
HAL Id: hal-04400100
https://hal.science/hal-04400100v1

Preprint submitted on 17 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Playing Stackelberg Security Games in Perfect
Formulations

Pamela Bustamante, Victor Bucarey, Martine Labbé, Vladimir Marianov,
Fernando Ordoñez

To cite this version:
Pamela Bustamante, Victor Bucarey, Martine Labbé, Vladimir Marianov, Fernando Ordoñez. Playing
Stackelberg Security Games in Perfect Formulations. 2024. �hal-04400100�

https://hal.science/hal-04400100v1
https://hal.archives-ouvertes.fr

Playing Stackelberg security games in perfect formulations

Pamela Bustamante-Faúndeza,∗, Vı́ctor Bucarey L.b, Martine Labbéc,d, Vladimir Marianove,
Fernando Ordoñezf

aDepartment of Industrial and Transport Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
bInstitute of Engineering Sciences, Universidad de O’Higgins, Rancagua, Chile.
cDépartement d’Informatique, Université Libre de Bruxelles, Brussels, Belgium.

dInria Lille-Nord Europe, Villeneuve d’Ascq, France.
eDepartment of Electrical Engineering, Pontificia Universidad Católica de Chile and Instituto Sistemas Complejos de

Ingenieŕıa (ISCI), Santiago, Chile
fDepartment of Industrial Engineering, Universidad de Chile, Santiago, Chile.

Abstract

Protecting critical infrastructure from intentional damage requires foreseeing the strategies of
possible attackers. The problem faced by the defender of such infrastructure can be formulated
as a Stackelberg security game. A defender must decide what specific targets to protect with limited
resources, maximizing their expected utility (e.g., minimizing damage value) and considering that a
second player (or players), called attacker, responds in the best possible way.

Since Stackelberg security games are generally NP-Hard, the main challenge in finding optimal
strategies in real applications is developing efficient methodologies for large instances.

We propose a general methodology to find a Strong Stackelberg Equilibrium for Stackelberg se-
curity games whose set of defender’s mixed strategies can be represented as a perfect formulation.
This methodology consists in two steps. First, we formulate the problem using variables represent-
ing the probabilities of each target being defended. The formulation must be either a polynomial-size
MILP and/or a MILP with an exponential size of constraints that can be efficiently separated through
branch-and-cut. In the second step, we recover the mixed strategies in the original space efficiently
(in polynomial time) using column generation. This methodology has been applied in various security
applications studied in the last decade. We generalize and propose new examples. Finally, we provide
extensive computational study of different formulations based on marginal probabilities.

Keywords: OR in Defense, Bilevel Optimization, Polyhedral structure, Stackelberg Games

1. Introduction

Critical infrastructure ensures the proper functioning of a country [41] and includes, e.g., airports
and railways. Damage to a country’s critical infrastructure can cause significant economic loss and
seriously affect its population [9, 10].

The growing threat of terrorist attacks on this infrastructure has increased the need for security
systems in recent years [11, 38]. Security forces and terrorists act respectively as defenders and
attackers of critical infrastructure. The defender has limited resources to protect the infrastructure’s
most sensitive components. At the same time, the attacker or attackers seek to cause maximum
damage by targeting one or more critical infrastructure components. This problem falls in the category
of a Stackelberg security game (SSG for short). These games are a particular case of the Stackelberg
games (SG), which model sequential player interactions.

∗Corresponding author
Email addresses: pebustamante@uc.cl (Pamela Bustamante-Faúndez), victor.bucarey@uoh.cl (Vı́ctor Bucarey

L.), mlabbe@ulb.ac.be (Martine Labbé), marianov@ing.puc.cl (Vladimir Marianov), fordon@dii.uchile.cl
(Fernando Ordoñez)

Submitted preprint

Electronic copy available at: https://ssrn.com/abstract=4588054

A Stackelberg security game models a competitive and successive interaction between two agents,
usually denoted as defender and attacker. In this interaction, the defender has to use limited resources
to protect the set of targets that optimizes the expected protected value without knowing the strategy
that the attacker will deploy but aware of the fact that the attacker will, at a later time, respond
optimally [8]. The main characteristic of SSGs is that for both defender and attacker, there is a utility
per target that only depends on whether the target being attacked was or was not protected by the
defender at the time of the attack [37].

In this article, we deal with Bayesian Stackelberg security game models, in which the defender
knows that there exists a set of potential attackers as well as the probability of each one of them
being the actual attacker, but only faces one of them [8]. Because of this uncertainty regarding the
attackers, the game belongs to the category of games with incomplete information. Additionally, the
game has perfect information, as each player is aware of all the previous events [18].

In our game, the defender deploys an optimal mixed (randomized) defense strategy. The mixed
strategy is a probability distribution over all the possible actions in the defender space. The defender’s
strategy is observed by the attackers, who respond optimally. Due to its importance in security
applications, and being the dominant modeling choice in the literature [24, 39, 19, 5, 6, 25], we find a
Strong Stackelberg Equilibrium (SSE), i.e., in case of a tie between different possible responses of the
follower, the most convenient response for the leader is chosen.

One of the challenges in solving Stackelberg security games in real applications is the size of the
problem. In fact, finding optimal strategies for both Bayesian SG and Bayesian SSG is NP-Hard
[13, 30]. The difficulty of computing an SSE in a Stackelberg security game is directly related to
the defender strategy space [40]. Even in the simplest case, when the defender’s strategy is to assign
resources to protect targets, the enumeration of all possible actions is intractable.

Different formulations of the problem and methods have been devised to find mixed strategies for
the defender [8]. One approach is to formulate and solve the problem using variables associated with
the defender and attackers’ pure strategies, where the decision variables represent the probabilities
with which each action is played. The optimal solution of these non-compact formulations provides
the SSE directly. Another approach is to reformulate the problem as a compact formulation using
as variables the frequencies of the targets being defended, or marginal probabilities (see Figure 1).
This reformulation reduces the number of variables, but it requires retrieving a mixed strategy in the
original defender’s strategy space, to implement the solution. This is not always possible or efficient,
and it depends on the representability of the defender strategy domain as a set with good polyhedral
properties.

We focus on the class of SSG problems for which the space of defender mixed strategies satisfies
two properties: it can be represented as a perfect formulation, and the number of constraints is either
polynomial or it can be separated efficiently. Perfect formulations enjoy the property that their linear
relaxation coincides with the convex hull of the (integer) feasible points of the original problem [12].
Typical examples of such problems are the shortest path or bipartite matching problems. There also
exist problems whose feasible set can be represented by a polyhedron with exponentially many linear
inequalities that can be separated efficiently, such as matching problems in general graphs. In this
article, we take advantage of such problems and propose a general methodology to find an SSE when
the strategies of the defender constitute such combinatorial objects.

Our contributions are the following: First, we propose a general methodology to find an SSE for
SSGs for problems in which the set of defender strategies can be represented as a perfect formulation,
and the set of constraints has either polynomial size or, having an exponential size, can be separated
in polynomial time. In this last case, the problem is solved via branch-and-cut. This methodology (see
Figure 1) consists in first formulating the problem of computing an SSE as a MILP using a polynomial
number of variables associated with the marginal probabilities (compact formulation), and solving it
(solution phase). In a second stage, we obtain feasible strategies in the original space using a column
generation approach where the pricing subproblem is polynomial (implementation phase). This two-
stage method outperforms the traditional branch-and-price based on the non-compact formulation D2
of Jain et al. [23]. We use some problems already studied in the literature as examples: protecting

2

Electronic copy available at: https://ssrn.com/abstract=4588054

targets with fairness constraints and combined resources.

Non-compact
formulation

Compact
formulation

c∗jx∗
i

solution

implementation

(Column generation)

projection

solution

Figure 1: Graphical representation of our approach.

Second, we propose a new formulation and solve the case where the goal is to protect one or two
adjacent targets with each resource. Third, we study for the first time a SSG where the defender has
to protect a spanning tree on a graph, and the attacker attacks one edge. For this game, we study
several formulations and four ways to represent spanning tree strategies, and we provide an algorithmic
discussion. These games are new and fall in the category of a Stackelberg security game. Fourth,
we provide experiments that show that our method outperforms branch-and-price over non-compact
formulations.

The paper is structured as follows. In Section 2, we provide a literature review. Section 3 intro-
duces the base model and formulations utilized throughout this article. Section 4 outlines a general
methodology for finding an SSE in SSGs when it is possible to represent the defender’s strategies with
a perfect formulation efficiently. In Section 5, we apply the proposed methodology to various known
and new problems. We present a computational study in Section 6, and our conclusions are presented
in Section 7.

2. Literature Review

In recent years, many articles have studied the complexity of solving security games in different
contexts. Conitzer and Sandholm [13] discuss polynomial-time algorithms to find an SSE in Stackel-
berg Games, considering one type of follower. These authors also establish that in the Bayesian case,
with more than two followers, the problem of computing an SSE is NP-hard. For Bayesian security
games, calculating Stackelberg strategies is also NP-Hard, even if each attacker type has only a single
resource [30].

Korzhyk et al. [26] studied Stackelberg security games with one type of attacker, where each security
resource can be allocated to protect a subset of targets. They provided polynomial-time algorithms for
games with heterogeneous resources and defense strategies that protect single targets, also for games
with homogeneous resources and defense strategies that protect at most 2 targets. They also showed
that games with an underlying bipartite graph, heterogeneous resources, and defense strategies that
protect at most 2 targets are NP-hard, even when the game is zero-sum. Furthermore, the research
showed the NP-hardness of games with homogeneous resources that can protect up to three targets
per resource.

Letchford and Conitzer [29] explored security games that involve one type of attacker, where targets
are nodes on an underlying graph and security resources patrol various substructures of the graph.
They provided polynomial-time algorithms for solving Stackelberg games under certain conditions. For
example, suppose the graph is a rooted set of trees and resources are heterogeneous, and the defense
strategies are paths starting from a specific node known as the root. In that case, it is possible to
use a polynomial-time algorithm. Similarly, if the graph is a set of paths, resources are homogeneous,

3

Electronic copy available at: https://ssrn.com/abstract=4588054

and each security resource protects subpaths of the graph. They also find structures that result in
NP-hardness. For instance, if defender resources are heterogeneous, the graph is a path, and defense
strategies protect edges, the problem becomes NP-hard. Similarly, if resources are homogeneous, the
graph is general, and the defense strategies are paths from a specific node called the root. Also, if the
resources are heterogeneous, the graph is a tree, and the defense strategies protect paths that pass
through the root.

Several mixed-integer linear programming (MILP) formulations have been developed to address
the NP-hardness of computing an SSE. For instance, Paruchuri et al. [35] suggested a mixed-integer
formulation called DOBSS that can solve Bayesian SGs. This approach replaces the follower’s best
response with linear inequalities while linearizing the leader’s objective function. Another formulation
for SSGs using variables related to marginal probabilities is ERASER, which was introduced by
Kiekintveld et al. [25]. Furthermore, Casorrán et al. [8] studied multiple formulations for Bayesian
SG and SSGs, examining their relationship. They introduced a new SSG formulation called Mip-p-S.
They also proved that for the case of 1 attacker, this is a perfect formulation.

In the article of Budish et al. [7], the authors discussed relevant work and introduced the idea of
implementability for a random mixed strategy. A set of constraints is implementable if any random
mixed strategy under that set can be decomposed as a convex combination of pure strategies that
satisfy the constraints. The authors derived sufficient and necessary conditions for implementability
based on the bi-hierarchy structure of constraints. Examples that fulfill this condition include One-
to-One Assignments, the Birkhoff-von Neumann Theorem, Endogenous Capacities, Group-Specific
Quotas, and Course Allocation.

