
HAL Id: hal-04400565
https://hal.science/hal-04400565

Submitted on 17 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Mirrorverse: Live Tailoring of Video Conferencing
Interfaces

Jens Emil Sloth Grønbæk, Marcel Borowski, Eve Hoggan, Wendy E. Mackay,
Michel Beaudouin-Lafon, Clemens Nylandsted Klokmose

To cite this version:
Jens Emil Sloth Grønbæk, Marcel Borowski, Eve Hoggan, Wendy E. Mackay, Michel Beaudouin-Lafon,
et al.. Mirrorverse: Live Tailoring of Video Conferencing Interfaces. UIST 2023 - The 36th Annual
ACM Symposium on User Interface Software and Technology, ACM, Oct 2023, San Francisco, CA,
United States. pp.1-14, �10.1145/3586183.3606767�. �hal-04400565�

https://hal.science/hal-04400565
https://hal.archives-ouvertes.fr


Mirrorverse: Live Tailoring of Video Conferencing Interfaces
Jens Emil Grønbæk
jensemil@cs.au.dk
Aarhus University
Aarhus, Denmark

Marcel Borowski
marcel.borowski@cs.au.dk

Aarhus University
Aarhus, Denmark

Eve Hoggan
eve.hoggan@cs.au.dk
Aarhus University
Aarhus, Denmark

Wendy E. Mackay
mackay@lisn.fr

Université Paris-Saclay, CNRS, Inria
Orsay, France

Michel Beaudouin-Lafon
mbl@lisn.fr

Université Paris-Saclay, CNRS, Inria
Orsay, France

Clemens N. Klokmose
clemens@cs.au.dk
Aarhus University
Aarhus, Denmark

In-Situ Live RecordingA Scripting Audio RoutingB Reprogramming ToolsC
Figure 1:Mirrorverse supports live tailoring of video conferencing interfaces. The figure illustrates three novel uses: (A) The
recombination of tools enables live recording of camera streams during a yoga instruction session. (B) The audio routing
scripting tool enables audio streams of participants to be routed in multi-room workshops. (C) The ability to edit tools enables
live reprogramming of their functionality during meetings.

ABSTRACT
How can we let users adapt video-based meetings as easily as they
rearrange furniture in a physical meeting room? We describe a de-
sign space for video conferencing systems that includes a five-step
“ladder of tailorability,” from minor adjustments to live reprogram-
ming of the interface. We then presentMirrorverse and show how it
applies the principles of computational media to support live tailor-
ing of video conferencing interfaces to accommodate highly diverse
meeting situations. We present multiple use scenarios, including a
virtual workshop, an online yoga class, and a stand-up team meet-
ing to evaluate the approach and demonstrate its potential for new,
remote meetings with fluid transitions across activities.

CCS CONCEPTS
• Human-centered computing → Collaborative and social
computing systems and tools; Collaborative interaction;Web-
based interaction; Interactive systems and tools.

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in The 36th Annual ACM
Symposium on User Interface Software and Technology (UIST ’23), October 29-November
1, 2023, San Francisco, CA, USA, https://doi.org/10.1145/3586183.3606767.

KEYWORDS
Video conferencing, distributed meetings, end-user tailorability

ACM Reference Format:
Jens Emil Grønbæk, Marcel Borowski, Eve Hoggan, Wendy E. Mackay,
Michel Beaudouin-Lafon, and Clemens N. Klokmose. 2023. Mirrorverse:
Live Tailoring of Video Conferencing Interfaces. In The 36th Annual ACM
Symposium on User Interface Software and Technology (UIST ’23), October
29-November 1, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3586183.3606767

1 INTRODUCTION
Distributed meetings take many forms depending upon the con-
figuration of people, activities, and shared content. Yet, video con-
ferencing software is traditionally built as one-size-fits-all generic
meeting with little support for tailorability of either functionality
or the user interface. By contrast, physical meetings let people
spontaneously rearrange furniture, equipment, and themselves to
match the format and atmosphere of the meeting.

Our goal is to make end-user tailoring of virtual meetings as
easy as rearranging physical furniture in a meeting room. Inspired
by Mørch [41], we introduce a five-level ladder of tailorability—
customization, recombination, extension, scripting, and reprogram-
ming— to help us explore what it means to tailor video conferencing
software live while in use.

https://doi.org/10.1145/3586183.3606767
https://doi.org/10.1145/3586183.3606767


UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Grønbæk, et al.

We investigate how to reduce friction while moving through
the levels of this ladder, especially in light of the increasing de-
mand for remote work and the introduction of new, more tailorable
apps and services such as Gather’s map customization [14] and
Zoom’s and Teams’ app marketplaces [39, 68]. Current systems cur-
rently constrain live tailoring capabilities for end-users to include
customization, e.g., enabling Zoom’s moderation features; and re-
combination, e.g., combining elements in a room in the Gather map.
Although some platforms such as the Zoom Apps Marketplace also
support extensions, each requires using a separate development
tool chain outside the application and none support automated
scripting or new application behavior. Thus our primary research
question is: How can we provide live support for all five tailoring
levels in a video conferencing application?

The paper first analyzes what constitutes video conferencing
and explores how applying principles from computational media
can enhance tailorability. Next, we present Mirrorverse, a proof-of-
concept system that shows how live tailoring can be technically
realized in a video conferencing interface.We evaluate the approach
through demonstration [32] and heuristic analysis [44] using three
diverse use scenarios: a virtual workshop activity, an online yoga
class, and a stand-up team meeting. These scenarios illustrate how
Mirrorverse’s live tailoring capabilities enable more dynamic re-
mote meetings with fluid transitions across activities. Tailoring in
Mirrorverse is admittedly not yet as easy as rearranging furniture.
However, it lets users with different levels of technical proficiency
live tailor their interface together. This points to a future of more
flexible collaborative software that can be adapted to local needs
and practices, even while in use.

2 RELATEDWORK
We review related research on video-mediated communication and
commercial video conferencing tools, and tailorable software.

2.1 Video-Mediated Communication
The earliest video-conferencing systems were developed to per-
mit remote collaboration within a corporation. In the early 1990s,
Bly and colleagues introduced the notion of a Media Space [5, 34],
which led to a series of novel user interfaces for coping with the
fundamental challenges of video-mediated communication. Bux-
ton [9] introduced a taxonomy that divides a video communication
space into person, task, and reference space. A consistent reference
space is essential for effectively using deixis, i.e. when expressions
such as “here” or “there” are accompanied by gestures that point
at the shared space. A number of systems have been designed to
integrate person and task space which establishes a more seamless
reference space [26, 43, 53].

However, few commercial video conferencing tools have taken
advantage of this research and have instead relied upon the same
small set of standard interfaces since the 1990s [54], namely the
“gallery” and “speaker view” layouts. The recent global switch to re-
mote and hybrid work during the COVID-19 pandemic has sparked
new interest in video-mediated communication. Recent research

has identified key challenges for a new wave of video conferenc-
ing, including: navigating multiple audio communication chan-
nels [4, 23, 24] and backchannel communication [30, 47, 51]; sup-
porting everyday devices not just room hardware [57]; managing
turn-taking and the conversational floor [1, 16, 24]; and supporting
meeting configuration [18, 46, 49].

This has led to multiple new commercial platforms that use
stronger and more flexible spatial metaphors, including Gather [14],
SpatialChat [55], Sprout [56], Remo [48], Teamflow [59], Won-
der [65] or Ohyay [45]. In parallel, research prototypes have im-
proved our understanding of spatial metaphors [16, 23, 24, 64] and
introduced new ways of interacting with live and recorded video
streams [18, 25, 60]. Finally, some popular solutions preserve the
legacy gallery and speaker views but also integrate task-space apps
and add-ons into their workspaces, including Zoom Apps [67, 68],
Teams Apps [39], Miro’s add-on video-conferencing features [40],
and Google’s integration of Meet and Docs [17].

Despite some improvements in tailorability, these systems: en-
force low ceilings—scope is limited to that provided explicitly by
the platform; lack liveliness— solutions rarely support changes dur-
ing meetings; and introduce friction— transitions to more complex
levels of tailoring are difficult. Mirrorverse offers a novel video
conferencing approach that addresses each of these problems.

2.2 Tailorable Software
Tailorable software, also called customizable software [33], adaptable
software [63], or personalizable software [21, 22], refers to software
that can be modified and adapted by users to address idiosyncratic
needs. Tailoring can occur at different levels [35, 41]. For example,
MacLean et al. [35] describe two tailoring dimensions: tailoring
power —which changes are possible at a particular level and tailor-
ing skill requirements—which (technical) skills are needed to tailor
the software. For example, changing parameters via a pre-defined
menu requires a lower skill level than reprogramming software.
Mørch [41] defines three tailoring levels: customization—modifying
the appearance or presentation of software through predefined con-
figuration options; integration—creating a sequence of executions
that results in new functionality and extension—writing new code
to improve or add functionality. Later, we will expand Mørch’s [41]
ladder of tailorability to include five levels.

MacLean et al. [35] further describe how different tailoring tech-
niques should be employed at different levels of tailoring power and
skill requirement. Their Buttons system lets users tailor functional-
ity on multiple levels, enabling a more “gentle slope” of tailorability
compared to the previous example of changing parameters vs. re-
programming. Mirrorverse follows a similar approach based on our
five-level ladder of tailorability.

For tailoring to occur, users not only need access to technological
solutions, but also a culture in which tailoring is the norm [35].
Mackay [33] shows that “customization is not a purely individual
activity.” Users with different levels of skills can work together, for
instance when a peer called a translator can help a regular end-
user to tailor their software or act as a link between end-users
and programmers. These translators are also called handyman [35],
gardeners [13], or tailors [62]. More recently, Haraty et al. [22] have
found similar roles in online customization sharing.



