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Abstract

We show that the recently introduced classical Arnol’d cat map lattice field theories,

which are chaotic, are exponentially mixing to all orders. Their mixing times are well-

defined and are expressed in terms of the Lyapunov exponents, more precisely by the

combination that defines the inverse of the Kolmogorov-Sinai entropy of these systems.

We prove by an explicit recursive construction of correlation functions, that these exhibit

l−fold mixing for any l = 3, 4, 5, . . .. This computation is relevant for Rokhlin’s conjecture,

which states that 2-fold mixing induces l−fold mixing for any l > 2. Our results show

that 2-fold exponential mixing, while being necessary for any l−fold mixing to hold it is

nevertheless not sufficient for Arnol’d cat map lattice field theories. The correspondence

principle implies that these mixing times, also, control the scrambling of the underlying

quantum system for short times.
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1 Introduction and Motivation

Fast information scrambling has occupied center stage in theoretical physics research in recent
times. It forms an integral part of the so–called information loss paradox in quantum black holes
and it is believed to be relevant for its long sought-after unitary resolution, thereby resolving
the incompleteness of general relativity, using the principles of quantum mechanics [1].

Controversial issues of locality and unitarity between quantum theory and black hole physics
have given rise to new concepts and principles in quantum gravity such as those of the holo-
graphic and complementarity principles and AdS/CFT correspondence, with black holes having
been conjectured to be the fastest information scramblers in nature [2,3]. In essence they high-
light that the no-cloning theorem of quantum information imposes constraints on the speed of
information spreading within infalling matter on the black hole, due to the interaction with its
horizon degrees of freedom. Its characteristic timescale has been estimated to be proportional
to the logarithm of the entropy of the black hole. It is called the scrambling time, a conjec-
tured lower bound to the time of information propagation in the universe, with the search for
a microscopic many-body system that can saturate it being an area of topical research.

More specifically the ingredients of regular local field theories have been shown to be in-
adequate to accommodate fast information processing among the near horizon black hole mi-
croscopic degrees of freedom; this has led to the study of how nonlocality can be taken into
account [2, 4, 5]. A further property, that has emerged as relevant is that of chaoticity. This
has, in turn, motivated the study of chaos in matrix models [6], conformal field theories and a
large class of SYK type of models [7] which have been dubbed chaotic field theories [8].

In a recent work we have studied the AdS2 near horizon geometry of extremal black holes
by means of a modular discretization thereof [9]. This discretization is relevant for probing the
non-local features of the geometry using single particle excitations. Among such excitations the
Arnol’d cat map stands out, since its isometries are those of the near horizon geometry and its
dynamics can capture fast scrambling in a way that saturates the fast scrambling bound [10,11].
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Furthermore, the model has been shown to admit a well defined continuum limit [12] showing
how a discrete short distance near horizon spacetime can underlie an emergent continuum long
distance classical limit.

In followup work we have taken a first step in implementing the conditions of nonlocality and
strong chaos for many-body systems through the construction of lattice field theories, in which
we replace the standard harmonic oscillator constituents with chaotic interacting constituents,
namely, the so called Arnol’d cat map [13, 14]. The resulting evolution matrix of the n−body
system is represented by elements of the symplectic group Sp2n [Z] . The model has been shown
to exhibit strong classical chaos as well as non-locality, which leaves a direct imprint on the
(spatiotemporal) chaotic benchmark of the model, its Kolmogorov-Sinai entropy.

In the present work we pursue the study of the chaotic properties of the many-body system,
by elucidating its mixing properties, the classical avatars of scrambling. We will show that it
exhibits fast exponential mixing of all orders in the number of observables. To this end we
adapt an operator method developed by de Bièvre [15], firstly for the case of two observable
functions in the computation of the decay rates of their correlation function. Moreover we
generalize his method for any number of observables for the Arnol’d cat map lattice, deducing
that it is a strongly l−fold mixing system, for any l = 2, 3, . . . and that the mixng time is
1/SK−S,, where SK−S is the Kolmogorov-Sinai entropy.

The role of deterministic chaos [16] in rendering mixing phenomena fast and “efficient” is
well recognized and can be understood within the so-called ergodic hierarchy classification of
hyperbolic dynamical systems [17]. Mixing is the classical analog of the fast scrambling of
information, which is the rapid spreading of an initially localized perturbation, as it evolves
towards a homogeneous stationary state.

Our results pertain, also, to the well known Rokhlin conjecture [18, 19] of whether 2-fold
mixing implies multiple l−fold mixing and more generally mixing of all higher orders. We
show, by explicit calculation, that 2-fold mixing is necessary but not sufficient for any l−fold
(l > 2) mixing to hold. We proceed, to this end, in steps, by establishing, first, both the 2-
fold and l−fold mixing property of a single ACM. Subsequently we on the case of the extended
n−body coupled Arnold cat map systems through the explicit computation of l−fold correlation
functions. We find, by explicit calculation, that the correlation functions show exponential
decay behavior and identify the mixing time as the inverse of the Kolmogorov-Sinai entropy.
The reason that 2-fold mixing isn’t sufficient for ensuring l−fold mixing can be understood
from the recursive construction of the l + 1st correlation function, which is the sum of two
terms, the first being the l−th correlation function, while the second is a remainder term that
can be shown, also, to tend to zero for large times–with subleading behavior.

The plan of the paper is the following:
In section 2 we review the salient features of our previous paper [13], namely the construc-

tion of the evolution operator for n maps, the analytical computation of the spectrum of the
Lyapunov exponents, from which we have obtained the Kolmogorov–Sinai entropy, SK−S.