Finally, Xu [40] demonstrated that for any given set I of pure defender strategies, the following
problems are reducible to each other in polynomial time: a) Combinatorial optimization over I, b)
Computing the minimax equilibrium for zero-sum security games over I, c) Computing the strong
Stackelberg equilibrium for security games over I, and d) Computing the best or worst (for the
defender) Nash equilibrium for security games over I. The author’s fundamental concept is that the
complexity of finding an equilibrium is directly linked to the computation of the best response function
for the leader. The leader’s best response is the strategy that returns the maximum utility for a fixed
vector of weights over the targets. Additionally, the author stated that the set of pure strategies
primarily determines the complexity of a security game.

We extend the literature, addressing for the first time a class of problems characterized by de-
fender’s mixed strategies with marginal probability variables that can be efficiently represented using
perfect formulations. We use column generation to obtain feasible defender mixed strategies and
demonstrate how the proposed methodology can be applied to different problems. Additionally, for
the first time, we solve a SSG problem that focuses on protecting a tree structure over a graph. This
scenario arises where preserving a connection between a supplier and demand points is mandatory, as
in product distribution and warfare. Furthermore, we propose a novel approach for protecting one or
two adjacent targets within a network.

Our results are also relevant to the definition of implementability introduced by Budish et al.
[7]. We exploit the fact that when working with defender strategies whose marginal probabilities are
modeled as perfect formulations, decomposition into feasible mixed strategies is always possible.

3. Notation and MILP formulations

This section reviews equivalent MILP formulations to solve Stackelberg security games.

3.1. Stackelberg security game

Consider a Bayesian Stackelberg security game where players aim to maximize their payoff in a
sequential, one-off encounter. In this game, the defender faces a set of K attackers, each with a
probability pk of acting or appearing.

We denote by I the set of the defender’s pure strategies and by J the set of the attacker’s pure
strategies. Note that each attacker attacks one target, so each pure strategy j ∈ J is associated with

4

Electronic copy available at: https://ssrn.com/abstract=4588054

target j being attacked. From the defender’s side, each pure strategy i ∈ I is associated with a subset
of targets to be defended. A mixed strategy for the leader means that every pure strategy i is chosen
with a probability xi. Analogously, a mixed strategy for the attacker k involves selecting each pure
strategy j with a probability qkj . Without loss of generality, we can assume that q determines a pure
strategy since it is the best response to x: it maximizes the attacker expected payoff given x. In other
words, qkj ∈ {0, 1} (we refer the reader to Casorrán et al. [8] for a proof).

Determining the optimal solution in this domain depends on how we define acting optimally, or
equivalently, the type of equilibrium we choose. Leitmann [28] pointed out the need to generalize the
standard Stackelberg equilibrium in static games, introducing a conservative version of it. This concept
is formalized by Breton et al. [3] as the weak Stackelberg Equilibrium, and the strong Stackelberg
Equilibrium [16, 2]. In all cases, the leader selects a strategy to maximize its utility, considering that
the follower will respond optimally. If the follower has multiple optimal strategies and is indifferent
between them, the strong Stackelberg Equilibrium assumes that the follower will choose the strategy
that benefits the leader the most. In contrast, the weak Stackelberg Equilibrium assumes the opposite:
that the follower chooses the worst strategy for the leader when there are multiple best responses.

It is worth noting that a strong Stackelberg equilibrium exists in all Stackelberg games, but a
weak Stackelberg equilibrium may not exist [31, 14]. Furthermore, the leader can often induce the
attacker to choose a preferred action by making an infinitesimal adjustment to her strategy [21]. The
strong Stackelberg Equilibrium has received considerable attention and is the most studied case to
date [24, 39, 19, 25]. Therefore, in this paper we use the strong Stackelberg equilibrium.

Formally, our setting is represented by an underlying graph G = (V,E). Within this graph, the
set J represents targets or objectives that can be attacked by the follower or attacker k ∈ K. These
objectives j ∈ J can be nodes, edges, or subgraphs of G.

The leader or defender possesses a limited number m of security resources to protect the targets.
If all resources can protect the same set of targets, the resources are homogeneous. Otherwise, they
are heterogeneous. Recall that each attacker attacks one target j ∈ J .

One of the main characteristics of SSG is that the payoffs for both the defender and attacker depend
solely on the targets being attacked [37]. For each target j ∈ J facing an attacker type k ∈ K, the
possible payoffs of the defender are Dk(j|p) and Dk(j|u) if target j ∈ J is protected or unprotected,
respectively. Analogously, Ak(j|p) and Ak(j|u) are the payoffs for the attacker type k when target j
is defended or not, respectively. We assume that D(j|p) ≥ D(j|u) and A(j|p) ≤ A(j|u).

In a SSG, the defender’s decisions will affect the attacker’s decisions. This hierarchical structure
can be modeled as a bilevel optimization problem as follows:

(Bilevel-SSG)

max
x,q,r

∑
j∈J

∑
k∈K

pkqkj

 ∑
i∈I:j∈i

xiD
k(j|p) +

1 −
∑

i∈I:j∈i

xi

Dk(j|u)

 (3.1)

s.t
∑
i∈I

xi = 1,x ∈ [0, 1]|I| (3.2)

qk ∈ arg maxrk

∑
j∈J

rkj

 ∑
i∈I:j∈i

xiA
k(j|p) +

1 −
∑

i∈I:j∈i

xi

Ak(j|u)

 ∀k ∈ K

(3.3)∑
j∈J

rkj = 1, rk ∈ {0, 1}|J| ∀k ∈ K

(3.4)

The objective function (3.1) maximizes the defender’s expected reward. Constraints (3.2) require
that the sum of probabilities of the pure strategies used by the defender to form a mixed strategy
must add up to 1. The second level is modeled by (3.3)-(3.4), and it states that a) each follower k

5

Electronic copy available at: https://ssrn.com/abstract=4588054

will attack one target j, and b) the followers respond to the leader’s decision optimizing their payoff.
If multiple optimal strategies exist for the follower, the strategy that favors the leader is chosen. The
auxiliary variables rkj allow us to define this second level.

From this bilevel formulation, three single-level, MILP SSG reformulations are presented in the
literature: D2x,q,f,s [8], Mip-p-Gh,q [8] and DOBSSh,q,s [35]. The defender mixed strategies are
obtained directly by solving these formulations, which we call non-compact. In these formulations,
the defender generally has exponentially many pure strategies. If there are m security resources and
n targets to defend, the number of possible pure defender strategies is

(
n
m

)
. As a result, MILP and

LP formulations that enumerate strategies are exponential in size [13].
We now consider formulations specific to Stackelberg security games by exploiting the payoff

structure of these games, proposed by Kiekintveld et al. [25]. These compact formulations are cast by
introducing variables c defined as

cj =
∑

i∈I:j∈i

xi, j ∈ J (3.5)

and dropping out variables x. Here, j ∈ i denotes that defender strategy i includes protecting target
j. If we represent strategy i as a vector of size J , in which protected targets are represented by a 1
and unprotected targets by a 0, the jth position in vector i is equal to 1. Variables cj are interpreted
as the probability that each target j is covered (or protected) under the mixed strategy x. This can
be done because of the payoff structure: cj can replace expressions involving x variables in (3.1)-(3.3),
reducing the number of variables of each formulation. A vector c is said to be implementable if we can
retrieve a vector x satisfying (3.5). The solution of compact formulations is not always implementable;
to be so, the model has to fulfill specific requirements that we will detail in the next section.

We review three different compact formulations. The first model is a generalization of the game
proposed by Kiekintveld et al. [25], and it has the following formulation:

(ERASERc,q,f,s)

max
c,f,s,q

∑
k∈K

pkfk (3.6)

s.t fk ≤ Dk(j|p)cj + Dk(j|u)(1 − cj) + (1 − qkj)M ∀j ∈ J, k ∈ K (3.7)

0 ≤ sk −Ak(j|p)cj −Ak(j|u)(1 − cj) ≤ (1 − qkj)M ∀j ∈ J, k ∈ K (3.8)∑
j∈J

qkj = 1 ∀k ∈ K (3.9)

qkj ∈ {0, 1} ∀j ∈ J, k ∈ K (3.10)

sk, fk ∈ R ∀k ∈ K (3.11)

c ∈ conv(P). (3.12)

The objective function (3.6) maximizes the expected utility of the defender. Constraints (3.7) and
(3.8) ensure that the leader and followers choose strategies that maximize their respective expected
payoffs. Constraints (3.9) indicate that the attacker k ∈ K attacks a single target j ∈ J . Constraint
(3.10) and (3.11) state the nature of variables. The expression (3.12) says that the marginal probability
vector c = [c1, c2, ...cj , ..., c|J|] is a convex combination of points in set P. This set P contains
all binary vectors ci ∈ P that encode defender pure strategies, i.e., cij = 1 if j ∈ i and cij = 0
otherwise. For a given marginal probability vector c, the coefficients in the convex combination
represent the probabilities associated with the corresponding pure strategy and constitute the mixed
strategy. Remark that expression (3.12) is equivalent to expression (3.5) and conv(P) ⊆ [0, 1]|J|.

Another equivalent formulation is Mip-p-Sy,q [8], which can be obtained by using the transforma-

6

Electronic copy available at: https://ssrn.com/abstract=4588054

tion of variables yklj = clq
k
j ∀l, j ∈ J and k ∈ K.

(Mip-p-Sy,q)

max
y,q

∑
j∈J

∑
k∈K

pk(Dk(j|p)ykjj + Dk(j|u)(qkj − ykjj)) (3.13)

s.t
∑
j∈J

yklj =
∑
j∈J

y1lj ∀l ∈ J, k ∈ K (3.14)

0 ≤ yklj ≤ qkj ∀l, j ∈ J, k ∈ K (3.15)

Ak(j|p)ykjj + Ak(j|u)(qkj − ykjj)−
Ak(l|p)yklj −Ak(l|u)(qkj − yklj) ≥ 0 ∀j ∈ J, k ∈ K (3.16)∑

j∈J

qkj = 1 ∀k ∈ K (3.17)

qkj ∈ {0, 1} ∀j ∈ J, k ∈ K (3.18)

Proyc(y
k
lj) ∈ conv(P) ∀l, j ∈ J, k ∈ K (3.19)

The objective function (3.13) maximizes the expected utility of the defender. Constraints (3.14)
express that every follower sees the same strategy of the defender. Since yklj represents a joint prob-
ability of a target being attacked and being protected, expressions (3.15) specify an upper and lower
bound of variables yklj . Constraints (3.16) ensure that each follower responds optimally. Constraints
(3.17) indicate that the attacker k ∈ K attacks a single target j ∈ J . Constraints (3.18) state the
nature of variables q. The expression (3.19) says that the total marginal probability belongs to the
convex hull of the polytope of defender strategies P.

A further equivalent MILP formulation for the SSG is SDOBSSy,q,s [8], and it can be constructed
from Mip-p-Sy,q by replacing constraints (3.16) by:

0 ≤ sk −Ak(j|p)
∑
l∈J

ykjl −Ak(j|u)(1 −
∑
l∈J

ykjl) ≤ (1 − qkj)M ∀j ∈ J, k ∈ K (3.20)

Once Mip-p-Sy,q and SDOBSSy,q,s are solved, and variables ykjl and qkj are known, variables cj can
be directly recovered.

Formulations ERASERc,q,f,s and SDOBSSy,q,s use big-M to model optimal responses. In the
article of Casorrán et al. [8] it is shown that the tightest correct M values are:

• In (3.7), M = maxl∈J{Dk(l|p), Dk(l|u)} − min{Dk(j|p), Dk(j|u)}∀j ∈ J, k ∈ K.

• In (3.8) and (3.20), M = maxl∈J{Ak(l|p), Ak(l|u)} − min{Ak(j|p), Ak(j|u)}∀j ∈ J, k ∈ K.

ERASERc,q,f,s, Mip-p-Sy,q or SDOBSSy,q,s are all compact formulations. In general, they are
more efficient in terms of computational solving times compared to non-compact formulations such
as D2x,q,f,s [8], Mip-p-Gh,q [8] and DOBSSh,q,s [35] However, compact formulations require post-
processing to obtain the mixed strategy x, and their solutions are not always implementable strategies.

In terms of formulation size, and excluding the defender strategy space, ERASERc,q,s,f has the
fewest number of constraints and variables, with a complexity of O(|J ||K|) [8]. On the other hand,
Mip-p-Sq,y and SDOBSSq,y,s have complexities of O(|J |2|K|) [8], resulting in LP relaxations that are
more complex and time-consuming to solve compared to ERASERc,q,s,f . We do not consider the
complexity of the defender space since it remains the same for all three formulations and depends on
the game type.

An important theoretical result of Casorrán et al. [8] is that the LP relaxation of Mip-p-Sy,q is
tighter in comparison to ERASERc,q,f,s and SDOBSSy,q,s for the case of protecting m single targets.
In Section 6, we will observe the quantitative difference between formulations’ relaxations through

7

Electronic copy available at: https://ssrn.com/abstract=4588054

computational study. For simplicity, we do not use subscripts when mentioning these models from
now on.

In the following section, we prove that if the set of defender strategies can be represented using a
perfect formulation, the resulting mixed strategy will always be implementable. Additionally, the post-
processing required to obtain the mixed strategy from an optimal solution of a compact formulation
can be accomplished in polynomial time under certain conditions.

4. General Approach

Our general approach is applicable to Stackelberg security games whose defender mixed strategies
can be efficiently represented with a perfect formulation. This methodology consists in first formu-
lating the corresponding MILP using marginal probability variables, a so-called compact formulation.
This representation can have either a polynomial-size MILP or a MILP with an exponential size of
constraints that can be separated in polynomial time through branch-and-cut.

With this purpose, in this section we first define and analyze perfect formulations and their re-
lationship to Stackelberg security games (subsection 4.1). We prove that, for the class of problems
whose set of defender mixed strategies can be represented by using a perfect formulation, the solution
of a compact formulation of the problem always corresponds to an associated mixed strategy, and that
once a solution to the compact formulation has been obtained, the associated mixed strategy can be
found in polynomial time.

Some compact formulations have a polynomial number of constraints (e.g., combined resources, and
m targets with fairness constraints). These cases can be solved straightforwardly, for example, using
a solver. However, there are cases in which the number of constraints is exponential. In subsections
4.1 and 4.2, we describe how to solve a compact Stackelberg game formulation, using branch-and-cut
(when needed) and to use a column generation method to recover a mixed strategy corresponding to
an optimal marginal vector, even in the case of an exponential number of constraints, provided that
they are efficiently separable.

4.1. Perfect formulations

A perfect formulation of a set Q = {x ∈ Zn : Ax ≤ b} is a linear system of inequalities A′x ≤ b′,
such that conv(Q) = {x ∈ Rn : A′x ≤ b′} [12]. In other words, a linear formulation of an integer
optimization problem is perfect if that problem can be solved as a continuous linear problem on that
perfect formulation. In particular, if the matrix A used to define set Q is totally unimodular, or if the
linear system Ax ≤ b is totally dual integral, then it defines a perfect formulation for every b ∈ Zm

[12].
In Stackelberg security games, several types of defender mixed strategies can be modeled using

perfect formulations. In fact, every mixed integer linear set has a perfect formulation when the data
are rational [34]. Still, only some have a useful perfect formulation, i.e., with a polynomial number
of constraints or with constraints that can be separated in polynomial time. It is important to note
that finding a perfect and efficient formulation of an NP-hard problem, except if NP = P, is a task
that cannot be performed easily. Therefore, this methodology should not be applied to cases where
the defender strategy set has as its underlying combinatorial structure of an NP-hard problem.

Our general result concerns SSG for which the defender marginal probability vectors can be effi-
ciently modeled with a perfect formulation. With this objective in mind, consider the set P whose
vertices describe the defender’s pure strategies. The definition of the set P will depend on the sce-
nario being addressed, i.e., what is being protected by the defender. The defender’s problem can be
viewed as an optimization problem on conv(P), as P = conv(P) [40] and the set conv(P) contains
all marginal probability vectors. If conv(P) can be represented with a perfect formulation, then the
problem is easier to solve. We not only show this for problems that have been previously solved, but
we also show this characteristic for new problems.

The next proposition is proved for ERASER because, for the other two compact formulations
(Mip-p-S and SDOBSS), we can retrieve the same variables cj .

8

Electronic copy available at: https://ssrn.com/abstract=4588054

Proposition 1. It is true that: (i) For any vector of marginal probabilities c = {c1, c2, ...c|J|} feasible
to ERASER, a mixed strategy {x1, x2, ...x|I|} can be found that implements the desired marginal prob-
abilities, provided that the set of defense strategies P can be modeled as a perfect formulation. This
mixed strategy involves, at most, |J | + 1 pure strategies with positive probability.
(ii) Furthermore, if a perfect formulation is known involving only constraints that can be separated in
polynomial time, then the mixed strategy can be determined in polynomial time.

Proof. (i) From Carathéodory’s theorem, any point in c ∈ Conv(P) is the convex combination of at
most |J | + 1 points of P. Recall that P can be modeled as a perfect formulation, so Conv(P) = P.
The coefficients of this convex combination constitute a mixed strategy that implements the marginal
probability vector c.
(ii) Next, given a marginal probability vector c feasible to ERASER, a mixed strategy x that im-
plements c is obtained by solving the following linear system with a possibly exponential number of
variables:

|I|∑
i=1

cijxi = cj ∀j ∈ J (4.1)

|I|∑
i=1

xi = 1 (4.2)

xi ≥ 0 ∀i ∈ I, (4.3)

where cij is 1 if target j is protected in strategy i. A target j is protected in strategy i if and only if

the j-th component of ci equals to 1 (i.e. j ∈ i), and it equals to 0 otherwise. However, this feasibility
problem can be stated as an LP whose dual contains |J | + 1 variables and one constraint for each
pure strategy i ∈ I. The separation problem for this set of constraints can be solved in polynomial
time since it amounts to optimize on Conv(P) (or equivalently, over P). Hence, the dual, and thus
the primal of the original problem, can be solved in polynomial time.

We remark that a marginal probability vector can be induced by different mixed strategies, but
each mixed strategy has a unique marginal probability vector.

4.2. Column generation

By Proposition 1, the marginal probabilities vector is always implementable when defense strategies
can be modeled as perfect formulations. In other words, a corresponding vector of probabilities over
the pure strategies of the defender can be found. In this section, we describe how to use the optimal
solutions of ERASER, Mip-p-S, and SDOBSS formulations to retrieve defender strategies i ∈ I and
their corresponding probabilities xi, in other words, how to transform marginal probabilities into an
implementable mixed strategy.

Given a vector c ∈ Conv(P), we want to obtain a set I∗ of optimal defender pure strategies and a
set of weights xi satisfying (4.1)-(4.3). This can be done by solving the following linear optimization
problem:

(MP) min
∑
j∈J

γj + η (4.4)

s.t.
∑
i∈I

xic
i
j + γj = cj ∀j ∈ J (αj) (4.5)∑

i∈I

xi + η = 1 (β) (4.6)

xi ≥ 0 ∀i ∈ I (4.7)

η ≥ 0 (4.8)

γj ≥ 0 ∀j ∈ J (4.9)

9

Electronic copy available at: https://ssrn.com/abstract=4588054

where ci ∈ P are the binary encoding of strategies I. Variables γ and η represent slack variables
associated to (4.1) and (4.2), respectively, and α and β are dual variables of constraints (4.5) and
(4.6). An optimal mixed strategy has been found when the objective function 4.4 is zero, which is
always true for our case by Proposition 1. Note that it is impossible to retrieve an optimal mixed
strategy when the value of the objective (4.4) is not zero.

To solve the problem above and find an optimal mixed strategy x, we use column generation. The
reduced cost of variable xi is given by −α⊺ci − β. So, to obtain new strategies, we must solve the
following pricing problem:

maxα⊺c (4.10)

s.t c ∈ P. (4.11)

Its solution c provides the column of a new variable with minimum reduced cost, given the current
set of variables in the restricted master problem.

If α⊺c + β ≤ 0, then (γ, η, x) is the current solution and is optimal, i.e., there is no need to add
new variables, and c is implementable by the pure strategies such that x̄i > 0. Otherwise, we must
include this new variable, which column is given by the current solution of the pricing problem.

Solving the problem (4.10)-(4.11) allows us to find new columns ci. If we work with perfect
formulations that have a polynomial number of constraints, or which constraints are separable in
polynomial time, we can solve these problems in polynomial time through different algorithms.

In the next section, we analyze some existing examples in the literature of SSG under the lens of
this methodology. In particular, we provide a new mathematical formulation for one of the examples.

5. Applications

The examples we provide in this section are problems addressed in the existing literature, as well
as new games solved here for the first time. We will use all these examples to test our methodology
later in Section 6. Some of these games, such as combined resources (Section 5.2), and protecting
one or two adjacent targets (Section 5.3), have an exponential number of constraints that can be
efficiently separated. For all the applications, we model the space of defender strategies P with a
perfect formulation in the space of marginal probabilities.

5.1. Single targets and fairness constraints with labels

Bucarey and Labbé [6] studied the problem of ensuring fairness in police patrolling to prevent
discrimination when implementing surveillance. A set of targets J is protected, and the defender has
m homogeneous security resources.

To ensure that the protection of targets is fair and non-discriminatory, we partition the set of
targets J into subsets, denoted by {Jl}l∈L, based on the type of population represented by each target.
The objective is to allocate security resources to each partition Jl in proportion to the percentage of
the population they represent. We define that the total number of resources allocated to each partition
Jl has to lie within the range defined by the parameters dLl (minimum) and dUl (maximum):

dLl =

⌊
(1 − ∆)m

|Jl|
|J |

⌋
, dUl =

⌈
(1 + ∆)m

|Jl|
|J |

⌉
(5.1)

where ∆ represents the highest acceptable percentage by which the number of security resources used
in Jl may deviate. This limit is determined based on the population proportion that Jl represents.

Now the set of possible defender pure strategies is in the form:

I = {i ⊆ J : |i| ≤ m, dLl ≤ |i ∩ Jl| ≤ dUl ∀l ∈ L} (5.2)

10

Electronic copy available at: https://ssrn.com/abstract=4588054

where the notation i ⊆ J means that strategy i represents a subset of m targets in J being defended.
In adition, the condition must hold that every partition must be protected among the limits dLl and
dUl defined previously.

To apply our methodology, we rewrite the set P of binary vectors corresponding to all possible
pure strategies as follows:

P = {c ∈ {0, 1}|J| :
∑
j∈J

cj ≤ m, dLl ≤
∑
j∈Jl

cj ≤ dUl l ∈ L} (5.3)

The set conv(P) is obtained by replacing c ∈ {0, 1}|J| in (5.3) by c ∈ [0, 1]|J|. It should be noted that
the scenario studied by Kiekintveld et al. [25], which involves protecting m targets with homogeneous
resources and without taking fairness into account, can be expressed by assigning dLl = 0 and dUl ≥ m
for all l ∈ L in equations (5.2) and (5.3).

After solving the compact formulation and obtaining the vector of marginal probabilities, we
decompose it into feasible defender strategies. As was shown by Bucarey and Labbé [6], the defense
marginal probability vector can be implemented universally.

The pricing model is defined by constraints (4.10)- (4.11), where P is determined by (5.3). We
follow the poly-time algorithm proposed by Budish et al. [7] to retrieve feasible strategies. For the
case of protecting m targets, the pricing model can be solved by finding the j positions of the m
biggest values of vector α. In both cases, this problem can be solved in polynomial time.

5.2. Combined resources and matching strategies

The second example is the game described by Bucarey et al. [4, 5], which focuses on patrolling
borders. The area to be protected is divided into precincts, with one security resource available
per precinct. Each precinct has various targets. Due to the limited resources in each precinct,
some security resources must be paired to conduct m patrol camps at night. Only resources from
geographically adjacent precincts can be paired, and this pairing can defend one target in either
precinct.

Figure 2 illustrates an example scenario in which precincts are labeled from 1 to 5. The edges
represent feasible precinct pairings, while the targets in each precinct are denoted by letters [a] through
[i]. For example, when m = 2, a viable defense strategy could combine precincts 1 and 3 to protect
[a], and precincts 2 and 5 to protect [i]. The defender’s set of all feasible actions comprises all pairings
and the possible m = 2 targets covered by these pairings.

[a]
[b]

[c]
[d]

1 2

[e]
[f]3 [g]

[h]4 [i]5

Figure 2: Graph representation of an instance of border patrolling.

Formally, let G = (V,E) be a graph where V represents the set of police precincts and E the
possible pairings that can be performed. We use δ(v) ⊆ E to indicate the set of edges incident to
precinct v ∈ V . Similarly, for any U ⊆ V , δ(U) ⊆ E denotes the edges between U and V \ U , and
E(U) ⊆ E represents the edges between precincts in U .

11

Electronic copy available at: https://ssrn.com/abstract=4588054

Let Mm be the set of all matchings of size m in graph G. Also, let Jv be the set containing all
targets in precinct v. Therefore, the entire set of feasible targets to protect is J = ∪v∈V Jv, and a
precinct pairing (or edge) e = {u, v} ∈ E can only defend a target j ∈ Je = Ju ∪ Jv.

A pure defender strategy involves a configuration of m paired precincts, where each pairing protects
a specific target associated with one of the precincts in the pair. We can formally define the set of the
defender pure strategy as follows:

I = {i ⊆ J : |i| ≤ m,∃F ∈ Mm s.t.|i ∩ Je| = 1,∀e ∈ F}. (5.4)

Where F is a matching that belongs to set Mm such that for each e ∈ F , Je contains exactly one
target to protect.

Let Q represent the set of feasible solution (c, z, g) to the following constraint set:∑
j∈J

cj = m, (5.5)

∑
e∈E

ze = m, (5.6)∑
e∈δ(v)

ze ≤ 1, v ∈ V (5.7)

∑
e∈E:j∈Je

ge,j = cj , j ∈ J (5.8)

∑
j∈Je

ge,j = ze, e ∈ E (5.9)

ze ∈ {0, 1} e ∈ E (5.10)

ge,j ∈ {0, 1} e ∈ E, j ∈ Je (5.11)

cj ∈ {0, 1} j ∈ J (5.12)

The set P of binary vectors corresponding to a defender feasible pure strategies is given by:

P = Projc(Q) = {c ∈ {0, 1}|J| : ∃ z, g s.t.(5.5) − (5.11)} (5.13)

The set conv(Q) is obtained by adding:∑
e∈E(U)

ze ≤
|U | − 1

2
∀U ⊆ V, |U | ≥ 3, |U | odd (5.14)

and relaxing the domain of variables ze, cj and ge,j to be [0, 1]. This is a product of the perfect
formulation given by Edmonds [17] for the convex hull of the binary vectors defining matchings.

Consequently, this Stackelberg game can be solved using ERASER in which constraint (3.12) is
replaced by the system of constraints defining conv(Q). The resulting compact formulation can be
solved with a branch-and-cut algorithm. Constraints (5.14) are known to be separable in polynomial
time. The detection process is reduced to a global min-cut set problem with odd cardinality in a
related network, which can be solved in polynomial time with the Gomory-Hu algorithm [20]. We
implement a simple version of the Gomory-Hu algorithm, given by Gusfield [22].

Finally, a polynomial algorithm is presented by Bucarey et al. [5] to recover a set of feasible pure
strategies corresponding to a feasible marginal probability vector.

5.3. One or two adjacent targets

A SSG with homogeneous resources where the objective is to protect one or two adjacent nodes
in a general graph has been proposed but not solved [29]. Now we study a mathematical formulation
for the setting where each of the m resources can cover at most two nodes, and the attacker chooses

12

Electronic copy available at: https://ssrn.com/abstract=4588054

a node to attack. Not all the possible pairings are feasible to defend. We represent this situation
through an undirected graph G = (V,E) where J = V is the set of targets, and E the set of edges
linking nodes that can be paired. Then, the set of defender and attacker pure strategies can be defined
as:

I = {i ⊆ V : i = R ∪ V (T), R ⊆ V, T ⊆ E, |R| + |T | ≤ m} (5.15)

J =V, (5.16)

where V (T) denotes the set of nodes of V incident to edges in T .
To derive a mathematical formulation, we reformulate this game as follows. Define G′ = (V ′, E′)

from G by duplicating the set of nodes and adding “antennas” for each node v ∈ V , see Figure 3.
Formally,

V ′ = V ∪ {uv for each v ∈ V }
E′ = E ∪ {{v, uv} for each v ∈ V }. (5.17)

With this, we define a new, equivalent game. If one resource is allocated to a single node in the
original game, in this new game, it selects an edge in the form {v, uv}.

Let M′
≤m be the set of all matchings of size at most m in G′, and define:

I ′ = {i′ ∈ V : i = V ′(M ′) ∩ V,M ′ ∈ M′
≤m} (5.18)

J ′ = J. (5.19)

where V ′(M ′) denotes the set of nodes of V ′ incident to edges in a matching M ′

1

2

3

4

56

7

(a)

1

2

3

4

56

7

u1

u2

u3

u4

u5

u6

u7

(b)

Figure 3: Example of a strategy of the original game (a) and its reformulation (b).

Proposition 2. The set of the defender’s pure strategies coincides: I = I ′.

Proof. Let i ∈ I. There exist R ⊆ V and T ⊆ E such that i = R ∪ V (T) and |R| + |T | ≤ m . The set
N ′ = T ∪ {{v, uv} : v ∈ R} contains m edges of G′ and covers all the nodes of i.

It is possible to transform N ′ into a matching with at most m edges while covering the same set
of nodes. Indeed, if for v, w ∈ V, {v, uv} and {v, w} belong to N ′, then we can remove {v, uv} from
N ′. If for v, w, s ∈ V, {v, w} and {w, s} belong to N ′, then we can replace {w, s} by {s, us}. As a
consequence, i ∈ I ′.

Conversely, it is easy to see that a pure strategy i′ ∈ I ′ also belongs to I. Let M ′ be a matching of
size at most m that covers all nodes belonging to i′. Sets T = M ′∩E and R = {v ∈ V : {v, uv} ∈ M ′}
satisfy condition (5.16) for that pure strategy i′.

13

Electronic copy available at: https://ssrn.com/abstract=4588054

This ‘equivalence’ relies on the fact that we can assign at most m resources and that the number
of resources protecting one-single target is irrelevant in the payoff structure.

Let Q represent the set of the feasible solution (c, z) to the following constraint set:

∑
e∈E′

ze ≤ m (5.20)∑
e∈δ(j)

ze ≤ 1 ∀j ∈ V ′ (5.21)

ze ∈ {0, 1} e ∈ E′ (5.22)∑
e∈δ(v)

ze = cv ∀v ∈ V, (5.23)

where (5.20) states that there are only m resources to protect m edges or pairs of nodes. Constraints
(5.21) state that the selected edges must constitute a matching. Constraints (5.23) imply that a node
is protected if and only if it is incident to one selected edge.

On the one hand, it is easy to see that P = Projc(Q). On the other hand, from Edmond’s
result [17], the convex hull of binary vectors satisfying (5.20)-(5.23) is obtained by replacing (5.22) by
non-negativity constraints and adding the blossom inequalities (5.14).

As Blossom inequalities are the same as in Section 5.2, we use this branch-and-cut implementation.
To retrieve an implementable set of strategies from the compact formulation, the pricing problem
(4.10)-(4.11) is reduced to find a maximum cost matching of size at most m where the costs are
variables α, duals of constraint (4.5). To do so, we use the algorithm of Plesnik [36], where this
problem is transformed to a maximum cost matching without any budget constraint. Afterwards, we
find a maximum-weighted matching of maximum-cardinality over Ĝ [17]. The obtained solution is
over Ĝ. Then, to get a solution for the original graph, we only keep the original edges of the optimal
solution over Ĝ, resulting in a solution over G.

The optimal value of the pricing problem will be the value of the maximum-weighted matching of
maximum cardinality.

5.4. Spanning trees

In this problem, a defender deploys limited security resources to preserve connectivity in a region.
This problem is relevant in distribution systems, e.g., when resources are required to be delivered
safely to any point within a region, including military applications. To the best of our knowledge,
this has not been studied in the literature in the context of Stackelberg games. Bäıou and Barahona
[1] study a similar scenario focused on Nash-Equilibrium mixed strategies.

Given a graph G = (V,E) that represents the region, one attacker aims to attack one of the E
edges. The set I of pure strategies of the defender includes all the spanning trees that could be
protected. The defender has enough security resources to cover up to m = n − 1 edges. We aim to
find the Strong Stackelberg Equilibrium for the game.

Let T denote the set of all spanning trees in graph G. Now the set of possible pure strategies is in
the form:

I = {i ⊆ E : ∃T ∈ T s.t. i = E(T)}. (5.24)

where E(T) represents the edges in tree T .
In this case, the set P in (3.12) represents the binary encoding of the spanning trees. These

trees can be represented using different perfect formulations, including the directed multicommodity
flow model (dflo), extended multicommodity flow model (mc′flo), and subtour model (sub) with sub-
tour constraints (see Magnanti and Wolsey [32] for a detailed discussion). Additionally, Martin [33]
proposed the reformulated minimum spanning tree formulation (RMST). We study this game under

14

Electronic copy available at: https://ssrn.com/abstract=4588054

these four perfect formulations of the spanning trees. Furthermore, we conducted preliminary exper-
iments using several formulations considering these tree representations. In the instances we have
solved, formulations RMST and dflo are the top-performing approaches. When paired with Mip-p-S
or ERASER, they demonstrate similar competitiveness, while dflo exhibits clear advantages when
used with SDOBSS, which is the slowest among the formulations. In Section 6, we select the best-
performing tree formulation for each experiment to showcase optimal performance. In the following
subsection we present the RMST formulation. For the sake of shortness the other formulations are
presented in Appendix A.

5.4.1. Reformulated minimum spanning tree (RMST) formulation

This formulation was proposed by Martin [33] and is O(n3) in both variables and constraints.
The formulation comes from the fact that spanning trees do not contain cycles. Let uh

ij be the flow
of commodity h in arc (i, j). One unit of commodity h must be delivered to node h. Variables ce
represent the marginal probability of defending edge e.

Let Q represent the set of feasible solutions (c, u) to the following constraint set:∑
s∈V :s>i

uh
is +

∑
j∈V :j<i

uh
ij ≤ 1 ∀h, i ∈ V, i ̸= h (5.25)

∑
s∈V :s>h

uh
hs +

∑
j∈V :j<h

uh
hj ≤ 0 ∀h ∈ V (5.26)

∑
e∈E

ce = n− 1 (5.27)

uh
ij + uh

ji = ce ∀e = (i, j) ∈ E, h ∈ V (5.28)

uh
ij ≥ 0 ∀i, j, h ∈ V (5.29)

ce ∈ {0, 1} ∀e ∈ E. (5.30)

First, note that that each target is assigned a numerical label. Thus, when we refer to the notation
s > i, it means that the label of target s is greater than the label of target i. Constraint (5.25) states
that every node has at most one flow of commodity h directed out of it, except for the destination node
of commodity h. This prohibits undirected cycles. Constraint (5.26) enforces that node h is the final
destination of commodity h. This constraint also prohibits directed cycles. Constraint (5.27) states
that a n-node spanning tree should have n− 1 edges. Constraint (5.28) forces the flow of commodity
h over arc (i, j) and (j, i) to be equal to the marginal probability of defending edge e. Constraints
(5.29) and (5.30) state the nature of variables.

The set P of binary vectors corresponding to a defender feasible pure strategies is given by:

P = Projc(Q) = {c ∈ {0, 1}|J| : ∃ c, u s.t.(5.25) − (5.29)}. (5.31)

Since the formulation (5.25) - (5.29) is a perfect formulation, conv(P) is obtained by replacing c ∈
{0, 1}|J| in (5.30) by c ∈ [0, 1]|J|.

Once we obtain a solution c, we perform the column generation approach of Section 4.2. We use
Kruskal’s algorithm [27] to solve the pricing problem. The optimal value of the pricing problem will
be the minimum spanning tree weight value.

6. Computational Experiments

We first compare our general methodology (using compact formulations and column generation)
with branch-and-price on D2 (non-compact formulation) using the methodology of Jain et al. [23].
We then run different tests using our approach, comparing different formulations and instances.

We assume that the game is played over an underlying graph G = (V,E). The graph is connected
and partially complete (70% of the edges of a complete graph). As before, J refers to the set of

15

Electronic copy available at: https://ssrn.com/abstract=4588054

targets, with |J | = n, K denotes the set of attackers, with |K| = k, and m represents the number of
security resources.

Following Casorrán et al. [8], we use two ways of generating reward and penalty matrices. First,
we create penalty matrices in which the entries are randomly generated between 0 and 5, and reward
matrices whose entries are randomly generated between 5 and 10. We refer to these as matrices
with no variability. Second, we build penalty and reward matrices in which 90% of the values are
randomly generated as before, that is between 0 and 5 (penalty) and between 5 and 10 (reward),
while 10% of the values for the penalty matrices are randomly generated between 0 and 50, and 10%
of the values of the reward matrices are between 50 and 100. We refer to these as matrices with
variability. The reason for using payoff matrices with and without variability is that the value of the
big-M parameter in both compact and non-compact formulation is directly affected by these matrices.

We performed our experiments on an 11th Gen Intel Core i9-11900, 2.50GHz, equipped with 32
gigabytes of RAM, 16 cores, 2 threads per core, and running the Ubuntu operating system release
20.04.6 LTS. The experiments were coded in Python v.3.8.10 and SCIP v.8.0.0 as the optimization
solver, considering a 3-hour solution time limit for Section 6.1, and 1-hour for the rest of the cases.

We present the results in Figures and Tables. Figures present solution times in log scale and LP
gap in linear scale. Figures showing LP gap only show results for instances solved within the specified
time limit.

6.1. Compact vs. Non-compact formulations

We compare our approach with branch-and-price on D2 (non-compact formulation), as described
by Jain et al. [23].

From the point of view of problem size, when using branch-and-price, the problem has a combi-
natorial number of variables xi. These variables represent all/some possible combinations of defense
strategies, and their number depends on the problem being solved. In contrast, by projecting variables
x onto c variables (or an equivalent), only |J | variables c are required. Even though branch-and-price
may not necessarily need to enumerate all variables, the upper bound is still combinatorial. Solving
the compact formulation requires retrieving a strategy x from marginal probabilities c. However,
we show that retrieving such a strategy is done in polynomial time for this article’s broad class of
problems. This fact and the experimental results in this section show that the approach presented in
this article is significantly more efficient.

We conducted experiments comparing the two approaches (ours versus branch-and-price) to have
an idea of this efficiency gain from an empirical point of view. We used compact formulations Mip-p-S,
ERASER, and SDOBSS for our approach. For the method using non-compact formulations, we chose
D2, as it has an exponential number of variables and a polynomial number of constraints, which is
ideal for column generation. We denote D2 BP to this implementation. We compare the methods in
two games: i) protecting m targets, which is a simple case, and ii) protecting spanning trees, a more
elaborate case. For each game, we considered five instances with different numbers of targets, defense
resources, and no variability. In all cases, we limited solution times to three hours. We present the
results graphically in Figures 4 and 5, and numerically in Tables 1 and 2.

For the case of protecting m targets, the instances considered targets n ∈ {10, 20, 30, 40, 50},
attackers k ∈ {2, 4, 8}, and security resources m of a 25%, 50%, and 75% of the total number of targets,
rounded to the nearest integer number. For each instance size, we generate 5 random instances.

16

Electronic copy available at: https://ssrn.com/abstract=4588054

10 2 10 1 100 101 102 103 104

SolutionTime (s)

0%

20%

40%

60%

80%

100%

%
 o

f i
ns

ta
nc

es
 so

lv
ed

Mip-p-S
D2_BP
Eraser
SDOBSS

Figure 4: Percentage of instances (ordinate axis) solved in the time shown in the abscissa. Our method (compact
formulation plus column generation) vs. D2 BP. Protecting m targets. Instances without variability.

Figure 4 shows that the compact formulations Mip-p-S and ERASER take less than 100 seconds
to solve 90% of the instances, while D2 plus branch-and-price (D2 BP) takes more than 3 hours
to solve the same percentage of instances. It should be noted that D2 BP is initially competitive,
particularly with smaller instances, but becomes inefficient as the instances grow larger. Among the
compact formulations examined, SDOBSS exhibits the slowest performance. Note that our method
using ERASER can solve all the instances in less than 20 minutes while D2 BP can only solve 78%
of the instances within the same time.

Table 1 displays a fragment of detailed results for the case of protecting m targets, for both
methods. The columns show the numbers of targets (n), attackers (k) and security resources (m). For
our method, the columns show the time required to solve the compact formulation t, the solution time
of the column generation process tCG, and the total time for the method tTotal. The optimality gap
is always zero. For the branch-and-price on non-compact formulation (D2 BP), the Table displays the
optimality gap Gap, and the Total time tTotal.

17

Electronic copy available at: https://ssrn.com/abstract=4588054

Mip-p-S ERASER SDOBSS D2 BP
n m k t tCG tTotal t tCG tTotal t tCG tTotal Gap tTotal
10 2 2 0,02 0,00 0,03 0,17 0,00 0,17 0,47 0,00 0,48 0,00 0,21
10 5 2 0,03 0,00 0,04 0,21 0,00 0,21 1,20 0,00 1,20 0,00 0,23
10 8 2 0,04 0,00 0,04 0,59 0,00 0,59 0,02 0,00 0,02 0,00 0,13
10 2 4 0,13 0,00 0,13 1,07 0,00 1,07 1,90 0,00 1,90 0,00 1,87
10 5 4 2,52 0,00 2,52 1,60 0,00 1,60 4,09 0,00 4,10 0,00 2,38
10 8 4 0,04 0,00 0,04 0,45 0,00 0,45 0,07 0,00 0,07 0,00 0,61
10 2 8 1,40 0,00 1,40 8,20 0,00 8,20 1,96 0,00 1,96 0,00 42,22
10 5 8 3,91 0,00 3,91 14,45 0,00 14,45 7,25 0,00 7,26 0,00 86,00
10 8 8 5,53 0,00 5,53 5,80 0,00 5,80 6,53 0,00 6,54 0,00 52,62
20 5 2 0,07 0,00 0,07 1,88 0,00 1,88 6,99 0,00 6,99 0,00 0,81
20 10 2 0,34 0,00 0,34 1,23 0,00 1,24 2,26 0,01 2,26 0,00 0,97
20 15 2 0,10 0,00 0,10 0,60 0,00 0,60 0,12 0,00 0,13 0,00 0,96
20 5 4 3,29 0,01 3,30 7,29 0,00 7,29 5,39 0,01 5,39 0,00 23,03
20 10 4 8,16 0,01 8,17 1,62 0,01 1,62 9,66 0,01 9,67 0,00 11,21
20 15 4 6,33 0,00 6,34 1,54 0,00 1,55 10,61 0,00 10,61 0,00 2,00
20 5 8 3,41 0,00 3,41 45,57 0,00 45,58 35,71 0,00 35,71 0,00 507,64
20 10 8 6,72 0,01 6,73 34,46 0,01 34,47 47,56 0,01 47,57 0,00 1419,06
20 15 8 14,38 0,01 14,39 5,00 0,01 5,00 20,30 0,01 20,31 0,00 416,51
30 8 2 3,05 0,01 3,05 1,10 0,01 1,11 2,74 0,01 2,75 0,00 4,36
30 15 2 0,52 0,01 0,53 1,03 0,01 1,04 7,44 0,01 7,45 0,00 2,55
30 22 2 0,23 0,01 0,24 0,68 0,01 0,68 0,40 0,01 0,40 0,00 0,60
30 8 4 4,43 0,01 4,44 8,09 0,01 8,10 20,74 0,01 20,75 0,00 77,45
30 15 4 9,00 0,01 9,01 5,16 0,01 5,17 24,13 0,01 24,14 0,00 68,21
30 22 4 5,04 0,01 5,05 3,45 0,01 3,46 13,11 0,01 13,12 0,00 35,69
30 8 8 20,88 0,01 20,89 616,58 0,01 616,58 1462,89 0,01 1462,90 0,28 10882,76
30 15 8 63,31 0,01 63,32 123,82 0,01 123,83 1010,62 0,01 1010,63 0,18 10866,25
30 22 8 197,33 0,01 197,34 14,56 0,01 14,57 210,29 0,01 210,30 0,08 10848,02
40 10 2 2,32 0,02 2,34 1,04 0,01 1,05 7,55 0,02 7,57 0,00 10,39
40 20 2 2,00 0,02 2,02 1,59 0,02 1,61 7,46 0,02 7,48 0,00 17,35
40 30 2 0,39 0,01 0,40 0,06 0,01 0,07 0,73 0,01 0,74 0,00 1,83
40 10 4 9,67 0,01 9,68 5,40 0,01 5,41 40,07 0,01 40,08 0,00 369,93
40 20 4 15,76 0,02 15,78 4,26 0,01 4,27 22,20 0,02 22,22 0,00 30,36
40 30 4 2,27 0,01 2,28 1,05 0,01 1,06 3,95 0,02 3,96 0,00 11,37
40 10 8 86,37 0,01 86,38 701,14 0,01 701,16 3391,81 0,01 3391,82 0,46 10853,06
40 20 8 831,75 0,02 831,77 455,88 0,02 455,89 8952,75 0,02 8952,77 0,34 10848,88
40 30 8 226,65 0,02 226,66 28,43 0,02 28,45 1794,44 0,02 1794,46 0,17 10822,93

Table 1: Detailed performance results for our method and the branch-and-price method. Protecting m targets

The running time of compact and non-compact models escalates notably as the game size expands,
especially when there is an increase in the number of targets and attackers. However, the non-compact
formulation method exhibits a much faster rate of growth. The optimality gap in our method in this
fragment of results, is consistently zero, indicating that it always finds the optimal solution within the
time limit. The time required by the column generation process (tCG) is always marginal. On the
other hand, the optimality gap of D2 BP is sometimes non-zero, indicating that it could not reach an
optimal solution within three hours.

For the case of protecting spanning tree structures over a graph, we consider n ∈ {10, 20, 30, 40}
and k ∈ {2, 4, 6}. The targets protected are arcs of a spanning tree, and the number of security
resources is m = n − 1. For each combination of values (n,m, k), and always maintaining the graph
density of 70%, we generate 5 instances (i = {0, 1, 2, 3, 4}) with random payoff matrices, using the
values for matrices without variability. Fig. 5 compares our method with D2 plus branch-and-price
(D2 BP), for the game of protecting spanning trees.

18

Electronic copy available at: https://ssrn.com/abstract=4588054

0 10 20 30 40 50
LP gap (%)

0%

20%

40%

60%

80%

100%
%

 o
f i

ns
ta

nc
es

 so
lv

ed

10 1 100 101 102 103

SolutionTime (s)

Mip-p-S
Eraser
SDOBSS

Figure 5: Percentage of instances (ordinate axis) solved in the time shown in the abscissa. Our method (compact
formulation plus column generation) vs. D2 plus branch-and-price (D2 BP). Protecting spanning trees. Instances
without variability.

Fig. 5 shows that, for the game of protecting tree structures, our method using Mip-p-S takes
20 seconds to solve 80% of the cases, while D2 plus branch-and-price takes more than one hour. All
of the instances were solved by Mip-p-S in less than 17 minutes, while branch-and-price could not
solve 10% of the cases within the three hours limit. Once again, it should be emphasized that D2 BP
is a competitive approach in smaller instances, even outperforming a compact formulation such as
SDOBSS. Additionally, D2 BP performs similarly to ERASER in 60% of the instances.

Table 2 shows a fragment of the detailed results of all the instances for the case of protecting
spanning trees. The first three columns indicate the number of targets, attackers and the identification
(i) of the random payoff matrices used. The next columns report the different metrics related to the
computational performance of the two methods, with the same notation as in Table 1.

19

Electronic copy available at: https://ssrn.com/abstract=4588054

Mip-p-S ERASER SDOBSS D2 BP
n k i t tCG tTotal t tCG tTotal tBC tCG tTotal Gap tTotal
10 2 0 0,17 0,01 0,17 0,30 0,01 0,31 3,23 0,01 3,24 0,00 0,25
10 4 0 0,14 0,01 0,15 2,10 0,02 2,12 9,03 0,01 9,04 0,00 2,21
10 6 0 0,41 0,01 0,42 11,77 0,01 11,78 18,47 0,01 18,48 0,00 38,28
20 2 0 0,81 0,02 0,83 0,96 0,02 0,98 7,87 0,02 7,89 0,00 1,44
20 4 0 2,06 0,02 2,08 28,85 0,02 28,87 55,31 0,02 55,33 0,00 178,75
20 6 0 3,31 0,02 3,33 111,56 0,02 111,58 143,16 0,03 143,19 0,00 676,49
30 2 0 1,38 0,03 1,41 3,12 0,03 3,16 7,34 0,03 7,37 0,00 1,02
30 4 0 7,63 0,03 7,67 14,03 0,04 14,07 56,95 0,05 57,00 0,00 40,54
30 6 0 19,68 0,04 19,72 563,73 0,04 563,77 1200,68 0,04 1200,72 0,04 10861,36
40 2 0 13,46 0,10 13,55 15,33 0,11 15,45 56,96 0,10 57,07 0,00 4,19
40 4 0 39,66 0,11 39,77 539,69 0,09 539,78 2887,60 0,11 2887,71 0,00 508,72
40 6 0 776,87 0,08 776,95 5515,08 0,10 5515,18 5827,05 0,11 5827,16 0,16 10834,75
10 2 1 0,13 0,01 0,13 0,31 0,01 0,32 1,36 0,01 1,36 0,00 0,19
10 4 1 0,08 0,01 0,09 1,63 0,01 1,64 5,87 0,01 5,88 0,00 1,60
10 6 1 0,13 0,01 0,14 7,80 0,01 7,81 11,43 0,01 11,44 0,00 16,77
20 2 1 0,49 0,02 0,52 1,05 0,02 1,07 6,66 0,02 6,68 0,00 0,80
20 4 1 1,74 0,02 1,76 19,17 0,02 19,19 44,27 0,02 44,29 0,00 49,22
20 6 1 3,02 0,02 3,03 580,98 0,02 581,00 150,94 0,02 150,96 0,00 1473,43
30 2 1 3,22 0,04 3,26 2,96 0,05 3,01 14,98 0,06 15,04 0,00 3,81
30 4 1 8,45 0,06 8,51 94,28 0,05 94,33 134,93 0,07 134,99 0,00 42,24
30 6 1 13,05 0,06 13,10 421,44 0,05 421,49 1219,87 0,05 1219,92 0,00 953,79
40 2 1 10,39 0,12 10,51 16,22 0,15 16,37 112,04 0,14 112,18 0,00 14,43
40 4 1 48,53 0,12 48,65 2793,03 0,09 2793,12 2639,69 0,11 2639,80 0,00 4419,78
40 6 1 51,66 0,10 51,76 3313,28 0,10 3313,38 3606,00 0,10 3606,10 0,00 7011,83

Table 2: Extract of results of Mip-p-S and D2 BP for the case of protecting spanning trees.

The solution time strongly increases with the number of targets and the number of attackers. As
before, the column generation phase takes a negligible time (tCG). The time that D2 BP takes is at
least an order of magnitude larger than Mip-p-S when the number of attackers is 4, and several orders
of magnitude for 6 attackers. Specifically, for the first instance of 6 attackers and 40 targets or more,
D2 BP cannot find an optimal solution within the time limit.

In conclusion, for problems whose space of strategies in the marginal probabilities space can be
represented as perfect formulation, and have either a polynomial number of constraints, or an exponen-
tial number but separable efficiently, our method clearly outperforms branch-and-price, the standard
approach for addressing SSG problems.

Having compared our general approach with D2 BP, we now evaluate and contrast the efficiency
of the general approach using three compact SSG formulations (ERASER, Mip-p-S, and SDOBSS)
on randomly generated instances for four different games, as follows: i) protecting m single targets
with fairness constraints with labels, ii) protecting single targets or 2 adjacent targets with m security
resources, iii) using m combined security resources, and iv) protecting a tree structure over a graph.
Note that, for brevity reasons, in Section 6 when we refer to ERASER, Mip-p-S, and SDOBSS,
we mean using the respective compact model including the column generation process of Section
4.2, that retrieves the mixed strategy. We show the results in graphs showing the LP Gap, i.e., the
percentage difference between the optimal solution and the LP relaxation value, and graphs displaying
the Solution Time, which includes the entire procedure, including solving the compact formulation
and retrieving a mixed strategy.

6.2. Single targets and fairness constraints with labels

We analyzed the protection of m targets (single nodes) with fairness constraints using payoff
matrices both with and without variability. Our experiments were conducted for n ∈ {20, 30, 40},
k ∈ {2, 3}, m ∈ {5, 10}, nL ∈ {3, 5} partitions and ∆ ∈ {0.1, 0.25, 0.5} deviation. We created five
instances for each configuration.

In cases without variability, as depicted in Figure 6, Mip-p-S outperforms both SDOBSS and
ERASER regarding speed. Additionally, ERASER is always faster than SDOBSS. When variability

20

Electronic copy available at: https://ssrn.com/abstract=4588054

is introduced, as shown in Figure 7, Mip-p-S remains the fastest formulation in most cases. There is
no clear dominance of ERASER over SDOBSS in terms of solution time.

Regarding the LP formulations’ gap percentage (Figures 6 and 7), Mip-p-S’s relaxation is consis-
tently tighter, supporting the theoretical findings by Casorrán et al. [8], who proved this for the case
of protecting m single targets. For instances without variability (Figure 6), Mip-p-S’s average LP
gap is 36.08% lower than ERASER’s and 30.5% lower than SDOBSS’s. SDOBSS’s relaxation is 7.6%
tighter on average than ERASER’s. For instances with variability (Figure 7)), Mip-p-S’s average LP
gap is 52.01% lower than ERASER’s and 49.4% lower than SDOBSS’s. SDOBSS’s relaxation is 5.2%
tighter on average than ERASER.

0 20 40 60 80
LP gap (%)

0%

20%

40%

60%

80%

100%

%
 o

f i
ns

ta
nc

es
 so

lv
ed

100 101 102

SolutionTime (s)

Eraser
Mip-p-S
SDOBSS

Figure 6: Time to solve the integer problem and %LP gap. Single targets and fairness constraints with labels. Instances
without variability.

0 200 400 600 800 1000 1200
LP gap (%)

0%

20%

40%

60%

80%

100%

%
 o

f i
ns

ta
nc

es
 so

lv
ed

10 1 100 101

SolutionTime (s)

Eraser
Mip-p-S
SDOBSS

Figure 7: Time to solve the integer problem and %LP gap. Single targets and fairness constraints with labels. Instances
with variability.

6.3. Combined resources and matching strategies

When the objective is to protect targets with a combination of m resources, we evaluated scenarios
with {15, 20, 25} precints, k ∈ {4, 6}, m ∈ {2, 3, 4}. We consider three targets per precinct (t = {3}),

21

Electronic copy available at: https://ssrn.com/abstract=4588054

therefore, the targets are represented by n ∈ {45, 60, 75}. Our analysis included instances with and
without variability, and we considered five instances for each configuration.

Regardless of variability (refer to Figure 8 and 9), Mip-p-S outperforms both SDOBSS and
ERASER in solution time in all of cases. Additionally, SDOBSS cannot solve close to 20% of in-
stances within the given time limit in instances without variability.

Mip-p-S’s relaxation consistently produces a tighter percentage of gap in the LP formulations
(refer to Figures 8 and 9). In instances without variability (Figure 8), the average LP gap for Mip-p-S
is 0.2%. This indicates that the solutions generated by the relaxation of Mip-p-S are close to the
optimal solution. In contrast, ERASER shows an average LP gap of 100.2%, while SDOBSS has a
slightly lower average LP gap of 97.6%. In instances with variability (Figure 9), Mip-p-S maintains
its superiority but experiences a higher average LP gap of 5.01%. This increase can be attributed to
the larger values of the payoff matrices, introduced by variability. ERASER has a significantly higher
average LP gap of 389.5%. Similarly, SDOBSS exhibits an average LP gap of 261.5%.

0 20 40 60 80 100 120 140
LP gap (%)

0%

20%

40%

60%

80%

100%

%
 o

f i
ns

ta
nc

es
 so

lv
ed

100 101 102 103

SolutionTime (s)

Mip-p-S
SDOBSS
Eraser

Figure 8: Time to solve the integer problem and %LP gap. Combined resources and matching strategies. Instances
without variability.

0 200 400 600 800 1000
LP gap (%)

0%

20%

40%

60%

80%

100%

%
 o

f i
ns

ta
nc

es
 so

lv
ed

100 101

SolutionTime (s)

Mip-p-S
SDOBSS
Eraser

Figure 9: Time to solve the integer problem and %LP gap. Combined resources and matching strategies. Instances
with variability.

22

Electronic copy available at: https://ssrn.com/abstract=4588054

6.4. One or two adjacent targets

In the next example, the aim is to protect one or two adjacent targets, for instances with and
without variability. The parameters we used are as follows: n ∈ {30, 40}, k ∈ {2, 4, 6}, and m is
5%, 10% or 25% of the number of targets (Figures 10, 11). We solve five different instances in each
case.

Regarding solution time (as shown in Figure 10), the Mip-p-S formulation is faster than the other
formulations, with ERASER being faster than SDOBSS. Related to the LP gap, in instances with
and without variability (Figure 10 and 11), again, Mip-p-S has the tightest LP gap [8]. In instances
without variability (Figure 10), Mip-p-S’s average LP gap is 0.06%, while ERASER’s 62.3%, and
SDOBSS’s 52.3%. For instances with variability (Figure 11), Mip-p-S’s average LP gap is 17.5%,
ERASER’s 300.4%, and SDOBSS’s 247.3%.

Mip-p-S formulation not only achieves faster solution times but also consistently delivers solutions
with a tighter LP gap, making it a favorable choice over ERASER and SDOBSS in both instances
with and without variability.

0 20 40 60 80 100
LP gap (%)

0%

20%

40%

60%

80%

100%

%
 o

f i
ns

ta
nc

es
 so

lv
ed

100 101 102 103

SolutionTime (s)

Mip-p-S
SDOBSS
Eraser

Figure 10: Time to solve the integer problem, and %LP gap. One or two adjacent targets. Instances without variability.

0 250 500 750 1000 1250 1500 1750
LP gap (%)

0%

20%

40%

60%

80%

100%

%
 o

f i
ns

ta
nc

es
 so

lv
ed

100 101

SolutionTime (s)

Mip-p-S
SDOBSS
Eraser

Figure 11: Time to solve the integer problem, and %LP gap. One or two adjacent targets. Instances with variability.

23

Electronic copy available at: https://ssrn.com/abstract=4588054

6.5. Spanning trees

When protecting a tree structure over a graph, for instances with and without variability, we
considered n ∈ {10, 20, 30, 40}, k ∈ {2, 4, 6}. For every configuration, we solve five different instances
per setting.

Regardless of the variability considered, Mip-p-S is the fastest formulation. In instances without
variability, ERASER’s solution time is better than SDOBSS, while in cases with variability, SDOBSS
outperforms ERASER.

In instances with and without variability (Figure 12 and 13), the Mip-p-S LP relaxation is the
tightest. In instances without variability (Figure 12), Mip-p-S’s average LP gap is 27.7% smaller than
ERASER’s and 19.05% smaller than SDOBSS’s. SDOBSS’s relaxation is 10.7% tighter on average
than ERASER. Concerning instances with variability (Figure 13), Mip-p-S’s average LP gap is 55.2%
smaller than ERASER’s and 53.06% smaller than SDOBSS’s. SDOBSS’s relaxation is 4.6% tighter
on average than ERASER.

0 10 20 30 40 50
LP gap (%)

0%

20%

40%

60%

80%

100%

%
 o

f i
ns

ta
nc

es
 so

lv
ed

10 1 100 101 102 103

SolutionTime (s)

Mip-p-S
Eraser
SDOBSS

Figure 12: Time to solve the integer problem, and %LP gap. Spanning tree. Instances without variability.

0 200 400 600 800 1000
LP gap (%)

0%

20%

40%

60%

80%

100%

%
 o

f i
ns

ta
nc

es
 so

lv
ed

10 1 100 101 102 103

SolutionTime (s)

Mip-p-S
Eraser
SDOBSS

Figure 13: Time to solve the integer problem, and %LP gap. Spanning tree. Instances with variability.

24

Electronic copy available at: https://ssrn.com/abstract=4588054

6.6. Discussion

Our approach outperforms branch-and-price over D2 non-compact formulation [23]. We discuss the
formulation-related reasons as well as show this fact empirically through two examples: protecting
m targets, and spanning trees. Our experiments show that as the instances’ size increase, D2 BP
takes noticeably longer than Mip-p-S and ERASER to find a solution. The difference in solution
time between D2 BP and Mip-p-S (or ERASER) can be several orders of magnitude. Furthermore,
it is worth noting that SDOBSS exhibits slower performance in smaller instances than D2 BP. While
compact formulations can be highly efficient, not all are equally effective in terms of time.

Compact formulations such as Mip-p-S are more efficient than non-compact ones, even though they
require post-processing to obtain mixed strategies. Generally, solutions for the compact formulations
may not always result in implementable strategies. However, we show that, when defender strategy
spaces are modeled as perfect formulations, it is always possible to retrieve feasible strategies. Thanks
to this property, we use compact formulations as they are more efficient, and use a column generation
method to retrieve strategies, which is polynomial.

Regarding the different compact formulations studied, we could observe that Mip-p-S has a sig-
nificantly tighter percentage of LP gap compared to the other two formulations, resulting in a better
quality of the upper bound. This usually leads to a much smaller node usage in the branch & bound
tree [8]. In many cases, this results in achieving optimality of the integer problem faster. Experimen-
tally, we conclude that Mip-p-S is the fastest formulation for the instances whenever the number of
targets and/or attackers are large enough.

Regarding formulation size, and excluding the defender strategy space, ERASER is the least
complex, with the fewest number of constraints and variables, at a complexity of O(|J ||K|) [8]. On
the other hand, Mip-p-S and SDOBSS have complexities of O(|J |2|K|) [8], resulting in LP relaxations
that are more complex and time-consuming to solve than ERASER.

7. Conclusions

We address the class of problems whose defender strategies can be efficiently represented by perfect
formulations. We prove that the solution of a compact representation of this kind of problem can
always be described as a feasible mixed strategy. Once a solution to a compact formulation has
been obtained, the associated strategy can be found in polynomial time using column generation if
the defender strategy space has a polynomial number of constraints, or an exponential number of
poly-time separable constraints.

For the studied setting, our approach using Mip-p-S and ERASER outperforms branch-and-price
over non-compact formulations. We showed this through two cases: protecting m targets, and span-
ning trees. Additionally, our findings highlight the fact that while compact formulations can be highly
efficient, not all are equally effective in terms of time.

Based on these results, we propose a general methodology to find a Strong Stackelberg Equilibrium
for Stackelberg security games for cases where perfect formulations can efficiently represent the set
of defender strategies. This process consists in initially representing through marginal probabilities a
polynomial-size MILP or a MILP with an exponential size of constraints that may be efficiently sep-
arated through branch-and-cut. Once the problem is described, we obtain feasible defender strategies
(in polynomial time) through column generation. We use three different formulations in the space of
marginal probabilities, and we develop branch-and-cut schemes to manage large instances.

We consider different defense strategies as applications: single targets with fairness constraints,
one or two adjacent targets using a novel solution approach, combined resources, and for the first
time, protecting spanning trees in Stackelberg Security Games. We test our methodology for these
examples, and we analyze the results.

We observe that Mip-p-S has a significantly tighter percentage of LP gap compared to the other
two formulations, resulting in a better quality of the upper bound and a much smaller node usage in
the branch & bound tree. In many cases, this results in achieving optimality of the integer problem

25

Electronic copy available at: https://ssrn.com/abstract=4588054

faster. Experimentally, we conclude that Mip-p-S is the fastest formulation for the instances with a
large number of targets and/or attackers.

In the same line of the results of Casorrán et al. [8], we show experimentally that Mip-p-S has the
tightest LP gap for the cases studied, followed by SDOBSS and ERASER, in that order. In instances
without variability, Mip-p-S’s average LP gap ranges from 27.7% to 100% smaller than ERASER’s and
ranges from 19.1% to 96% smaller than SDOBSS’s. In instances with variability, Mip-p-S’s average LP
gap ranges from 52% to 384% smaller than ERASER’s, and ranges from 4.6% to 256% smaller than
SDOBSS’s. Therefore, instances without variability show less LP gap difference between formulations
than instances with variability.

Overall, these results can be useful for understanding the performance of different algorithms for
solving Bayesian Stackelberg Security Games and for selecting an appropriate formulation for a given
instance of the game. We recommend using compact formulations when the defender strategy set
is modeled as a perfect formulation. Among the three studied formulations, we recommend using
Mip-p-S when the number of targets is high.

26

Electronic copy available at: https://ssrn.com/abstract=4588054

8. Acknowledgments

This research was financially supported by the INRIA-Lille Programme Equipes Associées - BIO-
SEL, the Open Seed Fund 2021 of Pontificia Universidad Católica de Chile and INRIA Chile, ANID
PIA/PUENTE AFB220003, and FONDECYT-Chile, grant 1220047. Pamela Bustamante was also
partially funded by the CONICYT-PFCHA/Doctorado Nacional/2019-21191904.

27

Electronic copy available at: https://ssrn.com/abstract=4588054

Bibliography

[1] Bäıou, M. and Barahona, F. (2019). Faster algorithms for security games on matroids. Algorith-
mica, 81(3):1232–1246.

[2] Bard, J. F. (2013). Practical bilevel optimization: algorithms and applications, volume 30. Springer
Science & Business Media.

[3] Breton, M. L., Alj, A., and Haurie, A. (1985). Sequential stackelberg equilibria in two-person
games. Journal of Optimization Theory and Applications, 59:71–97.

[4] Bucarey, V., Casorrán, C., Figueroa, Ó., Rosas, K., Navarrete, H., and Ordóñez, F. (2017). Build-
ing real stackelberg security games for border patrols. In International Conference on Decision and
Game Theory for Security, pages 193–212. Springer.

[5] Bucarey, V., Casorrán, C., Labbé, M., Ordoñez, F., and Figueroa, O. (2019). Coordinating
resources in stackelberg security games. European Journal of Operational Research.

[6] Bucarey, V. and Labbé, M. (2019). Discussion of fairness and implementability in stackelberg
security games. In International Conference on Decision and Game Theory for Security, pages
97–117. Springer.

[7] Budish, E., Che, Y.-K., Kojima, F., and Milgrom, P. (2013). Designing random allocation mech-
anisms: Theory and applications. American Economic Review, 103(2):585–623.

[8] Casorrán, C., Fortz, B., Labbé, M., and Ordóñez, F. (2019). A study of general and security
stackelberg game formulations. European Journal of Operational Research, 278(3):855–868.

[9] Chakravarty, A. K. (2011). A contingent plan for disaster response. International Journal of
Production Economics, 134(1):3–15.

[10] Collier, S. J. and Lakoff, A. (2014). Vital systems security: Reflexive biopolitics and the govern-
ment of emergency. Theory, Culture & Society, 32(2):19–51.

[11] Comission of the European communities (EC) (2005). Green paper on a european programme
for critical infrastructure protection.

[12] Conforti, M., Cornuéjols, G., Zambelli, G., et al. (2014). Integer programming, volume 271.
Springer.

[13] Conitzer, V. and Sandholm, T. (2006a). Computing the optimal strategy to commit to. In
Proceedings of the 7th ACM Conference on Electronic Commerce, EC ’06, page 82–90, New York,
NY, USA. Association for Computing Machinery.

[14] Conitzer, V. and Sandholm, T. (2006b). Computing the optimal strategy to commit to. In
Proceedings of the 7th ACM conference on Electronic commerce, pages 82–90. ACM.

[15] Cunningham, W. (1985). Minimum cuts, modular functions, and matroid polyhedra. Networks,
15:205 – 215.

[16] Dempe, S. (2002). Foundations of bilevel programming. Springer Science & Business Media.

[17] Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467.

[18] Fudenberg, D. and Tirole, J. (1991). Game theory. MIT press.

[19] Gan, J. and An, B. (2014). Minimum support size of the defender’s strong stackelberg equilibrium
strategies in security games. In Proc. AAAI Spring Symp. on Appl. Computat. Game Theory.

28

Electronic copy available at: https://ssrn.com/abstract=4588054

[20] Gomory, R. E. and Hu, T. C. (1961). Multi-terminal network flows. Journal of the Society for
Industrial and Applied Mathematics, 9(4):551–570.

[21] Guo, Q., Gan, J., Fang, F., Tran-Thanh, L., Tambe, M., and An, B. (2019). On the inducibility
of stackelberg equilibrium for security games. Proceedings of the AAAI Conference on Artificial
Intelligence, 33:2020–2028.

[22] Gusfield, D. (1990). Very simple methods for all pairs network flow analysis. SIAM Journal on
Computing, 19(1):143–155.

[23] Jain, M., Kardes, E., Kiekintveld, C., Ordonez, F., and Tambe, M. (2010). Security games with
arbitrary schedules: A branch and price approach. Proceedings of the AAAI Conference on Artificial
Intelligence, 24(1):792–797.

[24] Kar, D., Nguyen, T. H., Fang, F., Brown, M., Sinha, A., Tambe, M., and Jiang, A. X. (2017).
Trends and applications in stackelberg security games. Handbook of dynamic game theory, pages
1–47.

[25] Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordóñez, F., and Tambe, M. (2009). Computing
optimal randomized resource allocations for massive security games. In Proceedings of The 8th
International Conference on Autonomous Agents and Multiagent Systems-Volume 1, pages 689–
696. International Foundation for Autonomous Agents and Multiagent Systems.

[26] Korzhyk, D., Conitzer, V., and Parr, R. (2010). Complexity of computing optimal stackelberg
strategies in security resource allocation games. Proceedings of the AAAI Conference on Artificial
Intelligence, 24(1):805–810.

[27] Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):48–50.

[28] Leitmann, G. (1978). On generalized stackelberg strategies. Journal of Optimization Theory and
Applications, 26:637–643.

[29] Letchford, J. and Conitzer, V. (2013). Solving security games on graphs via marginal probabilities.
Proceedings of the AAAI Conference on Artificial Intelligence, 27(1):591–597.

[30] Li, Y., Conitzer, V., and Korzhyk, D. (2016). Catcher-evader games. arXiv preprint
arXiv:1602.01896.

[31] Loridan, P. and Morgan, J. (1996). Weak via strong stackelberg problem: New results. Journal
of Global Optimization, 8:263–287.

[32] Magnanti, T. L. and Wolsey, L. A. (1995). Chapter 9 optimal trees. In Network Models, volume 7
of Handbooks in Operations Research and Management Science, pages 503–615. Elsevier.

[33] Martin, R. (1991). Using separation algorithms to generate mixed integer model reformulations.
Operations Research Letters, 10(3):119–128.

[34] Meyer, R. R. (1974). On the existence of optimal solutions to integer and mixed-integer pro-
gramming problems. Mathematical Programming, 7(1):223–235.

[35] Paruchuri, P., Pearce, J. P., Marecki, J., Tambe, M., Ordonez, F., and Kraus, S. (2008). Playing
games for security: An efficient exact algorithm for solving bayesian stackelberg games. In Proceed-
ings of the 7th international joint conference on Autonomous agents and multiagent systems-Volume
2, pages 895–902. International Foundation for Autonomous Agents and Multiagent Systems.

[36] Plesnik, J. (1999). Constrained weighted matchings and edge coverings in graphs. Discrete
Applied Mathematics, 92(2):229–241.

29

Electronic copy available at: https://ssrn.com/abstract=4588054

[37] Sinha, A., Fang, F., An, B., Kiekintveld, C., and Tambe, M. (2018). Stackelberg security games:
Looking beyond a decade of success. In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18, pages 5494–5501. International Joint Conferences
on Artificial Intelligence Organization.

[38] US Department of Homeland Security (2013). Nipp 2013: Partnering for critical infrastructure
security and resilience.

[39] Wilczyński, A., Jakóbik, A., and Ko lodziej, J. (2016). Stackelberg security games: Models, ap-
plications and computational aspects. Journal of Telecommunications and Information Technology,
(3):70–79.

[40] Xu, H. (2016). The mysteries of security games: Equilibrium computation becomes combinatorial
algorithm design. In Proceedings of the 2016 ACM Conference on Economics and Computation,
pages 497–514. ACM.

[41] Yusta, J. M., Correa, G. J., and Lacal-Arántegui, R. (2011). Methodologies and applications for
critical infrastructure protection: State-of-the-art. Energy policy, 39(10):6100–6119.

30

Electronic copy available at: https://ssrn.com/abstract=4588054

Appendix A SSG Formulations: Defending spanning trees

A.1 ERASER

Given a graph G = (V,E) that represents a region, an attacker aims to attack one of the E edges.
In this scenario, the set I of pure strategies of the defender includes all the spanning trees that could
be protected. The defender possesses sufficient security resources to cover up to m = n− 1 edges.

Spanning trees can be represented using different formulations, including the directed multicom-
modity flow model (dflo) [32], extended multicommodity flow model (mc′flo) [32], subtour model
(sub) [32], and reformulated minimum spanning tree formulation (RMST) [33]. In this section, we will
present various formulations for defending a spanning tree structure, considering these four different
approaches to represent trees.

The first formulation we present is ERASERsub, based on the subtour model [32]:

(ERASERsub)

max
∑
k∈K

πkfk (A.1)

s.t (3.7) − (3.11)∑
e∈E

ce = n− 1 (A.2)∑
e∈E(T)

ce ≤ |T | − 1 T ⊆ V (A.3)

In this formulation, the variable ce represents the marginal probability of defending edge e. Con-
straint (A.2) is a cardinality constraint that ensures exactly that n−1 edges are chosen to be protected.
The exponential number of subtour constraints (A.3) guarantee that the selected edges do not form
any cycles. Note that E(T) ⊆ E represents the edges between targets in T ⊆ V . We generated
subtour equations as lazy constraints following Cunningham’s method for forest matroids [15].

The next formulation we propose is ERASERdflo, based on the directed multicommodity flow
model [32]. Consider an arbitrary node r ∈ V as the root node for any possible spanning tree, and
consider a digraph D = (V,A) formed by replacing each edge {i, j} in E by arcs (i, j) and (j, i) in A.
In this model, every node k ∈ V, k ̸= r defines a commodity: one unit of commodity k originates at
the root node r and must be delivered to node k. Let uk

ij be the flow of commodity k in arc (i, j),
and the variable wij be the capacity for the flow of each commodity k in arc (i, j). Let wij = 1 if the

31

Electronic copy available at: https://ssrn.com/abstract=4588054

tree contains arc (i, j) when we root it at node r. We formulate this model as follows:

(ERASERdflo)

max
∑
k∈K

πkfk (A.4)

s.t (3.7) − (3.11)∑
e∈δ−(r)

uh
e −

∑
e∈δ+(r)

uh
e = −1 ∀h ∈ V, h ̸= r (A.5)

∑
e∈δ−(v)

uh
e −

∑
e∈δ+(v)

uh
e = 0 ∀v, h ∈ V, v ̸= r, v ̸= h (A.6)

∑
e∈δ−(h)

uh
e −

∑
e∈δ+(h)

uh
e = 1 ∀h ∈ V, h ̸= r (A.7)

uh
e ≥ 0 ∀e ∈ A (A.8)

uh
ij ≤ wij ∀(i, j) ∈ E, h ̸= r (A.9)

we ≥ 0 ∀e ∈ A (A.10)∑
e∈A

we = n− 1 (A.11)

wij + wji = ce ∀ e = (i, j) ∈ E (A.12)

Note that δ+(v) and δ−(v) represent the sets of outward and inward arcs of a node v ∈ V ,
respectively. Constraints (A.5), (A.6) and (A.7) enforce flow balance. Expressions (A.5) state that
the root node r has an outgoing flow of 1 of every commodity h ∈ V \ {r}. Constraints (A.6) ensure
that for every node v ∈ V \ {r}, except for the destination node of commodity h and the root node,
the sum of the incoming flow of commodity h ∈ V should be equal to the sum of the outgoing flow of
the same commodity. Equations (A.7) state that every node h has an incoming flow of 1 of the same
commodity. The constraint (A.9) implies that we can send flow of each commodity on arc (i, j) only
if that arc is a member of the directed spanning tree defined by the variables w. Constraint (A.11)
states that the network defined by any solution contains n− 1 edges, and every feasible solution must
be a spanning tree. Expressions (A.12) state that the total capacity of an edge e is the marginal
probability ce. Constraints (A.8) and (A.10) express the nature of variables.

We consider a closely related formulation by eliminating the wij variables. This way of representing
trees is named extended multicommodity flow model [32]. The resulting formulation is:

(ERASERmc′flo)

max
∑
k∈K

πkfk (A.13)

s.t (3.7) − (3.11), (A.2), (A.5) − (A.8)

uh
ij + uh′

ji ≤ ce ∀h, h
′
∈ V, e = (i, j) ∈ E (A.14)

This model considers an undirected graph G = (V,E). Although, we allow bidirectional flows u
for each commodity k on edge e = {i, j}. The bidirectional flow inequalities (A.14) link the flow of
different commodities flowing in different directions on the edge {i, j}.

To understand these constraints intuitively, let’s consider a feasible spanning tree. If we remove
the edge {i, j}, the graph nodes will be split into two separate components. In this scenario, any
commodity associated with a node located in the same component as the root node will not flow
on the edge {i, j}. However, if two commodities have associated nodes in the component without
the root, they will flow on the edge {i, j} in the same direction. Consequently, when we have two
commodities h and h′, flowing on the same edge {i, j}, they will both flow in the same direction. This
implies that either uh

ij or uh′

ji will be zero.

32

Electronic copy available at: https://ssrn.com/abstract=4588054

The next formulation is based on the tree representation RMST by Martin [33]. This formulation
stems from the fact that spanning trees do not contain cycles. Let uh

ij be the flow of commodity h in
arc (i, j). One unit of commodity h must be delivered to node h. Variables ce represent the marginal
probability of defending edge e.

(ERASERRMST)

max
∑
k∈K

πkfk (A.15)

s.t (3.7) − (3.11)∑
s∈V :s>i

uh
is +

∑
j∈V :j<i

uh
ij ≤ 1 ∀h, i ∈ V, i ̸= h (A.16)

∑
s∈V :s>h

uh
hs +

∑
j∈V :j<h

uh
hj ≤ 0 ∀h ∈ V (A.17)

uh
ij ≥ 0 ∀i, j, h ∈ V (A.18)∑

e∈E

ce = n− 1 (A.19)

uh
ij + uh

ji = ce ∀e = (i, j) ∈ E, h ∈ V (A.20)

First, note that that each target is assigned a numerical label. Thus, when we refer to the notation
s > i, it means that the label of target s is greater than the label of target i. Constraint (A.16) states
that every node has at most one flow of commodity h directed out of it, except for the destination
node of commodity h. This prohibits undirected cycles. Constraint (A.17) enforces that node h is the
final destination of commodity h. This constraint also prohibits directed cycles. Constraint (A.19)
states that a n-node spanning tree should have n − 1 edges. Constraint (A.20) forces the flow of
commodity h over arc (i, j) and (j, i) to be equal to the marginal probability of defending edge e.
Constraint (A.18) states the nature of variables.

A.2 Mip-p-S

We will now present formulation Mip-p-S [8] considering the four previously defined approaches
to representing trees: (dflo), (mc′flo), (sub), (RMST). The main difference with ERASER is using
the transformation of variables yklj = clq

k
j ∀l, j ∈ J and k ∈ K. Note that cl =

∑
j∈J y0lj .

(Mip-p-Ssub)

max
y,q

∑
j∈J

∑
k∈K

pk(Dk(j|p)ykjj + Dk(j|u)(qkj − ykjj)) (A.21)

s.t (3.14) − (3.17)∑
e∈E

∑
l∈j

y0el = n− 1 (A.22)

∑
e∈E(T)

∑
l∈J

y0el ≤ |T | − 1 T ⊆ V (A.23)

(Mip-p-Sdflo)

max
y,q

∑
j∈J

∑
k∈K

pk(Dk(j|p)ykjj + Dk(j|u)(qkj − ykjj)) (A.24)

s.t (3.14) − (3.17), (A.5) − (A.11)

wij + wji =
∑
l∈J

y0el ∀ e = (i, j) ∈ E (A.25)

33

Electronic copy available at: https://ssrn.com/abstract=4588054

(Mip-p-Smc′flo)

max
y,q

∑
j∈J

∑
k∈K

pk(Dk(j|p)ykjj + Dk(j|u)(qkj − ykjj)) (A.26)

s.t (3.14) − (3.17), (A.22), (A.5) − (A.8)

uh
ij + uh′

ji ≤
∑
l∈J

y0el ∀e = (i, j) ∈ E, h ∈ V (A.27)

(Mip-p-SRMST)

max
y,q

∑
j∈J

∑
k∈K

pk(Dk(j|p)ykjj + Dk(j|u)(qkj − ykjj)) (A.28)

s.t (3.14) − (3.17), (A.16) − (A.18)∑
e∈E

∑
l∈E

y0el = n− 1 (A.29)

uh
ij + uh

ji =
∑
l∈J

y0el ∀e = (i, j) ∈ E, h ∈ V (A.30)

8.3. SDOBSS

Recall that the SSG formulation SDOBSS [8], can be constructed from Mip-p-S by replacing
constraints (3.16) by:

0 ≤ sk −Ak(j|p)
∑
l∈J

ykjl −Ak(j|u)(1 −
∑
l∈J

ykjl) ≤ (1 − qkj)M ∀j ∈ J, k ∈ K (8.31)

By replacing this constraint on formulations Mip-p-Ssub, Mip-p-Sdflo, Mip-p-Smc′flo, and Mip-p-SRMST ,
we can derive their corresponding versions in the SDOBSS framework.

34

Electronic copy available at: https://ssrn.com/abstract=4588054

	Introduction
	Literature Review
	Notation and MILP formulations
	Stackelberg security game

	General Approach
	Perfect formulations
	Column generation

	Applications
	Single targets and fairness constraints with labels
	Combined resources and matching strategies
	One or two adjacent targets
	Spanning trees
	Reformulated minimum spanning tree (RMST) formulation

	Computational Experiments
	Compact vs. Non-compact formulations
	Single targets and fairness constraints with labels
	Combined resources and matching strategies
	One or two adjacent targets
	Spanning trees
	Discussion

	Conclusions
	Acknowledgments
	Bibliography
	SSG Formulations: Defending spanning trees
	ERASER
	Mip-p-S
	SDOBSS

