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Real space theory of quantum mechanics: application to

Copenhagen interpretation of quantum mechanics states that the wave function is not a real object, opposed to Schrödinger's electron cloud idea. Roger Boudet's theory shown that it is possible to represent electromagnetic radiation from a single electronic transition via the classical electromagnetism and the quantum transition currents between states, based on single electron (Schrödinger) wave function. This mathematically consistent theory can be seen as a potential concurrent to QED with accurate results for spontaneous emission coefficient or Lamb shifts but above all: it describes the photon electromagnetic field as we can observe it in laboratory. We want to extend this idea to multi-electronic system using 3D wave functions to describe electrons in atoms. Using the method of Frank Rioux based on variational principle and the electron cloud model, we will show that we can find equivalent result to Hartree-Fock theory, at least for the five first atoms, and in a much simpler way.

Multi-electronic systems are described by a multi-electronic wave function (of 3 N dimensions, where N is the number of electrons) and a single Hamiltonian, like for example in the famous Hartree-Fock theory. This last method is computationally and conceptually tedious. Due to Slater determinants, the computational effort, even for the Lithium atom, starts to be really hard. The second issue is that the concept of multi-electronic wave function is not physical (Copenhagen interpretation): it does not represent the real 3D space but probabilistic subspaces. But in real life, we see 3D fields (lights, electron beams in microscope and so on), so this abstract description, whatever its degree of accuracy, is not formulated according to our mode of observation. In Boudet's work on mono-electronic radiation [START_REF] Boudet | On the relativistic calculation of spontaneous emission[END_REF][START_REF] Boudet | Relativistic transitions in the hydrogenic atoms[END_REF][START_REF] Boudet | Quantum mechanics in the geometry of space-time[END_REF], he showed that phenomena like spontaneous emission (see also [START_REF] Loiselet | Derivation of einstein's spontaneous emission coefficient with schrödinger equation and classical electromagnetism[END_REF]) can be described by the mean of probability transition current: a quantity based on the single electron wave function and which leads to the single photon electromagnetic field. As it is the case in density functional theory (DFT) we want to describe electrons by individual wave functions (seen as Schrödinger original idea: electron clouds) and considered it as a real physical quantity in the 3D space instead of the 3 Ndimensional abstract sub-spaces. In Rioux's paper [START_REF] Rioux | Atomic variational calculations: Hydrogen to boron[END_REF], an enormous simplification of ground state energy analytical computations from Hydrogen up to Boron has been successively made with only three Hydrogen wave functions using a single parameter fitted with variational principle. After a lot of attempts, we arrived at the same energy equation of Rioux but using 3D wave functions only.

2 History: Hartree-Fock theory

For multi-electronic bounded systems (> 1 electron) like atoms or molecules, we used to apply the Hartree-Fock theory (and now DFT). For a single atom of Z protons, considered as pointlike particles centered at the origin, and N electrons, it consists of a Coulomb Hamiltonian H of the whole system defined by (here non-relativistic, assuming spin-orbit and other effects can be treated as perturbations):

H = N i=1   - 2 2m e ∆ ri - Zq 2 4π 0 r i + 1 2 q 2 4π 0 j =i 1 r i -r j   (1) 
in the Born-Oppenheimer approximation (i.e protons are too heavy to move). Then a multielectronic 3N-dimensional scalar wave function Ψ(r 1 , ..., r N ) must obey to the eigenvalue equation:

HΨ(r 1 , ..., r N ) = EΨ(r 1 , ..., r N ) (2) 
with E the total energy of the atom. As a consequence of the Pauli exclusion principle, the multi-electronic wave function must be anti-symmetric by an odd exchange of coordinates and to do so this quantity should be approximated by a single Slater determinant as:

Ψ(r 1 , ..., r j ) 1 √ N ! Φ 1 (r 1 ) Φ 2 (r 1 ) ... Φ N (r 1 ) Φ 1 (r 2 ) Φ 2 (r 2 ) ... Φ N (r 2 ) ... ... ... ... Φ 1 (r N ) Φ 2 (r N ) ... Φ N (r N ) (3) 
with Φ i (r j ) being the wave function of electron i at position r j . The equation ( 2) is almost impossible to solve even for N = 2, so the functions Φ i (r j ) are approximated by parameters orbitals (like Slater's or Gaussian's orbitals). Then the energy E is minimized with respect to these parameters (variational principle) to find the atom ground state energy. The energy is provided by the N dimensional integral:

E = d 3 r 1 ... d 3 r N Ψ * (r 1 , ..., r N ) HΨ(r 1 , ..., r N ) (4) 
that gives explicitly the nightmarish expression:

E = 1 N ! d 3 r 1 ... d 3 r N Φ 1 (r 1 ) Φ 2 (r 1 ) ... Φ N (r 1 ) Φ 1 (r 2 ) Φ 2 (r 2 ) ... Φ N (r 2 ) ... ... ... ... Φ 1 (r N ) Φ 2 (r N ) ... Φ N (r N ) * H Φ 1 (r 1 ) Φ 2 (r 1 ) ... Φ N (r 1 ) Φ 1 (r 2 ) Φ 2 (r 2 ) ... Φ N (r 2 ) ... ... ... ... Φ 1 (r N ) Φ 2 (r N ) ... Φ N (r N )
(5) with * means complex conjugate and that should be minimized with respect to the Φ i (r j )'s parameters.

3 Real 3D space quantum mechanics theory

Assumptions

In this model, we will not take into account the Copenhagen interpretation of quantum mechanics but based on Schrödinger's original idea on wave mechanics we state that:

• Each electron is modeled by a scalar wave function (non-relativistic approximation) of the real space variable r, so it does not have a "position" (i.e r 1 for electron 1, r 2 for electron 2 and so on) because it is a field (like a cloud with undefined boundaries) and not a point-like object with a probability to be somewhere in space (see figure 1)

• The modulus squared of the wave function Ψ(r) of an electron is its matter distribution, with the normalization condition:

Ψ|Ψ = d 3 r|Ψ(r)| 2 = 1
An electron near a positively charged nucleus can be seen also as a stationary wave (and a free electron as a traveling wave), this was the starting idea of Schrödinger basically. We illustrate, as we can, this idea on figure 1. 

Electronic atomic Hamiltonian

Let us define an atom with Z protons, point-like particles centered at the origin, and N electrons. Each electron i has a scalar wave function Ψ i (r), with r the 3D space coordinates, that obeys the stationary Schrödinger equation (non-relativistic approximation):

H i Ψ i (r) = E i Ψ i (r) (6) 
with E i the energy of electron i. We write the Hamiltonian in the Born-Oppenheimer approximation as:

H i (r) = - 2 2m e ∆ r - Zq 2 4π 0 r + j =i V i,j (r) (7) 
with the first term is kinetic energy, second term the protons attraction and the last one the electron-electron repulsion. We provide details on this term in appendix A, its value is defined as:

V i,j = q 2 8π 0 d 3 r |Ψ j (r )| 2 r -r (8) 
so the one electron Hamiltonian is written explicitly as:

H i = - 2 2m e ∆ - Zq 2 4π 0 r + q 2 8π 0 j =i d 3 r |Ψ j (r )| 2 r -r (9) 
This Hamiltonian is almost the same as the one of Hartree equation except that there is here a one-half factor in front of the electron repulsive term.

Atomic units

We use the atomic units, so we have:

2 m e ≡ 1 (10) 
q 2 4π 0 ≡ 1 (11) 
then energies are expressed in Hartree and lengths in Bohr radius. The Hamiltonian is now written h i as:

h i = - ∆ 2 - Z r + 1 2 j =i d 3 r |Ψ j (r )| 2 r -r (12) 
We need now to solve for each electron the following coupled eigenvalue equation:

h i Ψ i = i Ψ i ( 13 
)
with i the energy of electron i expressed in Hartree.

Atomic total energy

In this model the atomic total energy A is simply defined as:

A = N i=1 i (14) 
The ground state of the atom is obtained when this quantity is minimal, by definition.