In sections 3 4 we discuss the definition of simple and multiple mixing of chaotic dynamical
systems and we provide an explicit calculation of the corresponding mixing times for the case
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of a single Arnol’d cat map.
In section 5 we extend the previous calculation to the case of n, symplectically interacting,

Arnol’d cat maps, for any n. We find that the corresponding, simple, mixing time is equal to
1/SK−S.

Our conclusions and discussion for directions of further inquiry are set forth in section 6.

2 Interacting Arnol’d cat maps from symplectic cou-

plings of n, k−Fibonacci sequences

In this section we review the salient features of our previous paper [13], pertaining to the
construction of the evolution operator for n interacting Arnol’d cat maps and the analytical
computation of the spectrum of the Lyapunov exponents, from which we have obtained the
Kolmogorov–Sinai entropy, SK−S.

We consider a dynamical system of n degrees of freedom, whose space of states is the torus
T2n, the 2n−dimensional torus of radius 1. Therefore any state can be identified with a point
x ∈ T

2n.
We shall describe the time evolution of this system by successive applications on a point

x ∈ T2n of elements, M, of the symplectic group over the integers, Sp2n[Z]. The evolution is,
thus, discrete in time. In equations,

xm+1 = xmMmod1 (2.1)

where xm = (qm,pm) describes the state of the system at them−th time tick. Here the positions
and momenta take values in Tn. These equations describe the evolution of n “particles”, from
the tick m to the tick m+ 1.

Since M ∈ Sp2n[Z], it preserves the symplectic structure,

J =

(
0 −I
I 0

)
(2.2)

in the sense that
M

T
JM = J (2.3)

Upon decomposing M into four blocks of n× n matrices

M =

(
A B

C D

)
(2.4)

we obtain the constraints on the blocks,

A
T
D− C

T
B = In×n

ATC = CTA

BTD = DTB

(2.5)

3



It is known that Sp2n[Z] is generated by the elements

MR =

(
I R

0 I

)
, ML =

(
I 0
L I

)
and DS =

(
ST 0
0 S−1

)
(2.6)

where R and L are symmetric matrices; all matrices have integer entries.
In what follows we are interested in those evolution matrices, M, that have strictly positive

eigenvalues–the reason is that this property is sufficient for the dynamics to be chaotic. Such
symplectic matrices are called hyperbolic and the corresponding dynamical systems are called
hyperbolic or Anosov.

It can be shown that the symplectic property implies that the eigenvalues come in pairs,
(ρ

(i)
+ , ρ

(i)
− = 1/ρ

(i)
+ < 1). For hyperbolic matrices this implies the existence of n planes, spanned

by the corresponding eigenvectors: The dynamics is expanding along the eigenvectors, v
(i)
+ ,

corresponding to the eigenvalues ρ
(i)
+ and contracting along the eigenvectors, v

(i)
− , corresponding

to the eigenvalues ρ
(i)
− .

We shall focus here on evolution matrices M that are hyperbolic and symmetric, so the
eigenvectors v

(i)
± span orthogonal eigenspaces and v

(i)
+ and v

(i)
− are orthogonal for each i =

1, 2, . . . , n.
This class of matrices includes, in particular, the generalization of the so-called Arnol’d cat

map, defined by the 2× 2 matrix

M =

(
1 1
1 2

)
(2.7)

to the case of n such maps, in interaction.
Moreover, since the phase space is compact, this class of maps exhibits strong mixing as

well as l−fold mixing of any order, l, as we shall show in the following. To this end we shall
use the Lyapunov exponents and the Kolmogorov–Sinai entropy, that were calculated in closed
form in [13].

In order to study the effects of coupling of n Arnol’d cat maps, each of which is defined on a
lattice of n sites, we associate to each site a two–dimensional torus, with dynamics described by
a single Arnol’d cat map. The total phase space of the system will be T2n, the 2n−dimensional
torus and the proposed dynamics will be described by appropriate elements of the symplectic
group, Sp2n[Z]. The 2n−dimensional symplectic maps will allow couplings of various degrees
of locality and strength.

To begin with, we shall show that these maps can be constructed as iteration matrices of n
coupled Fibonacci sequences.

We start from the relation between the ACM and the Fibonacci sequence of integers.
The Fibonacci sequence is one of the integer sequences, which has been studied, for a long

time and there are journals dedicated to its properties and their applications.
The definition is given by the relations

f0 = 0; f1 = 1
fm+1 = fm + fm−1

(2.8)
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which can be written in matrix form
(

fm
fm+1

)
=

(
0 1
1 1

)

︸ ︷︷ ︸
A

(
fm−1

fm

)
(2.9)

The matrix A is not a symplectic matrix, but it satisfies

A
T
JA = −J (2.10)

for n = 1.
We remark that the Arnol’d cat map, acting on the torus T2, can be written as

(
1 1
1 2

)
= A

2 (2.11)

Eq. (2.10) implies that [A2]TJA2 = J, therefore that A2 is symplectic. It’s possible to generalize
the Fibonacci sequence in the following way:

gm+1 = kgm + gm−1 (2.12)

with g0 = 0 and g1 = 1 and k is a positive integer. This is known as the “k−Fibonacci”
sequence [20].

