12
∗ (x, ξ)

]
dξ

]
+ λ1(x)R

11
∗ (x, x)T i

1(x, t) +
(
σ1(x)− λ2(x)R

12
∗ (x, x)

)
T i
2(x, t)

+

∫ 1

x

[
λ

′

1(ξ)R
11
∗ (x, ξ) + λ1(ξ)∂ξR

11
∗ (x, ξ)

+ σ2(ξ)R
12
∗ (x, ξ)

]
T i
1(ξ, t)dξ −

∫ 1

x

[
λ

′

2(ξ)R
12
∗ (x, ξ)

+ λ2(ξ)∂ξR
12
∗ (x, ξ)− σ1(ξ)R

11
∗ (x, ξ)

]
T i
2(ξ, t)dξ

−
∫ x

1

nX∑
j=1

[
R11

∗ (x, ξ)T j
1 (ξ, t) +R12

∗ (x, ξ)T j
2 (ξ, t)

]
aji(t)dξ

(41)

∂tη
i
2(x, t) = λ2(x)∂xT

i
2(x, t) + σ2(x)T

i
1(x, t)

−
nX∑
j=1

T j
2 (x, t)aji(t)− T i

1(1, t)

[
p2(x) + λ1(1)R

21
∗ (x, 1)

+

∫ 1

x

[
p1(ξ)R

21
∗ (x, ξ) + p2(ξ)R

22
∗ (x, ξ)

]
dξ

]
+
(
λ1(x)R

21
∗ (x, x) + σ2(x)

)
T i
1(x, t)− λ2(x)R

22
∗ (x, x)T i

2(x, t)

+

∫ 1

x

[
λ

′

1(ξ)R
21
∗ (x, ξ) + λ1(ξ)∂ξR

21
∗ (x, ξ)

+ σ2(ξ)R
22
∗ (x, ξ)

]
T i
1(ξ, t)dξ −

∫ 1

x

[
λ

′

2(ξ)R
22
∗ (x, ξ)

+ λ2(ξ)∂ξR
22
∗ (x, ξ)− σ1(ξ)R

21
∗ (x, ξ)

]
T i
2(ξ, t)dξ

−
∫ x

1

nX∑
j=1

[
R21

∗ (x, ξ)T j
1 (ξ, t) +R22

∗ (x, ξ)T j
2 (ξ, t)

]
aji(t)dξ

(42)

Differentiating (39) and (40) with respect to space, then
substituting them in (38), we get

∂tη
i
1(x, t) = −λ1(x)

[
∂xT

i
1(x, t)−R11

∗ (x, x)T i
1(x, t)

−R12
∗ (x, x)T i

2(x, t) +

∫ 1

x

∂xR
11
∗ (x, ξ)T i

1(ξ, t)dξ

+

∫ 1

x

∂xR
12
∗ (x, ξ)T i

2(ξ, t)dξ

]
−

nX∑
j=1

T j
1 (x, t)aji(t)

−
∫ x

1

nX∑
j=1

[
R11

∗ (x, ξ)T j
1 (ξ, t) +R12

∗ (x, ξ)T j
2 (ξ, t)

]
aji(t)dξ

(43)

∂tη
i
2(x, t) = λ2(x)

[
∂xT

i
2(x, t)−R21

∗ (x, x)T i
1(x, t)

−R22
∗ (x, x)T i

2(x, t) +

∫ 1

x

∂xR
21
∗ (x, ξ)T i

1(ξ, t)dξ

+

∫ 1

x

∂xR
22
∗ (x, ξ)T i

2(ξ, t)dξ

]
−

nX∑
j=1

T j
2 (x, t)aji(t)

−
∫ x

1

nX∑
j=1

[
R21

∗ (x, ξ)T j
1 (ξ, t) +R22

∗ (x, ξ)T j
2 (ξ, t)

]
aji(t)dξ

(44)

By equalizing (41) to (43) and (42) to (44) and substi-
tuting the boundary conditions at x = 0, one directly
obtain the kernel equations (81)-(88) for R∗(x, ξ) in [23].
The terms multiplying T i

1(1, t) in (41) and (42) cancel
out using (35) and the relation between the direct kernel
P∗(x, ξ) and the inverse kernel R∗(x, ξ) given by:

P∗(x, ξ) = R∗(x, ξ)−
∫ ξ

x

R∗(x, y)P∗(y, ξ)dy (45)
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Since the η(x, t) system and the T (x, t) system have the
same boundedness properties by the invertibility of the
backstepping transformation (39)-(40), we study the L2

boundedness of the η(x, t) system in the L2 sense and
deduce the boundedness of the T (x, t) system. This is
inferred from the following Theorem.

Theorem 2 Consider the T (x, t) system in (18). IfA(t)
is bounded for all t, i.e. if there exist M > 0 such that
|aij(t)| ≤ M for all 1 ≤ i ≤ nX , 1 ≤ j ≤ nX , then
T (x, t) is bounded in the L2 sense.

PROOF. Consider the η(x, t) system in (36).We define
the following quadratic Lyapunov function

V1(t) =

∫ 1

0

[
η1(x, t)Q1e

−µxη⊤1 (x, t)

+ η2(x, t)Q2e
µxη⊤2 (x, t)

]
dx

(46)

which is the weighted L2 norm of η(x, t). Q1 and Q2 are
two positive definite matrices which are diagonal. µ > 0
is a strictly positive constant. Taking the time derivative
of (46) then substituting into (36) implies that:

V̇1(t) =

∫ 1

0

−λ1(x)
[
∂xη1(x, t)Q1e

−µxη⊤1 (x, t)

+ η1(x, t)Q1e
−µx∂xη

⊤
1 (x, t)

]
dx−

∫ 1

0

η1(x, t)

[
A(t)Q1e

−µx +Q1e
−µxA⊤(t)

]
η⊤1 (x, t)dx

+

∫ 1

0

λ2(x)

[
∂xη2(x, t)Q2e

µxη⊤2 (x, t)+

η2(x, t)Q2e
µx∂xη

⊤
2 (x, t)

]
dx−

∫ 1

0

η2(x, t)

[
A(t)Q2e

µx +Q2e
µxA⊤(t)

]
η⊤2 (x, t)dx

Integration by parts and substitution of the boundary
conditions of (36) gives:

V̇1(t) = −λ1(1)η1(1, t)Q1e
−µη⊤1 (1, t)

− λ2(0)η2(0, t)Q2η
⊤
2 (0, t)

+ λ1(0)
(
qη2(0, t)− C

)
Q1

(
qη⊤2 (0, t)− C⊤)

+

∫ 1

0

η1(x, t)

[
λ

′

1(x)Q1 − µλ1(x)Q1 −A(t)Q1

−Q1A
⊤(t)

]
e−µxη⊤1 (x, t)dx+

∫ 1

0

η2(x, t)

[
− λ

′

2(x)Q2

− µλ2(x)Q2 −A(t)Q2 −Q2A
⊤(t)

]
eµxη⊤2 (x, t)dx

(47)

As A(t) is bounded for all t and λ1(x), λ2(x) are suffi-
ciently smooth on [0, 1], then for a µ large enough, there
exists αη > 0 such that

λ
′

1(x)Q1 − µλ1(x)Q1 −A(t)Q1 −Q1A
⊤(t) ≤ −αηQ1

(48)

−λ
′

2(x)Q2 − µλ2(x)Q2 −A(t)Q2 −Q2A
⊤(t) ≤ −αηQ2

(49)

By applying Young’s inequality to the third term of (47),
and using (48)-(49), one obtains

V̇1(t) ≤ η2(0, t)

[
− λ2(0)Q2 + λ1(0)q(1 + q)Q1

]
η⊤2 (0, t)

+ (1 + q)λ1(0)CQ1C
⊤ − αηV1(t)

(50)

Now, choosing the diagonal positive matricesQ1 andQ2

such that

Q1 ≤ λ2(0)

λ1(0)q(1 + q)
Q2 (51)

to have the first term of (50) negative, we obtain

V̇1(t) ≤ −αηV1(t) + (1 + q)λ1(0)CQ1C
⊤ (52)

It follows from (52) that V1(t) is bounded. Since V1(t) is
the weighted L2 norm of η(x, t), then η(x, t) is bounded
in the L2 sense. Now by the invertibility of the backstep-
ping transformation (39)-(40), T (x, t) is bounded in the
L2 sense and the proof is complete.

Remark 1 The boundedness of theR(x, t) filters is done
in the same way. The first step is to set the suitable
target systems to decouple the system R(x, t) using the
backstepping transformation (39)-(40). Then we define
a quadratic Lyapunov function similar to (46) to obtain
the L2 boundedness.

3.5 Stability of the {W (x, t), X̃(t), θ̃(t)} system

In this section we give sufficient conditions that guaran-
tee the L2 stability of the {W (x, t), X̃(t), θ̃(t)} system.
This is the last step before concluding on the stability
of the {E(x, t), X̃(t), θ̃(t)} system. The static observer
gains p1(x) and p2(x) are calculated in (35). Now, we
give themethod for calculating the time varying observer
gain L(t).

We start by writing the ODE estimation error dynamics
X̃(t) in (27) and the parameter estimation error dynam-

ics θ̃(t) in (31) in the matrix form as[ ˙̃X(t)
˙̃
θ(t)

]
= Ac(t)

[
X̃(t)

θ̃(t)

]
+Bc(t)w̃(t) (53)

8



where:

Ac(t) =

 A(t) +K(t)T̃ (t) K(t)Φ(t) + Ψ(t)

− Pθ(t)Φ
⊤(t)T̃ (t)

1 + ||Φ⊤(t)Φ(t)||2
− Pθ(t)Φ

⊤(t)Φ(t)

1 + ||Φ⊤(t)Φ(t)||2

 ,
Bc(t) =

 −K(t)

Pθ(t)Φ
⊤(t)

1 + ||Φ⊤(t)Φ(t)||2


Notice that the PDE dynamics of W (x, t) in (17) in-
terfere with the ODEs through the matrix Bc(t), which
is multiplied by the output w̃(t) of the W (x, t) system.
This is interesting because the W (x, t) system is finite-
time converging by Theorem 1, i.e. w̃(t) is equal to zero
for t ≥ tF . After the total transport time tF , the PDE
and the ODE estimation errors are thus totally decou-
pled from each other. Using the filters design in (16)
along with the choice of the shape of the time vary-
ing observer gains p(x, t) = (py1

(x, t), py2
(x, t))⊤ and

r(x, t) = (ry1
(x, t), ry2

(x, t))⊤ in (22)-(24), the ODE dy-
namics (53) becomes a simple linear time varying system
with a state matrix Ac(t). The stability of the {W (x, t),

X̃(t), θ̃(t)} system is thus determined with respect to
the characteristics of the matrix Ac(t) after the time tF ,
as shown in the following theorem.