4 Central field and spherical harmonics (CFSH) approximation

Central field approximation

Because the equations (13) are too difficult to solve (except for N = 1: the Hydrogen case), we can first make the central-field approximation exactly like we do in Hartree-Fock theory. So each wave function can be approximated in spherical coordinates by:

Ψ i (r) R i (r)f i (θ, φ) (15) 
So in this way the Hamiltonian can be written as:

h i = - ∆ 2 - Z r + 1 2 j =i +∞ 0 r 2 dr 4π dΩ |R j (r )| 2 |f i (Ω )| 2 r -r (16) 
with Ω = (θ, φ) and dΩ = sin θdθdφ (0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π). To simplify this we know that we can use the Laplace expansion to expand 1/ rr into separate variables (r, θ, φ) and (r , θ , φ ):

1 r -r = ∞ l=0 m=l m=-l (-1) m 4π 2l + 1 r l < r l+1 > Y -m l (θ, φ)Y m l (θ , φ ) (17) 
with r < = min(r, r ) and r > = max(r, r ). The equations (13) are still difficult to solve because they depend on (θ, φ) due to the electron-electron potential: it will be very convenient if f i (θ, φ) would be spherical harmonics in order to reduce angular part to tabulated spherical harmonics integrals.

Spherical harmonics approximation

In this approximation we state that:

f i (θ, φ) Y mi li (θ, φ) (18) 
with Y mi li (θ, φ) the spherical harmonics of angular momentum number l i and magnetic number m i . Using this property we can average the Hamiltonian h i by:

h i = dΩY mi * li (Ω) h i Y mi li (Ω) (19) 
In this way, and using spherical harmonics orthogonality relation, the equations (13) become radial equations:

h i R i (r) = i R i (r) (20) 
Thanks to the spherical harmonics, eigenfunctions of the angular Laplace spherical operator ∆ θ,φ , the Hamiltonian is written as:

h i = - ∆ r 2 + l i (l i + 1) 2r 2 - Z r + 1 2 j =i +∞ 0 r 2 dr 4π dΩ |R j (r )| 2 |f i (Ω )| 2 r -r (21) 
and its averaged angular value is:

h i = - ∆ r 2 + l i (l i + 1) 2r 2 - Z r + 1 2 j =i v i,j (22) 
Using the Laplace expansion and the Gaunt coefficients notation for the spherical harmonics integrals, we obtain the angular-averaged electron-electron potential:

v i,j = j =i 2min(li,lj ) l=0 4π 2l + 1 G -mj mj 0 lj lj l G -mimi0 lilil   1 r l+1 r 0 r 2+l |R j (r )| 2 dr + r l +∞ r r 1-l |R j (r )| 2 dr   (23) with the Gaunt coefficients G m1m2m3 l1l2l3
defined in appendix B. We have N coupled equations (20) to solve, each of them have theoretically an infinite solution of eigenfunction (like the Hydrogen). For the purpose of this document, we will focus only on the ground state energies and ground state wave functions.

Variational principle to find the ground state energy

Because equations (20) are still very difficult to solve, we will use the variational principle to get the approximate ground state. For this, we need to approach the (normalized) radial wave function R i (r) by a set of functions that depend of parameters noted a j and minimize the total energy with respect to these parameters. This is exactly like in the Hartree-Fock theory. We recall that in the CFSH approximation, the atomic total energy is given by:

A = N i=1 i N i=1 R i | h i |R i = N i=1 +∞ 0 r 2 R * i (r) h i R i (r)dr (24) 
4.4 Finding ground state: use of the Pauli exclusion principle

To find the ground state, as in the Hartree-Fock model, we stay in the electron shell configuration of the atom. According to Pauli exclusion principle, two electrons cannot have the same state i.e same l i , m i , m si quantum numbers (m si = ±1/2, spin magnetic number) and same R i (r), radial wave function.