We may solve eq. (2.12) by gm ≡ Cρm. The characteristic equation for ρ reads

ρ2 − kρ− 1 = 0 ⇔ ρ±(k) =
k ±

√
k2 + 4

2
(2.13)

and express gm as a linear combination of the ρ±, upon taking into account the initial conditions:

gm = A+ρ+(k)
m + A−ρ−(k)

m =
ρ+(k)

m − (−)mρ+(k)
−m

√
k2 + 4

(2.14)

In matrix form (
gm
gm+1

)
=

(
0 1
1 k

)

︸ ︷︷ ︸
A(k)

(
gm−1

gm

)
(2.15)

Similarly as for the usual Fibonacci sequence, we may show, by induction, that

A(k)m =

(
gm−1 gm
gm gm+1

)
(2.16)

We remark that detA(k)m = (−)m = gm+1gm−1−g2m, form = 1, 2, . . . and that limm→∞ (gm+1/gm) =
ρ+(k), which, for k = 1, is the golden ratio, for k = 2 is the silver ratio and, for k > 2 are
generalizations thereof.
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λ+(k) ≡ log ρ+(k)
2 is the greatest Lyapunov exponent of the generalized evolution operator,

i.e. the k−Arnol’d cat map, A(k)2 and is an increasing function of k.
Coupled Fibonacci sequences have been considered in the literature, for instance in [21].

However, in these papers the possible applications to Hamiltonian dynamics, were not the
topic of interest and moreover the corresponding maps were not symplectic.

After this review of the single Arnol’d cat map, we proceed to the study of how many such
maps can interact, in a way such that the evolution matrix is an element of Sp2n[Z]. To this end,
we shall, once more, use the correspondence between the Arnol’d cat maps and the Fibonacci
sequences.

We start by coupling n = 2 Fibonacci sequences, {fm} and {gm} (but we write the expres-
sions in a way that generalizes immediately to arbitrary n):

fm+1 = a1fm + b1fm−1 + c1gm + d1gm−1

gm+1 = a2gm + b2gm−1 + c2fm + d2fm−1
(2.17)

where the ai, bi, ci, di, i = 1, 2 are integers, f0 = 0 = g0 and f1 = 1 = g1 are the initial conditions
and m = 1, 2, 3, . . ..

In matrix form, these read

Xm+1 ≡




fm
gm
fm+1

gm+1


 =




0 0 1 0
0 0 0 1
b1 d1 a1 c1
d2 b2 c2 a2







fm−1

gm−1

fm
gm




︸ ︷︷ ︸
Xm

(2.18)

Let us define the 2×2 matrices

D ≡
(

b1 d1
d2 b2

)
C ≡

(
a1 c1
c2 a2

)
(2.19)

in terms of which the one–time–step evolution equation (2.18) can be written in block form as

Xm+1 =

(
0n×n In×n

D C

)
Xm (2.20)

In analogy with the case of a single Fibonacci sequence and its relation with the Arnol’d cat
map, we impose the constraint (cf. (2.10))

(
0n×n In×n

D C

)T

J

(
0n×n In×n

D C

)
= −J (2.21)

This condition implies that
D = In×n C = CT (2.22)
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Therefore a1 = k1, a2 = k2, c1 = c2 = c. This implies, in particular, that the coupling
between the sequences is the same for both, in order for the square of the evolution matrix to
be symplectic. As we shall explain below, the generalization of this property is that, for more
sequences, the corresponding coupling matrix must be symmetric. This is important in order
to define chains of interacting k−Arnol’d cat maps.

In terms of these parameters, the recursion relations take the form

fm+1 = k1fm + fm−1 + cgm
gm+1 = k2gm + gm−1 + cfm

(2.23)

and can be identified as describing a particular coupling between a k1− and a k2−Fibonacci
sequence. This particular coupling is determined by the condition that the square of the
evolution matrix is an element of Sp4[Z]:

A =

(
0 1
1 C

)
⇒ M = A

2 =

(
1 C

C 1 + C2

)
(2.24)

The generalization to a chain of n k−Fibonacci sequences, with nearest–neighbor couplings,
proceeds as follows: We choose two diagonal matrices, of positive integers, KIJ = KIδIJ and
GIJ = GIδIJ , with I, J = 1, 2, . . . , n.

We now define the translation operator, P along a closed chain, by PI,J = δI−1,J modn.
The periodicity is expressed by the fact that Pn = In×n. Moreover, P is orthogonal, since
PPT = In×n.

Now we can define the coupling matrix for n sequences as

C = K + PG+ GP
T (2.25)

The corresponding 2n× 2n evolution matrix, A is given by

A =

(
0n×n In×n

In×n C

)
(2.26)

and satisfies the relation ATJA = −J. Its square,

M = A
2 =

(
In×n C

C In×n + C2

)
(2.27)

therefore satisfies the relation MTJM = J, showing that M ∈ Sp2n[Z]. Since A is symmetric,
(from the property that C = CT), M is positive definite and its eigenvalues come in pairs,
(ρ, 1/ρ), with ρ > 1 (and the corresponding eigenvectors are orthogonal). This property implies
that, for all matrices K and G this system of coupled maps is hyperbolic.

An important special case arises if we impose translation invariance along the chain, i.e.
KI = K and GI = G for all I = 1, 2, . . . , n.
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Let us now consider the case of the open chain. The only change involves the operator P,
which, now, must be defined as PIJ = δI−1,J , for I, J = 1, 2, . . . , n. Due to the absence of the
mod n operation, the “far non–diagonal” (upper right and lower left) elements are, now, zero.
This express the property that the n−th Fibonacci is not coupled to the first one (and vice
versa).

