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The Hidden Face of Rubisco
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Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) fixes atmo-
spheric CO2 into organic compounds and is composed of eight copies each
of a large subunit (RbcL) and a small subunit (RbcS). Recent reports have
revealed unusual RbcS, which are expressed in particular tissues and confer
higher catalytic rate, lesser affinity for CO2, and a more acidic profile of the
activity versus pH. The resulting Rubisco was proposed to be adapted to a high
CO2 environment and recycle CO2 generated by the metabolism. These RbcS
belong to a cluster named T (for trichome), phylogenetically distant from cluster
M, which gathers well-characterized RbcS expressed in mesophyll or bundle-
sheath tissues. Cluster T is largely represented in different plant phyla, includ-
ing pteridophytes and bryophytes, indicating an ancient origin.

A New Type of RbcS
CO2 fixation into organic compounds is essential for life on Earth, and ribulose-1,5-bisphos-
phate carboxylase/oxygenase (Rubisco) is a major player in this reaction. This enzyme, which,
in eukaryotes, is localized to the chloroplast, catalyzes the conversion of CO2 and ribulose-
1,5-bisphosphate, a C5 compound, into two molecules of 3-phosphoglycerate, a C3 com-
pound. Its abundance in plant tissues has made this enzyme a paradigm for structural,
enzymatic, and molecular genetic characterization, as well as for protein evolution (for
reviews, see [1–5]). Rubisco, which is by far the most abundant enzyme in photosynthetic
tissues, has slow kinetics (kcat usually lower than 5 s�1) and is responsible for a side oxy-
genase reaction in which ribulose-1,5-bisphosphate is converted into phosphoglycolate,
resulting in lower CO2 fixation efficiency.

In plants, Rubisco is made of eight copies each of a large subunit (RbcL) encoded by the
chloroplast genome and of a small subunit (RbcS) encoded by the nuclear genome. Two RbcL
form a top to tail dimer, which is repeated four times (Figure 1). There are two active sites per
dimer, located at the interface between two RbcL. The RbcS are located above and below the
four RbcL dimers, and are thought to play a role in assembling, and maintaining together, the
large subunits. However, RbcS are also indirectly involved in the catalytic reaction (see [6] for
review).

While RbcL is usually encoded by a single chloroplast gene, RbcS is encoded by a nuclear
family of several genes, which share high amino acid identity (usually between 90% and 100%)
and are considered functionally equivalent in a given species. However, RbcS variants (amino
acid identity < 65%) were recently identified, which clearly differ from the RbcS previously
characterized in the same species [7–10]. This is the case in rice, where OsRbcS1 is phyloge-
netically distant from other rice RbcS and whose expression is restricted to nonphotosynthetic
tissues such as leaf sheath, culm, anther, and root central cylinder. OsRBCS1 overexpression
in the leaf blade resulted in a Rubisco enzyme with a higher catalytic rate and higher Km for CO2

[8]. OsRBCS1 homologs were identified in Setaria italica (foxtail millet), Solanum lycopersicum
(tomato), Lotus japonicus (a wild legume), Vitis vinifera (grape), as well as in Selaginella
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moellendorffii, a pteridophyte species. All were found to be mainly expressed in nonphoto-
synthetic tissues [9]. Another example was found in Nicotiana tabacum (cultivated tobacco), in
which a particular RbcS named NtRbcS-T (T for trichome) is expressed exclusively in the
secretory cells of glandular trichomes. This Rubisco was found to have higher Km, higher Vmax,
and a more acidic profile of the pH-dependent activity than Rubisco from leaf mesophyll tissues
[7]. Since RbcL is encoded by a single gene and is thus common for all the Rubisco enzymes
within a given species, the kinetic differences found between trichomes and mesophyll tissues
are uniquely due to the RbcS isoform.

Genomic data mining resulted in the identification of T-type RbcS in 34 flowering plant species
[7,9]. It thus appears that, although identified in both monocot and dicot species, the T-type
RbcS has remained so long unidentified because its expression is limited to particular tissues
and is thus hidden by the large expression of the M type in mesophyll and bundle-sheath
tissues. Here, we will address the following questions. (i) How widely spread is the T-type RbcS
in land plants? Can it be found in phyla such as pteridophytes (e.g., ferns) or bryophytes (e.g.,
mosses; Figure 2A), which appeared before the spermatophytes (seed plants)? (ii) What are the
structural features of RbcS-T that might explain the altered kinetic properties of Rubisco that
contains this subunit? (iii) In relationship with the modified enzymatic properties of the T-type
Rubisco, what are the physiological roles of this variant enzyme?

RbcS-T and RbcS-M Are Phylogenetically Distant
To date, T-type RbcS and therefore T-type Rubisco complexes have been little characterized at
the expressional and functional levels. However, next-generation sequencing has provided a
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Figure 1. Model of Rbc-T from Nicotiana tabacum. NtRbc-T was modeled (Modeller 9.17, (https://salilab.org/
modeller, [48])) using the N. tabacum 4rub structure [22] replacing the sequence of NtRbcS-M by that of NtRbc-T
(GenBank accession id: DV157962). The different subunits are represented with different colors. Labeled subunits (Z, Y, V,
G, D, and A) belong to the subcomplex shown in the Supplemental Information online, Figure S2A.
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wealth of genomic and transcriptomic data that have revealed the presence of T-type RbcS
genes in many species. Thus, 38 genes from 34 flowering plant species including both
monocot and dicot plants had been previously identified [7,9]. To determine the distribution
of the T-type RbcS within the whole plant kingdom, a more exhaustive search was performed,
taking advantage of the soaring genomic database. Plant RbcS sequences were retrieved from
several genomic and cDNA databases [11–15] (see Supplemental Information online,
Table S1). Phylogenetic analysis was first conducted on RbcS sequences from land plants
including spermatophytes (also named seed plants), as well as pteridophytes and bryophytes,
the latter two constituting the seedless plants (Figure 2A,B).

In spermatophytes, T-type RbcS were found in all subclasses of gymnosperms as well as of
angiosperms (monocot and dicot plants). About 24% of the spermatophyte RbcS belong to the
T type (Figure 2B). RbcS-M genes were consistently present in multicopies, while RbcS-T
genes were mostly found as a single copy or as two copies in a few cases. Not all species
contain T-type RbcS. Indeed, no RbcS-T sequences were identified among the 24 RbcS
sequences retrieved from the seven sequenced Brassicaceae genomes. Moreover, only three
of ten Poaceae species with their genome sequenced contain T-type RbcS, one being rice, a
plant with C3-type photosynthesis and the others being Panicum hallii and S. italica, two plants
with C4-type photosynthesis [9,16,17]. Overall, 55 of 87 spermatophyte species surveyed
possess a T-type RbcS, while all of them have M-type RbcS (except for the nonsequenced
genome species Nuphar advena, for which only a T-type RbcS was found). Although we need
to be cautious (draft genomes are missing genes), these data might suggest that T-type RbcS
genes were present at the onset of spermatophytes but disappeared several times indepen-
dently during spermatophyte evolution.

Phylogenetic analysis also included RbcS sequences of more ancient tracheophyte species
commonly referred to as pteridophytes as well as of nonvascular plants called bryophytes
(Figure 2A,B). Although databases contain very few genome sequences of these seedless
species, they contain many expressed sequence tag (EST) sequences, thus corresponding to
expressed genes. T-type RbcS were identified in both phyla (see Supplemental Information
online, Table S1). Interestingly, we found more T-type RbcS sequences (71) than M-type RbcS
sequences (23), a result opposite to what was observed in spermatophytes. One hypothesis
might be that RbcS-T expression in these species is not restricted to specific tissues, as it
seems to be the case for spermatophyte species. Another hypothesis might be that pterido-
phyte and bryophyte species contain, on the whole, more T-type than M-type RbcS genes,

Figure 2. Distribution of the T-type RbcS into the Plantae Kingdom. (A) Overview of the phylogenetic relationships
among the Plantae kingdom from green algae to land plants. Timescale for plant evolution according to Clarke et al. [49].
(B) Phylogenetic analysis of land plant RbcS sequences. All RbcS sequences from land plant species including sperma-
tophytes, pteridophytes, and bryophytes are split into two clusters (M and T) defining M-type RbcS and T-type RbcS. The
M cluster encompasses all well-characterized RbcS from spermatophytes, while the T cluster includes newly identified
NtRbcS-T and OsRbcS1 (highlighted in red) from Nicotiana tabacum and Oryza sativa, respectively [7,8]. Although most
spermatophyte RbcS are found in the M cluster, pteridophyte and bryophyte RbcS are mainly found in the T cluster. The
abbreviations and the list of the corresponding RbcS sequence accessions can be found in the Supplemental Information
online, Table S1. The evolutionary history was inferred using the maximum likelihood method based on the Le–Gascuel
(LG) model [50]. Bootstrap values (400 iterations) greater than 50% are indicated [51]. The evolutionary distances were
computed using the LG model. Initial trees for the heuristic search were obtained by applying the neighbor-joining method
to a matrix of pairwise distances estimated using a Jones–Thornton–Taylor model. A discrete gamma distribution was
used to model the evolutionary rate differences among sites (shape parameter = 10). The rate variation model allowed for
some sites to be evolutionarily invariable. Proteobacteria RbcS were used as an outgroup. The tree is drawn to scale, with
branch lengths measured in the number of substitutions per site, except for the outgroup for which branches were
collapsed. Similar evolutionary history was obtained using the neighbor-joining method [52] (data not shown). Analyses
were conducted in MEGA7 [53].
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while the opposite was clearly observed in the sequenced spermatophyte species. Besides,
most of these seedless species (45 of 50) displayed T-type RbcS sequences. However, only a
few of them (14 of 50) had both T-type and M-type RbcS. This tendency is mainly based on EST
sequences and needs to be confirmed when whole genome sequences become available for
many pteridophytes and bryophytes. Nevertheless, we can already conclude that RbcS-T are
widespread in land plants, including ancient phyla. This raises the question as to whether a T-
type RbcS might predate the terrestrial conquest.

To address this possibility, we analyzed RbcS sequences from chlorophytes, which contain
most of the extant green algae (e.g., Chlamydomonas), and from charophytes (e.g., Klebsor-
midium nitens; [18]), other green algae, which gave rise to all land species (Figure 2A) [19]. RbcS
sequences from chlorophytes were clearly confined into an independent cluster (see Supple-
mental Information online, Figure S1). On the contrary, RbcS sequences from charophyte
species were closer to the M and T clusters, which is in agreement with the fact that land plants
derived from charophytes [19]. However, it would be too speculative to more precisely
associate charophyte RbcS with either the M or the T cluster (see Supplemental Information
online, Figure S1).

Structural Analysis of the T-Type Rubisco from N. tabacum
While the 3D structure of several M-type Rubisco has been experimentally determined
(reviewed in [20]), there is no structure available for the T-type, due to its recent discovery
and its expression restricted to tissues not amenable for large-scale purification. Since RbcL is
encoded by a single gene, and is thus common to both the T- and M-type Rubisco, RbcS is the
only component that differs between both enzymes. Alignment of the 55 known T-type
sequences of spermatophytes (seed plants) with M-type sequences from the same species
pointed to 12 residues that are highly conserved (>75%) in each type but different between
them (Figure 3). In addition, there is one additional residue (Position 46) in the M-type. We might
speculate that some of these positions are responsible for the modified kinetics, namely, higher
Km and Vmax, as well as the acidic shift of the activity versus pH profile, observed for the T-type
compared with the M-type Rubisco in tobacco [7].

Figure 3. Alignment of the M- and T-Type RbcS Consensus Sequences. RbcS amino acid residues conserved in
at least 75% of the 55 T-type sequences of spermatophytes listed in the Supplemental Information online, Table S1, are
indicated. For the M-type, one RbcS sequence was retrieved from the same species as those in which a T-type RbcS had
been identified. Conserved residues that differ between M and T are in red. A dot indicates that the position is not
conserved. The red dash indicates a missing residue between Positions 45 and 46 of T.
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Although there is no direct interaction between RbcS and the Rubisco active site, the small
subunits contribute to the kinetic properties of the enzyme. For instance, point mutations in the
small subunit at a remote distance from the catalytic site were shown to modify the Rubisco
kinetic parameters of the alga Chlamydomonas and the cyanobacterium Synechococcus
(reviewed in [2,3,6]). Replacing the Chlamydomonas RbcS by that of spinach, sunflower, or
Arabidopsis resulted in a functional hybrid enzyme with modified kinetics [21]. Yet, despite
these functional differences, and although RbcS sequences are clearly less conserved than
RbcL sequences, their structures do show a common core structure [20]. It therefore makes
sense to model the T-type Rubisco starting from the N. tabacum Rubisco 3D structure
obtained for the M type (PDB code 4rub; [22], Figure 1), so as to determine the spatial position
of the T-type-specific residues and, in particular, those that interact with the large subunits (see
Supplemental Information online, Figure S2). Indeed, an RbcS subunit contacts three RbcL
besides two other RbcS. Among the 12 type-specific positions, only three (for both M- and T-
types) are predicted to contact an RbcL subunit: MPro5/TAsg5, MGlu45/TAsp45, and MMet69/

TLeu68. The most variable region between RbcS from various organisms lies in a loop
extending from Residue 46 to 67 (M-type) or 66 (T-type; Figure S2). This concerns both
the sequence and the length. For instance, the Chlamydomonas loop is 6, 7, or 18 residues
longer than that of land plants (RbcS-M, RbcS-T) or the cyanobacterium Synechococcus,
respectively. When the Chlamydomonas loop was replaced with that of spinach or Synecho-
coccus, the kinetic parameters were modified [23]. However, the crystal structure of the
chimeric enzymes did not show any alteration of the RbcS Ca backbone, with the exception
of the loop region, which was shortened. Structural alterations of the large chain were limited to
the side chains of some residues at the interface between the small and large subunits [23]. At
the beginning of this loop, we can highlight the type-specific Residue 45 (MGlu and TAsp), which
is predicted to interact with an RbcL (Figure S2). Interestingly, next to this residue lies the M-
type additional residue (Position 46).

In conclusion, RbcS sequence alignment allowed for the identification of several residues
specifically conserved in either the M- or T-type of RbcS. It can be expected that some of these,
especially those localized at the interface between the small and large subunits, might be
responsible for the different kinetic parameters observed between the M- and T-type Rubisco.
The functional replacement of the Chlamydomonas RbcS by the tobacco RbcS-M or RbcS-T
[7] represents an interesting tool to identify, through site-directed mutagenesis, those positions
that play a major role in the distinct kinetics conferred by the two RbcS types. Another approach
consists of performing molecular dynamics simulations, which might explain the influence of
remote residues on the catalytic site. Determining the 3D structure of a T-type Rubisco would
be the ultimate strategy to identify the particular structural features of this enzyme (see
Outstanding Questions).

Physiological Roles of T-Type Rubisco
Despite the large presence of T-type RbcS in various plant phyla, little information is available
concerning their biochemical properties and physiological roles. The main reason is that
Rubisco has been mainly characterized in angiosperm species, where, at the whole leaf level,
M-type RbcS are predominantly expressed. Indeed, although RbcS-T genes have been
identified, notably through genomic data, their expression at the RNA or protein level does
not seem to have drawn much attention, in contrast to M-type RbcS, which are largely
expressed in chlorophyllian tissues.

The first biochemical characterization of a T-type RbcS was made by Morita et al. [8] who
identified five RbcS genes in rice, one of which (OsRbcS1) actually fits in the T-type cluster and
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is expressed in nonphotosynthetic tissues such as leaf sheath, culm, anther, and root central
cylinder. Its overexpression in the leaf blade resulted in increased catalytic turnover and
reduced affinity (increased Km) for CO2, thus reminiscent of high-catalytic-activity Rubisco
typically found in algae or C4 plants, in which this enzyme operates in a high CO2 microenvi-
ronment [8]. These authors further propose that this particular Rubisco recycles CO2 released
by metabolic pathways. More recently, the same team identified T-type RbcS genes (called
OsRbcS1-like RbcS) in foxtail millet (expressed in seeds), tomato (stamen, pistil, and green
fruit), L. japonicus (root, nodule, seed, and different floral organs), grape (mature leaf and green
berry), and S. moellendorffii (rhizome and root) [9]. These authors proposed that T-type RbcS
operate mainly in nonphotosynthetic organs where they are involved in metabolic pathways
other than photosynthetic CO2 fixation (Figure 4).

A more recent study identified in tobacco a T-type RbcS, NtRbcS-T, which is specifically
expressed in glandular trichomes. As no M-type RbcS is expressed in these trichomes, the
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authors directly compared T-type Rubisco (from glandular trichomes) and M-type Rubisco
(from leaf tissues cleared of trichomes). The former had a more acidic activity versus pH profile
than the latter [7]. NtRbcS-T or NtRbcS-M (one of the RbcS expressed in the mesophyll) were
individually expressed in a Chlamydomonas strain deleted of its two RbcS genes and which
was previously used to functionally express RbcS from different plant species (e.g., [21,24,25]).
T- and M-type Rubisco were purified and it turned out that NtRbcS-T conferred higher Km for
CO2 and higher Vmax [7], which is in line with the OsRbcS1 properties [8]. Glandular trichomes
synthesize large amounts of specialized metabolites such as diterpenes and sucrose esters,
which protect the plant against pathogens [26]. This metabolism is associated with high release
of CO2, especially in the plastids [7] (Figure 4). However, the thick cell wall and cuticle of
glandular trichomes prevent gas exchange with the atmosphere and lead to high cellular CO2

concentration [27], which possibly results in lowering the pH compared with the stroma pH (�8)
of typical photosynthetic tissues when the photosynthetic chain is active. In this context,
NtRbcS-T might adapt Rubisco to this particular environment, namely, high CO2 concentration
and lower pH, where the enzyme might be involved in recycling the CO2 released during the
large production of specialized metabolites.

In agreement with this, Balcke et al. [28] recently suggested that photosynthetic-type VI
trichomes from tomato have a recycling mechanism allowing preserving the CO2 released
from terpenoid and lipid biosynthesis as well as from any other metabolic pathways producing
CO2 [28]. Interestingly, a T-type RbcS was identified in tomato [7]. Balcke et al. showed through
isotopic labeling that the initial fixation of carbon required for the high production of specialized
metabolites in these tomato trichomes takes place in leaf mesophyll cells. Therefore, reduced
Calvin–Benson–Bassham cycle and associated Rubisco activities in trichomes aim mainly at
saving CO2, increasing productivity of these sink organs [28,29].

Most of the spermatophyte species with a T-type RbcS identified possess secretory organs
such as glandular trichomes, colleters, nectaries, or secretory cavities [7]. Interestingly, a
transcriptomic analysis of the secretory cavities of grapefruit showed that an RbcS-T gene
was highly expressed in the cavity cells that synthesize and secrete essential oils [10].
Determining whether a T-type Rubisco operates in secretory organs of other species is required
to generalize the hypothesis that a T-type Rubisco plays a major role in secretory organs with a
very active CO2-generating metabolism. However, T-type RbcS are not restricted to secretory
organs since they were identified in various nonphotosynthetic tissues such as leaf sheath,
culm, root, seed, nodule, nonmature fruit, and/or different floral organs [8,9]. A common feature
might be the distance between these organs and the stomata involved in gas exchange with the
atmosphere.

Can the presence of a T-type Rubisco be predicted in other cases? In developing seeds of
some oil-producing species, Rubisco plays a role in recycling the CO2 released from the high
respiratory activity related to the fatty acid synthesis [30–33]. A T-type Rubisco might be
involved in this activity in soybean in which a T-type RbcS has been identified [7]. However, no
T-type RbcS has been identified in the oilseed rape genome, nor in other Brassicaceae
genomes. It cannot be excluded that in species lacking T-type RbcS, an M-type RbcS might
have evolved to be adapted to a high CO2 environment.

RbcS-T expression was observed in anthers of tomato, L. japonicus, and rice [8,9]. Because
pollen grains consume a large amount of carbon and energy during germination, the starch
level constitutes a checkpoint during pollen maturity [34]. Similar to seed filling, efficient starch
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loading from anther tissues, the tapetum in particular, into the pollen grain may require a CO2

recycling mechanism to save carbon released from the metabolism.

Stomata are absent in the epidermal layer of woody tissues, limiting gaseous diffusion in
metabolically active greenish bark sublayers [35]. Nevertheless, inorganic carbon refixation has
also been described in these tissues, thanks to the high CO2 concentration released from
respiration [35–38]. This CO2 recycling mechanism was shown to significantly contribute to the
growth of branches in Eucalyptus miniata [37]. T-type RbcS genes have been identified in
gymnosperm species as well as in angiosperm woody species (including Eucalyptus) and might
thus play a role in this mechanism.

To broaden the characterization of T-type Rubisco, it would be interesting to biochemically
characterize T-type Rubisco in more ancient phyla such as pteridophytes and bryophytes, and
determine if the enzyme shares the same parameters as those displayed by tobacco and rice
Rbc-T. From a physiological point of view, it would be interesting to determine in these phyla
whether T-type Rubisco functions as a net carboxylase or as a CO2 recycling enzyme. More T-
type than M-type RbcS were identified in these phyla. We might speculate that RbcS-T could
be the predominant, and possibly the exclusive, form in some of these species for which no
RbcS-M genes were identified. Following this hypothesis, it would make sense that these
species, which appeared before the large increase in the atmospheric O2 concentration, had a
Rubisco more adapted to an atmosphere with a lower O2 (i.e., higher catalytic rate and lower
capacity to discriminate between O2 and CO2). This is even more relevant for bryophytes, which
grow close to the soil in a high CO2 environment due to the soil respiration [39]. Consistent with
this, the M type would have evolved to better discriminate CO2 from O2 when the latter had its
concentration increased considerably in the atmosphere. Clearly, expression and biochemical
analysis of T- and M-type Rubisco from ancient phyla is required to evaluate this hypothesis and
better identify the function of these two clusters in these phyla.

Concluding Remarks
The T-type RbcS genes are widely spread, not only in seed plants, where they are mainly
expressed in restricted tissues but also in pteridophytes and bryophytes, thus designating
RbcS-T as an ancestral type in eukaryotes. The few reports on the biochemical characterization
of RbcS-T containing Rubisco in land species revealed an enzyme with higher catalytic rate,
lower CO2 affinity, and acidic shift of the activity versus pH profile. This suggests that the RbcS-
T might adapt Rubisco to high CO2 concentration typically found in cell types where photo-
synthesis is low or absent but where intense metabolic pathways that generate CO2 take place
(Figure 4). However, more experimental work with other seed species is required to generalize
this hypothesis. In addition, biochemical analysis of T- and M-type Rubisco from pteridophytes
and bryophytes is required to determine their respective roles in these ancient phyla. Sequence
comparison of T- and M-type RbcS has pointed out several T-type-specific residues, some of
which might interact with RbcL and be responsible for the modified activity. However, the 3D
structure of a T-type Rubisco should be experimentally determined to further explore the
particular structural features of this enzyme (see Outstanding Questions). As Rubisco is often
the limiting step in photosynthesis, this enzyme has been a target for metabolic engineering
(Box 1). It would therefore be interesting to determine whether T-type RbcS could be used to
improve the catalytic properties of Rubisco.

Outstanding Questions
What are the structural features that
are responsible for the biochemical
properties of the T-type Rubisco?
Considering that in seed plants the
T-type enzyme is restricted to particu-
lar tissues, its purification and crystalli-
zation might represent a major issue.

In seed plants, T-type Rubisco seems
to be restricted to particular tissues.
How diverse are the physiological roles
of T-type Rubisco in these tissues?

What are the distribution and expres-
sion profiles of T-type RbcS in seed-
less species? Considering that in some
pteridophyte and bryophyte species
only T-type RbcS have been identified,
can a T-type Rubisco be the major
isoform in some of these species?

What are the biochemical properties of
T-type Rubisco in pteridophytes and
bryophytes? In these species, does it
function as a net CO2 fixing or as a CO2

refixing enzyme?

Can T-type RbcS be used to engineer
plants for improved photosynthesis?
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Given the slow catalytic turnover of Rubisco and its wasteful side activity, which uses O2 instead of CO2, this enzyme is
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Rubisco with C4-like catalytic properties [43]. However, the plastid localization of the RbcL gene makes genetic
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reports have shown that RbcS also influences the catalytic activity. For instance, expression of a sorghum (C4 plant)
RbcS increased the Rubisco catalytic turnover in transgenic rice, a C3 plant [44]. A wider range of T-type RbcS will have
to be characterized to determine whether it might be used for engineering Rubisco. The nuclear localization of RbcS
genes makes genetic transformation easier. Yet, one drawback is that RbcS is encoded by a gene family, and thus
several genes have to be replaced to obtain a homogenous Rubisco population. Recent development of clustered
regularly interspaced short palindromic repeats–CRISPR-associated protein 9 (CRISPR–Cas9)-based genome editing
is expected to facilitate gene replacement at several loci. Finally, one should not forget that Rubisco assembly requires
chaperones and that its functioning depends on proteins involved in its maintenance (for review, see [41,45]). This might
represent an additional challenge when a heterologous Rubisco subunit is not adapted to the assembly and main-
tenance machinery of the host species [46,47].
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