Mirrorverse: Live Tailoring of Video Conferencing Interfaces UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

Dimensions User Presence Space Interaction

Primitives Video Audio Avatar Rooms Transitions Content Views Tools

Examples

Zoom, Teams,
Discord, Slack,
Google Meet

On /Off Mute / Unmute Name and
image in

participant list

Main room and
breakout rooms

Discrete
movement

between rooms

Live streams;
Chat

Private layouts
(gallery or

speaker views)

AV settings;
Screen sharing

Gather Based on
proximity

Based on
proximity

Game-like
avatar and
name in

participant list

Configured by
organizer

Continuous
movement;
Proximity
thresholds

Game map;
Avatars;

Whiteboards

Private video
layout; Shared
map view

Spatial
interaction with
avatars; Add
tools ad-hoc

MirrorBlender Position; Size;
Translucency

Mute / Unmute Video window
as embodied

avatar

Single main
room

None Camera and
screen mirrors

Shared layout,
WYSIWIS

Spatial
interaction with

video

Mirrorverse Position; Size;
Translucency

Scriptable audio
routing

All of the above Rooms treated
as elements,
Can be nested

Continuous
movement;

Discrete rooms

Live streams;
Chat; Notes;
Avatars; . . .

WYSIWIS
workspace; Tool

panel;
Inspectors;
Client panel

Ad-hoc
recombination

of tools

Table 1: Dimensions and primitives of video conferencing, used to categorize a selection of commercial and research systems.

Mirrorverse supports such practices by enabling translators to
tailor the meeting space via programming in the same environment
where regular end-users perform customization. This is inspired by
a Computational Media approach to software, inspired by Kay’s [28]
early vision of software as computing clay and diSessa’s seminal
work [11, 12] on Boxer. These systems blur the line between using
and developing software, making tailoring the modus operandi.

Today, the most prominent examples of computational media
are spreadsheets and computational notebooks. Although Web-
strates [6, 29] demonstrates how to apply the principles of compu-
tational media to web-based systems, no current system has applied
these principles to video conferencing.

3 DESIGN SPACE FOR TAILORABLE VIDEO
CONFERENCING

Based on recent developments in video conferencing platforms and
research on end-user tailoring, we articulate a design space for a
new wave of tailorable video conferencing.

3.1 Design Space of Video Conferencing
Video conferencing systems let people in different locations com-
municate in real time through video and audio. Users can see and
hear each other, as well as share documents and presentations.
Although all these systems support standard gallery and speaker
layouts, recent platforms have begun challenging these norms.

Table 1 defines a design space for describing key characteristics
of modern video conferencing systems, with examples of each. We
identify three main categories: user presence, space, and interaction,
and then specify a set of primitives (highlighted in bold) that
describe common features and differences across these systems.

3.1.1 User Presence. All video conferencing software represents
each user’s presence and lets them control how they are represented
to others. Minimal controls including switching video on or off and
muting / unmuting the audio from their microphone. Unfortunately
as meetings become larger, it becomes harder and harder for users
to maintain an overview of each others’ presence due to limited

screen real-estate. To address this issue, most platforms include
a meeting avatar in the form of an icon, image, figure, or name
label in a participant list that continuously represents the user’s
presence in the meeting.

3.1.2 Space. Most video conferencing systems rely on the room
as a central metaphor. Newer systems have significantly expanded
users’ access to the space, e.g., by allowing users to move around
a 2D map to support smooth conversational transitions [16]. Sys-
tems such as in Gather [14], Sprout [56], MirrorBlender [18], and
OpenMic [24] take advantage of the spatial metaphor’s notion of
proximity to provide access to virtual furniture, breakout rooms or
ad-hoc group formations. When we compare the spatial metaphors
of Zoom and Gather, we see that their conversational transitions
can be either discrete, e.g., moving instantly between Zoom breakout
rooms or continuous, e.g., moving within the Gather map.

The spatial metaphor can also divide users from a large virtual
meeting into breakout rooms. These rooms provide a scope for a
(sub)group and its content. Content may include video streams
from cameras, screens, or recorded video, images, text notes or chat
as well as more complex data such as sketches, or tools, e.g., adding
a pedestal in the Gather map to broadcast audio from the speaker.

3.1.3 Interaction. While all platforms support sharing of audio
and video streams, they differ in how the interaction is designed,
especially how views display streams back to the user and which
tools are available to users. Today’s most prominent platforms,
including Zoom, Google Meet and Microsoft Teams, offer standard
gallery and speaker layouts and standard tools such as screen shar-
ing, virtual backgrounds, chat, recording and presence controls:
mute / unmute audio, hide / show video. Some offer special user
roles, where, for example, the host may have special permission to
control other participants’ access and presence.

The newwave of platforms has brought new tools and interaction
techniques that take advantage of spatial metaphors, e.g., proximity-
based group formations [16] and live shared configuration of video
and content [18, 24, 56]. These systems let users adapt the spatial
layout to accommodate different collaboration needs and styles.



UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Grønbæk, et al.

Levels Customization Recombination Extension Scripting Reprogramming

Examples

Zoom, Teams, Discord,
Slack, Google Meet

Pre-customize UI† App integrations† Zoom API∗

Gather Pre-customize the map‡ Combining existing map
layouts‡

Gather API∗

MirrorBlender Ad hoc customizing
meeting space‡

Reprogramming in the
Cauldron editor∗

Mirrorverse Customize tools with the
inspector‡

Adding tools to a room‡ ;
Templates‡

Content and tools are
bundled as packages‡

Audio Routing‡ Reprogramming in the
Cauldron editor in Varv‡

Table 2: Levels of tailorability with examples of their realization in video conferencing systems (∗ offline; † semi-live; ‡ live).

The trend towards integrating person-space and task-space tools
has also increased the need for tailoring, as demonstrated by the
way tools have been customized to mitigate “Zoom-bombing” [46]
or the main platforms’ support for integrating apps [17, 39, 68].

3.2 Tailorability for Video Conferencing
We address three key challenges for integrating tailorability into
video conferencing: raising the ceiling, supporting liveliness, and
reducing friction.

3.2.1 Raising the Ceiling. We build on Mørch [41] to define five
levels of software tailorability— customization, recombination, ex-
tension, scripting, and reprogramming—which we map onto the
ladder of tailorability (see Figure 2).1 Table 2 maps these levels onto
current systems.

Customization adapts software functionality or aesthetics using
only predefined settings. For example, users can change Zoom’s
configuration settings to enable or disable the waiting room or give
participants permission to unmute themselves.

Recombination assembles ready-made blocks or the primitives in
subsection 3.1 to produce new functionality. For example, Gather
lets hosts build rooms and define zones with different functionality.

Extension adds new functionality from external sources. For ex-
ample, Zoom users can add a Miro board or whiteboard.

Scripting adds new behavior using an exposed API or a built-in
scripting language. For example, Zoom offers an exposed API for
creating extensions.

Reprogramming changes an application’s functionality by edit-
ing its source code or by interfacing with it directly. For example,
technically, Jitsi [27] supports changing the source code, although
this requires rebuilding the entire application before the change
takes effect. Smalltalk [15] offers a canonical example of a system
that supports reprogramming,

3.2.2 Supporting Liveliness. Video conferencing systems with mul-
tiple connected users should be able to support live tailoring at each
level of the ladder of tailorability during the course of the meeting.

We distinguish among three levels of liveliness when tailoring
video conferencing: offline, semi-live, and live: Offline requires
restarting the meeting to apply a change. Semi-live means that
changes can be applied while the meeting is running, but the tailor-
ing itself cannot be done collaboratively. For example, an organizer
1Given changes in software and vocabulary since the 1990s, we have nuanced and
expanded on Mørch’s original three levels: customization, integration, and extension.

can change the layout of a room in Gather while the meeting is
running, but the changes are not applied until they save the new
layout. Live means that changes can be applied while the meeting
is running, and tailoring can be done collaboratively. For example,
several users could change the configuration of the breakout rooms
together, or edit scripts in a shared code editor.

3.2.3 Reducing Friction. In theory, any user should be able to move
up the ladder of tailorability from customization to reprogramming,
if supported by the system. However, use of video conferencing is
socio-technical in nature, and friction arises when a user’s lack of
programming skills, fear of breaking something, or the inherent
complexity of the configuration prevents these transitions. Configu-
rationwork is a type of articulationwork [52]: It is the work tomake
work work, i.e., in our case, to make video conference meetings
work. Configuration causes technical friction, for example, when
additional software such as an IDE is required to create an app for
Zoom. Users’ skills can also cause friction: scripting requires users
to write code which requires programming knowledge. However,
even when a user has the requisite skills and tools at hand, the
potentially large amount of time required for scripting or repro-
gramming can render the transition insurmountable. We argue that
friction can be greatly reduced by simplifying configuration work.

4 MIRRORVERSE
Mirrorverse is a system design and proof-of-concept implementation
of video conferencing as computational media (see Figure 3). It was
inspired by themetaphor ofmalleablemirrors inMirrorBlender [18],
i.e. live streams that mirror people and screen content and that can
be freely arranged in the same virtual workspace.

Figure 2: The Ladder of Tailorability: We raise the ceiling of
tailorability and reduce the friction of climbing the ladder.



Mirrorverse: Live Tailoring of Video Conferencing Interfaces UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

Mirrorverse supports a broad range of meeting experiences by
implementing the key primitives of modern video conferencing
(described in subsection 3.1) and by supporting live tailorability.
For example, Mirrorverse can recreate MirrorBlender as well as
meeting experiences similar to Zoom, Teams, or Gather. The core
design goal is to support meetings that change over time by allow-
ing idiosyncratic adaptation to the needs that arise as a meeting
progresses.Mirrorverse can be tailored at all five levels of the ladder,
and changes are applied live, without the need to restart the system.