For both, closed or open, chains, we observe certain algebraic properties of the evolution
matrix, A.

The k−Fibonacci sequence has the important property that the elements of the matrix
A(k)m are arranged in columns of consecutive pairs of the sequence. We shall show that this
property can be generalized for n interacting k−Fibonacci sequences as follows:

Theorem 1. The m−th power of the evolution matrix, A (cf. eq. (2.26)) can be written as

A
m =

(
Cm−1 Cm

Cm Cm+1

)
(2.28)

where C0 = 0n×n, C1 = In×n and Cm+1 = CCm + Cm−1, with m = 1, 2, 3, . . .. This matrix
recursion relation generalizes to matrices the k−Fibonacci sequence for numbers. It holds for
any matrix, C and, in particular for the (symmetric, integer) matrix C, defined by eq. (2.25).
The solution to this matrix recursion relation is given in terms of the Fibonacci polynomials,
Fm(x), with argument x = C, i.e. Cm = Fm(C). [13].

Proof. The proof is by induction. For m = 1 it is true, by definition. If we assume it holds
for m > 1, then, by the relation A

m+1 = A · Am, we immediately establish that it holds for
m+ 1.

Having constructed a large class of symplectic many–body maps, that describe the dynamics
of n k−Arnol’d cat maps, we wish to understand their chaotic behavior, as they act on any
initial condition of T2n, for n > 1.

These particular symplectic matrices generalize the chaotic behavior of one Arnol’d cat
map, acting on T2, to that of n maps, acting on T2n. Indeed, starting with initial conditions
x0 ∈ T2n 6= 0, which have irrational components, the evolution matrix M, as it acts on x0,
defines an orbit,xm = x0M

m, that will, in the limit m → ∞, cover the whole torus T2n; the full
phase space is the attractor of the map. This means that the map is ergodic.

Furthermore, this map has the, additional, property of being strongly chaotic, which means
that it has positive Kolmogorov-Sinai entropy. It is possible to tune the parameters K and G
(in the translation invariant case) so that no Lyapunov exponent is equal to zero (which would
imply the existence of a conservation law). In this cse the map is maximally hyperbolic, i.e. it
is an “Anosov C-system”.

Another quantitative measure of the “long time” chaotic behavior of the orbits of a hyper-
bolic map is provided by the properties of the time correlation functions of “observables”, i.e.
functions on the phase space, T2n. These properties define the mixing behavior of the map and
can be expressed by the fact that the connected correlation functions decay to zero, for long
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times. This, thus, raises the problem of computing them and, in particular whether they decay
exponentially, thereby defining the spectrum of mixing times.

On the other hand, another way to look at the chaotic properties of a dynamical system,
is to consider, if possible, the full set of its unstable periodic orbits. For large periods, the
corresponding periodic orbit should approach (this is called “shadowing”) the chaotic orbits,
which fill the phase space [22]. Fortunately, for our system, of n interacting Arnol’d cat maps,
the full set of unstable periodic orbits is produced by all the rational points of T2n, taken
as initial conditions. So the problem reduces to finding periodic orbits, with “very large”
periods. This problem is difficult, because the periods are random functions of the–common–
denominator, N, of the rational points, that are initial conditions [13].

In the following section we shall, thus, introduce the notion of mixing and the mixing time
for ergodic systems and we shall present the method for obtaining a bound on the mixing time
for the case of the single cat map; then we shall do the same calculation for two, symplecti-
cally coupled, cat maps, to see what are the issues that arise. Finally, we shall present the
generalization to n symplectically coupled maps, where, in addition to the dependence on the
coupling, the issue of the range becomes of interest.

3 The mixing time for one cat map

Mixing is the ubiquitous phenomenon of blending together distinct many body matter systems
from an initial inhomogeneous state to a final homogeneous uniform configuration [23]. The
mixing time is the characteristic transient period it takes for an initial local perturbation to
delocalize and spread in a many-body system attaining a uniform and homogenized final state.
What sets the scale of mixing time as well as its precise determination is both a conceptual
and a computational challenge.

The development of mathematical methods associated with the Ergodic Theory have been
brought into prominence [23,24] in the study of ”Ergodic Mixing” through the study of stochas-
ticity in measure-preserving dynamical systems.

For a discrete-time dynamical system, T : M → M , which preserves a probability measure
µ a ”strong mixing”’ condition can be formulated for two sets of points A and B on a constant
energy surface E , as follows:

µ (A ∩ T n (B))
n−→∞−−−−→ µ (A)µ (B) (3.1)

Intuitively the mixing condition states that a dynamical system is strongly mixing whenever
any two observable events A and B which occur at separate time instances specified by the
action of T n on B become independent in the infinite time separation limit n → ∞.

Equivalently its standard diagnostic quantifier is the decay of the correlation function for
any pair of observable functions f, g : M → C

Cn (f, g
∗) =

∫
f ◦ T n · g∗dµ −

(∫
fdµ

)
·
(∫

g∗dµ

)
n−→∞−−−−→ 0 (3.2)
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The correlation function Cn (f, g
∗) or the self-correlation for a single function Cn (f, f

∗) fall off
to zero either polynomially, exponentially (rapid mixing) or even super exponentially in the
long time limit n → ∞ [25, 26].

We shall show explicitly that the Arnol’d cat map on T2 is exponentially mixing and that
its mixing time is given by the expression

τmix(Arnol
′d) =

1

log ρ+
(3.3)

where ρ+ = (3 +
√
5)/2. This is, in fact equal to the inverse of the Kolmogorov–Sinai entropy

of the system. This result is known and in the next section we shall generalize it to the case of
symplectically coupled Arnol’d cat maps.