5 Application: ground state of H, He, Li, Be and B atoms in the CFSH approximation

Hamiltonian in 1s x 2s y configuration

For atoms from Hydrogen up to Beryllium we have in the ground state l i = l j = m j = m i = 0, i.e zero angular momentum. Knowing that, there is only one Gaunt coefficient which is not zero:

G 000 000 = 1 √ 4π (25) 
and we have only the l = 0 term in the potential (23). Then the Hamiltonian become:

h i = - ∆ r 2 - Z r + 1 2 j =i   1 r r 0 r 2 |R j (r )| 2 dr + +∞ r r |R j (r )| 2 dr   (26) 
Still the associated coupled eigenvalue equations do not have closed form according to our knowledge. We will use only Hydrogen radial wave functions with free parameters and the same notation that in Rioux's paper [START_REF] Rioux | Atomic variational calculations: Hydrogen to boron[END_REF]:

R 1s (r) = 2a 3/2 1 e -a1r (27) 
R 2s (r) = 1 2 √ 2 a 3/2 2 e -a2r/2 (2 -a 2 r) (28) 
with a 1 and a 2 free parameters to adjust to have the minimal total energy and the fulfilled radial normalization condition:

+∞ 0 r 2 R 1s (r) 2 dr = +∞ 0 r 2 R 2s (r) 2 dr = 1 (29) 
In the following, experimental values have been taken from N.I.S.T database [START_REF]NIST atomic spectra database[END_REF].

Hydrogen 1s 1

For hydrogen we have one 1s electron and the Hamiltonian is simply:

h 1 = - ∆ r 2 - Z r (30) 
So the energy is defined by:

H = T 1s 2 -ZN 1s (31) 
with (details in appendix C):

T 1s = -R 1s | ∆ r |R 1s = a 2 1 ( 32 
)
N 1s = R 1s | 1 r |R 1s = a 1 (33) 
So we have:

H = a 2 1 2 -Za 1 (34)
The minimum energy is obtained for ∂ a1 H = 0 that gives a 1 and the ground state energy (in Hartree):

a 1 = Z (35) H = -Z 2 /2 = -0, 5 (36) 
With Z = 1 we find -0,5 E h ( -13, 6 eV), which is exactly the Hydrogen ground state.

Helium 1s 2

Now we have two 1s electrons assuming having the same wave function R 1s so the same Hamiltonian:

h 1 = h 2 = - ∆ r 2 - Z r + 1 2   1 r r 0 r 2 |R 1s (r )| 2 dr + +∞ r r |R 1s (r )| 2 dr   (37) 
The total energy is given in compact notation (same that Rioux [START_REF] Rioux | Atomic variational calculations: Hydrogen to boron[END_REF]):

He = T 1s -2ZN 1s + V 1s1s (38) 
with the new term V 1s1s defined and given by (details in appendix C):

V 1s1s = +∞ 0 r 2 R 1s (r)   1 r r 0 r 2 |R 1s (r )| 2 dr + +∞ r r |R 1s (r )| 2 dr   R 1s (r)dr = 5 8 a 1 ( 39 
)
So we have:

He = a 2 1 -2Za 1 + 5 8 a 1 = a 1 a 1 + 5 8 -2Z (40) 
The minimum energy is reached at (∂ a1 He = 0):

a 1 = Z - 5 16 (41)
exactly like in the the Hylleraas approximation of Helium and its value is (Z = 2):

He = -Z - 5 16 2 -2, 85 (42) 
so we find -2,85 E h instead of the experimental value of -2,90 E h which is very close (error of 1, 7%).

Remark:

According to this theory, the right energy (still in the CFSH approximation), like the Hydrogen case, could be calculated if only we can solve exactly for the smallest eigenvalue (i.e He /2) the following equation for the radial wave function R(r):

  - ∆ r 2 - Z r + 1 2   1 r r 0 r 2 |R(r )| 2 dr + +∞ r r |R(r )| 2 dr     R(r) = He 2 R(r) (43) 
But as far as we know, this equation, radial Schrödinger-Newton type with an additional -Z/r Coulomb potential, does not have yet a closed form solution [START_REF] Tod | An analytical approach to the schrödinger-newton equations[END_REF][START_REF] Moroz | Spherically-symmetric solutions of the schrödinger-newton equations[END_REF] but interesting attempts have been made [START_REF] Bougoffa | New explicit and approximate solutions of the newton-schrödinger system[END_REF].