4.1 Video Conferencing as Computational
Media

Mirrorverse applies principles from computational media [6, 29] to
realize live tailorability: shareability, malleability, computability,
and distributability. Shareability means that all aspects of interac-
tion with the software should be possible collaboratively, including
changing the software itself. Malleability means that it should be
possible to change the software to suit individual needs.Computabil-
ity means that it should be possible to treat what is seen on the
screen as data for computation or— as diSessa puts it — that the
computational structure should be in the accessible parts of the
medium [11]. Distributability means that software should be able
to flexibly span across available devices.

For video conferencing software, these principles mean that we
should treat software as a malleable medium within which to con-
duct meetings, a medium that can be shaped to fit the specific meet-
ing type andmeeting culture. This should be possible before, during,
and after the meeting and it should be possible to do so collabora-
tively. It implies that the fundamental primitives and mechanisms
of video conferencing must be reified [3] into the user-accessible
parts of the medium. For example, so that where a participant is
located in a meeting space can be used computationally to control
their audio (muffled, muted, volume, etc.) in a way that is computa-
tionally accessible to the user. Tools and computations should be
polymorphic so they can be applied and reused wherever it makes
sense to the user [2]. E.g., if a tool can manipulate the pixels of a
video feed, it should be applicable to both live and recorded video.

Mirrorverse builds on the Webstrates family of software [6, 29]
and the Varv [8] programming model to realize the principles of
computational media (details in section 6). Mirrorverse is accessed
through a Web browser.

4.2 Mirrorverse Overview
The design of Mirrorverse is based on a 2D nested canvas,2 which
we call the workspace, that combines person space and task space
in the same environment— similar to, e.g., Sprout [56]. The space
is structured into rooms that can contain elements that are either
content, tools or nested rooms. Rooms can be navigated and elements
can be moved from room to room depending on the use case. Tools
make it possible to add functionality to a room—either before or
during a meeting. Unlike systems such as Zoom, the layout of a
meeting is persisted after a meeting ends so that a meeting can
be continued at later points in time or a layout can be prepared

2While we present one design of such a system, the dimensions in our design space
could also be used to create other system designs. E.g., we based our design on a 2D
user interface, leaving 3D interfaces like virtual and augmented reality to future work.

beforehand, e.g., by setting up breakout rooms. This layout can be
collaboratively manipulated live. Other key concepts include an
audio routing mechanism that defines which clients are audible
and how, and using recordings during a meeting.

4.2.1 Elements: Rooms, Content, and Tools. Elements are either
rooms, content, or tools. They are displayed in the workspace as
rectangles, which can be selected by clicking them and have op-
tions that can be customized with the inspector (see below). New
elements can be added using the menu bar by selecting a content
type or a tool to be added (see Figure 3A). Existing elements can
be removed using the inspector. A room acts as a container for
other elements, which can be nested. Our prototype features eight
types of content (Camera, Screen, Video, Image, Note, Sketch, Chat,
Avatar) and twelve tools (Grid, Speaker View, Layout Template,
Doorway, Broadcast, Whisper, Proximity-based Audio, Pedestal,
Recording, Room Recording, Template Store, Highlight, Camera
Shaker).3 Both content and tools are located in the same workspace.

Tools are a type of element that adds new functionality to a
room, such as a tool for highlighting elements when clicking on
them or a tool that arranges elements in a grid layout. A tool’s
functionality is tied to the room it is located in— tools from other
rooms do not affect the current room. Elements and their location
and size in the room and workspace follow the What-You-See-Is-
What-I-See (WYSIWIS) principle [58]. Content in elements follows
a relaxed WYSIWIS model: while the state is the same, the exact
visual representation might differ, e.g., the content of a note is
shared while the scroll position is private to each client. Similarly,
tools might differ in their visual representation and whether they
are active, e.g., when a tool is active for one user role but deactivated
for another.

4.2.2 Workspace and Tool Panel. The workspace is a central fixed-
sized 2D canvas (see Figure 3B). It always displays the elements
of the current room a client is located in. As mentioned above, the
canvas is WYSIWIS, so that its elements always have the same
location, size and transparency for all clients. Users can move ele-
ments around in the canvas, resize them, change their opacity and
layering order, and move them in and out of nested rooms.

To the left of the workspace is the tool panel (see Figure 3C):
When adding a new tool to a room, the tool is by default added to
the tool panel. This reduces the clutter in the workspace. However,
as an option, a toggle can be switched so that the tool will move to
the workspace, allowing users to treat it as a moveable element.

4.2.3 Inspectors. To the right of the workspace are two inspectors
(see Figure 3D): one for the current room and the other for the
currently selected element. They are used to configure their options,
e.g., the name of the room or the URL of an image, and to delete
elements. For some tools, e.g., the inspector can set the roles for
which the tool should be active.

4.2.4 Users, Clients, and the Client Panel. Each device, browser, or
browser tab visiting a meeting is a named client. Each client, in turn,
is connected to a user, who has a name and a role. The role can,
e.g., be used to restrict a tool’s functionality to groups of users. The
client panel (see Figure 3E) is a sidebar that displays information

3A full list of element types and their descriptions is available in Appendix A.



UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Grønbæk, et al.

E

A

B DC

Figure 3: The Mirrorverse prototype. New elements can be added using the menu bar (A). Content and room elements are added
to the Workspace (B). The top left corner of the Workspace shows the name of the room and breadcrumbs if it is located in
other rooms. The top right corner of the Workspace shows all clients currently in the room. Tools can exist as elements in
the Workspace but are initially added to the Tool Panel (C). Selecting any element shows its options in the element inspector,
e.g., the URL of an image (D). Navigation to move between rooms and options of the current room (room inspector) are placed
above that inspector (D). The Client Panel (E) shows the current user, client, and other audible clients in the meeting.

about one’s client and user, provides an overview of the clients that
are currently audible. Clients that are currently in the same room
as oneself are displayed in the top right corner of the workspace.
The distinction between clients in the room and clients that are
audible is needed since clients from other rooms may be audible
(see below in the audio routing section).

4.3 Techniques for Tailorability
Mirrorverse supports tailorability through the following techniques,
corresponding to the five levels of the ladder of tailorability (see
Figure 2 and Table 2):

4.3.1 Level 1: Customizing Element Options. Elements in Mirror-
verse have various options that can be customized using inspectors.
These may range from preferences, e.g., the color of a note, to more
functional options, e.g., which element is considered the “speaker”
in a room when using the Speaker View tool. This level of tai-
lorability is typically immediately accessible to users at all levels of
proficiency.

4.3.2 Level 2: Recombining Tools and Templates per Room. This
level of tailorability allows more technically proficient users, such
as meeting hosts, to customize the experience. Tools in Mirrorverse
are located in rooms and their functionality is limited to the room
they are located in. This enables the recombination of different

tools (or content) in a room to create different meeting experiences,
from existing setups similar to those of Zoom or Gather to novel
examples as we demonstrate later.

An example tool is the Recording tool. The ability to record the
live media streams of a meeting is common in video conferencing
but the recordings can rarely be usedwithin the meeting (with a few
exceptions, e.g., [25, 60]).Mirrorverse supports the recombination of
live and recorded videos, so that users can for example demonstrate
something to the camera and then play it back and refer to the
recording in the meeting (subsection 5.1 demonstrates this).

This and other types of recombination require configuration
work, such as setting up rooms with different layouts and different
types of tools. The Template Store tool makes it possible to store
combinations of tools, content, and layout as templates and restore
them later. It effectively reifies such combinations into new objects
that can be reused. For example, we created templates that replicate
Zoom-like and Gather-like interfaces4 (see Figure 3) by combining
different content elements and tools.

4.3.3 Level 3: Extending Content and Tool Types with Packages.
This level of tailorability allows the technically proficient user to
seek out new functionality to support a given meeting situation,
and for the user who is proficient in programming to share new
functionality with other users.
4These replicated examples are demonstrated in the accompanying video.



Mirrorverse: Live Tailoring of Video Conferencing Interfaces UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

Content types in Mirrorverse, such as images, notes or sketches,
are bundled as Webstrates packages [7]. Packages can be added
and removed from a meeting at run-time, supporting tailoring by
extension. If a user implements a new type of content, e.g., a chess
game, they can add it to another meeting simply by dragging and
dropping it into the Cauldron IDE of the other meeting (see sec-
tion 6). Adding a tool package works in the same way and extends
the list of available tools in the drop-down menu in the toolbar.

4.3.4 Level 4: Scripting the Audio Routing. In Mirrorverse, every
client has an audio stream with several properties: muted, which
defines whether the stream is audible; volume, which defines the
volume of the stream; and filter, which defines what audio filter
(e.g., a low-pass or high-pass filter) is used on the stream.

The audio routing in Mirrorverse is a scripting technique that
enables control of the above three properties based on the state
of the system. It serves as one example technique at this level
of tailorability, which lets users with a high degree of technical
proficiency add or modify behavior of the interface without using
conventional programming.

The audio routing can be authored either directly in Varv code or
by using the audio routing GUI. Each property is calculated using
a decision tree that can refer to a variety of states for determining
its value. The GUI lets users create one root node for each property,
decision nodes that depend on properties, and value nodes that set
the value of the property at the leaves of a tree (see Figure 4; subsec-
tion 5.2 demonstrates the GUI). Nodes can be created and connected
by dragging from the green connection boxes to other nodes. For
example, the numeric property logicalDistance describes how
many rooms a client is away from another client. This property
can be used to determine the volume of an audio stream, e.g., if the
logical distance of the client is zero, the volume is set to 100%, if
the distance is one it is set to 50 %, and if it is larger than one it is
set to 0 % (see Figure 4).