We start with some preparatory material: Any smooth and square integrable observable on
T2 has a uniformly convergent Fourier series

f(x) =
∑

k∈Z×Z

cke
2πik·x (3.4)

The set of all these observables defines a Hilbert space, H(T2), with inner product

〈f, g〉 =
∫

T2

d2x f(x)g∗(x) =
∑

k∈Z×Z

ck · d∗k (3.5)

where
g(x) =

∑

k∈Z×Z

dke
2πik·x (3.6)

and the norm is defined by

||f ||2 =
∫

T2

d2x f(x)f ∗(x) =
∑

k∈Z×Z

|ck|2 (3.7)

For any f, g ∈ H(T2) we have the Cauchy–Schwarz inequality

|〈f, g〉| ≤ ||f ||||g|| (3.8)

With these standard preliminaries, we proceed with the evaluation of the correlation functions
for the Arnol’d cat map.

Cn(f, g
∗) =

∫
d2x f(T nx)g∗(x)−

∫
d2x f(x)

∫
d2x g∗(x) = 〈f ◦ T n, g∗〉 − 〈f〉〈g∗〉 (3.9)

We follow the procedure sketched in ref. [15]. The idea is to choose as functions the eigen-
functions of a particular operator and show that, for these, |Cn(f, g

∗)| ≤ const× e−n/τ .
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Let us recall the argument: The ACM has eigenvalues

ρ± =
3±

√
5

2
(3.10)

and corresponding eigenvectors,

u± =
1√

1 + ρ±

(
1

ρ± − 1

)
(3.11)

Au± = ρ±u±. Since ρ+ρ− = 1 and they’re real (since the matrix is symmetric) ρ+ > 1 and
ρ− = 1/ρ+ < 1.

Now, let us define the operators

D± ≡ − i

2π
u±,IδIJ∂xJ

(3.12)

Since the torus, T2, is a compact manifold, the spectrum of the operators D± is discrete and
can be labeled by two integers, nI . Indeed, it is straightforward to check that the functions

ek(x) = e2πik·x (3.13)

with k ∈ Z× Z and x ∈ T2 are eigenfunctions of D± :

D±ek(x) = k · u±ek(x) (3.14)

Since the components of the u± are irrational numbers, k ·u± 6= 0 for any k ∈ Z×Z, therefore
the inverses, [D±]

−1,

[D±]
−1ek(x) =

1

k · u±

ek(x) (3.15)

are well-defined.
We proceed below with the details of the evaluation of the correlation function Cn(f, g

∗) in
a more explicit form.

First we split the Fourier sums of the functions f and g as follows:

Cn(f, g
∗) =

∑

k,l∈Z×Z

ckd
∗
l

∫

T2

d2x e2πik·T
nxe−2πil·x − c0d

∗
0 =

∑

k 6=(0,0)

ckd
∗
0

∫

T2

d2x e2πik·T
nx +

∑

l 6=(0,0)

c0d
∗
l

∫

T2

d2x e−2πil·x +
∑

k 6=(0,0),l 6=(0,0)

ckd
∗
l

∫

T2

d2x e2πik·T
nxe−2πil·x

(3.16)
The first two terms, that involve sums over k 6= (0, 0) or l 6= (0, 0) are zero (since the integrals
are δ−functions on k = (0, 0) and l = (0, 0) respectively), therefore only the last term survives:

Cn(f, g
∗) =

∑

k 6=(0,0),l 6=(0,0)

ckd
∗
l

∫

T2

d2x e2πik·T
nxe−2πil·x (3.17)
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Therefore, the operators D± ≡ −(i/(2π))u± · ∇x act on the function f(x) = e2πik·(A
nx) as

D±e
2πik·(Anx) = u± · kρn±e2πik·(A

nx)

as can be checked by direct calculation.
These calculations now lead to the following statement:

Proposition 1.

∫

T2

d2xD±f(A
nx)D−1

± g∗(x) = −
∫

T2

d2x f(Anx) g∗(x)

which can be proved using integration by parts.

Since any function on the torus can be expanded in plane waves, we deduce that the corre-
lation function of any two functions on the torus, that are sufficiently smooth for their Fourier
expansions (and those of their derivatives) to converge, will show mixing behavior with the
same mixing time.

Using Proposition 1, this can be established as follows:

Cn(f, g
∗) = λn

±

∫

T2

d2x



∑

k 6=(0,0)

ckk · u±e
2πik·Tn

x





∑

l 6=(0,0)

d∗
k

1

l · u±

e−2πil·x


 (3.18)

We now apply the Cauchy-Schwarz inequality:

|〈f, g∗〉|2 ≤ ||f ||2||g∗||2 (3.19)

to deduce that

|Cn(f, g
∗)|2 ≤ ρ2n±

∫

T2

d2x

∣∣∣∣∣∣

∑

k 6=(0,0)

ckk · u±e
2πik·x

∣∣∣∣∣∣

2 ∫

T2

d2x

∣∣∣∣∣∣

∑

l 6=(0,0)

d∗
k

l · u±

e

−2πil·x

∣∣∣∣∣∣

2

(3.20)

The integrals do not depend on n, so the best bound on how |Cn(f, g
∗)| vanishes, as n → ∞,

is obtained in the form
|Cn(f, g

∗)| ∼ e−n log ρ+ = e−nλ+ (3.21)

as n → ∞.

4 Multiple mixing for the single Arnol’d cat map

We now proceed to extend the notion of mixing to any number of observables in both the er-
godic theory of measure preserving transformations as well as to their corresponding diagnostic
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quantifiers of decay of higher order correlation functions of observables. This was pioneered by
Rokhlin [18] and has since been the focus of considerable activity.

Let T be the measure preserving transformation of a dynamical system Γ on a phase space
Σ. The generalized 3-strong mixing condition for any three observables or measurable sets A,
B , and C take the form

lim
m,n→∞

µ
(
A ∩ TmB ∩ Tm+nC

)
= µ (A)µ (B)µ (C) (4.1)

The strong mixing condition for the more general case of l−fold mixing takes the form

lim
α1,...,αk→∞

µ
(
A1 ∩ T α1A2 . . . T

∑
k−1
i=1 αiAi

)
=

k∏

i=1

µ (Ai) (4.2)

In the equivalent language of correlations functions we define the l−fold mixing correlation
function of l + 1 observables, fi(x), i = 1, 2, . . . , l + 1, l = 1, 2, . . . , x ∈ Σ as follows:

Cn1,n2,...,nl
(f1, . . . , fl+1) =

∫

Σ

dµ(x)f1(x)f2(T
n1x)f3(T

n1+n2x) · · ·fl+1(T
n1+n2+···+nlx)−

l+1∏

i=1

∫

Σ

dµ(x) fi(x)

(4.3)
where n1, n2, . . . , nl = 1, 2, . . .

We say that the dynamical system (Γ, T,Σ) exhibits l−fold mixing iff

Cn1,n2,...,nl
(f1, . . . , fl+1) → 0 (4.4)

as (n1, n2, . . . , nl) → ∞, for observables {fi(x)}i=1,...,l+1 which are smooth enough and square
integrable, as well as all their derivatives.

We are interested in the case when T is the Arnol’d cat map and Σ = T
2, the two-dimensional

torus with radii equal to 1 and measure dµ(x) = d2x. In this section we shall show that the
ACM exhibits l−fold mixing for every integer l = 1, 2, . . . and compute the corresponding
mixing times, generalizing the calculations of the previous section.

To this end, we expand the fi(x) in Fourier series,

fi(x) =
∑

k∈Z×Z

c
(i)
k
e2πik·x (4.5)

and extract the constant part:
fi(x) = c

(i)
0

+ f̃i(x) (4.6)

where

c
(i)
0

=

∫

T2

d2x fi(x) (4.7)
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and
f̃i(x) =

∑

k 6=(0,0)

c
(i)
k
e2πik·x (4.8)

We apply this decomposition only to f1(x) and obtain the following expression for Cn1,n2,...,nl
(f1, . . . , fl+1) :

Cn1,n2,...,nl
(f1, . . . , fl+1) = c

(1)
0

∫

Σ

d2x f2(T
n1x) · · ·fl+1(T

n1+···+nlx)+

∫
d2x f̃1(x)f2(T

n1x) · · ·fl+1(T
n1+···+nlx)−

l+1∏

i=1

c
(i)
0

(4.9)

The first integral in this expression can be rewritten, upon performing the change of variables,
x → y = T n1x, that leaves the measure invariant, as

∫

Σ

d2x f2(T
n1x) · · ·fl+1(T

n1+···+nlx) =

∫

Σ

d2x f2(x) · · ·fl+1(T
n2+···+nlx) =

Cn2,n3,...,nl
(f2, f3, . . . , fl+1) +

l+1∏

i=2

c
(i)
0

(4.10)

whence we deduce the “recurrence relation”

Cn1,...,nl
(f1, f2, . . . , fl+1) = c

(1)
0
Cn2,n3,...,nl

(f2, f3, . . . , fl+1) +

∫
d2x f̃1(x)f2(T

n1x) (4.11)

What is noteworthy is that the product of the constant terms has been eliminated.
If we now assume that Cn2,...,nl

(f2, . . . , fl+1)−the l− 1st order correlation function, tends to
0 as n2, . . . , nl → ∞, it remains to prove that the last term in eq. (4.11), also, tends to 0, as
n1, n2, . . . , nl → ∞.

To this end we shall employ the method of the previous section, making use of the self-
adjoint differential operator,

Du =
1

2πi
u · ∂ (4.12)

where ∂ = (∂x1 , ∂x2) and u = (u1, u2) is the eigenvector of the ACM that corresponds to the
largest eigenvalue of the ACM. The inverse differential operator, [Du]

−1 acts on the complex
functions of the torus that don’t have a constant term. This is the reason it’s useful to extract
it by writing the function f1(x) as f1(x) = c

(1)
0

+ f̃1(x).
We notice, now, that

In1,...,nl
≡
∫

T2

d2x f̃1(x)f2(T
n1x) · · ·fl+1(T

n1+...+nlx) = −
∫

T2

d2x
(
[Du]

−1f̃1(x)
)
Du (f2 · · · fl+1)

(4.13)
where

Dufi(x) =
∑

k∈Z×Z

c
(i)
k
(k · u)e2πik·x (4.14)
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for i = 2, . . . , l + 1 and

D−1
u
f̃1(x) =

∑

k∈Z×Z

c
(1)
k

1

k · ue2πik·T
n
x (4.15)

as well as
Dufi(T

nx) = λn
∑

k∈Z×Z

c
(i)
k
(k · u)e2πik·x (4.16)

We can now evaluate the action of Du on the product f2 · · · fl+1; we find

Du

[
f2(T

n1+n2x)f3(T
n1+n2+n3x) · · ·fl+1(T

n1+n2+···+nl+1x)
]
=

l+1∑

m=2

Fl,m(x)Dufm(T
n1+n2+···+nmx)

(4.17)
where

Fl,m(x) =
l+1∏

i=2,i 6=m

fi(T
n1+n2+···+nix) (4.18)

These imply that eq. (4.19) can be written as

Du

[
f2(T

n1+n2x)f3(T
n1+n2+n3x) · · ·fl+1(T

n1+n2+···+nl+1x)
]
=

l+1∑

m=2

Flm(x)ρ
n1+n2+···+nmf ′

m(T
n1+n2+···+nmx)

(4.19)
In order to obtain the desired result, that the integral in eq. (4.13) does vanish–and, what’s
much more interesting, how does it vanish–in the limit n2, n3, . . . , nl → ∞, we apply the triangle
and the Cauchy–Scharz inequalities repeatedly:

|In1,n2,...,nl
|2 ≤ ||D−1

u
f̃1||2||Du[f2 · · · fl+1]||2 ≤ ||D−1

u
f̃1||2

l+1∑

m=2

ρ2(n1+···+nm)||Flm(x)||2||f ′
m||2

(4.20)
The norm of Flm can be bounded as

||Flm(x)||2 ≤
l+1∏

i=2,i 6=m

||f ◦ T n1+n2+···+ni−1x||2 (4.21)

We notice that due to the measure preserving properties of T the various factors do not depend
on n1, n2, . . . , nl :

||f ◦ T n1+n2+···+ni−1x||2 =
∫

d2x |fi(T n1+n2+···+ni−1x)|2 =
∫

d2x |fi(x)|2 (4.22)

The same occurs for the ||f ′
m||2.
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Collecting together all terms we obtain the effective bound using the eigenvector u−, cor-
responding to the eigenvalue ρ− < 1, therefore

|In1,...,nl
|2 ≤

l+1∑

m=1

dm ρ
2(n1+n2+···+nm)
− (4.23)

where dm contain all numerical factors.
To leading order, therefore, we find that

|In1,...,nl
|2 → d1ρ

2n1
− = d1e

−2n1 log λ+ (4.24)

thereby completing the induction hypothesis.
That this term, indeed, vanishes, in the long time limit, guarantees the “sufficient” part of

Rokhlin’s conjecture, that 2-mixing induces l−fold mixing for any l > 2.

5 The mixing time for n symplectically coupled Arnol’d

cat maps

It is, now, interesting to examine the mixing properties of the system of n > 1 coupled Arnol’d
cat maps. It is known that hyperbolic (Anosov) linear maps on compact phase spaces exhibit
strong, as well as l−fold (for all l = 1, 2, . . .), mixing. In this section, therefore, we shall focus on
the effects the coupling has on the mixing properties of such maps, generalizing the calculation
for the single map, that was studied in section 3 (the case of l−fold mixing is a straightforward
generalization).

The idea is to use the differential operators,

Di
u
=

1

2πi
ui · ∂ =

1

2πi
ui
a∂a (5.1)

that are the generalization for n degrees of freedom of the differential operators (4.12) that were
used for computing the mixing time of one cat map. Here ∂a = ∂/∂xa and a = 1, 2, . . . , 2n
labels the point on the 2n−dimensional torus. ui is an eigenvector of the evolution operator

M =

(
I C

C I + C
2

)
(5.2)

where the symmetric, n× n integer matrix C is parametrized as

C = K +G(P+ P
T) (5.3)

for the case of the closed chain of n maps and K and G are diagonal matrices.
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As for the single map, we are interested in bounding the correlation function

Cr(f, g
∗) =

∫

T2n

d2nx f(Mrx)g∗(x)−
∫

T2n

d2nx f(x)

∫
d2n g∗(x) (5.4)

for f, g ∈ L2(T2n), which have continuous and square integrable partial derivatives.
We proceed as follows: We observe that to get the strong mixing property as well as the

rate of convergence (the mixing time), it is enough to use a straightforward generalization of
the method used in for the single map, viz. we write

f(x) =
∑

k∈Z2n

cf
k
e2πik·x ≡ cf

0
+ f̃(x)

g(x) =
∑

k∈Z2n

cg
k
e2πik·x ≡ cg

0
+ g̃(x)

(5.5)

whence we, immediately, find that

Cr(f, g
∗) = c

(g)
0

∗
∫

d2nxf(Mrx) +

∫
d2nxg̃(x)∗f(Mrx)− c

(f)
0 c

(g)
0

∗
=

c
(g)
0

∗
∫

d2nx f̃(Mrx) +

∫
d2n x g̃∗(x)f(Mrx) =

∫
d2nx g̃∗(x)f(Mrx)

(5.6)

Now we carry out the same procedure as for the case of one map, by acting now with the
product of all the D

(i)
u , i = 1, . . . , n. Upon integrating by parts as for the case of one map, we

find, this time, that

Cr(f, g
∗) = (−)n

∫
d2nx [D(1)

u
−

]−1 · · · [D(n)
u
−

]−1g̃(x)∗D(1)
u
−

· · ·D(n)
u
−

f(Mrx) =

(−)n
∫

d2nx
∑

k 6=0

1
∏n

i=1 u
(i)
− · k

cg
k

∗
e−2πik·x

n∏

i=1

λ
(i)
−

∑

l∈Z2n

cf
l
u

(i)
− · l e2πil·Mr

x
(5.7)

Using the Cauchy-Schwarz inequality, we obtain the bound

|Cr(f, g
∗)| ≤

(
n∏

i=1

ρ
(i)
−

)r

||˜̃g||||˜̃f || (5.8)

where
˜̃g =

∑

k 6=0

1
∏n

i=1 u
(i)
− · k

cg
k
e2πik·x

˜̃
f =

∑

l 6=0

(
n∏

i=1

u
(i)
i · l

)
cf
l
e2πil·x

(5.9)

Finally, we observe that the product over the eigenvalues can be written as
(

n∏

i=1

ρ
(i)
−

)r

= e−r
∑

n

i=1 log ρ
(i)
+ = e−rSK−S (5.10)
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where SK−S is the Kolmogorov–Sinai entropy of the system of n coupled maps.
Therefore, we conclude that

|Cr(f, g
∗)| ∼ e−rSK−S , (5.11)

as r → ∞, and this allows us to identify the mixing time of the system of n coupled ACM maps
with 1/SK−S :

τmixing(ACM lattice) =
1

SK−S
(5.12)

The steps of this computation can be straightfowardly generalized to the case of so–called
“l−fold mixing”, as was done for the single cat map in the previous section.

These bounds hold even for the case of observables with square integrable first order partial
derivatives. In the case that higher order derivatives are square integrable, we can use corre-
spondingly higher powers of the differential operators D

(i)
u
−

and obtain, correspondingly, better
bounds.

6 Conclusions and outlook

In this work we have studied, in detail, the large time asymptotic behavior of the correlation
functions of observables, that describe the mixing properties of a special class of automorphisms,
those of coupled Arnol’d cat maps, which are both symplectic and hyperbolic, on toroidal phase
spaces and have computed the mixing time, in closed form. We have shown that the mixing
time is given by 1/SK−S, where SK−S is the Kolmogorov-Sinai entropy.

In the literature numerical studies of nonlinear systems with many degrees of freedom have
shown similar dependence of the mixing time on the Kolmogorov-Sinai entropy; in our case
we have an analytic result, which can be used to study the problem of relaxation of chaotic
systems, subject to localized initial perturbations.

At the classical level it seems that there isn’t any bound on how small the mixing time of the
system can be; on the other hand, at the quantum level, studies of many-body quantum systems
and the evolution of localized perturbations of black hole horizons seem to indicate that such
a bound does, in fact, exist and is given by log SBH, where SBH is the black hole entropy. Since
the correspondance principle enforces that the short time behavior of the relaxation processes
for quantum systems is given by the classical mixing properties of the system, we expect that
our work is relevant for understanding the crossover of mixing from the quantum to the classical
system.

Our calculation is, also, relevant for the so-called Rokhlin conjecture, for which we clarify
the conditions under which it may hold.

Our results allow us to focus on the conditions for physical systems, that can minimize the
mixing time, in the classical limit and set the stage for addressing how the mixing time of
classical many-body systems is related to the scrambling time of the corresponding quantum
systems. This is of relevance for understanding, on the one hand, transport properties of novel
quantum materials, as well as the properties of quantum black holes [2,3,27]. To this end it is
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necessary to construct the corresponding unitary evolution operators for coupled Arnol’d cat
maps, going beyond our previous work [9], for the case of the single Arnol’d cat map.
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[22] D. Auerbach, P. Cvitanović, J.-P. Eckmann, G. Gunaratne, and I. Procaccia, “Exploring
chaotic motion through periodic orbits,” Physical Review Letters 58 no. 23, (1987) 2387.

[23] I. P. Cornfeld, S. V. Fomin, and Y. G. Sinai, Ergodic theory, vol. 245. Springer Science &
Business Media, 2012.

[24] Y. G. Sinai, Introduction to ergodic theory, vol. 18. Princeton University Press, 1976.

20

http://dx.doi.org/10.1140/epjc/s10052-018-5850-9
http://arxiv.org/abs/1608.07845
http://dx.doi.org/10.3842/SIGMA.2021.004
http://arxiv.org/abs/1908.06641
http://arxiv.org/abs/arXiv:2208.03267
https://math.univ-lille1.fr/~debievre/Publications/procBialo95new.pdf
https://www.math.toronto.edu/pkosenko/other/finalproject.pdf
http://www.jstor.org/stable/2311099


[25] V. Baladi, Decay of correlations. In “Advances in the Mathematical Sciences”. American
Mathematical Society, 2001. https://books.google.gr/books?id=7-nWvgEACAAJ.

[26] M. Pollicott, Exponential Mixing: Lectures from Mumbai, pp. 135–167. Springer
Singapore, Singapore, 2019. https://doi.org/10.1007/978-981-15-0683-3_4.

[27] J. Maldacena, S. H. Shenker, and D. Stanford, “A bound on chaos,” Journal of High
Energy Physics 2016 no. 8, (2016) 1–17.

21

https://books.google.gr/books?id=7-nWvgEACAAJ
http://dx.doi.org/10.1007/978-981-15-0683-3_4
https://doi.org/10.1007/978-981-15-0683-3_4

	Introduction and Motivation
	Interacting Arnol'd cat maps from symplectic couplings of n, k-Fibonacci sequences
	The mixing time for one cat map
	Multiple mixing for the single Arnol'd cat map
	The mixing time for n symplectically coupled Arnol'd cat maps
	Conclusions and outlook