Theorem 3 Consider the system (17) and (53). If Φ(t)
is bounded and persistently exciting (PE), i.e. for all t ≥
tF there exist positive constants T0, c0 and c1 so that:

c0I ≤
∫ t+T0

t

Φ⊤(τ)Φ(τ)dτ ≤ c1I (54)

In addition, if there exist an observer gain L(t) ∈ RnX×1

and a bounded matrix PX(t) ∈ SnX×nX
+ such that, for all

t ≥ tF :

Z(t) ≤ −Q (55)

where Z(t) is a symmetric matrix with entities

Z11(t) = ṖX(t) +
(
A(t) +K(t)T̃ (t)

)⊤
PX(t)

+ PX(t)
(
A(t) +K(t)T̃ (t)

)
Z12(t) = PX(t)

(
K(t)Φ(t) + Ψ(t)

)
− T̃⊤(t)Φ(t)

1 + ||Φ⊤(t)Φ(t)||2

Z21(t) = Z⊤
12(t)

Z22(t) = −βP−1
θ (t)− Φ⊤(t)Φ(t)

1 + ||Φ⊤(t)Φ(t)||2

andQ is a predefined positive definite matrix. Then for all
t ≥ tF , the system {W (x, t), X̃(t), θ̃(t)} is exponentially

stable in the
∣∣X̃∣∣2+∣∣θ̃∣∣2+ ||W (., t)||2(L2([0,1]))2 norm.

PROOF. Define the Lyapunov function

V2(t) = X̃⊤(t)PX(t)X̃(t) + θ̃⊤(t)P−1
θ (t)θ̃(t)

+ ||W (., t)||2(L2([0,1]))2
(56)

where PX(t) is a positive definite matrix related to X̃(t)
and P−1

θ (t) is the inverse of Pθ(t) in (30). The authors
in [19] have shown that if the regressor Φ(t) is bounded
and persistently exciting i.e. if condition (54) is satisfied,
then P−1

θ (t) exists and it is positive definite and bounded

for all t ≥ 0. In this case, the dynamics of P−1
θ (t) are

calculated from Pθ(t) in (30) as

d

dt
P−1
θ (t) = −βP−1

θ (t) +
Φ⊤(t)Φ(t)

1 + ||Φ⊤(t)Φ(t)||2
(57)

Now we differentiate (56) with respect to time and then
substitute (53) and (57) to obtain

V̇2(t) = X̃⊤(t)

[
ṖX(t) +

(
A(t) +K(t)T̃ (t)

)⊤
PX(t)

+ PX(t)
(
A(t) +K(t)T̃ (t)

)]
X̃(t) + θ̃⊤(t)

[
− βP−1

θ (t)

− Φ⊤(t)Φ(t)

1 + ||Φ⊤(t)Φ(t)||2

]
θ̃(t) + X̃⊤(t)

[
PX(t)

(
K(t)Φ(t)

+ Ψ(t)
)
− T̃⊤(t)Φ(t)

1 + ||Φ⊤(t)Φ(t)||2

]
θ̃(t) + θ̃⊤(t)

[(
K(t)Φ(t)

+ Ψ(t)
)⊤
PX(t)− ΦT (t)T̃ (t)

1 + ||R⊤
1 (t)R1(t)||2

]
X̃(t)

− w̃⊤(t)K⊤(t)PX(t)X̃(t)− X̃⊤(t)PX(t)K(t)w̃(t)

+ w̃⊤(t)
Φ(t)

1 + ||Φ⊤(t)Φ(t)||2
θ̃(t)

+ θ̃⊤(t)
Φ⊤(t)

1 + ||Φ⊤(t)Φ(t)||2
w̃(t) +

d

dt
||W (., t)||2(L2([0,1]))2

(58)

We have from Theorem 1 that w̃(t) = 0 for t ≥ tF , then
(58) becomes, for t ≥ tF

V̇2(t) =

[
X̃(t)

θ̃(t)

]⊤ [
Z11(t) Z12(t)

Z21(t) Z22(t)

][
X̃(t)

θ̃(t)

]

+
d

dt
||W (., t)||2(L2([0,1]))2

(59)

If there exist Q positive definite such that (55) is satis-
fied, and since W (x, t) is exponentially decaying in the
L2 norm by Theorem 1, we have

V̇2(t) ≤ −

[
X̃(t)

θ̃(t)

]⊤

Q

[
X̃(t)

θ̃(t)

]
− αW ||W (., t)||2(L2([0,1]))2

(60)
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where αW > 0 is the rate of the exponential convergence
of the L2 norm of W (x, t). By (60), there exists α > 0

such that V̇2(t) ≤ −αV2(t) for all t ≥ tf . Since V2(t)

is the weighted L2 norm of the {W (x, t), X̃(t), θ̃(t)}
system, then for all t ≥ tF this system is exponentially

stable in the
∣∣X̃∣∣2+∣∣θ̃∣∣2+ ||W (., t)||2(L2([0,1]))2 norm and

the proof is complete.

Remark 2 Since Z(t) is a symmetric matrix, then there
are two necessary conditions for (55) to have feasible
solutions. The first one is that Z11(t) must be negative
definite (Z11(t) ≺ 0). Note that Z11(t) is the differen-

tial Lyapunov equation in the matrix A(t) + K(t)T̃ (t).
For Z11(t) ≺ 0 to be feasible, there must exist a pos-
itive definite matrix PX(t) such that Z11(t) ≺ 0. But

PX(t) can only exist if the matrix A(t) + K(t)T̃ (t) is
uniformly exponentially stable (UES). Any time-varying
state matrix which is 1) continuously differentiable, 2)
bounded, 3) slowly varying and 4) the real part of its
eigen-values is negative for all times is UES (see e.g.
Theorem 8.7 in [22]). For instance if we assume that

A(t)+K(t)T̃ (t) satisfies the first three conditions of The-
orem 8.7 in [22] in the interval of time [tF ,+∞), we
also require that the real part of its eigenvalues is nega-
tive on this interval. Since we do not assume any condi-
tions on the eigenvalues of A(t), it is the role of the ob-
server gainL(t) to make the real part of the eigenvalues of
A(t)−D(t)T2(0, t)+L(t)T1(1, t) negative. This depends
on the detectability of the pair (A(t), C). To see this, one
can notice from the system T (x, t) in (18) or from its

transform η(x, t) in (36) that T̃ (t) = [T1(1, t), T2(0, t)]
⊤

is a time-delayed version of the output matrix C. If C =
0, then for t ≥ tF , T (x, t) ≡ η(x, t) ≡ 0, which makes
Z11(t) ≺ 0 not feasible in the case where the ODE ma-
trix A(t) is not UES. This is what we mentioned early in
the beginning of the Section 2. A second necessary con-
dition for (55) is that Z22(t) has to be negative definite
(Z22(t) ≺ 0), which is the case from the definition of the
inverse matrix P−1

θ (t). Note that the persistency of ex-
citation (54) is satisfied if ϕ1(x, t), ϕ2(x, t) and ψ(t) are
persistently exciting (considering the definition of Φ(t)
along with (19), (20) and (21)).

We now state the stability results of the {E(x, t), X̃(t),

θ̃(t)} system.

Theorem 4 Under Theorems 1-3, the system {E(x, t),

X̃(t), θ̃(t)} is exponentially stable in the V (t) =∣∣X̃∣∣2+∣∣θ̃∣∣2+ ||E(., t)||2(L2([0,1]))2 norm for all t ≥ tF .

PROOF. This result is straightforward from (16) and
using the Theorems 1-3.

0 0.5 1

0.06
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0.1

0 20 40 60
0

5

10

Fig. 3. Unstable plant: observer gains evolution

4 Numerical Simulations (Unstable plant)

The goal of this section is to analyze the performance
of the adaptive observer (6)-(10) on an unstable plant.
Consider the following toy parameters of model (1)-(5):

λ1(x) = 0.6 + 0.1 sin(10x), U(t) = 1, θ1 = 1, θ2 = 5

λ2(x) = 0.4 + 0.1 sin(10x), V (t) = 1, θ3 = −5

σ1(x) = 0.3e0.9x, σ2(x) = 0.2e−0.9x, ψ(t) = cos(t)

ϕ1(x, t) = 1 + sin(10x)e−0.001t, A(t) = sin(t), C = 1

ϕ2(x, t) = 1 + cos(10x)e−0.001t, B(t) = 1, D(t) = −1

This system is unstable because the matrixA(t) = sin(t)
is not stable. We simulate the adaptive observer (6)-
(10) in several steps. The first step is to compute the
static observer gains p1(x) and p2(x) offline, by solv-
ing the kernel equations P∗(x, ξ) using the method of
successive approximations [18]. The main idea of this
method is to write the set of PDEs of P∗(x, ξ) in the
integral form using the method of characteristics. After-
wards, the integral equations are solved using recursion
up to an order of accuracy defined by the user. The gains
p1(x) = −λ(1)P 11

∗ (x, 1) and p2(x) = −λ1(1)P 21
∗ (x, 1)

are plotted on Figure 3. The second step is to compute
the filters T (x, t) andR(x, t). The dynamics of the filters
(18)-(21) are discretized using finite difference schemes
(Euler forward and backward schemes are used for space
discretization and the explicit scheme is used for time
discretization). The third step is to set the gains β and
L(t). β is the forgetting factor responsible for the speed
of convergence of the parameter estimations and it is
set to β = 0.1. The persistency of excitation condition
(54) depends on the values of ϕ1(x, t), ϕ2(x, t) and ψ(t).
One pratical way to verify this condition is to look into
the eigen values of the matrix Pθ(t) plotted on Figure 4.
The eigen values remain strictly positive and this indi-
cates that the regressor Φ(t) is persistently exciting for
the chosen toy values of ϕ1(x, t), ϕ2(x, t) and ψ(t).

The dynamic observer gain L(t) is calculated at each
time step to ensure that Z(t) in (55) is negative definite

for t ≥ tF =
∫ 1

0

(
1

λ1(x)
+ 1

λ2(x)

)
dx ≈ 4 s. This is done

in the following order: 1) use a pole placement method
to compute L(t) that guarantees the existence of PX(t)

10
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Fig. 4. Eigen values of the matrix Pθ(t) as a function of time.

that satisfies Z11(t) ≺ 0 and 2) verify that (55) is satis-
fied for a predefined value of Q. Condition (55) is satis-
fied for all t ≥ tf for a constant value of PX(t)=PX=0.5
and for Q(t)=0.67I4×4 where L(t) is calculated by lo-

cating the poles of A(t) +K(t)T̃ (t) at -2 for all t ≥ tF .
The values corresponding to L(t) are plotted on Fig-
ure 3. The placement starts after tF= 4 s and L(t) ex-
hibits an oscillatory behavior due to the dynamics of
A(t). The adaptive observer is started from the following

initial conditions: û0(x) = −4, v̂0(x) = −4, X̂(0) = −1,

θ̂1(0) = 4, θ̂2(0) = 10, θ̂3(0) = −13. The convergence
of the PDEs and the ODEs estimation errors are shown
on Figure 5 and 6, respectively. After tF=4 s, the esti-
mation errors start converging to zero after exhibiting
some oscillatory transients. The parameter estimations
are shown on Figure 6. The adaptation starts after 4 sec-
onds and the parameter estimations converge to their
true values after approximately 20 seconds. Finally, the

norm V (t) =
∣∣X̃∣∣2+∣∣θ̃∣∣2+ ||E(., t)||2(L2([0,1]))2 of Theo-

rem 4 is shown on Figure 7. It increases on the interval
of time [0, 4 s] due to the unstable dynamics A(t) and
the presence of no observer gain L(t)=0, but it decays
to zero in nearly 20 seconds after the injection of the
system measurements.

5 Application to cooling plants

Consider the refrigeration cycle that is depicted on Fig-
ure 1. The objective is to design an estimator that uses
measurements from the three temperature sensors to es-
timate the in-domain temperatures and the heat transfer
coefficient of the heat exchanger, and the temperature of
the heater. We begin by giving the mathematical equa-
tions that model the coupled exchanger-heater system.

Fig. 5. Unstable plant: PDE estimation errors.
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Fig. 6. Unstable plant: evolution of the estimated parameters
θ (left) and of X̃(t) and θ̃(t) (right).
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Fig. 7. Unstable plant: evolution of the Lyapunov function
V (t).

5.1 Model dynamics

We model the coupled exchanger-heater system based
on the following assumptions. For the heat exchanger,
we take the same assumptions taken by the authors in
[15, Section 4]. For the heater, we assume that the tem-
perature is uniform along the length and the heater is
well insulated from the surroundings. Based on these
assumptions, the coupled exchanger/heater system has

11



Table 1
Nomenclature of cooling plant parameters

Symbol Description Unit

ρ Density of water Kg/m3

ṁ Mass flow rate Kg/s

h Heat transfer coefficient (HTC) W/m2.K

AH Outer-tube cross-section area m2

AC Inner-tube cross-section area m2

D1 Inner tube diameter m

CP Specific heat of water at constant pressure J/Kg.K

V EH Volume of the heater m3

L Length of the heat exchanger m

the following dynamics (see [7] and [28]):

∂tT
H(x, t) + λ1∂xT

H(x, t) = −k1h(TH(x, t)− TC(x, t))
(61)

∂tT
C(x, t)− λ2∂xT

C(x, t) = k2h(T
H(x, t)− TC(x, t))

(62)

TH(0, t) = TEH(t) (63)

TC(1, t) = TC
in(t) (64)

ṪEH(t) = −a(TEH(t)− TC(0, t)) + bQh(t) (65)

with the following known parameters

λ1 =
ṁ

LAHρ
k1 =

πD1

AHρCp
a =

ṁ

ρV EH

λ2 =
ṁ

LACρ
k2 =

πD1

ACρCp
b =

1

CpρV EH

where ṁ is the mass flow rate, L is the heat exchanger
length, AH is the cross-sectional area of the heat ex-
changer outer tube, AC is the cross-sectional area of the
heat exchanger inner tube, D1 is the diameter of the in-
ner tube of the heat exchanger, ρ is the density of wa-
ter, Cp is the specific heat of water at constant pressure,
h is the heat transfer coefficient and V EH is the vol-
ume of the heater. The SI units for all the parameters
are given in Table 1. The coupled exchanger/heater sys-
tem has three states: the hot water temperature along
the length of the heat exchanger TH(x, t), the temper-
ature of the cold water along the length of the heat ex-
changer TC(x, t) and the temperature inside the heater
TEH(t). The evolution of the exchanger temperatures
is described by the PDE dynamics (61)-(62) and the
evolution of the heater temperature is described by the
ODE dynamics (65). The connection between the heat
exchanger and the heater is given by (63). The assump-
tion that the temperature along the heater is uniform
implies that the temperature at the hot inlet of the heat
exchanger is equal to the heater temperature. TC

in(t) is
the input cold temperature on the heat exchanger cold
transfer line. It is measured by sensor 1 (see Figure 1).
U(t) = Qh(t) is the heat generated by the electrical
equipment. It is measured in Watts (W) and considered

as known. The goal is to estimate TH(x, t), TC(x, t),
TEH(t) and h using the temperatures TC(1, t) = TC

in(t),
y∗2(t) = TC(0, t) and y∗1(t) = TH(1, t), which are mea-
sured by the temperature sensors 1, 2 and 3, respectively
(see Figure 1). We use numerical simulations to evaluate
the performance of the observer proposed in Section 3.
The first step is to simulate the model (61)-(65) to obtain
the fictitious measurements y∗1(t) and y

∗
2(t). Afterwards,

we reformulate the dynamics of the plant (61)-(65) as
the model (1)-(5) using a linearization of first order. The
third step is to evaluate the effect of this linearization
on the approximation of the original model. Finally, we
evaluate the performance of the designed adaptive ob-
server in predicting the states of the plant as well as the
heat transfer coefficient h. We begin by simulating a toy
example of the plant (61)-(65).

Remark 3 Notice that the model (61)-(65) is a simpli-
fied version of the model (1)-(5). The heater-heat ex-
changer system is a first step towards modeling the com-
plete cooling cycle of Figure 1. In such scenario, knowing
to handle control and estimation problems on a class of
systems where PDEs are connected to LTV ODEs is of
great interest. For instance, one component that is also
connected to the heat exchanger is the chiller (see Figure
1). The chiller contains several components (compressor,
condenser, evaporator and an expansion valve) and can
be modeled as a multi-variable LTV system.

5.2 Model simulation

Consider a concentric tube heat exchanger with length
L = 1m, inner tube cross-sectional area AC = 4.9087×
10−4 m2, outer tube cross-sectional area AH = 3.1416×
10−4 m2 and inner tube diameter D1 = 2.5 cm. The
heater volume is V EH = 0.0982m3. The refrigerant is
liquid water flowing with a mass flow rate ṁ = 0.2Kg/s
and has the following thermodynamical characteristics:
ρ = 1000Kg/m3 and Cp = 4200 J/Kg.K. The heat
transfer coefficient is h = 3000W/m2.K. To obtain in-
formative outputs that can be used later in the esti-
mation algorithm, we excite the plant with two inputs.
The first one is TC

in(t), kept constant at T
C
in(t) = 10 °C.

The second input is the heating power Qh(t), modu-
late by several increases and decreases to excite the sys-
tem frequencies as shown on Figure 8. The tempera-
tures at time t = 0 are assumed uniform and are set to:
TH
0 (x) = 20 °C, TC

0 (x) = 10 °C and TEH(0) = 20 °C.
The system is discretized in Matlab2019b using the fi-
nite difference scheme with a space step dx = 0.0204m
and a time step dt = 0.0351 s. We show the evolution
of the plant temperatures on Figure 9. The time plots
of Figure 9 show the evolution of the exchanger outputs
(y∗1(t) = TH(1, t) and y∗2(t) = TC(0, t)). The temper-
atures follow the input excitation Qh(t) before getting
stabilized when the heating powerQh(t) is held constant
after 50 minutes. Now, we proceed to the next step which
is reformulating (61)-(65) as (1)-(5) by linearization.
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Fig. 9. Evolution of the plant output temperatures.

5.3 Linearization

The main difficulty of estimating the states of (61)-
(65) and the heat transfer coefficient h is induced by
the parametric non-linearity h

(
TH(x, t) − TC(x, t)

)
.

The complexity of the problem is decreased by aug-
menting the vector of states of the plant (61)-(65) from
{TH(x, t), TC(x, t), TEH(t)} to {TH(x, t), TC(x, t), TEH(t), h}
with ḣ = 0. The idea is to calculate a nominal heat
transfer coefficient hN from physical correlations (see
for example [16]). The calculation is based on prior
knowledge of the system operating points (for exam-
ple, the range of temperatures, pressures, mass flow
rates, input heating power, etc.). The model (61)-(65)
is then used with hN and the nominal inputs TC

in,N and
Qh,N to determine the steady state operating point
{TH

N,S(x), T
C
N,S(x), T

EH
N,S , h

N} of the plant. We thus lin-

earize the plant (61)-(65) around the steady state with:



TH(x, t) ≈ TH
N,S(x) + ∆TH(x, t),

TC(x, t) ≈ TC
N,S(x) + ∆TC(x, t),

TEH(t) ≈ TEH
N,S +∆TEH(t),

h = hN +∆h,

TC
in(t) = TC

in,N +∆TC
in(t)

Qh(t) = Qh,N +∆Qh(t)

(66)

where ∆ denotes the first order variation, and we get the
dynamics of the linearized system:

∂t∆T
H(x, t) + λ1∂x∆T

H(x, t) = −k1hN
(
∆TH(x, t)

−∆TC(x, t)
)
− k1

(
TH
N,S(x)− TC

N,S(x)
)
∆h

(67)

∂t∆T
C(x, t)− λ2∂x∆T

C(x, t) = k2h
N
(
∆TH(x, t)

−∆TC(x, t)
)
+ k2

(
TH
N,S(x)− TC

N,S(x)
)
∆h

(68)

∆TH(0, t) = ∆TEH(t) (69)

∆TC(1, t) = ∆TC
in(t) (70)

∆TEH(t) = −a
(
∆TEH(t)−∆TC(0, t)

)
+ b∆Qh(t)

(71)

The plant model (61)-(65) is compared with the lin-
earized model (66)-(71) as follows. The simulation of the
plant model is the same as in Section 5.2 with the same
parameters h = 3000W/m2.K and with the same in-
puts. For the linearized model, we choose different nom-
inal points for hN = {500, 1500, 2500} and we simulate
(67)-(71) with the linearized inputs ∆TC

in(t) = 0 and
∆Qh(t) = Qh(t) − Qh,N where Qh(t) is the heating
power plotted on Figure 8 and Qh,N = 16.5KW is the
nominal heating input. The initial conditions for (67)-
(71) are calculated from (66) and we plot on Figure 10
the relative linearization errors in (%):

ϵH(t) =

∫ 1

0
|TH(x, t)− TH

l (x, t)|dx∫ 1

0
TH
N,S(x)dx

× 100 (72)

ϵC(t) =

∫ 1

0
|TC(x, t)− TC

l (x, t)|dx∫ 1

0
TC
N,S(x)dx

× 100 (73)

ϵEH(t) =
|TEH(t)− TEH

l (t)|
TEH
N,S

× 100 (74)

the subscript l denotes the linearized model (66)-
(71). As expected, we observe that the linearization
error is smaller when the nominal model is chosen
close to the plant model (i.e. when hN is chosen near
to h = 3000W/m2.K). The black lines correspond-
ing to hN = 2500W/m2.K are below the orange and
blue lines corresponding to hN = 1500W/m2.K and
hN = 500W/m2.K, respectively. It is also interesting
to notice that the relative error in all the cases is less
than 13%, suggesting that the parametric non-linearity
(h
(
TH(x, t) − TC(x, t)

)
is not significantly strong. The

linearized model (66)-(71) is a good approximation for
the plant in the ranges of interest, and we can use it to
design an adaptive observer for the plant (61)-(65).
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Fig. 10. Evolution of the relative linearization errors with
time.

5.4 Observer design

We begin by reformulating (67)-(71) as (1)-(5) by defin-
ing two PDE states u(x, t) and v(x, t) such as

∆TH(x, t) = e

−k1hN

λ1
x

u(x, t) (75)

∆TC(x, t) = e

k2h
N

λ2
x

v(x, t) (76)

∆TEH(t) = X(t) (77)

Replacing (75)-(77) in (67)-(71) one obtains

∂tu(x, t) + λ1∂xu(x, t) = σ1(x)v(x, t) + ϕ1(x)θ (78)

∂tv(x, t)− λ2∂xv(x, t) = σ2(x)u(x, t) + ϕ2(x)θ (79)

u(0, t) = X(t) (80)

v(1, t) = V (t) (81)

Ẋ(t) = −aX(t) + bU(t) + av(0, t) (82)

where σ1(x) = k1h
Ne

[
k1hN

λ1
+

k2hN

λ2

]
x,

σ2(x) = k2h
Ne−

[
k1hN

λ1
+

k2hN

λ2

]
x,

ϕ1(x) = −k1e
k1hN

λ1
x(TH

N,S(x) − TC
N,S(x)) , ϕ2(x) =

−k2e
−k2hN

λ2
x(TH

N,S(x) − TC
N,S(x)). θ = ∆h, V (t) =

∆TC
in(t) and U(t) = ∆Qh(t). Notice that (78)-(82) is a

special case of the generalized plant (1)-(5). Our plan
is to design an adaptive boundary observer for (78)-
(82) using the theory developed in Section 3. Once the

estimates û(x, t), v̂(x, t), X̂(t) and θ̂(t) are obtained,

we use (75)-(77) to calculate the estimates ˆ∆TH(x, t),
ˆ∆TC(x, t), ˆ∆TEH(t) and ∆̂h(t). Then (66) gives the

temperature estimates T̂H(x, t), T̂C(x, t), T̂EH(t) and

an estimate for the heat transfer coefficient ĥ(t). We
start with the estimator of (78)-(82). The system (78)-
(82) has the following measurements:

y1(t) = e
k1hN

λ1

(
y∗1(t)− TH

N,S(1)
)

(83)

y2(t) = y∗2(t)− TC
N,S(0) (84)

The over-parameterization is removed by fixing θ1 =
θ2 = θ and θ3 = 0, and as a consequence the number of
necessary swapping filters of the parameters drops from
six to only two. The system in T (x, t) remains the same
but R(x, t) is simplified as:

∂tR1(x, t) + λ1(x)∂xR1(x, t) = σ1(x)R2(x, t)

−p1(x)R1(1, t)− ϕ1(x)

∂tR2(x, t)− λ2(x)∂xR2(x, t) = σ2(x)R1(x, t)

−p2(x)R1(1, t)− ϕ2(x)

R1(0, t) = qR2(0, t)

R2(1, t) = 0

(85)

θ̂(t) is calculated using the adaptive law (29) with Φ(t) =
[R1(1, t), R2(0, t)]

⊤. No change occurs on the calculation
of the static observer gains p1(x) and p2(x) in (35) as
well as on the calculation of L(t) from condition (55). To
evaluate the performance of the observer, we choose an
under-estimated nominal heat transfer coefficient hN =
500W/m2.K and we keep the real heat transfer coeffi-
cient at h = 3000W/m2.K. We start by computing the
observer gains p1(x), p2(x) and L(t). The results are
shown on Figure 11. The first two upper plots correspond
to the static observer gains p1(x) and p2(x) with q = 0.5.
The second left plot of Figure 11 shows the evolution
of Pθ(t) in (30) as a function of time. To obtain Pθ(t),
one should calculate the regressor Φ(t) by solving (85).
The latter is solved in Matlab using a finite difference
scheme with space step dx = 0.0204m and time step
dt = 0.0351 s. We also fix the forgetting factor β = 0.01.
We see that Pθ(t) remains bounded and positive for all
t ≥ 0. This means that the regressor Φ(t) is persistently
exciting and condition (54) is satisfied. The fourth plot
of Figure 11 shows the observer gain L(t) as a function
of time. Recall that L(t) is chosen such that (55) re-
mains satisfied for all t ≥ tF . We have chosen L(t) such

that the pole −a+K(t)T̃ (t) is at -0.5. Increasing or de-
creasing the value of this pole increases or decreases the
speed of convergence of the ODE state X(t). Since the
ODE matrix A(t) = A = −a is constant, the observer
gain L(t) quickly stabilizes at L(t) = 0.496 for t ≥ tF as
shown on Figure 11. Note that condition (55) is satisfied
for a constant value of PX(t) = PX = 1 for all t ≥ tF .
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Fig. 11. Adaptive observer gains.

Fig. 12. EH(x, t) = TH(x, t) − T̂H(x, t) on the left plot.

EC(x, t) = TC(x, t)− T̂C(x, t) on the right plot.

Figure 12 shows the estimation error of the temperature
along the length of the exchanger. We can see that the
observer succeeds in estimating the hot and the cold tem-
peratures after a small overshoot in the beginning. The
left plot of Figure 13 shows the estimation of the heater
temperature. The observer estimates the temperature of
the heater with high accuracy after exhibiting a small
overshoot in the beginning. The right plot of Figure 11
shows the estimation of the heat transfer coefficient h.
The estimator is initialized at the nominal value hN =
500W/m2.K. It converges towards the real heat trans-
fer coefficient h = 3000W/m2.K after approximately 90
minutes. Note that the convergence of h is slow. If one
try to increase β, the convergence speed will not be af-
fected. This is due to the rapid stabilization of the regres-
sor Φ(t). Recall that Φ(t) is constructed from the steady
state temperatures (TH

N,S(x), T
C
N,S) in ϕ1(x) and ϕ2(x)

using (85). The linearization of the system (61)-(65)
around a dynamic trajectory (TH

N,S(x, t), T
C
N,S(x, t)), as

in [15, Section 4], introduces more dynamics in Φ(t) and
helps in increasing the convergence rate by increasing β.
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Fig. 13. Estimation of the heater temperature (left plot) and
estimation of the HTC (right plot).
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Fig. 14. E(t) as a function of time.

Figure 14 shows the evolution of the L2 norm of the
estimation error given by

E(t) =

(∫ 1

0

∣∣TH(x, t)− T̂H(x, t)
∣∣2

+ |TC(x, t)− T̂C(x, t)
∣∣2dx

+
∣∣TEH(t)− T̂EH(t)

∣∣2 + ∣∣h− ĥ(t)
∣∣2)1/2

(86)

E(t) is stabilizing at zero after exhibiting some transients
due to the observer initial conditions. The observer suc-
ceeds in estimating every temperature along the length
of the exchanger as well as the heater temperature and
the heat transfer coefficient h.

6 Conclusion

In this paper, we have solved the problem of estimat-
ing the temperatures and the HTC of a coupled heat
exchanger-heater system. The estimation problem is for-
mulated on a more general class of systems with coupled
hyperbolic PDEs and LTV ODEs. The observer design
is based on swapping design theory, backstepping trans-
formation theory, parameter estimation theory and the
Lyapunov theory for stability analysis. The performance
of the observer is first evaluated successfully in numer-
ical simulations for an unstable plant. Considering the
cooling plant, simulations show that the observer with
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only three sensor inputs is able to estimate the tempera-
tures inside the exchanger as well as the HTC. A directly
related future topic is the experimental validation of the
observer, which would allow to compare the quality of
the temperature estimations of the observer with three
sensors to the observer with four sensors developed by
[15]. Another interesting topic is to solve the problem of
estimating the HTC and the temperature states without
the linearization step in Section 5.3. It is also interest-
ing to consider the change of phase that could occur in
the heat exchanger. This will introduce nonlinearites to
the system along with additional dynamics to account
for the multiple phases.
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