4.3.5 Level 5: Reprogramming Using the Built-in Editor. Everything
in Mirrorverse, from content types and tools to the core of the sys-
tem, can be reprogrammed live. This level of tailorability requires
programming expertise, but as we will demonstrate later, live col-
laborative tailoring allows a user without the necessary expertise

Figure 4: The audio routing GUI. In this example, the volume
of audio streams is dependent on the client’s logical distance.

B

A

Figure 5: Reprogramming Mirrorverse is done using Caul-
dron, which can be opened using the “Edit” button (A). Here,
Cauldron (B) is docked on the right side and shows one editor
with Varv code and another with an audio routing GUI.

to realize a change to the interface through the help of a more
technically proficient user.

To start reprogramming, users click the “Edit” button in the top
right corner (see Figure 5A). This opens the built-in Cauldron IDE,
giving access to the code (see Figure 5B). Reprogramming the sys-
tem happens from within the web browser and no additional tools
are required (subsection 5.3 demonstrates this). Edits to Varv con-
cept definitions are immediately applied to the running system live,
however, a concept definition can also be disabled while editing.

5 DEMONSTRATING SCOPE AND DEPTH
In the following three usage scenarios, we demonstrate how Mir-
rorverse addresses key challenges of video conferencing: managing
audio routing, communicating through video, and adapting tools
to impromptu activities. Together, these scenarios demonstrate the
breadth and depth of tailoring with Mirrorverse through the power
of the reification principle.5

5.1 Dynamically Recombining Live and
Recorded Video in a Yoga Class

Recombining video streams is traditionally done prior to a meeting,
e.g., using OBS [42], or after a meeting, e.g., recording and sharing
meeting videos. We demonstrate how reified video in Mirrorverse
enables users to dynamically recombine live and recorded video
for remote instruction in an online yoga class (see Figure 6).

5.1.1 Collaboratively Preparing Yoga Sequences. Two yoga instruc-
tors, John and Adam, meet to prepare for their next remote yoga
class. They first co-create a sequence of yoga poses by taking turns
performing and recording different poses (see Figure 6A). Having
the videos and the tools in the same workspace enables them to
arrange the recording tools in a storyboard layout and brainstorm
the sequence while taking turns recording the individual poses.

5.1.2 Arranging Views of the Physical Yoga Studio. John goes to
his real yoga studio where he runs the online class. He sets up the
camera equipment to point to his yoga mat. He copies the yoga
workspace that he made with Adam and “digitally refurnishes it” for
his upcoming class: Next to the area of the participants, he creates
5All three scenarios are demonstrated in the accompanying video.



UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Grønbæk, et al.

Recording a storyboard liveA Using multiple camera elementsB Recording in-situ live videoC Deictic gestures on recordingD

Figure 6: Scenario 1: Dynamically Recombining Live and Recorded Video in a Yoga Class.

two instances of the same camera stream with different crops. One
crop shows the mat for portrait-mode shots of poses, the other for
landscape mode (see Figure 6B).

5.1.3 Impromptu Recording for Live Demonstration. The yoga ses-
sion starts. John spots that several participants are doing one of the
poses incorrectly with the risk of causing a knee injury. He grabs
everyone’s attention by dragging his video to the recording tool to
record a video of himself performing the pose from the prepared se-
quence (see Figure 6C), but this time from a different viewing angle
that better conveys the potential problem. He then navigates the
video clip he just recorded and stops at a specific point to highlight
an important detail in the body posture that helps avoid injuries
(see Figure 6D).

5.2 Scripting Audio Navigation in a Multi-Room
Workshop

Virtual workshop organizers often struggle to navigate audio in
multi-room breakout sessions. We demonstrate how Mirrorverse
reifies audio as the Audio Routing GUI to enable new forms of audio
navigation among multiple breakout rooms (see Figure 7).

5.2.1 Preparing the Workshop Interface. To prepare for the upcom-
ing workshop, Ann, the organizer, sets up the meeting with a main
room and a set of breakout rooms nested within it (see Figure 7B–
C). She anticipates that hearing muffled sounds from the breakout
rooms will help her monitor the activity. She opens the Audio Rout-
ing GUI (see Figure 7A) and tailors the audio routing so that people
in rooms at a logical distance of 1 (i.e. the distance from the main
room to the breakout rooms) are still audible but with a low-pass
filter applied to convey the notion of distance.

5.2.2 Adding a New Tool for Listening In. With the sound being
muffled, Ann cannot hear the contents of the individual conver-
sations, and she finds it cumbersome and disruptive to have to
explicitly jump in and out of a breakout room to hear the sound
clearly. Instead, she wants an interaction style similar to standing
in the doorway of a physical breakout room. She finds and adds
the Doorway tool, which allows her to listen in on the audio from
a breakout room by hovering over it with the mouse cursor. The
tool uses audio routing to lower the logical distance to 0 for the
room at the cursor position (see Figure 7D). Finally, Ann wraps up
the breakout activity by using the Broadcast tool, which sends her
audio to all rooms, to ask participants to go back to the main room.

5.3 Impromptu Reprogramming of Deictic
Tools in a Stand-Up Meeting

Distributed teams often need to tailor their workspace to the specific
collaboration needs arising during an impromptu discussion. We
demonstrate how the reification of tools that can be reprogrammed
live can be used to support transitions from planned to ad hoc
activities in a design team’s stand-up meeting (see Figure 8).

5.3.1 Adding a New Tool for Highlighting Elements. To prepare for
their daily stand-up meeting, Roman, the project manager, restores
the “Stand-Up Meeting” template using the Template Store tool (see
Figure 8A). It includes the Grid and Highlight tools. The latter can
be used to manage turn-taking in their status round. With the tool
enabled, Roman can click on a participant’s video to highlight it for
everyone (see Figure 8B). This can accompany deictic expressions
when referring to others as “you,” rather than using their names.

5.3.2 Tools are Polymorphic Across Person and Task Space. Daniel,
a designer, and Melissa, a programmer, get into an impromptu
discussion about an urgent task. Roman decides to pause the status
round and facilitate the discussion. They reorganize the workspace
to focus on the task (see Figure 8C). As they switch their activity to
sharing, producing, and arranging content together in the digital
task space, they repurpose the Highlight tool to support deictic
expressions related to the shared notes and images. This is possible
because tools in Mirrorverse are polymorphic, meaning that they
can be used on different types of content elements.

5.3.3 Reprogramming the Highlight Tool. The current Highlight
tool can only select one element at a time. During the coffee break,
Melissa and Roman reprogram the tool to enable the selection of
multiple elements (see Figure 8D). Participants can now use deictic
expressions such as “these two” or “you three” while referring to
groups of people or content.

5.3.4 Storing the New Workspace as a Template. As they wrap up
their meeting, they collectively agree that their new workspace
layout and tool combination worked well and they want to keep it.
Roman stores the final workspace as a template for future reuse.

5.4 Other Examples
To further demonstrate the power of reification and live tailoring
in Mirrorverse, we implemented a few additional examples.

5.4.1 Audio-based Backchannel Communication. We used the au-
dio routing to implement a Whisper tool that enables backchannel



Mirrorverse: Live Tailoring of Video Conferencing Interfaces UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

Scripting the audio routingA View from the main roomB View from a breakout roomC Using the doorway toolD

Figure 7: Scenario 2: Scripting Audio Navigation in a Multi-RoomWorkshop. Notice the cursor hovering over a room in (D),
causing the audible clients in the client panel to change to the clients in the hovered room.

Preparing the meetingA Using the highlight toolB Polymorphic use of the toolC Reprogramming the toolD

Figure 8: Scenario 3: Impromptu Reprogramming of Deictic Tools in a Stand-Up Meeting.

communication. It works like the Doorway tool, but instead of hov-
ering over a room to listen in, users can hover over a participant’s
video with their cursor to have a short one-to-one conversation
with that participant, which others cannot hear.

5.4.2 Audio as Input to Modify Video Output. To demonstrate the
flexibility of audio reification, we implemented a Camera Shaker
tool that uses audio as input to modify the video’s appearance. It can
be used to amplify and enhance non-verbal cues, such as making
the video window shake when a person is too loud, i.e., when the
volume exceeds a user-defined threshold.

5.4.3 Distributing Content Elements Across Devices. Using the prin-
ciple of transclusion [29] from the underlying Webstrates platform,
it is possible to distribute content elements across multiple screens
and devices. We implemented a self-contained chat mechanism that
can be both embedded in a meeting as content and accessed directly
on a companion device (e.g., a mobile phone; see Figure 9).

6 IMPLEMENTATION
Mirrorverse6 is built on top of the Webstrates software stack con-
sisting of Webstrates [29], Codestrates v2 [7] and Varv [8]. It is
implemented in Varv, HTML, and CSS. Extensions to Varv are writ-
ten in JavaScript. It runs client-side in a Web browser and can be
modified using Codestrates v2’s built-in IDE, Cauldron.

6.1 Web-based Software Stack
Webstrates serves web pages, called webstrates, so that the docu-
ment object model (DOM), including embedded JavaScript and CSS,
is synchronized in real-time between clients and persisted on the
server. A webstrate is self-contained and identified by its URL. Web-
strates, further, allows for WebRTC streaming of audio and video
6Mirrorverse on GitHub: https://github.com/Webstrates/Mirrorverse

channels. Codestrates v2 [7] is a development platform for Web-
strates consisting of an execution engine and a package manager.
Users author code via the Cauldron IDE from within a webstrate,
without additional tools.Mirrorverse uses the state synchronization
and WebRTC streaming capabilities of Webstrates, and the package
manager and collaborative code editor of Codestrates.

Varv [8] is built on top of this stack as a new programming model
for computational media. It supports authoring interactive behavior
of software live and collaboratively. It uses a declarative data struc-
ture written in JSON to define interaction.7 The declarative model
enables accretive extensibility: applications in Varv are inherently
extensible and their interactive behavior can be changed by adding
code instead of having to modify existing code— similar to how
CSS rules can be overwritten. A view layer supports creating GUIs
using HTML templates and CSS. Varv persists the program’s state
in the DOM, which is synchronized among clients by Webstrates.

Using the Webstrates stack and Varv was a pragmatic choice
as they support collaboration and live reprogramming within the
same medium. Webstrates could be substituted with other client-
server architectures such as a Node.js server, and Codestrates by
other web-based code editors such as CodeMirror [10] and a pack-
age manager like NPM. Varv, however, was introduced as a novel
programming model and we are not aware of other models with
similar capabilities.

In terms of the ladder of tailorability, techniques at the levels of
customization, recombination, and extension are mostly indepen-
dent of the stack. It is only the techniques at the levels of scripting
and reprogramming that rely on Varv. Yet, these techniques would
also be applicable to other future live programming models.

7A code example of Varv is provided in Appendix B.

https://github.com/Webstrates/Mirrorverse


UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Grønbæk, et al.

Figure 9: A dedicated chat application (left) can run on a
different device but connect to the same chat messages as
Mirrorverse (right) using Varv’s data store mechanism.

6.2 Architecture
The code of Mirrorverse is structured in two types of packages.
The first type are low-level extensions to Varv implemented in
JavaScript. Among other things, they provide interfaces to the We-
bRTC [38] and Web Audio [37] APIs, and enable recording video.
The second type are packages that implement the Mirrorverse plat-
form. Each of these packages contains a combination of Varv code,
HTML templates, CSS styling, and audio routings. They are struc-
tured into managers for handling users, audio and video streams,
tools, and the chat, and elements that implement rooms, content, and
tools. The managers and the room elements are the core features of
Mirrorverse, all other content and tool element types (e.g., Camera,
Image, Grid tool) are implemented as independent packages. This
enables adding and removing packages at runtime because depen-
dencies between elements are rare.8 Currently,Mirrorverse supports
eight content types and twelve tools (see Appendix A). However, as
Mirrorverse builds on the power of web technologies, new content
types can, e.g., be created by reusing existing JavaScript libraries
or by embedding existing web apps.

6.3 The Audio Routing Mechanism
Audio routing is implemented using both Varv and JavaScript. It
is part of the Mirrorverse infrastructure and can be used by itself
in Cauldron or when creating tools. The routing decision tree is
defined in Varv— this is necessary to allow for the routing to be
changed live during a meeting. Once the properties of audio streams
are set in the Varv part of the routing, they are saved to the DOM,
where they are picked up by the JavaScript part of the audio routing.
The JavaScript part reads the properties from the DOM and changes
the corresponding properties on theWebRTC stream using theWeb
Audio API, e.g., using a GainNode to change the volume.

The audio routing GUI (see Figure 4) was created on top of the
audio routing mechanism as an authoring tool. It is implemented
in JavaScript and integrated into the Cauldron editor of the Web-
strates stack. Decision trees created with the audio routing GUI are
exported as Varv code used by the audio routing mechanism. This
also enables an escape hatch by allowing to author an audio rout-
ing using the GUI for the overall tree and implementing advanced
features directly in the exported Varv code.

8A few packages have dependencies, e.g., the recording tool requires camera content.

7 DISCUSSION
We discuss the key implications of our work and evaluate Mir-
rorverse using Olsen’s heuristics for user interface systems [44].
(Relevant qualities are highlighted in bold).

7.1 Systems-Oriented Evaluation
Enabling tailoring of video conferencing empowers participants
to become designers. Lowering the friction in climbing the ladder
of tailorability facilitates the transition from user to designer, and
encourages participants to design or change a feature in collabora-
tion with a more experienced colleague.

A Mirrorverse meeting is a Varv program consisting of a set
of primitives specific to video conferencing (see subsection 3.1).
Because a Varv program is a data structure, it is also easy to generate
Varv code procedurally. This means that a domain-specific scripting
tool such as the audio routing GUI can be built without having to
explicitly create an API for it (as required by others, see Table 2).
Thus, programming with Mirrorverse improves expressive match
as it encourages creating and using domain-specific abstractions [8]
i.e. design thinking in terms of video conferencing primitives.

Mirrorverse supports inductive combination at multiple levels.
For example, tool elements are primitives that can be recombined
in countless ways. This lets users add new tools via extension thus
enabling multiple new use situations not covered in this paper. Fun-
damentally, tailorability offers flexibility and liveness improves
flexibility. Users can rapidly experiment with new features even
during an ongoing meeting with multiple participants.

7.2 Tailorability, Friction, and Usability
We have demonstrated how Mirrorverse reduces friction from a
technical perspective by making tailorability possible at each level
and by enabling live transitions between them. However, future
work is necessary to evaluate if and how users will develop, use
and combine tools with Mirrorverse, and whether or not this signif-
icantly reduces friction under real-world use.

Mirrorverse poses several usability challenges. While Mirror-
verse’s ability to shift from configuration to implementation work
while running a meeting raises the ceiling of tailorability, it also
introduces a usability trade-off, since the increased flexibility also
increases the risk of breaking the system as it runs. Borowski et al.
[6] argue that computational media needs safeguards to prevent
accidental breakage and should always support easy reversion to
a previous working version. Mirrorverse let’s users revert changes
both to the source code and/or to the application state (e.g., the
precise configuration of a meeting at a given point in time) using
the version history of Webstrates [29].

Even without errors, live reconfiguration can be disruptive and
distracting. Organizers of physical meetings handle this by prepar-
ing for changes in advance. Digital meeting organizers should also
be able to prepare changes “on the side,” before making them live.
For example, an organizer could rearrange breakout rooms during
a plenary session, before sharing them with everyone. Moreover,
building and recombining tools also require work. We provide Tem-
plate and Extension Stores to facilitate easy reuse and make this
work a community effort, which should reduce friction.



Mirrorverse: Live Tailoring of Video Conferencing Interfaces UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

Another usability challenge is awareness: when live changes
made by a user affect other users, awareness mechanisms should
help the other users understand the change. This is a well-known
challenge in groupware research, and this literature could inform
good mechanisms for enhancing awareness of the who, what, and
where [20] of live collaborative tailoring.

7.3 Performance and Scalability
Video and audio communication use only peer-to-peer communi-
cation using WebRTC. This does not scale well beyond a handful
of users. Handling large meetings would require a media server for
multiplexing video and audio streams in order to reduce resource
demands on clients. Mirrorverse performs well in relatively com-
plex room setups. However, there are numerous optimizations to be
done in the Varv runtime engine that would increase performance.

Another scalability issue relates to the approach of recombining
tools. As the collection of extensions and templates grows, recombi-
nation may lead to conflicts that cause unexpected behavior for the
users. For example, two different tools added to the same meeting
may lead to unexpected results or even errors if they operate on
the same data, such as conflicting audio routing logic.

7.4 Hybrid Meetings
To reduce the complexity in our usage scenarios, we have focused
on conventional video conferencing situations where participants
connect from each their own device. But in hybrid meetings, phys-
ically co-located participants may share a device, such as a large
meeting display, to connect to one or more remote participants.
These types of meetings have become commonplace, but are also
known to be fraught with challenges [50].

The core interactions in Mirrorverse replicate the experience
of MirrorBlender [18], i.e., by letting users reposition, resize, and
adjust translucency of their video windows. These interactions
were originally designed to address challenges with deictic refer-
encing in hybrid meetings. Although out of scope for this paper,
the malleability of Mirrorverse provides a great foundation for fur-
ther experimentation with new ways to address these challenges
in hybrid meetings.

7.5 Directions for Future Work
Our design space covers the current trend of commercial video
conferencing platforms and recent research prototypes, or what is
sometimes referred to as the 2D Metaverse [31]. However, future
work should consider support for configuring 3D environments,
such as mixed and virtual realities [19, 66] and cross-device video
conferencing [36]. We demonstrated how to move chat windows
onto a companion device. This type of cross-device interaction
could potentially be extended to new interactive devices such as
head-mounted displays.

Future work should further explore the possibilities of reifying
video conferencing primitives into interactive objects. Our examples
of applying filters and rules to video and audio only show the
beginning. An obvious next direction is to reify text as a key data
format. Video conferencing includes a variety of text content, such
as chat, embedded notes, and live transcriptions. With the flexibility
and support for quickly experimenting with such different parts of

the interface,Mirrorverse is an ideal platform for conducting studies
on how to improve different aspects of online meetings.

Finally, our demonstration of applying principles of computa-
tional media hints at a future where video conferencing is not
trapped inside an application, but part of the computational fabric
itself, allowing for deeper integration of person and task space.

8 CONCLUSION
The ongoing global switch to hybrid work calls for a new breed of
video conferencing systems that can be more easily configured by
end users to fit their needs. We have introduced a design space for
live tailoring of video conferencing interfaces and a system design
based on principles of computational media that spans all five levels
of the ladder of tailorability. We have describedMirrorverse, a proof-
of-concept implementation of this design, and have demonstrated
through a series of examples the range of video conferencing expe-
riences and reconfiguration capabilities that it enables. Mirrorverse
extends tailoring in two important ways: (1) it increases the ceiling
of tailorability with reprogramming, and (2) it reduces tailoring
friction by supporting live collaborative changes and providing
constructs, such as templates and a domain-specific language, to
simplify configuration work. Future work includes extending this
approach to 3D environments and multi-device settings, as well as
exploring the reification of more video conferencing primitives.

ACKNOWLEDGMENTS
This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 740548). Thanks
to Rolf Bagge and Janus Bager Kristensen from CAVI at Aarhus
University for their support in the development of Mirrorverse.

REFERENCES
[1] Nancy Baym, Rachel Bergmann, Adam Coleman, Ricardo Reyna Fernandez, Sean

Rintel, Abigail Sellen, and Tiffany Smith. 2021. Collaboration and Meetings -
Chapter 1 of the 2021 New Future of Work report. Microsoft, Redmond, WA,
USA, Chapter 1, 7–17. https://www.microsoft.com/en-us/research/publication/
collaboration-and-meetings/

[2] Michel Beaudouin-Lafon. 2000. Instrumental Interaction: An Interaction Model
for Designing Post-WIMP User Interfaces. In Proceedings of the 18th International
Conference on Human Factors in Computing Systems (CHI ’00). ACM, New York,
NY, USA, 446–453. https://doi.org/10.1145/332040.332473

[3] Michel Beaudouin-Lafon and Wendy E. Mackay. 2000. Reification, Polymorphism
and Reuse: Three Principles for Designing Visual Interfaces. In Proceedings of
the Working Conference on Advanced Visual Interfaces (Palermo, Italy) (AVI ’00).
Association for Computing Machinery, New York, NY, USA, 102–109. https:
//doi.org/10.1145/345513.345267

[4] Anna Bleakley, Daniel Rough, Justin Edwards, Philip Doyle, Odile Dumbleton,
Leigh Clark, Sean Rintel, Vincent Wade, and Benjamin R. Cowan. 2022. Bridging
social distance during social distancing: exploring social talk and remote colle-
giality in video conferencing. Human–Computer Interaction 37, 5 (2022), 404–432.
https://doi.org/10.1080/07370024.2021.1994859

[5] Sara A. Bly, Steve R. Harrison, and Susan Irwin. 1993. Media Spaces: Bringing
People Together in a Video, Audio, and Computing Environment. Commun. ACM
36, 1 (1993), 28–46. https://doi.org/10.1145/151233.151235

[6] Marcel Borowski, Bjarke V. Fog, Carla F. Griggio, James R. Eagan, and Clemens N.
Klokmose. 2022. Between Principle and Pragmatism: Reflections on Prototyping
Computational Media with Webstrates. ACM Trans. Comput.-Hum. Interact. (oct
2022). https://doi.org/10.1145/3569895 Just Accepted.

[7] Marcel Borowski, Janus Bager Kristensen, Rolf Bagge, and Clemens N. Klokmose.
2021. Codestrates v2: A Development Platform for Webstrates. Technical Report.
Aarhus University. https://pure.au.dk/portal/en/publications/codestrates-
v2-a-development-platform-for-webstrates(66e1d4d9-27da-4f6b-85b3-
19b0993caf22).html

https://www.microsoft.com/en-us/research/publication/collaboration-and-meetings/
https://www.microsoft.com/en-us/research/publication/collaboration-and-meetings/
https://doi.org/10.1145/332040.332473
https://doi.org/10.1145/345513.345267
https://doi.org/10.1145/345513.345267
https://doi.org/10.1080/07370024.2021.1994859
https://doi.org/10.1145/151233.151235
https://doi.org/10.1145/3569895
https://pure.au.dk/portal/en/publications/codestrates-v2-a-development-platform-for-webstrates(66e1d4d9-27da-4f6b-85b3-19b0993caf22).html
https://pure.au.dk/portal/en/publications/codestrates-v2-a-development-platform-for-webstrates(66e1d4d9-27da-4f6b-85b3-19b0993caf22).html
https://pure.au.dk/portal/en/publications/codestrates-v2-a-development-platform-for-webstrates(66e1d4d9-27da-4f6b-85b3-19b0993caf22).html


UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Grønbæk, et al.

[8] Marcel Borowski, Luke Murray, Rolf Bagge, Janus Bager Kristensen, Arvind
Satyanarayan, and Clemens Nylandsted Klokmose. 2022. Varv: Reprogrammable
Interactive Software as a Declarative Data Structure. In Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI ’22). Association for Computing Machinery, New York, NY, USA, Article
492, 20 pages. https://doi.org/10.1145/3491102.3502064

[9] Bill Buxton. 2009. Mediaspace – Meaningspace – Meetingspace. Springer London,
London, 217–231. https://doi.org/10.1007/978-1-84882-483-6_13

[10] CodeMirror. 2023. CodeMirror. https://codemirror.net/. Accessed: 2023-07-04.
[11] Andrea A. diSessa. 2001. Changing Minds: Computers, Learning, and Literacy. MIT

Press, Cambridge, MA, USA. https://mitpress.mit.edu/books/changing-minds
[12] Andrea A. diSessa and Harold Abelson. 1986. Boxer: A Reconstructible Compu-

tational Medium. Commun. ACM 29, 9 (1986), 859–868. https://doi.org/10.1145/
6592.6595

[13] Michelle Gantt and Bonnie A. Nardi. 1992. Gardeners and Gurus: Patterns of
Cooperation among CAD Users. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’92). ACM, New York, NY, USA, 107–
117. https://doi.org/10.1145/142750.142767

[14] Gather Presence, Inc. 2023. Gather. https://gather.town/. Accessed: 2023-07-04.
[15] Adele Goldberg and David Robson. 1983. Smalltalk-80: the language and its

implementation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

[16] Carlos Gonzalez Diaz, John Tang, Advait Sarkar, and Sean Rintel. 2022. Making
Space for Social Time: Supporting Conversational Transitions Before, During,
and After Video Meetings. In 2022 Symposium on Human-Computer Interaction
for Work (Durham, NH, USA) (CHIWORK 2022). Association for Computing
Machinery, New York, NY, USA, Article 4, 11 pages. https://doi.org/10.1145/
3533406.3533417

[17] Google LLC. 2023. Google Workspace. https://workspace.google.com. Accessed:
2023-07-04.

[18] Jens Emil Grønbæk, Banu Saatçi, Carla F. Griggio, and Clemens Nylandsted
Klokmose. 2021. MirrorBlender: Supporting Hybrid Meetings with a Mal-
leable Video-Conferencing System. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 451, 13 pages.
https://doi.org/10.1145/3411764.3445698

[19] Jens Emil Grønbæk, Ken Pfeuffer, Eduardo Velloso, Morten Astrup, Melanie Søn-
derkær Pedersen, Martin Kjær, Germán Leiva, and Hans Gellersen. 2023. Partially
Blended Realities: Aligning Dissimilar Spaces for Distributed Mixed Reality Meet-
ings. In Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems (Hamburg, Germany) (CHI ’23). Association for Computing Machinery,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3544548.3581515

[20] Carl Gutwin and Saul Greenberg. 2002. A descriptive framework of workspace
awareness for real-time groupware. Computer Supported Cooperative Work
(CSCW) 11 (2002), 411–446.

[21] Mona Haraty and Joanna McGrenere. 2016. Designing for Advanced Personaliza-
tion in Personal Task Management. In Proceedings of the 2016 ACM Conference
on Designing Interactive Systems (DIS ’16). ACM, New York, NY, USA, 239–250.
https://doi.org/10.1145/2901790.2901805

[22] Mona Haraty, Joanna McGrenere, and Andrea Bunt. 2017. Online Customization
Sharing Ecosystems: Components, Roles, and Motivations. In Proceedings of
the 2017 ACM Conference on Computer Supported Cooperative Work and Social
Computing (CSCW ’17). ACM, New York, NY, USA, 2359–2371. https://doi.org/
10.1145/2998181.2998289

[23] Erzhen Hu, Md Asshikur Rahman Azim, and Seongkook Heo. 2022. FluidMeet:
Enabling Frictionless Transitions Between In-Group, Between-Group, and Private
Conversations During Virtual Breakout Meetings. In Proceedings of the 40rd
Annual ACM Conference on Human Factors in Computing Systems (New Olearns,
USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA,
17 pages. https://doi.org/10.1145/3491102.3517558

[24] Erzhen Hu, Jens Emil Sloth Grønbæk, Austin Houck, and Seongkook Heo. 2023.
OpenMic: Utilizing Proxemic Metaphors for Conversational Floor Transitions
in Multiparty Video Meetings. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems (Hamburg, Germany) (CHI ’23). Association
for Computing Machinery, New York, NY, USA, Article 793, 17 pages. https:
//doi.org/10.1145/3544548.3581013

[25] Erzhen Hu, Jens Emil Sloth Grønbæk, Wen Ying, Ruofei Du, and Seongkook Heo.
2023. ThingShare: Ad-Hoc Digital Copies of Physical Objects for Sharing Things
in Video Meetings. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing
Machinery, New York, NY, USA, Article 365, 22 pages. https://doi.org/10.1145/
3544548.3581148

[26] Hiroshi Ishii, Minoru Kobayashi, and Jonathan Grudin. 1993. Integration of
Interpersonal Space and Shared Workspace: ClearBoard Design and Experiments.
ACM Trans. Inf. Syst. 11, 4 (1993), 349–375. https://doi.org/10.1145/159764.159762

[27] Jitsi. 2023. Jitsi Meet. https://meet.jit.si/. Accessed: 2023-07-04.
[28] Alan Kay and Adele Goldberg. 1977. Personal Dynamic Media. Comput. J. 10, 3

(1977), 31–41. https://doi.org/10.1109/c-m.1977.217672

[29] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy Mackay, and
Michel Beaudouin-Lafon. 2015. Webstrates: Shareable Dynamic Media. In Pro-
ceedings of the 28th Annual ACM Symposium on User Interface Software & Tech-
nology (UIST ’15). ACM, New York, NY, USA, 280–290. https://doi.org/10.1145/
2807442.2807446

[30] Anastasia Kuzminykh and Sean Rintel. 2020. Classification of functional attention
in video meetings. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. ACM, New York, NY, USA, 1–13.

[31] Jens Larsen. 2022. Virtual communication without sniper rifles: How the 2D
metaverse is changing virtual spaces. https://venturebeat.com/games/virtual-
communication-without-sniper-rifles-how-the-2d-metaverse-is-changing-
virtual-spaces/. Accessed: 2023-07-04.

[32] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg,
and Saul Greenberg. 2018. Evaluation Strategies for HCI Toolkit Research. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–17. https://doi.org/10.1145/3173574.3173610

[33] Wendy E. Mackay. 1990. Patterns of Sharing Customizable Software. In Pro-
ceedings of the 1990 ACM conference on Computer-supported cooperative work
(CSCW ’90). ACM, New York, NY, USA, 209–221. https://doi.org/10.1145/99332.
99356

[34] Wendy E Mackay. 1999. Media spaces: Environments for informal multimedia
interaction. Computer Supported Co-operative Work 7 (1999), 55–82.

[35] Allan MacLean, Kathleen Carter, Lennart Lövstrand, and Thomas Moran. 1990.
User-Tailorable Systems: Pressing the Issues with Buttons. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’90). ACM, New
York, NY, USA, 175–182. https://doi.org/10.1145/97243.97271

[36] Nicolai Marquardt, Nathalie Henry Riche, Christian Holz, Hugo Romat, Michel
Pahud, Frederik Brudy, David Ledo, Chunjong Park, Molly Jane Nicholas, Teddy
Seyed, Eyal Ofek, Bongshin Lee, William A.S. Buxton, and Ken Hinckley. 2021.
AirConstellations: In-Air Device Formations for Cross-Device Interaction via
Multiple Spatially-Aware Armatures. In The 34th Annual ACM Symposium on User
Interface Software and Technology (Virtual Event, USA) (UIST ’21). Association
for Computing Machinery, New York, NY, USA, 1252–1268. https://doi.org/10.
1145/3472749.3474820

[37] MDN Contributors . 2023. Web Audio API. https://developer.mozilla.org/en-
US/docs/Web/API/Web_Audio_API. Accessed: 2023-07-04.

[38] MDN Contributors. 2023. WebRTC API. https://developer.mozilla.org/en-US/
docs/Web/API/WebRTC_API. Accessed: 2023-07-04.

[39] Microsoft. 2023. Microsoft Teams Marketplace. https://appsource.microsoft.com/
en-us/marketplace/apps?product=teams&exp=ubp8. Accessed: 2023-07-04.

[40] Miro. 2023. Miro. https://miro.com/. Accessed: 2023-07-04.
[41] Anders Mørch. 1997. Three levels of end-user tailoring: Customization, integra-

tion, and extension. Computers and design in context 1997 (1997), 61.
[42] OBS. 2023. OBS: Open Broadcaster Software. https://obsproject.com. Accessed:

2023-07-04.
[43] Kenton O’Hara, Jesper Kjeldskov, and Jeni Paay. 2011. Blended Interaction Spaces

for Distributed Team Collaboration. ACM Trans. Comput.-Hum. Interact 18, 1,
Article 3 (2011), 28 pages. https://doi.org/10.1145/1959022.1959025

[44] Dan R. Olsen. 2007. Evaluating User Interface Systems Research. In Proceedings
of the 20th Annual ACM Symposium on User Interface Software and Technology
(Newport, Rhode Island, USA) (UIST ’07). Association for Computing Machinery,
New York, NY, USA, 251–258. https://doi.org/10.1145/1294211.1294256

[45] Pine Labs LLC. 2023. ohyay. https://ohyay.co/. Accessed: 2023-07-04.
[46] Washington Post. 2023. Remember Zoom-bombing? This is how Zoom tamed

meeting intrusions. https://www.washingtonpost.com/technology/2023/01/24/
zoom-bombing-prevention-tips/. Accessed: 2023-03-06.

[47] Irene Rae, Gina Venolia, John C. Tang, and David Molnar. 2015. A Framework
for Understanding and Designing Telepresence. In Proceedings of the 18th ACM
Conference on Computer Supported Cooperative Work & Social Computing (Van-
couver, BC, Canada) (CSCW ’15). Association for Computing Machinery, New
York, NY, USA, 1552–1566. https://doi.org/10.1145/2675133.2675141

[48] Remo. 2023. Remo. https://remo.co/. Accessed: 2023-07-04.
[49] Banu Saatçi, Kaya Akyüz, Sean Rintel, and Clemens Nylandsted Klokmose.

2020. (Re)Configuring Hybrid Meetings: Moving from User-Centered Design
to Meeting-Centered Design. Computer Supported Cooperative Work (CSCW) 29
(2020), 769–794. https://doi.org/10.1007/s10606-020-09385-x

[50] Banu Saatçi, Roman Rädle, Sean Rintel, Kenton O’Hara, and Clemens Nyland-
sted Klokmose. 2019. Hybrid meetings in the modern workplace: stories of
success and failure. In Collaboration Technologies and Social Computing: 25th
International Conference, CRIWG+ CollabTech 2019, Kyoto, Japan, September 4–6,
2019, Proceedings 25. Springer, Springer, Hanover, PA, USA, 45–61.

[51] Advait Sarkar, Sean Rintel, Damian Borowiec, Rachel Bergmann, Sharon Gillett,
Danielle Bragg, Nancy Baym, and Abigail Sellen. 2021. The Promise and Peril
of Parallel Chat in Video Meetings for Work. In Extended Abstracts of the 2021
CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI
EA ’21). Association for Computing Machinery, New York, NY, USA, Article 260,
8 pages. https://doi.org/10.1145/3411763.3451793

https://doi.org/10.1145/3491102.3502064
https://doi.org/10.1007/978-1-84882-483-6_13
https://codemirror.net/
https://mitpress.mit.edu/books/changing-minds
https://doi.org/10.1145/6592.6595
https://doi.org/10.1145/6592.6595
https://doi.org/10.1145/142750.142767
https://gather.town/
https://doi.org/10.1145/3533406.3533417
https://doi.org/10.1145/3533406.3533417
https://workspace.google.com
https://doi.org/10.1145/3411764.3445698
https://doi.org/10.1145/3544548.3581515
https://doi.org/10.1145/2901790.2901805
https://doi.org/10.1145/2998181.2998289
https://doi.org/10.1145/2998181.2998289
https://doi.org/10.1145/3491102.3517558
https://doi.org/10.1145/3544548.3581013
https://doi.org/10.1145/3544548.3581013
https://doi.org/10.1145/3544548.3581148
https://doi.org/10.1145/3544548.3581148
https://doi.org/10.1145/159764.159762
https://meet.jit.si/
https://doi.org/10.1109/c-m.1977.217672
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/2807442.2807446
https://venturebeat.com/games/virtual-communication-without-sniper-rifles-how-the-2d-metaverse-is-changing-virtual-spaces/
https://venturebeat.com/games/virtual-communication-without-sniper-rifles-how-the-2d-metaverse-is-changing-virtual-spaces/
https://venturebeat.com/games/virtual-communication-without-sniper-rifles-how-the-2d-metaverse-is-changing-virtual-spaces/
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/99332.99356
https://doi.org/10.1145/99332.99356
https://doi.org/10.1145/97243.97271
https://doi.org/10.1145/3472749.3474820
https://doi.org/10.1145/3472749.3474820
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://appsource.microsoft.com/en-us/marketplace/apps?product=teams&exp=ubp8
https://appsource.microsoft.com/en-us/marketplace/apps?product=teams&exp=ubp8
https://miro.com/
https://obsproject.com
https://doi.org/10.1145/1959022.1959025
https://doi.org/10.1145/1294211.1294256
https://ohyay.co/
https://www.washingtonpost.com/technology/2023/01/24/zoom-bombing-prevention-tips/
https://www.washingtonpost.com/technology/2023/01/24/zoom-bombing-prevention-tips/
https://doi.org/10.1145/2675133.2675141
https://remo.co/
https://doi.org/10.1007/s10606-020-09385-x
https://doi.org/10.1145/3411763.3451793


Mirrorverse: Live Tailoring of Video Conferencing Interfaces UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

[52] Kjeld Schmidt and Liam Bannon. 1992. Taking CSCW seriously: Supporting
articulation work. Computer Supported Cooperative Work (CSCW) 1 (1992), 7–40.

[53] Abigail Sellen, Bill Buxton, and John Arnott. 1992. Using Spatial Cues to Improve
Videoconferencing. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Monterey, California, USA) (CHI ’92). Association for
Computing Machinery, New York, NY, USA, 651–652. https://doi.org/10.1145/
142750.143070

[54] Abigail J. Sellen. 1995. Remote Conversations: the Effects of Mediating Talk
With Technology. Human-Computer Interaction 10, 4 (1995), 401–444. https:
//doi.org/10.1207/s15327051hci100_2

[55] SpatialChat. 2023. SpatialChat. https://spatial.chat/. Accessed: 2023-07-04.
[56] Sprout. 2023. Sprout. https://sprout.place/. Accessed: 2023-07-04.
[57] Steelcase Inc. 2023. Steelcase: Hybrid Collaboration is Hard. https:

//www.steelcase.com/eu-en/research/articles/topics/hybrid-work/hybrid-
collaboration-hard/. Accessed: 2023-07-04.

[58] M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and D. Tatar. 1987. WYSIWIS
Revised: Early Experiences with Multiuser Interfaces. ACM Trans. Inf. Syst. 5, 2
(1987), 147–167. https://doi.org/10.1145/27636.28056

[59] Teamflow. 2023. Teamflow. https://www.teamflowhq.com/. Accessed: 2023-07-
04.

[60] Balasaravanan Thoravi Kumaravel, Fraser Anderson, George Fitzmaurice, Bjoern
Hartmann, and Tovi Grossman. 2019. Loki: Facilitating Remote Instruction of
Physical Tasks Using Bi-Directional Mixed-Reality Telepresence. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology
(New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New
York, NY, USA, 161–174. https://doi.org/10.1145/3332165.3347872

[61] tldraw. 2023. tldraw. https://www.tldraw.com/. Accessed: 2023-07-04.
[62] Randall H. Trigg and Susanne Bødker. 1994. From Implementation to Design:

Tailoring and the Emergence of Systematization in CSCW. In Proceedings of the
1994 ACM Conference on Computer Supported Cooperative Work (CSCW ’94). ACM,
New York, NY, USA, 45–54. https://doi.org/10.1145/192844.192869

[63] Randall H. Trigg, Thomas P. Moran, and Frank G. Halasz. 1987. Adaptability
and Tailorability in NoteCards. In Human-Computer Interaction—INTERACT ’87.
North-Holland, Amsterdam, Netherlands, 723–728. https://doi.org/10.1016/B978-
0-444-70304-0.50117-5

[64] Unhangout. 2023. Unhangout. https://unhangout.media.mit.edu/. Accessed:
2023-07-04.

[65] Wonder. 2021. Wonder. https://www.wonder.me. Accessed: 2021-12-08.
[66] Haijun Xia, Sebastian Herscher, Ken Perlin, and Daniel Wigdor. 2018. Space-

time: Enabling Fluid Individual and Collaborative Editing in Virtual Reality. In
Proceedings of the 31st Annual ACM Symposium on User Interface Software and
Technology (Berlin, Germany) (UIST ’18). Association for Computing Machinery,
New York, NY, USA, 853–866. https://doi.org/10.1145/3242587.3242597

[67] Zoom Video Communications, Inc. 2023. Zoom. https://www.zoom.us. Accessed:
2023-07-04.

[68] Zoom Video Communications, Inc. 2023. ZoomMarketplace. https://marketplace.
zoom.us. Accessed: 2023-07-04.

A MIRRORVERSE ELEMENT TYPES
A.1 Content Types

Name Description

Camera Displays a live camera stream.

Screen Displays a live screen capture stream.

Video Plays a video file.

Image Displays an image file.

Note Displays a plain text note similar to a post-it.

Sketch Displays a 2D sketch drawing board using an tran-
scluded tldraw [61] project.

Chat Displays an interactive chat.

Avatar Displays an avatar that is used in the proximity-based
audio tool.

A.2 Tools

Name Description

Grid Changes the layout of elements in the workspace to a
grid.

Speaker
View

Changes the layout of elements in the workspace to
a view where one element—the speaker—is displayed
large and other elements are displayed in a filmstrip
above the speaker.

Layout
Template

Stores the layout of elements in a room and restore the
layout later (this only restores the position of existing
elements but does not recreate the elements).

Doorway Allows to listen in on nested rooms by hovering over it
with the mouse cursor.

Broadcast Routes the audio to all rooms.

Whisper Allows to whisper to other clients in the same room by
hovering over their camera feed.

Proximity-
based Audio

Changes the audio routing to be based on the location
of avatars in a room.

Pedestal Makes avatars that are close to the pedestal audible to
all other clients in a room when using the proximity-
based audio.

Recording Creates recordings of single camera streams.

Room
Recording

Creates a recording of the whole workspace of the cur-
rent room.

Template
Store

Enables to store element layouts and restore them later
(including recreating the elements).

Highlight Enables to highlight content WYSIWIS in the
workspace by double clicking on it.

Camera
Shaker

Shakes the camera stream of clients that are talking
loudly in a room.

https://doi.org/10.1145/142750.143070
https://doi.org/10.1145/142750.143070
https://doi.org/10.1207/s15327051hci100_2
https://doi.org/10.1207/s15327051hci100_2
https://spatial.chat/
https://sprout.place/
https://www.steelcase.com/eu-en/research/articles/topics/hybrid-work/hybrid-collaboration-hard/
https://www.steelcase.com/eu-en/research/articles/topics/hybrid-work/hybrid-collaboration-hard/
https://www.steelcase.com/eu-en/research/articles/topics/hybrid-work/hybrid-collaboration-hard/
https://doi.org/10.1145/27636.28056
https://www.teamflowhq.com/
https://doi.org/10.1145/3332165.3347872
https://www.tldraw.com/
https://doi.org/10.1145/192844.192869
https://doi.org/10.1016/B978-0-444-70304-0.50117-5
https://doi.org/10.1016/B978-0-444-70304-0.50117-5
https://unhangout.media.mit.edu/
https://www.wonder.me
https://doi.org/10.1145/3242587.3242597
https://www.zoom.us
https://marketplace.zoom.us
https://marketplace.zoom.us


UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Grønbæk, et al.

B VARV CODE EXAMPLE
1 { "concepts ": {

2 "element ": {

3 "schema ": {

4 "globalHighlighted ": "boolean"

5 }

6 },

7 "highlightTool ": {

8 "schema ": {

9 "isActive ": "boolean"

10 },

11 "actions ": {

12 "checkHighlightActive ": { "then": [

13 { "exists ": {

14 "concept ": "highlightTool",

15 "where": {

16 "property ": "isActive",

17 "equals ": true

18 }

19 }},

20 { "where": {

21 "variable ": "exists",

22 "equals ": true

23 }}

24 ]},

25 "resetGlobalHighlightOnFullscreenClick ": {

26 "when": { "click": { "concept ": "element" }},

27 "then": [

28 "checkHighlightActive",

29 "checkIsFullscreenRoom",

30 "resetGlobalHighlight"

31 ]

32 },

33 "resetGlobalHighlight ": { "then": [

34 { "select ": "element" },

35 "checkInFullscreenRoom",

36 { "set": { "globalHighlighted ": false }}

37 ]},

38 "setGlobalHighlight ": {

39 "when": { "mousedown ": {

40 "concept ": "contentElement"

41 }},

42 "then": [

43 "checkHighlightActive",

44 "checkInFullscreenRoom",

45 { "where": {

46 "property ": "selected",

47 "equals ": true

48 }},

49 { "run": "resetGlobalHighlight" },

50 { "set": { "globalHighlighted ": true }}

51 ]

52 }

53 },

54 "extensions ": { "inject ": [

55 "element", "toolElement", "movableMixin",

56 "resizableMixin", "droppableMixin"

57 ]}

58 } } }

Listing 1: Varv code example of the Highlight tool. The code
is slightly simplified for readability.

Varv code is written in the JSON format. It is structured in con-
cepts, e.g., a specific tool is its own concept (similar to classes in
regular object-oriented programming (OOP)). Each concept con-
sists of a schema, actions, and extensions. The schema defines the
properties of a concept. For example, we add the Boolean property

globalHighlighted to the schema of an element to be able to set
its highlight value to true or false. Actions define the interactive
behavior of a concept and are trigger-action (when-then) rules. The
when parts define when an action should be triggered, e.g., when
the user clicks on a certain type of concept. This part is optional and
actions can also only consist of a then-part. The then part defines
which action chain should be run, passing an event along from
one action to the next. Actions are applied to selections of concept
instances (concept instances are similar to objects in OOP). Finally,
extensions allow for polymorphism and can be used to inject one
concept into another. For example, the element concept has prop-
erties for its position and size; by injecting the concept into the
highlightTool it inherits these properties.

Actions in Varv are named and can be used in other action
chains. This makes it possible to create a domain-specific language
for a certain type of software. In Mirrorverse, we created the action
checkInFullscreenRoom to check whether an element is in the
current room that is active in the workspace (the fullscreenRoom).
Actions such as this one can be used when implementing elements—
both in content and tools. Similarly, in the highlight tool, we added
the action checkHighlightActivewhich checks whether the high-
light tool is active and only continues the action chain if it is.

C ADDING TOOLS TO MIRRORVERSE
Adding new concept types or tools to Mirrorverse works similar to
reprogramming a tool as described in Section 4.3.5: The user also
has to open the Cauldron IDE using the “Edit” button but instead of
editing existing code needs to create a package for the new content
type or tool and add a Varv concept definition and a Varv template
with some boilerplate code (see below for an example). The tool
can be used afterwards.

1 { "concepts ": {

2 "myNewTool ": {

3 "schema ": {

4 // Tool properties here

5 },

6 "actions ": {

7 // Tool actions here

8 },

9 "extensions ": { "inject ": [

10 "element", "toolElement", "movableMixin",

11 "resizableMixin", "droppableMixin"

12 ]}

13 } } }

Listing 2: Varv boilerplate concept definition code required
when adding a new tool.

1 <dom -view -template >

2 <varv -template name=" myNewToolContent">

3 <div class="tool -title">My New Tool </div >

4 <!-- Tool content here -->

5 </varv -template >

6 <varv -template name=" myNewToolOptions">

7 <!-- Tool options here -->

8 <template -ref template -name=" toolMirrorOptions">

9 </template -ref >

10 </varv -template >

11 </dom -view -template >

Listing 3: Varv boilerplate template code required when
adding a new tool.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Video-Mediated Communication
	2.2 Tailorable Software

	3 Design Space for Tailorable Video Conferencing
	3.1 Design Space of Video Conferencing
	3.2 Tailorability for Video Conferencing

	4 Mirrorverse
	4.1 Video Conferencing as Computational Media
	4.2 Mirrorverse Overview
	4.3 Techniques for Tailorability

	5 Demonstrating Scope and Depth
	5.1 Dynamically Recombining Live and Recorded Video in a Yoga Class
	5.2 Scripting Audio Navigation in a Multi-Room Workshop
	5.3 Impromptu Reprogramming of Deictic Tools in a Stand-Up Meeting
	5.4 Other Examples

	6 Implementation
	6.1 Web-based Software Stack
	6.2 Architecture
	6.3 The Audio Routing Mechanism

	7 Discussion
	7.1 Systems-Oriented Evaluation
	7.2 Tailorability, Friction, and Usability
	7.3 Performance and Scalability
	7.4 Hybrid Meetings
	7.5 Directions for Future Work

	8 Conclusion
	Acknowledgments
	References
	A Mirrorverse Element Types
	A.1 Content Types
	A.2 Tools

	B Varv Code Example
	C Adding Tools to Mirrorverse