Lithium 1s 2 2s 1

For the Lithium, according to Pauli exclusion principle, we jump to 2s state for the third electron, the Hamiltonians are:

h 1 = h 2 = - ∆ r 2 - Z r + 1 2   1 r r 0 r 2 (|R 1s (r )| 2 + |R 2s (r )| 2 )dr + +∞ r r (|R 1s (r )| 2 + |R 2s (r )| 2 )dr   (44) h 3 = - ∆ r 2 - Z r +   1 r r 0 r 2 |R 1s (r )| 2 dr + +∞ r r |R 1s (r )| 2 dr   (45) 
So we have for the total ground state energy:

Li = He + T 2s 2 -ZN 2s + V 1s2s + V 2s1s = He + T 2s 2 -ZN 2s + 2V 1s2s (46) 
with V 1s2s = V 2s1s (order of integration does not matter) defined by:

V 1s2s = +∞ 0 r 2 R 1s (r)   1 r r 0 r 2 |R 2s (r )| 2 dr + +∞ r r |R 2s (r )| 2 dr   R 1s (r)dr (47) 
The values of the integrals are (details in appendix C):

N 2s = R 2s | 1 r |R 2s = a 2 4 (48) 
T 2s = -R 2s | ∆ r |R 2s = a 2 2 4 (49) 
V 1s2s = a 1 a 2 a 4 2 + 10a 1 a 3 2 + 12a 2 1 a 2 2 + 20a 3 1 a 2 + 8a 4 1 a 5 2 + 10a 1 a 4 2 + 40a 2 1 a 3 2 + 80a 3 1 a 2 2 + 80a 4 1 a 2 + 32a 5 1 (50) 
Because of the difficult expression of V 1s2s we use a numerical conjugate gradient minimization method to find the ground state and the values of (a 1 , a 2 ) (with Z = 3):

Li -7, 39 (51) 
(a 1 ; a 2 ) (2, 68; 1, 37) (52) 
Which is very close to experimental data (-7,46 E h ) with 0, 9% of error.

Beryllium 1s 2 2s 2

We add an electron on 2s state. The Hamiltonians are:

h 1 = h 2 = - ∆ r 2 - Z r + 1 2   1 r r 0 r 2 (|R 1s (r )| 2 + 2|R 2s (r )| 2 )dr + +∞ r r (|R 1s (r )| 2 + 2|R 2s (r )| 2 )dr   (53) 
h 3 = h 4 = - ∆ r 2 - Z r + 1 2   1 r r 0 r 2 (2|R 1s (r )| 2 + |R 2s (r )| 2 )dr + +∞ r r (2|R 1s (r )| 2 + |R 2s (r )| 2 )dr   (54) 
The total energy is now:

Be = Li + 2V 1s2s + V 2s2s + T 2s 2 -ZN 2s (55) 
with the new term:

V 2s2s = +∞ 0 r 2 R 2s (r)   1 r r 0 r 2 |R 2s (r )| 2 dr + +∞ r r |R 2s (r )| 2 dr   R 2s (r)dr = 77 512 a 2 (56) 
With the same numerical minimization method we find (Z = 4):

Be -14, 49 (57) 
(a 1 ; a 2 ) (3, 66; 2, 10)

with an experimental value of -14, 698 E h , i.e an error of 1, 4%, which is still a very good approximation.

Boron 1s 2 2s 2 2p 1

For Boron we have:

l 1 = l 2 = l 3 = l 4 = m 1 = m 2 = m 3 = m 4 = 0 (59) 
l 5 = 1 (60) 
m 5 = 0 (61) 
where we choose m 5 = 0 but ±1 value does not change the total energy. So we add an electron in 2p state, knowing that the Gaunt coefficient:

G 000 110 = 1 √ 4π (62) 
the Hamiltonians are: 

h 1 = h 2 = - ∆ r 2 - Z r + 1 2   1 r r 0 r 2 (|R 1s (r )| 2 + 2|R 2s (r )| 2 + |R 2p (r )| 2 )dr   (63) + 1 2   +∞ r r (|R 1s (r )| 2 + 2|R 2s (r )| 2 + |R 2p (r )| 2 )dr   (64) 
h 3 = h 4 = - ∆ r 2 - Z r + 1 2   1 r r 0 r 2 (2|R 1s (r )| 2 + |R 2s (r )| 2 + |R 2p (r )| 2 )dr   (65) + 1 2   +∞ r r (2|R 1s (r )| 2 + |R 2s (r )| 2 + |R 2p (r )| 2 )dr   (66) 
h 5 = - ∆ r 2 + 1 r 2 - Z r + 1 r
the radial Hydrogen wave function (n = 2, l = 1) where a 3 is a third parameter to minimize total energy. Then the total energy is:

B = Be + T 2p 2 + L 2p -ZN 2p + 2V 1s2p + 2V 2s2p (69) 
with:

V 1s2p = +∞ 0 r 2 R 1s (r)   1 r r 0 r 2 |R 2p (r )| 2 dr + +∞ r r |R 2p (r )| 2 dr   R 1s (r)dr (70) 
V 2s2p = +∞ 0 r 2 R 2s (r)   1 r r 0 r 2 |R 2p (r )| 2 dr + +∞ r r |R 2p (r )| 2 dr   R 2s (r)dr (71) 
Theor.

Exp. Error

He - 6 Results

We put the ground state energies and first ionization energies in the table 2. As we can see the ground states are in very good agreement with measurements. However we lost a lot of precision for first ionization energies (31 % for Be, 217 % for B), due also to the fact that the ground states of Be and Be + and those of B and B + are close: the error become easily big. The radial wave functions should be different closer to nucleus than Hydrogen ones: like for Li + , the right solution to equation ( 43) with Z = 3 should bring a better precision of the ionization energy. This suggests additional knowledge on radial Schrödinger-Newton differential equations. Moreover we have to notice that in Hartree-Fock theory, more than hundred parameters wave functions are used to match with the experimental ground state in a self-consistent field procedure. Here we use only three parameters in a quasi-analytical approach.

Conclusion

The conceptual simplicity and economic efficiency of this model is really promising, compared to Hartree-Fock. Thanks to Rioux's energy formulation [START_REF] Rioux | Atomic variational calculations: Hydrogen to boron[END_REF], we can reasonably formulate quantum mechanics in real 3D space at least for the first five atoms of the periodic table. The success of this formulation should be more than a coincidence and we are surprised to never have seen it before, according to our knowledge. The work is just at his beginning since it has still 87 atoms (until Uranium) ground state to compute, with probably additional interactions other than electrostatic ones. But the simplicity, real space representation and the good accuracy, for only two parameters Hydrogen wave functions (and three for Boron), prove that this model deserved to be developed or even taught (as Rioux's suggested in his article [START_REF] Rioux | Atomic variational calculations: Hydrogen to boron[END_REF]). The eventual implication of this possible formulation is really strong: building a bridge between quantum and macroscopic physics (like gravitation).

A Electrostatic interaction

A.1 Electron-electron electrostatic interaction

Let us focus on the electron-electron repulsion V i,j term in the Hamiltonian [START_REF] Tod | An analytical approach to the schrödinger-newton equations[END_REF]. The electrostatic repulsive energy E 1,2 between two electrons of wave functions Ψ 1 (r) and Ψ 2 (r) is:

E 1,2 = q 2 4π 0 d 3 r d 3 r |Ψ 1 (r)| 2 |Ψ 2 (r )| 2 r -r = q 2 4π 0 d 3 r d 3 r |Ψ 1 (r )| 2 |Ψ 2 (r)| 2 r -r = E 2,1
(79) Because we can exchange coordinates in the integral (i.e r ↔ r does not change the integral value), this can be written also as:

E 1,2 = q 2 8π 0 Ψ 1 | d 3 r |Ψ 2 (r )| 2 r -r |Ψ 1 + q 2 8π 0 Ψ 2 | d 3 r |Ψ 1 (r )| 2 r -r |Ψ 2 (80) 
With f | g |h = d 3 rf * (r)g(r)h(r). So the electron 1 feels the potential V 1,2 and electron 2 feels V 2,1 defined as follow:

V 1,2 = q 2 8π 0 d 3 r |Ψ 2 (r )| 2 r -r (81) V 2,1 = q 2 8π 0 d 3 r |Ψ 1 (r )| 2 r -r (82) 
So naturally we can define the potential felt by the electron i from an other electron j by:

V i,j = q 2 8π 0 d 3 r |Ψ j (r )| 2 r -r (83) 
Now we can write the one-electron Hamiltonian [START_REF] Tod | An analytical approach to the schrödinger-newton equations[END_REF] as:

H i = - 2 2m e ∆ - Zq 2 4π 0 r + q 2 8π 0 j =i d 3 r |Ψ j (r )| 2 r -r (84) 

A.2 Electron-proton Coulomb interaction

We know that the size of the proton is roughly 10 5 times smaller than those of the typical electron Bohr radius: it is seen as a point charge from the electron point of view. The energy E e,p between an electron of wave function Ψ(r) bounded to its nucleus of Z protons of matter distribution δ(r) is:

E e,p = - Zq 2 4π 0 d 3 r d 3 r |Ψ(r)| 2 δ(r ) r -r = - Zq 2 4π 0 d 3 r |Ψ(r)| 2 r = - Zq 2 4π 0 Ψ| 1 r |Ψ (85) 
Because the mass of the proton is roughly 10 3 higher than electron mass: it is considered as immobile (in the Born-Oppenheimer approximation). So the electron feels entirely the potential -Zq 2 /(4π 0 r). The big difference between electron-electron and electron-proton interaction is that the proton is much more heavier (he does not move) and its matter distribution is point-like.
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 1 Figure 1: Schematic models of two electrons bounded to a positively charged nucleus (centered at the origin O): A) probabilistic model of Hartree-Fock theory and B) real space quantum mechanics
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Table 2 :

 2 Ground state and ionization energies (in E h ), rounded at 10 -2 , of elements using R 1s ,R 2s and R 2p Hydrogen functions with comparison to experimental values from[START_REF]NIST atomic spectra database[END_REF] 

		2,85	-2,90 1,7 %
	He + -He	4	4	0 %
	Li	-7,39	-7,46 0.9 %
	Li + -Li	0,17	0,20	15 %
	Be	-14,49 -14,70 1,4 %
	Be + -Be	0,34	0,49	31 %
	B	-23,46 -24,64 4,8 %
	B + -B	0,65	0,30	217%

The integral values are given by (using an integral calculator):

V 1s2p = a 1 a 3 2a 5 3 (22a 1 -10) a 4 3 + 20a 2 1 a 3 3 + 15a 3 1 a 2 3 + 6a 4 1 a 3 + a 5 1 2 (a 6 3 + 6a

Using the same minimization method (with Z = 5) we find:

(a 1 ; a 2 ; a 3 ) (4, 67; 2, 85; 1, 11)

with an experimental value of -24, 64 E h , i.e an error of 4, 8%, which is a reasonable approximation. We chose to stop to Boron as in Rioux's article [START_REF] Rioux | Atomic variational calculations: Hydrogen to boron[END_REF] because of the two 2p electrons inside the Carbon which is cumbersome to deal with due to the 2p-2p interaction (three terms in potential ( 23)).

B Gaunt coefficients

The Gaunt coefficient G m1m2m3 l1l2l3 is defined as:

a Wigner-3j symbol. We used the properties that the Wigner-3j are non-zero if

C Computation details of integrals

C.1 Kinetic energies: T 1s , T 2s , T 2p

The kinetic energy for 1s state is written as:

and we integrate by part to obtain:

We do the same for T 2s and T 2p that leads easily to the results (online integral calculators are practical):

C.2 Nucleus Coulomb attraction: N 1s , N 2s , N 2p

These integrals are straightforward to compute:

C.3 Electron-electron electrostatic repulsion:

We integrate first with respect to r :

we have:

then we integrate on r to obtain:

We use the same method that for V 1s1s to find:

Using the results of V 1s1s we find:

Then an integral on r (the use of an integrator is recommended) gives: