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A B S T R A C T

Item and set orderings help with data management. Depending on the context, it is just as important to order
a list of items (customers from different provinces, companies from different sectors, players from different
teams) as it is to order a list of sets of these items (provinces, sectors, teams). It is evident that the order that
is chosen for the items is not independent of the order that is chosen for the sets. It is possible that several set
orders are sensible for the same item order and vice versa, that several item orders are sensible for the same
set order. In this work, we propose a bilevel model to calculate an adequate order of items when an order of
sets is available and another bilevel model to calculate an adequate order of sets when an order of items is
available. In addition, it is shown how to reduce both bilevel models to single level models. Two illustrative
computational studies are presented, the first with collected on 25 tennis players and ATP statistics and the
second with Biomedical data. Both examples illustrate the good behavior of the models and the interest of
their application in a real case scenario
1. Introduction

The ordering of elements and sets is a hot topic due to the heyday
of machine learning algorithms and the increase in data accessibility.
Consequently, there are many different methods in the literature to
rank items or sets.

The rank aggregation problem consists of obtaining a consensus
ranking that combines multiple rankings of items, see for example [1,2]
and the references therein.

The Kemeny ranking problem also combines multiple rankings by
identifying the ranking at the smallest Kendall-𝜏 distance [3,4].

The Linear Ordering Problem (LOP) assumes that for each pair of
items in the list of items to be ranked there is a benefit of ranking
one before the other and it consists in finding a linear ranking that
maximizes the sum of benefits. The squared matrix 𝑀 which has a row
for each item and whose values 𝑚𝑖𝑗 are the benefit of ranking item 𝑖
before item 𝑗 is called the preference matrix. The preference matrix
values can be obtained in many different ways: by expert knowledge,
by computing the number of rankings in a sample in which one item
is ranked before the other or by following other different algorithms,
see [5] for different computing approaches. LOP returns the simul-
taneous permutation of rows and columns of the preference matrix
that maximizes the sum of values above the diagonal and therefore
the sum of the preferences satisfied by the ranking. Equivalently, LOP
finds an acyclic tournament in a complete weighted digraph with

∗ Corresponding author.
E-mail addresses: martine.labbe@ulb.be (M. Labbé), landete@umh.es (M. Landete), monge@umh.es (J.F. Monge).

maximum weight, where items are the nodes in the graph and the
preferences are the weights. The book [6] is a good text to find out
more about its properties and potential. On the other hand, the solution
of Kemeny problem can be obtained by solving the LOP (see [7] for the
equivalence).

There are many contexts in which subset rankings are important
and many methods for ranking multiple subsets from a ranking of
items. Chapter [8] focus on these criteria and methods. The paper [9]
uses the Borda rule with this goal. And in [10], the authors propose
a Kendall distance-based method and compare it with the mean and
median rank procedures: they prove some robustness properties of their
Kendall distance-based method and compare it to the classical mean
and median rank methods.

In [11], the authors introduce the Generalized Linear Ordering
Problem where the items to rank are arranged in clusters. The chap-
ter [12] is a comprehensive survey on rank aggregation procedures and
the papers [13,14] analyze the impact of ties in ranking procedures.

In this paper we pursue two goals. The first goal is to define a linear
order of items from a linear order of sets. It could be the case when from
the evaluation of a set of projects developed by groups of researchers
we want to rank the researchers. The second goal is to define a linear
order of sets from a linear order of items. It could be the case when
researchers are ranked and several combinations of them apply for a
project.
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It would be desirable that if from a ranking of sets we obtain a
ranking of items, then this would be such that the order of sets obtained
from it coincides with the initial ranking. Similarly, if you start from
a ranking of items. While this property is desirable, in general this
ranking may not exist. A desirable objective is to find the order that,
when used to order again, gives an order that approximates the original
(initial) order as much as possible.

In order to achieve our goals, we propose two bi-objective problems.
First, it is assumed that a linear order of sets of items is given. Then, we
propose the problem of obtaining a ranking of items that achieves two
different objectives: on one hand to be coherent with the preference
matrix that follows from the input ranking of sets, and on the other
hand, to induce a ranking of sets close to the input ranking. Secondly,
it is assumed that a linear order of items is given and we propose an
analogous problem to calculate the ranking of items. Instead of design-
ing an algorithm to calculate the efficient frontier for both objectives,
in this work we propose two bilevel models with single objectives that
are a linear combination of the two mentioned objectives.

Since the problem of ordering items/sets by taking care of the future
order of sets/items has not been addressed so far, the content of this
paper addresses this research gap by introducing and evaluating two
bi-level models.

The main contributions of this work can be detailed as follows:

i. A maximization non-linear bilevel mixed-integer optimization
model is proposed for obtaining a ranking of items from a
ranking of a sets of these items.

ii. A maximization non-linear bilevel mixed-integer optimization
model is proposed for obtaining a ranking of sets of items from
a ranking of the items.

iii. Linear one-level reformulations are proposed for both models.
iv. Properties of the optimal solutions are analyzed and valid in-

equalities for the models are proposed.
v. A relaxation method is proposed for solving the one-level mod-

els, which have an excessive number of constraints.
vi. Two applications are used to illustrate the performance of the

models and the properties of our optimal rankings.

In the following section, the preliminaries necessary for the devel-
opment of the work are introduced. Section 3 reviews existing models
for ordering items from sets and vice versa. The limitation of the
existing models is highlighted and different ways to generalize these
results are proposed. In Section 4, the new models under study are
introduced. In the same section, how to solve each of the models is
analyzed, relaxing the bi-level condition and linearizing the non-linear
constraints. Section 4 concludes with a generalization of the introduced
models. In Section 5, the bilevel models are applied to two different
kind of data, ATP data and biomedical data. Some conclusions are
discussed in the last section.

2. Preliminaries

A ranking is a permutation. If we say ranking of items, it is because
it is a permutation of items and if we say ranking of sets, it is because it
is a permutation of sets. Hereinafter, we will use the letter 𝜋 to refer to a
ranking of items (𝑎, 𝑏, 𝑐,… ) and the letter 𝜌 to refer to a ranking of sets
(𝑉1, 𝑉2, 𝑉3,… ). If the ranking of items is the input data, we add a tilde
to the letter, i.e. we write 𝜋̃. If the ranking of sets is the input data, we
also write 𝜌̃. Letters without the tilde symbol represent output data or
variables. A preference matrix is a non-symmetric square matrix whose
values indicate preferences: the value in row 𝑖 and column 𝑗 indicates
how much better 𝑖 is than 𝑗. Given a set of objects to be ordered,
whether these objects are items or sets, and a preference matrix for
the objects, the classic way to order it is to solve the LOP.

The Kendall-𝜏 distance between two permutations 𝜆1 and 𝜆2 of 𝑛
items (items or sets) is given by:
2

𝑑𝐾-𝜏 (𝜆1, 𝜆2) = |{(𝑖, 𝑗) ∶ 𝑖 < 𝑗, (𝜆1(𝑖) < 𝜆1(𝑗) ∧ 𝜆2(𝑖) > 𝜆2(𝑗))
∨((𝜆1(𝑖) > 𝜆1(𝑗) ∧ 𝜆2(𝑖) < 𝜆2(𝑗)))}|

where, 𝜆1(𝑖) and 𝜆2(𝑖) are the positions of item 𝑖 in 𝜆1 and 𝜆2 respec-
tively.

The distance 𝑑𝐾-𝜏 (𝜆1, 𝜆2) is the number or pairwise disagreements
between the two permutations 𝜆1 and 𝜆2. The larger the distance, the
more different the permutations are. For instance, if we had three items,
the distance from permutation 123 to permutations 132, 231 and 321
is 1, 2 and 3 respectively. The maximum number of disagreements that
may occur between two permutations 𝜆1 and 𝜆2 of 𝑛 items is 𝑛(𝑛−1)∕2,
and in this case 𝜆1 gives the reverse order to 𝜆2. This bound for the
maximum number of disagreements allows to normalize the Kendall-𝜏
distance in the following way:
𝑑𝐾-𝜏 (𝜆1, 𝜆2)
𝑛(𝑛 − 1)∕2

.

In [15], the author uses the relative distance of a permutation to
define the Concordance Coefficient; it is used to measure the ordinal
association between quantity and quality measures when two or more
samples are considered. The author proposes this new measure as an
alternative to the non-parametric mean rank-based methods to compare
two or more samples, and compares it with the classical Kruskal–Wallis
method. Note that a mean rank is another way to rank sets from an
order of items.

3. Known models for rankings of sets and items and its updates

One way of obtaining a linear order of items from a linear order of
sets is to compute a preference matrix of the items that follows from the
ranking of the sets and then to solve the LOP for this preference matrix.
Likewise, a way of obtaining a linear order of sets from a linear order
of items, is to compute a preference matrix of the sets that follows from
the ranking of the items and then to solve the LOP for this preference
matrix.

Let 𝑉 = {1,… , 𝑛} the items under analysis and let 𝑉1, 𝑉2, . . . , 𝑉𝑏
different subsets of 𝑉 . If 𝜋̃ is an order of the items in 𝑉 , we define
the set preference matrix 𝑀 𝜋̃ as the 𝑏 × 𝑏 matrix with 𝑚𝜋̃

𝑟𝑠 equal to the
number of times an item in 𝑉𝑟 is ranked before an item in 𝑉𝑠 in 𝜋̃. The
preference matrix 𝑀 𝜋̃ records the number of times that than an item
in the subset 𝑉𝑟 is ranked before an item in the subset 𝑉𝑠. Likewise, if
𝜌̃ is an order of the sets 𝑉1, 𝑉2, . . . , 𝑉𝑏, the item preference matrix 𝑀 𝜌̃

is the 𝑛 × 𝑛 matrix with 𝑚𝜌̃
𝑖𝑗 equal to the number of times that item 𝑖

recedes item 𝑗 in 𝜌̃.
The following examples show how to obtain these preference matri-

es and how they are used to obtain the rankings. Example 1 illustrates
he computing of a ranking of items from a ranking of sets and Exam-
le 2 illustrates the computing of a ranking of sets from a ranking of
tems.

xample 1. Let 𝜌̃ = (𝑉1|𝑉2|𝑉3|𝑉4|𝑉5) be a ranking of subsets of items in
, where 𝑉1 = (𝑎𝑐), 𝑉2 = (𝑏𝑑), 𝑉3 = (𝑏𝑐), 𝑉4 = (𝑏𝑒) and 𝑉5 = (𝑎𝑑) are

ubsets of 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and the items in 𝑉 have to be ranked. The
preference matrix 𝑀 𝜌̃ for items from the ranking 𝜌̃ is the following:

𝑀 𝜌̃ =

𝑎 𝑏 𝑐 𝑑 𝑒

⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

𝑎 − 3 1 2 1
𝑏 3 − 1 3 2
𝑐 2 4 − 3 2
𝑑 1 2 1 − 1
𝑒 1 0 0 1 −

,

The optimal value for the corresponding LOP is 23 and it is achieved
by these five different alternative optimal solutions : 𝜋1 = (𝑐, 𝑎, 𝑏, 𝑑, 𝑒),
𝜋2 = (𝑐, 𝑎, 𝑏, 𝑒, 𝑑), 𝜋3 = (𝑐, 𝑏, 𝑎, 𝑑, 𝑒), 𝜋4 = (𝑐, 𝑏, 𝑎, 𝑒, 𝑑) and 𝜋5 =
(𝑐, 𝑏, 𝑒, 𝑎, 𝑑). Moreover, ∑

𝑖𝑗 𝑚
𝜌̃
𝑖𝑗 − 23 = 11 is the Kendall-𝜏 distance
from these orders of items 𝜋𝑖 (𝑖 = 1,… , 5) and the partial order
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Table 1
Ranking of game performance corresponding to the 25 players for whom we have available data for all these factors.

C1 C2 C3 C4 C5 C6 C7 C8 C9

1 Pete Sampras Rafael Nadal Rafael Nadal Roger Federer Pete Sampras Rafael Nadal Andre Agassi Rafael Nadal Rafael Nadal
2 Roger Federer Novak Djokovic Roger Federer Pete Sampras Roger Federer Novak Djokovic Rafael Nadal Novak Djokovic Novak Djokovic
3 Tomas Berdych J.M. del Potro Novak Djokovic Novak Djokovic Rafael Nadal Andy Murray Andy Murray Andy Murray Andy Murray
4 Robin Soderling Andre Agassi Andre Agassi Rafael Nadal Novak Djokovic Stefan Edberg Novak Djokovic Andre Agassi Andre Agassi
5 Patrick Rafter Jim Courier P. Kohlschreiber J.M. del Potro Andre Agassi Roger Federer Stefan Edberg Stefan Edberg Stefan Edberg
6 Todd Martin Roger Federer Stan Wawrinka Patrick Rafter Todd Martin Tim Henman Jim Courier Robin Soderling Roger Federer
7 Nicolas Almagro Radek Stepanek Jim Courier Tomas Berdych Patrick Rafter Andre Agassi Daniil Medvedev Jim Courier Jim Courier
8 Andy Murray Patrick Rafter J.M. del Potro Jim Courier Stan Wawrinka M. Washington Tomas Berdych M. Washington Tim Henman
9 J.M. del Potro Richard Gasquet Richard Gasquet Andre Agassi J.M. del Potro Richard Gasquet Todd Martin J.M. del Potro M. Washington

10 Tim Henman Todd Martin Nicolas Almagro Robin Soderling Stefan Edberg James Blake J.M. del Potro James Blake J.M. del Potro
11 F. Gonzalez Javier Frana Pete Sampras Todd Martin F. Gonzalez J.M. del Potro M. Washington Tomas Berdych James Blake
12 Tommy Haas Stefan Edberg Tomas Berdych F. Gonzalez Javier Frana Stan Wawrinka Robin Soderling Roger Federer Daniil Medvedev
13 Jim Courier Robin Soderling Tommy Haas Stan Wawrinka Tomas Berdych Radek Stepanek Pete Sampras Richard Gasquet Richard Gasquet
14 Daniil Medvedev F. Gonzalez Andy Murray Stefan Edberg Jim Courier F. Gonzalez Roger Federer Tim Henman Robin Soderling
15 Stan Wawrinka P. Kohlschreiber Daniil Medvedev Nicolas Almagro Robin Soderling Jim Courier James Blake Pete Sampras Pete Sampras
16 Novak Djokovic Pete Sampras Stefan Edberg Richard Gasquet P. Kohlschreiber Robin Soderling Richard Gasquet Javier Frana Tomas Berdych
17 Richard Gasquet Daniil Medvedev Robin Soderling Andy Murray Tim Henman Daniil Medvedev Javier Frana Radek Stepanek Tommy Haas
18 Stefan Edberg M. Washington Patrick Rafter P. Kohlschreiber Andy Murray Nicolas Almagro Tim Henman Daniil Medvedev Stan Wawrinka
19 Javier Frana Tommy Haas M. Washington Tommy Haas Tommy Haas P. Kohlschreiber Patrick Rafter F. Gonzalez Radek Stepanek
20 Andre Agassi Andy Murray F. Gonzalez Daniil Medvedev Daniil Medvedev Patrick Rafter Tommy Haas Todd Martin Patrick Rafter
21 Radek Stepanek Nicolas Almagro Javier Frana Tim Henman Nicolas Almagro Tomas Berdych P. Kohlschreiber P. Kohlschreiber Todd Martin
22 James Blake Tomas Berdych James Blake Radek Stepanek Radek Stepanek Tommy Haas Radek Stepanek Tommy Haas F. Gonzalez
23 P. Kohlschreiber Stan Wawrinka Todd Martin Javier Frana James Blake Javier Frana F. Gonzalez Patrick Rafter P. Kohlschreiber
24 M. Washington James Blake Radek Stepanek M. Washington Richard Gasquet Pete Sampras Nicolas Almagro Stan Wawrinka Javier Frana
25 Rafael Nadal Tim Henman Tim Henman James Blake M. Washington Todd Martin Stan Wawrinka Nicolas Almagro Nicolas Almagro

C1: Career 1st Serve Points Won On All Surfaces From All Countries.
C2: Career 1st Serve On All Surfaces From All Countries.
C3: Career 2nd Serve Points Won On All Surfaces From All Countries.
C4: Career Service Games Won On All Surfaces From All Countries.
C5: Career Break Points Saved On All Surfaces From All Countries.
C6: Career 1st Serve Return Points Won On All Surfaces From All Countries.
C7: Career 2nd Serve Return Points Won On All Surfaces From All Countries.
C8: Career Break Points Converted On All Surfaces From All Countries.
C9: Career Return Games Won On All Surfaces From All Countries.
Data from http://www.atpworldtour.com/.
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𝜌̃, for example, 𝑑𝐾-𝜏 (𝜋1, 𝜌̃) is the Kendall distance between permuta-
ions (𝑐𝑐𝑎𝑎𝑏𝑏𝑏𝑑𝑑𝑒) and 𝜌̃ = (𝑉1|𝑉2|𝑉3|𝑉4|𝑉5) = (𝑎𝑐|𝑑𝑏|𝑏𝑐|𝑏𝑒|𝑎𝑑), where
𝑐𝑐𝑎𝑎𝑏𝑏𝑏𝑑𝑑𝑒) is obtained from 𝜋1 by replicating each item the number
f times it appears in the subsets 𝑉1,… , 𝑉5. Note that 𝜌̃ is a partial
rder of items in 𝑉 , i.e., 𝜌̃ is also represented by permutation 𝜌̃ =

(𝑐𝑎|𝑑𝑏|𝑐𝑏|𝑏𝑒|𝑎𝑑), where the items in each set can be permuted to their
position. The number of disagreements of 𝜌̃ = (𝑐𝑎|𝑑𝑏|𝑐𝑏|𝑏𝑒|𝑎𝑑) from
𝑐𝑐𝑎𝑎𝑏𝑏𝑏𝑑𝑑𝑒) is exactly 11.

xample 2. Let 𝜋̃ = (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) be a ranking of the items in 𝑉 , and
𝑉1 = (𝑎𝑑), 𝑉2 = (𝑎𝑒), 𝑉3 = (𝑏𝑐), 𝑉4 = (𝑏𝑑) and 𝑉5 = (𝑐𝑒) subsets of 𝑉
which have to be ranked. Thus, the preference matrix 𝑀 𝜋̃ for sets from
the ranking 𝜋̃ is the following:

𝑀 𝜋̃ =

𝑉1 𝑉2 𝑉3 𝑉4 𝑉5
⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

𝑉1 − 2 2 2 3
𝑉2 1 − 2 2 2
𝑉3 2 2 − 2 3
𝑉4 1 2 1 − 3
𝑉5 1 1 0 1 −

,

The optimal value for the corresponding LOP is 23 and it is achieved
by five different alternative optimal solutions: 𝜌1 = (𝑉1|𝑉2|𝑉3|𝑉4|𝑉5),
𝜌2 = (𝑉1|𝑉3|𝑉2|𝑉4|𝑉5), 𝜌3 = (𝑉1|𝑉3|𝑉4|𝑉2|𝑉5), 𝜌4 = (𝑉3|𝑉1|𝑉2|𝑉4|𝑉5) and
𝜌5 = (𝑉3|𝑉1|𝑉4|𝑉2|𝑉5). Moreover, ∑

𝑟𝑠 𝑚
𝜋̃
𝑟𝑠 − 23 = 12 is the Kendall-

𝜏 distance from these orders of sets 𝜌𝑖 (𝑖 = 1,… , 5) and the order
𝜋̃, for example, 𝑑(𝜌1, 𝜋̃) is the Kendall distance between permutations
𝜌1 = (𝑉1|𝑉2|𝑉3|𝑉4|𝑉5) = (𝑎𝑑|𝑎𝑒|𝑏𝑐|𝑏𝑑|𝑐𝑒) and (𝑎𝑎|𝑏𝑏|𝑐𝑐|𝑑𝑑|𝑒𝑒), which
omes from 𝜋̃ replicating each item the number of times it appears in
,… , 𝑉 .
3

1 5
Obtaining a linear order of items from an order of sets is equiv-
lent to the problem introduced by Aparicio et al. [10], under some
ssumptions. The next example illustrates this feature.

xample 3 (Example 1 Continuation). Ranking 𝜌̃ = (𝑎𝑐|𝑏𝑑|𝑏𝑐|𝑏𝑒|𝑎𝑑) is
partial order of items in multisets 𝐴 = (𝑎, 𝑎), 𝐵 = (𝑏, 𝑏, 𝑏), 𝐶 = (𝑐, 𝑐),
= (𝑑, 𝑑) and 𝐸 = {𝑒}, where some items in 𝜌̃ are not comparable.

pplying [10], the order of multisets from the partial order of items
̃ is the solution of the linear ordering problem (LOP) with a matrix

𝜌̃ = 𝑚𝑟𝑠 where 𝑚𝜌̃
𝑟𝑠 is the number of times item 𝑟 precedes item 𝑠 in

̃. The resulting preference matrix and thus the resulting rankings are
hose in Example 1.

. New models for ranking sets and items

In this section, we propose new procedures for computing ranking
f sets from ranking of items and vice-versa. We focus on the following
wo objectives

• Objective 1. From an input ranking of items/sets, maximize the
upper diagonal sum of the preference matrix. The solution is a
ranking of sets/items.

• Objective 2. Minimize the Kendall-𝜏 distance between the input
ranking of items/sets and the ranking of items/sets induced by
the solution of Objective 1.

oth objectives are relevant: if the second goal is omitted, the number
f alternative optimal solutions may be large (see Examples 1 and 2); if
he first goal is omitted, the resulting ranking may be incoherent with
he input data. If the final ranking is the LOP solution for the preference
atrix, the second goal can be seen as a way of discriminating between

lternative optimal solutions.

http://www.atpworldtour.com/
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Table 2
Ranking of items.

Player Mean-rank ranking Player Bi-level ranking

Novak Djokovic 4,22 Rafael Nadal 1
Rafael Nadal 4,33 Novak Djokovic 2
Roger Federer 5,56 Roger Federer 3
Andre Agassi 6,44 Andre Agassi 4
J.M. del Potro 8,22 Jim Courier 5
Jim Courier 9,11 J.M. del Potro 6
Andy Murray 9,89 Pete Sampras 7
Stefan Edberg 9,89 Andy Murray 8
Pete Sampras 10,89 Stefan Edberg 9
Robin Soderling 11,89 Robin Soderling 10
Tomas Berdych 12,56 Tomas Berdych 11
Patrick Rafter 14,00 Patrick Rafter 12
Richard Gasquet 14,00 Richard Gasquet 13
Todd Martin 14,56 Todd Martin 14
Daniil Medvedev 15,56 Daniil Medvedev 15
Tim Henman 16,00 Stan Wawrinka 16
Stan Wawrinka 16,00 Tim Henman 17
F. Gonzalez 16,22 MaliVai Washington 18
MaliVai Washington 16,22 F. Gonzalez 19
P. Kohlschreiber 17,89 Tommy Haas 20
James Blake 18,00 P. Kohlschreiber 21
Tommy Haas 18,11 Radek Stepanek 22
Nicolas Almagro 18,44 James Blake 23
Javier Frana 18,44 Javier Frana 24
Radek Stepanek 18,56 Nicolas Almagro 25

We distinguish two parallel subsections. In Section 4.1, the ap-
roach for obtaining a linear order of items from a linear order of sets
s presented and in Section 4.2, the approach for the symmetric case is
iscussed.

.1. Linear order of items from a linear order of sets

To start the section, the two different objectives are illustrated with
he data in Example 1. In the previous section, all alternative optimal
olutions for the preference matrix had been obtained. In this section,
he ranking of sets associated with each alternative optimal solution is
alculated, as well as its distance from the initial set order. The solution
f the bi-objective problem is illustrated and the interest of the two
bjectives is shown. The example shows that it is not sensible that the
nly objective is the proximity of the two ranking sets because we could
ropose a ranking of items that is not consistent with the initial ranking
f sets. It also illustrates that the problem with Objective 1 alone can
ave a lot of alternative solutions.

xample 4 (Example 1 Continuation). The ranking of items 𝜋1 obtained
rom 𝜌̃ can be used to obtain a linear order of a set. The preference
atrix for the sets of 𝑉 from 𝜋1 is

𝜋1 =

𝑉1 𝑉2 𝑉3 𝑉4 𝑉5
⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

𝑉1 − 4 2 4 3
𝑉2 0 − 0 2 1
𝑉3 1 3 − 3 3
𝑉4 0 1 0 − 1
𝑉5 0 2 1 3 −

,

nd this matrix induces the order of sets 𝜌11 = (𝑉1|𝑉3|𝑉5|𝑉2|𝑉4), and this
rder is at distance 3 from 𝜌̃, i.e. 𝑑𝐾−𝜏 (𝜌11, 𝜌̃) = 3

The ranking of items 𝜋2 establishes a preference matrix for the sets
f 𝑉 . The preference matrix is

𝜋2 =

𝑉1 𝑉2 𝑉3 𝑉4 𝑉5
⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

𝑉1 − 4 2 4 3
𝑉2 0 − 0 1 1
𝑉3 1 3 − 3 3
𝑉4 0 2 0 − 2
𝑉5 0 2 1 2 −

,
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and this matrix induces the orders of sets 𝜌12 = (𝑉1|𝑉3|𝑉4|𝑉5|𝑉2) and
𝜌22 = (𝑉1|𝑉3|𝑉5|𝑉4|𝑉2), and these orders need 3 and 4 disagreements
from 𝜌̃, respectively.

The ranking of items 𝜋3 establishes a preference matrix for the sets
of 𝑉 . The preference matrix is

𝑀𝜋3 =

𝑉1 𝑉2 𝑉3 𝑉4 𝑉5
⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

𝑉1 − 3 1 3 3
𝑉2 1 − 0 2 2
𝑉3 2 3 − 3 4
𝑉4 1 1 0 − 2
𝑉5 0 1 0 2 −

,

and this matrix induces the orders of sets 𝜌13 = (𝑉3|𝑉1|𝑉2|𝑉4|𝑉5) and
𝜌23 = (𝑉3|𝑉1|𝑉2|𝑉5|𝑉4), and these orders need 2 and 3 disagreements
from 𝜌̃, respectively.

The ranking of items 𝜋4 establishes a preference matrix for the sets
of 𝑉 . The preference matrix is

𝑀𝜋4 =

𝑉1 𝑉2 𝑉3 𝑉4 𝑉5
⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

𝑉1 − 3 1 3 3
𝑉2 1 − 0 1 2
𝑉3 2 3 − 3 4
𝑉4 1 2 0 − 3
𝑉5 0 1 0 1 −

,

and this matrix induces the order of sets 𝜌14 = (𝑉3|𝑉1|𝑉4|𝑉2|𝑉5), and this
order needs 3 disagreements from 𝜌̃.

The ranking of items 𝜋5 establishes a preference matrix for the sets
of 𝑉 . The preference matrix is

𝑀𝜋5 =

𝑉1 𝑉2 𝑉3 𝑉4 𝑉5
⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

𝑉1 − 3 1 2 3
𝑉2 1 − 0 1 2
𝑉3 2 3 − 3 4
𝑉4 2 2 0 − 4
𝑉5 0 1 0 0 −

,

and this matrix induces the orders of sets 𝜌15 = (𝑉3|𝑉1|𝑉4|𝑉2|𝑉5) and
𝜌25 = (𝑉3|𝑉4|𝑉1|𝑉2|𝑉5), and these orders need 3 and 4 disagreements
from 𝜌̃, respectively.

Fig. 1 presents the sequence of problems we have solved. Therefore,
order 𝜋3 is the best rank of items from 𝜌̃.

If the first goal was not taken into account, other orders like
(𝑎, 𝑒, 𝑏, 𝑑, 𝑐), (𝑎, 𝑏, 𝑐, 𝑒, 𝑑), which are not optimal solutions for Example 1
could be proposed since both induce set orders with 2 disagreements
from 𝜌̃. However, it would be very weird since in (𝑎, 𝑒, 𝑏, 𝑑, 𝑐), item 𝑒 is
the second and it does not fit with 𝜌̃ and in (𝑎, 𝑏, 𝑐, 𝑒, 𝑑) item 𝑐 is the
third when it must clearly be the first.

In this paper, we propose that if a ranking of sets is given and a
ranking of items is required, then this ranking of items should be an
optimal solution to the model with two weighted objectives, the ade-
quacy of the ranking of items to the ranking of sets and the proximity
of the ranking of sets that would be obtained from the ranking of items
to the initial ranking of sets.

Let 𝑉 be a set of items and 𝑃 be a set of subsets of 𝑉 . Let 𝜌̃ be
a linear order of sets in 𝑃 and let 𝑚̃𝑖𝑗 be the number of times that 𝑖
appears before 𝑗 in 𝜌̃. Let 𝑦𝑟𝑠 and 𝑥𝑖𝑗 be two families of binary variables:
for each 𝑟, 𝑠 ∈ 𝑃 , 𝑦𝑟𝑠 = 1 iff set 𝑟 goes before set 𝑠 and for each 𝑖, 𝑗 ∈ 𝑉 ,
𝑥𝑖𝑗 = 1 iff 𝑖 goes before 𝑗. Specifically, we propose the following bi-level
combinatorial optimization model.

(BIP)1 max
∑

𝑖

∑

𝑗
𝑚̃𝑖𝑗𝑥𝑖𝑗 − 𝜖 𝑑𝐾-𝜏 (𝜌(𝑦), 𝜌̃) (1)

s.t. 𝑚𝑟𝑠 =
∑∑

𝑥𝑖𝑗 𝑟, 𝑠 ∈ 𝑃 ∶ 𝑟 ≠ 𝑠 (2)

𝑖∈𝑟 𝑗∈𝑠
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Table 3
Ranking of game factor including some of the best three players GOAT.

V1 V2 V3 V4 V5 V6 V7 V8 V9

1 Pete Sampras Rafael Nadal Rafael Nadal Roger Federer Pete Sampras Rafael Nadal Andre Agassi Rafael Nadal Rafael Nadal
2 Roger Federer Novak Djokovic Roger Federer Pete Sampras Roger Federer Novak Djokovic Rafael Nadal Novak Djokovic Novak Djokovic
3 Tomas Berdych J.M. del Potro Novak Djokovic Novak Djokovic Rafael Nadal Andy Murray Andy Murray Andy Murray Andy Murray
4 Robin Soderling Andre Agassi Andre Agassi Rafael Nadal Novak Djokovic Stefan Edberg Novak Djokovic Andre Agassi Andre Agassi
5 Patrick Rafter Jim Courier P. Kohlschreiber J.M. del Potro Andre Agassi Roger Federer Stefan Edberg Stefan Edberg Stefan Edberg
6 Todd Martin Roger Federer Stan Wawrinka Patrick Rafter Todd Martin Tim Henman Jim Courier Robin Soderling Roger Federer
7 Tommy Haas Stefan Edberg Tomas Berdych F. Gonzalez Javier Frana Stan Wawrinka Robin Soderling Roger Federer Daniil Medvedev
8 Daniil Medvedev F. Gonzalez Andy Murray Stefan Edberg Jim Courier F. Gonzalez Roger Federer Tim Henman Robin Soderling
9 Novak Djokovic Pete Sampras Stefan Edberg Richard Gasquet P. Kohlschreiber Robin Soderling Richard Gasquet Javier Frana Tomas Berdych

10 Rafael Nadal Tim Henman Tim Henman James Blake MaliVai Washington Todd Martin Stan Wawrinka Nicolas Almagro Nicolas Almagro

Rafael Nadal rank 2.66.
Novak Djokovic rank 3.44.
Roger Federer rank 4.33.
Fig. 1. Order of items from a ranking of sets.
𝑥𝑖𝑗 + 𝑥𝑗𝑖 = 1 𝑖, 𝑗 ∈ 𝑉 ∶ 𝑖 < 𝑗 (3)

𝑥𝑖𝑗 + 𝑥𝑗𝑘 + 𝑥𝑘𝑖 ≤ 2 𝑖, 𝑗, 𝑘 ∈ 𝑉 ∶ 𝑖, 𝑗, 𝑘pwd (4)

𝑥𝑖𝑗 ∈ {0, 1} 𝑖, 𝑗 ∈ 𝑉 ∶ 𝑖 ≠ 𝑗 (5)

𝑚𝑟𝑠 ∈ N 𝑟, 𝑠 ∈ 𝑃 ∶ 𝑟 ≠ 𝑠 (6)

max
∑

𝑟

∑

𝑠
𝑚𝑟𝑠𝑦𝑟𝑠 (7)

s.t. 𝑦𝑟𝑠 + 𝑦𝑠𝑟 = 1 𝑟, 𝑠 ∈ 𝑃 ∶ 𝑟 < 𝑠 (8)

𝑦𝑟𝑠 + 𝑦𝑠𝑡 + 𝑦𝑡𝑟 ≤ 2 𝑟, 𝑠, 𝑡 ∈ 𝑃 ∶ 𝑟, 𝑠, 𝑡pwd (9)

𝑦𝑟𝑠 ∈ {0, 1} 𝑟, 𝑠 ∈ 𝑃 ∶ 𝑟 ≠ 𝑠 (10)

where 𝜖 is a parameter that weights the two objectives and 𝜌(𝑦) is
the order defined by the 𝑦-variables. The first term in the objective
function is the LOP objective function for the preference matrix 𝑀 𝜌̃ =
{𝑚̃𝑖𝑗}|𝑉 |×|𝑉 |

. The second term is the distance between the ranking 𝜌
defined by the values of the 𝑦-variables and 𝜌̃. Constraints (2) allow
to compute the preference matrix values for the lower level problem.
Constraints (3)–(5) are the LOP constraints: (3) states that item 𝑖 goes
before item 𝑗 or item 𝑗 goes before item 𝑖; (4) states that if item 𝑖
goes before item 𝑗 and item 𝑗 before item 𝑘, then item 𝑘 cannot go
before item 𝑖. ‘‘pwd’’ in constraint (4) stands for ‘‘pairwise disjoint’’,
i.e. 𝑖 ≠ 𝑗, 𝑖 ≠ 𝑘 and 𝑗 ≠ 𝑘. Analogously, constraints (8)–(10) are the
LOP constraints for the sets: (9) states that set 𝑟 goes before set 𝑠 or set
𝑠 goes before set 𝑟; (9) states that if set 𝑟 goes before set 𝑠 and set 𝑠
before set 𝑡, then set 𝑡 cannot go before set 𝑠. Constraints (5), (6) and
(10) are the domain constraints, both 𝑥-variables and 𝑦-variables are
binary while 𝑚-variables are positive and integer.
5

Remark 4.1. The objective function of (BIP)1 is the addition of two
distances. From Examples 1 and 2, the first term of the objective
function minus the sum of all the preference matrix entries is the
distance between the solution rankings and the ranking that follows
from the original ranking by adding as many copies of the items as sets
belongs to. Thus, the objective of (BIP)1 is also the minimization of two
ranking distances.

The previous model constitutes a correct way to approach the chal-
lenge of finding a ranking of items that minimizes the two objectives
of interest. However, in order to solve real problems with this model,
it is necessary to overcome three important drawbacks. First of all, it
is necessary to rewrite the second term of the objective function in a
linear way, since by definition, the Kendall-𝜏 distance is the sum of
absolute values. Secondly, it is necessary to decide how the two-level
optimization is approached, to analyze if it is possible to transform
this model into an equivalent one-level model or if we must resort
to some suitable resolution algorithm. Finally, the product of two
variables appearing in the objective function of the second level must
be linearized. The following results answer these questions.

Proposition 4.1. Let 𝑦̃𝑟𝑠, for all 𝑟, 𝑠 ∈ 𝑃 , be the binary values that describe
the ranking 𝜌̃. Then, the second term in (1) can be re-written as
∑

𝑟𝑠∶𝑦̃𝑟𝑠=0
𝑦𝑟𝑠 −

∑

𝑟𝑠∶𝑦̃𝑟𝑠=1
𝑦𝑟𝑠.

Proof. Since 𝑦̃ is a linear order, the following equalities hold:

𝑑𝐾-𝜏 (𝜌, 𝜌̃) =
1 ∑

|𝑦̃𝑟𝑠 − 𝑦𝑟𝑠| =
2 𝑟𝑠
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𝑑
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2

(

∑

𝑟𝑠
𝑦̃𝑟𝑠 +

∑

𝑟𝑠∶𝑦̃𝑟𝑠=0
𝑦𝑟𝑠 −

∑

𝑟𝑠∶𝑦̃𝑟𝑠=1
𝑦𝑟𝑠

)

=

1
2

(

|𝑃 |(|𝑃 | − 1)
2

+
∑

𝑟𝑠∶𝑦̃𝑟𝑠=0
𝑦𝑟𝑠 −

∑

𝑟𝑠∶𝑦̃𝑟𝑠=1
𝑦𝑟𝑠

)

. □

A way of solving the bi-level problem is to observe that the second-
level problem could be seen as the best solution among all the feasible
LOP solutions. Let the statement ‘‘𝑦𝑟𝑠 ∈ 𝐿𝑂𝑃 ’’ represent all the vector
parameter describing feasible permutations of 𝑃 items, i.e., feasible
solutions of the LOP problem for a |𝑃 |× |𝑃 | matrix. Thus, the previous
i-level problem is equivalent to the following single level problem.

(IP)1 max
∑

𝑖

∑

𝑗
𝑚̃𝑖𝑗𝑥𝑖𝑗

− 𝜖

(

∑

𝑟𝑠∶𝑦̃𝑟𝑠=0
𝑦𝑟𝑠 −

∑

𝑟𝑠∶𝑦̃𝑟𝑠=1
𝑦𝑟𝑠

)

s.t. 𝑚𝑟𝑠 =
∑

𝑖∈𝑟

∑

𝑗∈𝑠
𝑥𝑖𝑗 𝑟, 𝑠 ∈ 𝑃 ∶ 𝑟 ≠ 𝑠

𝑥𝑖𝑗 + 𝑥𝑗𝑖 = 1 𝑖, 𝑗 ∈ 𝑉 ∶ 𝑖 < 𝑗

𝑥𝑖𝑗 + 𝑥𝑗𝑘 + 𝑥𝑘𝑖 ≤ 2 𝑖, 𝑗, 𝑘 ∈ 𝑉 ∶ 𝑖, 𝑗, 𝑘pwd
𝑥𝑖𝑗 ∈ {0, 1} 𝑖, 𝑗 ∈ 𝑉 ∶ 𝑖 ≠ 𝑗
∑

𝑟

∑

𝑠
𝑚𝑟𝑠𝑦𝑟𝑠 ≥

∑

𝑟

∑

𝑠
𝑚𝑟𝑠𝑦𝑟𝑠 𝑦𝑟𝑠 ∈ 𝐿𝑂𝑃 (11)

𝑦𝑟𝑠 + 𝑦𝑠𝑟 = 1 𝑟, 𝑠 ∈ 𝑃 ∶ 𝑟 < 𝑠

𝑦𝑟𝑠 + 𝑦𝑠𝑡 + 𝑦𝑡𝑟 ≤ 2 𝑟, 𝑠, 𝑡 ∈ 𝑃 ∶ 𝑟, 𝑠, 𝑡pwd
𝑦𝑟𝑠 ∈ {0, 1} 𝑟, 𝑠 ∈ 𝑃 ∶ 𝑟 ≠ 𝑠

Constraints (11) state that the optimal values for the 𝑦-variables
will correspond with the order of sets with the largest upper diagonal
sum. Although there is a huge number of constraints of type (11), a
good separation algorithm for them will be presented. This approach
to writing a bilevel model as a single level model has been previously
proposed in the literature, see for instance [16].

The product of variables 𝑚𝑟𝑠𝑦𝑟𝑠 can be linearized by defining a new
family of variables

𝑧𝑟𝑠𝑖𝑗 = 𝑦𝑟𝑠𝑥𝑖𝑗 ,

replacing 𝑚𝑟𝑠𝑦𝑟𝑠 by ∑

𝑖∈𝑟
∑

𝑗∈𝑠 𝑧𝑟𝑠𝑖𝑗 in (11) (the replacement follows from
Eqs. (2)) and adding the following constraints:

𝑧𝑟𝑠𝑖𝑗 ≤ 𝑦𝑟𝑠 𝑟, 𝑠 ∈ 𝑃 ∶ 𝑟 ≠ 𝑠 (12)

𝑧𝑟𝑠𝑖𝑗 ≤ 𝑥𝑖𝑗 𝑖, 𝑗 ∈ 𝑉 ∶ 𝑖 ≠ 𝑗 (13)

𝑧𝑟𝑠𝑖𝑗 ≥ 𝑦𝑟𝑠 + 𝑥𝑖𝑗 − 1 𝑖, 𝑗 ∈ 𝑉 ∶ 𝑖 ≠ 𝑗, 𝑟, 𝑠 ∈ 𝑃 ∶ 𝑟 ≠ 𝑠, 𝑟 ∋ 𝑖, 𝑠 ∋ 𝑗 (14)

Finally, it is interesting to point out that small values of 𝜖 entail that
the optimal solution of BIP is the optimal solution of the LOP problem
for the preference matrix. It can be proved that it is the case when 𝜖 is
smaller than 1∕(|𝑃 |(|𝑃 | − 1)).

Proposition 4.2. Let 𝑋∗ be the set of all optimal solutions of

max
∑

𝑖

∑

𝑗
𝑚̃𝑖𝑗𝑥𝑖𝑗

s.t. (3)–(5).

If 𝜖 ≤ 1∕(|𝑃 |(|𝑃 | − 1)), then the optimal solutions of BIP1 (or IP1) belong
to 𝑋∗.

Proof. Suppose that 𝜖 ≤ 1∕(|𝑃 |(|𝑃 | − 1)) and that 𝑥 is an optimal
solution of BIP1 (or IP1) and 𝑥 ∉ 𝑋∗. We are going to prove that
his assumption leads to a false inequality. The (optimal) value of BIP1

or 𝑥 is ∑

𝑖
∑

𝑗 𝑚̃𝑖𝑗𝑥𝑖𝑗 − 𝜖𝑑𝐾-𝜏 (𝜌(𝑥), 𝜌̃), where 𝜌(𝑥) is the ranking of sets
induced by 𝑥 in model BIP1. Moreover ∑

𝑖
∑

𝑗 𝑚̃𝑖𝑗𝑥𝑖𝑗 − 𝜖𝑑𝐾-𝜏 (𝜌(𝑥), 𝜌̃) ≥
∑ ∑

𝑚̃ 𝑥∗ −𝜖𝑑 (𝜌(𝑥∗), 𝜌̃) and ∑ ∑

𝑚̃ 𝑥∗ >
∑ ∑

𝑚̃ 𝑥 for all 𝑥∗ ∈
6

𝑖 𝑗 𝑖𝑗 𝑖𝑗 𝐾-𝜏 𝑖 𝑗 𝑖𝑗 𝑖𝑗 𝑖 𝑗 𝑖𝑗 𝑖𝑗
𝑋∗. Therefore, −𝜖𝑑𝐾-𝜏 (𝜌(𝑥), 𝜌̃) ≥ −𝜖𝑑𝐾-𝜏 (𝜌(𝑥∗), 𝜌̃) + 1 or equivalently,
≤ 𝜖𝑑𝐾-𝜏 (𝜌(𝑥), 𝜌̃) ≤ 𝜖𝑑𝐾-𝜏 (𝜌(𝑥∗), 𝜌̃) − 1. 𝜖 is bounded by 1∕(|𝑃 |(|𝑃 | − 1))

nd 𝑑𝐾-𝜏 (𝜌(𝑥∗), 𝜌̃) is bounded by (|𝑃 |(|𝑃 |−1))∕2, then the last inequality
ecomes 0 ≤ (1∕(|𝑃 |(|𝑃 | − 1)))((|𝑃 |(|𝑃 | − 1))∕2) − 1 = −0.5, which is
alse. □

.2. Linear order of sets from a linear order of items

This section presents the approach for ranking sets from a linear
rder of items analogous to the approach in the previous section. The
wo different objectives are illustrated with the data in Example 2. In
he previous section, all alternative optimal solutions for the preference
atrix had been obtained. The solution of the bi-objective problem is

llustrated and the interest of the two objectives is again shown.

xample 5 (Example 2 Continuation). The ranking of items 𝜌1 obtained
rom 𝜋̃ can be used to obtain a linear order of items. A preference
atrix for the items of 𝑉 from 𝜌1 is

𝜌̃1 ==

𝑎 𝑏 𝑐 𝑑 𝑒

⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

𝑎 − 4 4 2 3
𝑏 0 − 2 1 2
𝑐 0 1 − 1 1
𝑑 1 2 3 − 3
𝑒 0 2 2 1 −

,

nd this matrix induces the orders of items 𝜋1
1 = (𝑎|𝑑|𝑏|𝑒|𝑐) and 𝜋1

2 =
𝑎|𝑑|𝑒|𝑏|𝑐), and these orders present 3 and 4 disagreements with 𝜋̃.

Fig. 2 presents all the combinations in this example. Therefore,
rder 𝜋4 is the best order of sets.

If a ranking of items is given and a ranking of sets is required, we
hen propose that this ranking of sets should be an optimal solution to
he model with two weighted objectives: the adequacy of the ranking
f sets to the ranking of items and the proximity of the ranking of items
hat would be obtained from the ranking of sets to the initial ranking
f items.

Let 𝑉 be a set of items and 𝑃 be a set of subsets of 𝑉 . Let 𝜋̃ be
linear order of items in 𝑉 and let 𝑚̃𝑟𝑠 be the number of times that 𝑟

ppears before 𝑠 in 𝜋̃. The following bi-level combinatorial optimization
odel is proposed.

(BIP)2 max
∑

𝑟

∑

𝑠
𝑚̃𝑟𝑠𝑦𝑟𝑠 − 𝜖 𝑑𝐾-𝜏 (𝜋, 𝜋̃) (15)

s.t. 𝑚𝑖𝑗 =
∑

𝑟∋𝑖

∑

𝑠∋𝑗
𝑦𝑟𝑠 𝑖, 𝑗 ∈ 𝑉 ∶ 𝑖 ≠ 𝑗 (16)

𝑦𝑟𝑠 + 𝑦𝑠𝑟 = 1 𝑟, 𝑠 ∈ 𝑃 ∶ 𝑟 < 𝑠 (17)

𝑦𝑟𝑠 + 𝑦𝑠𝑡 + 𝑦𝑡𝑟 ≤ 2 𝑟, 𝑠, 𝑡 ∈ 𝑃 ∶ 𝑟, 𝑠, 𝑡pwd (18)

𝑦𝑟𝑠 ∈ {0, 1} 𝑟, 𝑠 ∈ 𝑃 ∶ 𝑟 ≠ 𝑠 (19)

max
∑

𝑖,𝑗∈𝑉 ∶𝑖≠𝑗
𝑚𝑖𝑗𝑥𝑖𝑗 (20)

s.t. 𝑥𝑖𝑗 + 𝑥𝑗𝑖 = 1 𝑖, 𝑗 ∈ 𝑉 ∶ 𝑖 < 𝑗 (21)

𝑥𝑖𝑗 + 𝑥𝑗𝑘 + 𝑥𝑘𝑖 ≤ 2 𝑖, 𝑗, 𝑘 ∈ 𝑉 ∶ 𝑖, 𝑗, 𝑘pwd (22)

𝑥𝑖𝑗 ∈ {0, 1} 𝑖, 𝑗 ∈ 𝑉 ∶ 𝑖 ≠ 𝑗 (23)

For each 𝑖, 𝑗 ∈ 𝑉 , let 𝑥̃𝑖𝑗 be the constants that represent ranking 𝜋̃.
hen, again the Kendall-𝜏 distance between 𝜋 and 𝜋̃ is the sum of the
bsolute value of the differences,

𝐾-𝜏 (𝜋, 𝜋̃) =
1
2
∑

𝑖𝑗
|𝑥̃𝑖𝑗 − 𝑥𝑖𝑗 |

and the objective function can be re-written. Also the second problem
can be replaced by a set of constraints. In particular, the model becomes
the following model:

(IP)2 max
∑∑

𝑚̃𝑟𝑠𝑦𝑟𝑠

𝑟 𝑠
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Fig. 2. Order of sets from a ranking of items.
i
(

(

𝜌

− 𝜖
⎛

⎜

⎜

⎝

∑

𝑖𝑗∶𝑥̃𝑖𝑗=0
𝑥𝑖𝑗 −

∑

𝑖𝑗∶𝑥̃𝑖𝑗=1
𝑥𝑖𝑗

⎞

⎟

⎟

⎠

s.t. 𝑚𝑖𝑗 =
∑

𝑟∋𝑖

∑

𝑠∋𝑗
𝑦𝑟𝑠 𝑖, 𝑗 ∈ 𝑉 ∶ 𝑖 ≠ 𝑗

𝑦𝑟𝑠 + 𝑦𝑠𝑟 = 1 𝑟, 𝑠 ∈ 𝑃 ∶ 𝑟 < 𝑠

𝑦𝑟𝑠 + 𝑦𝑠𝑡 + 𝑦𝑡𝑟 ≤ 2 𝑟, 𝑠, 𝑡 ∈ 𝑃 ∶ 𝑟, 𝑠, 𝑡pwd
∑

𝑖,𝑗∈𝑉 ∶𝑖≠𝑗
𝑚𝑖𝑗𝑥𝑖𝑗 ≥

∑

𝑖,𝑗∈𝑉 ∶𝑖≠𝑗
𝑚𝑖𝑗𝑥𝑖𝑗 ∀𝑥𝑖𝑗 ∈ 𝐿𝑂𝑃 (24)

𝑥𝑖𝑗 + 𝑥𝑗𝑖 = 1 𝑖, 𝑗 ∈ 𝑉 ∶ 𝑖 < 𝑗

𝑥𝑖𝑗 + 𝑥𝑗𝑘 + 𝑥𝑘𝑖 ≤ 2 𝑖, 𝑗, 𝑘 ∈ 𝑉 ∶ 𝑖, 𝑗, 𝑘pwd
𝑦𝑟𝑠 ∈ {0, 1} 𝑟, 𝑠 ∈ 𝑃 ∶ 𝑟 ≠ 𝑠

𝑥𝑖𝑗 ∈ {0, 1} 𝑖, 𝑗 ∈ 𝑉 ∶ 𝑖 ≠ 𝑗

The product of variables 𝑚𝑖𝑗𝑥𝑖𝑗 can be linearized by defining a new
amily of variables

𝑟𝑠𝑖𝑗 = 𝑦𝑟𝑠𝑥𝑖𝑗 ,

eplacing 𝑚𝑖𝑗𝑥𝑖𝑗 by ∑

𝑟∋𝑖
∑

𝑠∋𝑗 𝑧𝑟𝑠𝑖𝑗 in (24) (the replacement follows from
qs. (16)) and adding constraints (12)–(14).

The last result in this section is about the influence of the magnitude
f the weight 𝜖. It is similar to Proposition 4.2 in the previous section.

orollary 4.1. Let 𝑌 ∗ be the set of all optimal solutions of

ax
∑

𝑟

∑

𝑠
𝑚̃𝑟𝑠𝑦𝑟𝑠

s.t. (17)–(19).

f 𝜖 ≤ 1∕(𝑛(𝑛−1)), then the optimal solutions of BIP2 (or IP2) belong to 𝑌 ∗.

roof. Follows from Proposition 4.2. □

.3. Separation algorithm

The two linear and single level models that have been proposed in
he previous sections suffer from the same difficulty, a family of valid
nequalities with very many inequalities. To address the resolution of
hese models, we propose to relax the model by eliminating this family
f inequalities and iteratively and intelligently incorporating some of
he inequalities of the family until the optimum of the problem is
uaranteed. The algorithms in this section explain the corresponding
elaxation algorithms that we propose for the two linear problems in
uestion.
7

Algorithms 1 and 2 explain how to solve (IP)1 and (IP)2. At any
teration, a new constraint (11) (or (24)) is added to problem (IP)1 or
IP)2.

For example, in Algorithm 1, we solve to optimality the problem
IP)1 without (11) constraints. If the optimal solution is optimal for

the second level problem, the algorithm ends, and the optimal solution
of the bilevel problem is found. Otherwise, the solution is not optimal
for the second level problem, so the cut needs to be added (line 5 in
Algorithm 1) to the problem (IP)1 in order to prevent this solution.

Algorithm 1: Separation Algorithm for (IP)1 problem

1 (IP) = model((IP)1 without (11))
2 repeat
3 (𝑥∗, 𝑚∗, 𝑦∗) = solve((IP))
4 (𝑦) = solve

(

max{
∑

𝑟
∑

𝑤 𝑚∗
𝑟𝑠𝑦𝑟𝑠 𝑠.𝑡. (8)–(10)}

)

5 Add constraint
(
∑

𝑟,𝑠 𝑚𝑟𝑠𝑦𝑟𝑠 ≥
∑

𝑟,𝑠 𝑚𝑟𝑠𝑦𝑟𝑠
)

to (IP)
6 until

(
∑

𝑟,𝑠 𝑚
∗
𝑟𝑠𝑦

∗
𝑟𝑠 =

∑

𝑟,𝑠 𝑚
∗
𝑟𝑠𝑦𝑟𝑠

)

;

Algorithm 2: Separation Algorithm for (IP)2 problem

1 (IP) = model((IP)2 without (24))
2 repeat
3 (𝑥∗, 𝑚∗, 𝑦∗) = solve((IP))
4 (𝑥) = solve

(

max{
∑

𝑖
∑

𝑗 𝑚
∗
𝑖𝑗𝑥𝑖𝑗 𝑠.𝑡. (21)–(23)}

)

5 Add constraint
(

∑

𝑖,𝑗 𝑚𝑖𝑗𝑥𝑖𝑗 ≥
∑

𝑖,𝑗 𝑚𝑖𝑗𝑥𝑖𝑗
)

to (IP)

6 until
(

∑

𝑖,𝑗 𝑚
∗
𝑖𝑗𝑥

∗
𝑖𝑗 =

∑

𝑖,𝑗 𝑚
∗
𝑖𝑗𝑥𝑖𝑗

)

;

4.4. Aggregating rankings

A natural generalization of the problem presented in Section 4.1 is
the problem of determining an order of items from several rankings of
sets. If several rankings of sets 𝜌1,… , 𝜌𝑘 are considered as the input
of the problem, we can combine those rankings in a single partial
ranking 𝜌̃ = (𝜌1|⋯ |𝜌𝑘) (the partial ranking of sets induced by rankings
1̃,… , 𝜌𝑘). A partial ranking of sets is a linear order in which some

sets are not comparable to each other; in this case, two sets of 𝜌̃ are
comparable if they belong to the same input ranking. Partial orders play
a very important role in the problem of finding a consensus ranking

between different rankings.
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Let 𝟏𝐬,𝐫 be the indicator function that takes the value 1 if 𝑠 and 𝑟 are
omparable in the partial ranking of sets 𝜌̃, for all 𝑟, 𝑠 ∈ 𝑃 . Therefore,
he (BIP)1 model can be written for partial orders of sets as follows:

(BIP)3 max
∑

𝑖

∑

𝑗
𝑚̃𝑖𝑗𝑥𝑖𝑗 − 𝜖 𝑑𝐾-𝜏 (𝜌(𝑦), 𝜌̃) (25)

s.t. 𝑚𝑟𝑠 =
∑

𝑖∈𝑟

∑

𝑗∈𝑠
𝑥𝑖𝑗 𝑟, 𝑠 ∈ 𝑃 ∶ 𝑟 ≠ 𝑠, 𝟏𝐬,𝐫 = 1

(26)

𝑥𝑖𝑗 + 𝑥𝑗𝑖 = 1 𝑖, 𝑗 ∈ 𝑉 ∶ 𝑖 < 𝑗 (27)
𝑥𝑖𝑗 + 𝑥𝑗𝑘 + 𝑥𝑘𝑖 ≤ 2 𝑖, 𝑗, 𝑘 ∈ 𝑉 ∶ 𝑖, 𝑗, 𝑘pwd

(28)

𝑥𝑖𝑗 ∈ {0, 1} 𝑖, 𝑗 ∈ 𝑉 ∶ 𝑖 ≠ 𝑗 (29)
𝑚𝑟𝑠 ∈ N 𝑟, 𝑠 ∈ 𝑃 ∶ 𝑟 ≠ 𝑠, 𝟏𝐬,𝐫 = 1

(30)

max
∑

𝑟

∑

𝑠
𝑚𝑟𝑠𝑦𝑟𝑠𝟏𝐬,𝐫 (31)

s.t. 𝑦𝑟𝑠 + 𝑦𝑠𝑟 = 1 𝑟, 𝑠 ∈ 𝑃 ∶ 𝑟 < 𝑠, 𝟏𝐬,𝐫 = 1
(32)

𝑦𝑟𝑠 + 𝑦𝑠𝑡 + 𝑦𝑡𝑟 ≤ 2 𝑟, 𝑠, 𝑡 ∈ 𝑃 ∶ 𝑟, 𝑠, 𝑡pwd,

𝟏𝐬,𝐫 = 𝟏𝐫,𝐭 = 𝟏𝐭,𝐬 = 1 (33)
𝑦𝑟𝑠 ∈ {0, 1} 𝑟, 𝑠 ∈ 𝑃 ∶ 𝑟 ≠ 𝑠, 𝟏𝐬,𝐫 = 1

(34)

The problem of determining an order of sets from several rankings
could also be considered.

5. Results of experiments

5.1. Application to the ATP ranking

5.1.1. Linear order of items from a linear order of sets
The Association of Tennis Professionals (ATP) regularly publishes

the rank of tennis players for different variables (game performance).
We have chosen nine of these variables and we have saved the ranking
list for each of them. The ATP dataset can be found in http://www.
atpworldtour.com/. We have saved the information in Table 1. Each
column shows the ranking for the corresponding variable: in column
C1, we have the list of the best tennis players in Career 1st serve points
won on all surfaces from all countries: the best in this variable is Pete
Sampras, the second Roger Federer and so on. In column C2 we see
that best tennis player in C2 is Rafa Nadal, the second Novak Djokovic
and so on. In [17], the authors present a combinatorial approach on
data envelopment analysis to compare the players, an approach that
allows obtaining an efficiency score for each player based on their game
performance.

We interpret the first row of Table 1 as the best set of nine tennis
players (an ideal player with the best game factors from each of the
best players), the second row as the second best set of nine players.
Even if each row has nine tennis players, the table contains 25 tennis
players. We would like to have a linear order of the 25 tennis players
from this linear order of sets of size 9.

The solution for the bi-level problem (𝐵𝐼𝑃 1) is given in Table 2,
column Bi-level ranking. The column Mean-rank ranking is the linear
order we would obtain if we compute the average position for each
player. For instance, the value for Novak Djokovic is (16 + 2 + 3 +⋯ +
2)∕9 = 4.22. We observe that both linear orders differ.

Comparing the Mean-rank ranking and the Kendall-𝜏 ranking, the
second is more robust in the sense that it is less influenced by the
rest of the items on the list. We can check it with an experiment. Let
consider the subtable of Table 1 which has the rows containing the best
three players (the Greatest Of All Time (GOAT)), Rafael Nadal, Novak
Djokovic and Roger Federer (we remove the rows which do not have
8

Table 4
Rank of best players.

2 Roger Federer
4 Rafael Nadal
5 Novak Djokovic
8 Pete Sampras

10 Andre Agassi
14 Andy Murray
16 Stefan Edberg
33 Jim Courier
34 Juan Martin del Potro
54 Stan Wawrinka
58 Tommy Haas
59 Richard Gasquet
73 Tomas Berdych
76 Nicolas Almagro
89 Patrick Rafter
90 Fernando Gonzalez
91 Tim Henman
97 Robin Soderling

105 James Blake
123 Todd Martin
130 Philipp Kohlschreiber
136 Daniil Medvedev
182 Radek Stepanek
201 MaliVai Washington
259 Javier Frana

Data from http://www.atpworldtour.com/.

any of them). This subtable is Table 3. If we compute the Mean-rank
ranking for this table, then Rafael Nadal is the first. It evidences that
the Mean-rank ranking is highly influenced by external items which do
not belong to the best items in the list. So, our rank is more robust.

5.2. Linear order of sets from a linear order of items

In this section we want to illustrate the inverse procedure. Table 4
shows a linear order of tennis players based on the number of matches
they have won (the data have taken from http://www.atpworldtour.
com/). Table 5 shows the first ten rows of Table 1. The goal is obtain
a linear ordering of the variables (sets) C1, C2, C3, C4, C5, C6, C7,
C8 and C9 from the linear ordering of tennis players in Table 4. This
rank of variables (sets) indicates the relevance of each of the variables.
Table 6 shows the solution of the bilevel problem.

5.3. Biomedical example

The BioConsert1 project (Biological Consensus Ranking with Ties)
aims to make the most of the data obtained through several ranking
methods by generating a consensus ranking. Some project results are in
the paper [18]. In particular, the authors propose the Fagin approach
as a way of obtaining a complete ranking of items from a list of ranking
of sets.

In order to illustrate our approach, we will compare our method
with Fagin’s method for data obtained from Bioconsert. Table 7 shows
different input rankings, where GS = ‘Gold Standard’, BI = ‘Bioggle’,
IE = ‘In Edge’, PR = ‘Page Rank’ and PC = ‘Path Count’ ([18] for
more details). Each item (number) in the rankings corresponds with a
gen associated with the disease ADHD (Attention Deficit Hyperactivity
Disorder).

In [18], authors claim that the Fagin’s approach gives the following
consensus ranking:

𝜋(𝐹𝑎𝑔𝑖𝑛) ∶= (7|2|3|1|4|5|31|41|8|6|27|43|42|17|40)
The distance of 𝜋(𝐹𝑎𝑔𝑖𝑛) to rankings (BI, IE, PR, PC) and (GS, BI,

E, PR, PC) computed as the Generalized Kendall Tau distance [18] is
3 and 145, respectively.

1 https://www.bioguide-project.net/bioconsert/

http://www.atpworldtour.com/
http://www.atpworldtour.com/
http://www.atpworldtour.com/
http://www.atpworldtour.com/
http://www.atpworldtour.com/
http://www.atpworldtour.com/
http://www.atpworldtour.com/
https://www.bioguide-project.net/bioconsert/
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Table 5
Ranking of game factor corresponding to the 25 players for whom we have available data for all these factors.

C1 C2 C3 C4 C5 C6 C7 C8 C9

Pete Sampras Rafael Nadal Rafael Nadal Roger Federer Pete Sampras Rafael Nadal Andre Agassi Rafael Nadal Rafael Nadal
Roger Federer Novak Djokovic Roger Federer Pete Sampras Roger Federer Novak Djokovic Rafael Nadal Novak Djokovic Novak Djokovic
Tomas Berdych J.M. del Potro Novak Djokovic Novak Djokovic Rafael Nadal Andy Murray Andy Murray Andy Murray Andy Murray
Robin Soderling Andre Agassi Andre Agassi Rafael Nadal Novak Djokovic Stefan Edberg Novak Djokovic Andre Agassi Andre Agassi
Patrick Rafter Jim Courier P. Kohlschreiber J.M. del Potro Andre Agassi Roger Federer Stefan Edberg Stefan Edberg Stefan Edberg
Todd Martin Roger Federer Stan Wawrinka Patrick Rafter Todd Martin Tim Henman Jim Courier Robin Soderling Roger Federer
Nicolas Almagro Radek Stepanek Jim Courier Tomas Berdych Patrick Rafter Andre Agassi Daniil Medvedev Jim Courier Jim Courier
Andy Murray Patrick Rafter J.M. del Potro Jim Courier Stan Wawrinka M. Washington Tomas Berdych M. Washington Tim Henman
J.M. del Potro Richard Gasquet Richard Gasquet Andre Agassi J.M. del Potro Richard Gasquet Todd Martin J.M. del Potro M. Washington
Tim Henman Todd Martin Nicolas Almagro Robin Soderling Stefan Edberg James Blake J.M. del Potro James Blake J.M. del Potro

C1: Career 1st Serve Points Won On All Surfaces From All Countries.
C2: Career 1st Serve On All Surfaces From All Countries.
C3: Career 2nd Serve Points Won On All Surfaces From All Countries.
C4: Career Service Games Won On All Surfaces From All Countries.
C5: Career Break Points Saved On All Surfaces From All Countries.
C6: Career 1st Serve Return Points Won On All Surfaces From All Countries.
C7: Career 2nd Serve Return Points Won On All Surfaces From All Countries.
C8: Career Break Points Converted On All Surfaces From All Countries.
C9: Career Return Games Won On All Surfaces From All Countries.
Table 6
Ranking of sets.

1 C5: Career Break Points Saved On All Surfaces From All Countries
2 C4: Career Service Games Won On All Surfaces From All Countries
3 C9: Career Return Games Won On All Surfaces From All Countries
4 C3: Career 2nd Serve Points Won On All Surfaces From All Countries
5 C6: Career 1st Serve Return Points Won On All Surfaces From All Countries
6 C2: Career 1st Serve On All Surfaces From All Countries
7 C7: Career 2nd Serve Return Points Won On All Surfaces From All Countries
8 C8: Career Break Points Converted On All Surfaces From All Countries
9 C1: Career 1st Serve Points Won On All Surfaces From All Countries

Table 7
Ranking given as input.

GS ∶= ({1, 2, 3, 4, 5, 6, 7}|{8, 17, 27, 31, 40, 41, 42, 43})
BI ∶= ({7}, {3, 2}|{31, 41, 4, 5, 1}|{8}|{27, 43}|{42}|{40}|{6}|{17})
IE ∶= ({7}, {31, 41, 4, 5, 1, 3, 2}|{8}|{6, 17}, {27, 40, 42, 43})
PR ∶= ({7}, {31, 41, 4, 5, 1, 2}|{3}|{27}|{8}|{42, 6, 43}|{40}|{17})
PC ∶= ({7}, {3, 2}|{31, 41, 4, 5, 1}|{8}|{6}|{17, 27, 40, 43}|{42})

Using our bilevel Model (BIP)3, the following consensus ranking is
btained:
𝜋(BIP3) ∶= (7|2|3|5|1|4|31|41|8|6|27|43|42|40|17)
The distance of 𝜋(BIP3) to rankings (BI, IE, PR, PC) and (GS, BI, IE,

PR, PC) computed as the Generalized Kendall Tau distance is 92 and
144, respectively. Thus, our consensus ranking is slightly better. More-
over, the ranking 𝜋(BIP3) satisfies 382 preferences of 401 preferences
(∑𝑖,𝑗 𝑚𝑖𝑗 = 401) while ranking 𝜋(𝐹𝑎𝑔𝑖𝑛) satisfies 381. Finally, ranking
𝜋(BIP3) provides a ranking of sets at a distance of 10 from the initial
rankings (GS, BI, IE, PR, PC), while 𝜋(𝐹𝑎𝑔𝑖𝑛) is at a distance of 11.

6. Conclusions

In this paper, we have introduced a new methodology for ob-
taining a ranking of items/sets from a ranking of sets/inputs. Since
the new methodology applied to the resulting ranking of items/sets,
deals with another ranking of sets/items, we propose an optimization
bilievel model that provides ranking of items/sets that, when solving
the inverse problem, gives a ranking close to the input ranking.

Since problems of ranking items and sets are combinatorial, the
combination of both problems leads to a combinatorial bilevel opti-
mization model, with 0–1 variables in first and second level problems.
The bilevel optimization problem is formulated as a single level prob-
lem with a huge number of constraints. We propose a cutting-plane
approach in an attempt to resolve this issue.

Different examples throughout the work illustrate the advantages of
9

the new models. In addition, two experiments show the applicability of
the proposed models. The experiments consider both partial and total
rankings.

In general, with the procedures in this paper each time we have
a double entry table and a linear order of its columns (rows) we can
obtain a linear order of its rows (columns). Depending on whether the
linear order is for items or for sets, we will select one procedure or the
other.

It remains for future research to implement techniques that allow
dealing with very large instances and the extension of these models to
more general situations.
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