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Abstract  39 

Volatile organic compounds (VOCs) may help detect cancer tumour. This study addressed this question, as well 40 

as two methodological issues: 1) repeatability, comparing VOCs profiles obtained with two Solid Phase Micro 41 

Extraction (SPME) fibers used simultaneously; 2) detectability of cancer VOCs biomarkers, comparing profiles 42 

obtained following 1h versus 24h exposure of SPME fibers.  We analyzed VOCs composition of soiled bedding 43 

obtained from a lung adenocarcinoma mouse model in which cancer was induced by doxycycline ingestion. We 44 

compared the VOCs profile of soiled bedding of cancerous (CC) and non-cancerous (NC) mice, before (T0), 45 

after two-weeks (T2) and after twelve weeks (T12) doxycycline ingestion. The results indicate : 1) qualitative 46 

and quantitative consistency in VOCs detection by two distinct SPME fibers ; 2) although more VOCs were 47 

detected following a 24h compared to 1h SPME exposure, none of the former molecules were related to cancer; 48 

3) doxycycline impacted VOCs  emissions in both CC and NC mice; 4) cancer impacted four VOCs at T12 only 49 

: the benzaldehyde which showed higher levels in CC mice and the hexan-1-ol and two mice pheromones, the 2-50 

sec-butyl-4,5-dihydrothiazole and the 3,4-dehydro-exo-brevicomine, which showed lower levels in CC mice. 51 

Our study points out that the use of two SPME fibers and an extraction duration of 1h may be considered a good 52 

compromise allowing detection of cancer biomarkers while easing bench constraints. 53 

 54 

Key Worlds- SPME, repeatability , odour signature, cancer biomarkers, EFGR cancer, Mus musculus.  55 

 56 

 57 

 58 

59 

Electronic copy available at: https://ssrn.com/abstract=4091348



3 
 

1. Introduction 60 

Volatile organic compounds (VOCs) are carbon-based small molecules, which are characterized 61 

by their volatility at ambient temperature. During the last decades, increasing attention has been devoted 62 

to exploring the relevance of VOCs emitted by the body as potential biomarkers of pathologies. VOCs 63 

are emitted and can be analysed from breath, skin, saliva, sweat, blood, urine and faeces.  Nowadays, 64 

VOCs are commonly used as biomarkers of various diseases [1,2] such as fibrosis [3], asthma [4], 65 

Alzheimer disease [5], diabetes and tuberculosis [6,7], and an increasing attention has been given at 66 

using them for cancer detection [8]. 67 

 VOCs extraction involves the use of effective trapping methods, of which Solid-Phase Micro-68 

Extraction (SPME) is the most commonly used [9]. For instance, this technique has been successfully 69 

used to detect VOC biomarkers in the context of diseases such as gastrointestinal disorders [10], cholera 70 

[11], tuberculosis [12] and cancers [13–15]. Accuracy and repeatability of VOC extraction strongly rely 71 

on the characteristics of the SPME fiber used [16] and on extraction conditions such as temperature and 72 

duration [17–19]. Some journals recommend using a single SPME in comparative studies, arguing that 73 

the use of more than one fiber in such studies may result in biased interpretations. However, when a 74 

study includes a large number of samples, it may be unpractical to use a single fiber for all experiment, 75 

and multiple successive use of the same fiber may also induce measurements biases due, for example, 76 

to wear. Another methodological issue is sampling duration. Emission of VOCs from biological 77 

substrate can be dynamic [20] and, in order to account for emission variations, comparative studies need 78 

to homogenize sampling duration. A short sampling duration may not allow capturing the diversity of 79 

VOCs emitted by the substrate nor detecting components present in very low concentrations, partly 80 

because competition between molecules present in the headspace may disadvantage the adsorption of 81 

components present in relatively small proportions [21–23].  82 

In the context of investigations of variation in VOCs composition induced by lung cancer in mice, the 83 

present study addressed repeatability of results obtained when sampling involved two different SPME 84 

fibers, and the impact of sampling duration on the detection of changes in the VOCs composition of 85 

mice soiled bedding during the course of tumour development. We also assessed whether VOCs induced 86 

by lung cancer were better detected after a 24h as compared to a 1h SPME exposure, and sought to 87 

identify murine lung adenocarcinoma VOC biomarkers. The odour sources were soiled beddings 88 

obtained from a genetically modified mouse model suffering from lung cancer, and considered an early 89 

and a late stage of tumour development. 90 

2. Material and methods  91 

 92 
2.1 Ethical clearance  93 

 94 
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All the precautions for animal welfare were followed during our experiments, and our study received 95 

ethic clearance from the Ethical Committee for Animal Experimentation (French Ministry of Higher 96 

Education, Research and Innovation) number 1645-22123.  97 

2.2 Animals  98 
 99 

Two genotype lines were involved in this study: WT and CCSP-rtTA / EGFRT790M/L858R  [24,25].  The 100 

WT mice, lacking both CCSP-rtTA and EGFRT790M/L858R transgenes, do not develop any tumour upon 101 

doxycycline (antibiotic) induction, hereafter non-cancerous (NC) mice, and the CCSP-rtTA / 102 

EGFRT790M/L858R mice, carrying both transgenes, develop lung adenocarcinoma upon doxycycline 103 

induction, hereafter cancerous (CC) mice. To induce the EGFRT790M/L858R in a lung specific manner, 104 

the mice received a doxycycline supplemented food (1mg/kg). The treatment lasted 12 weeks starting 105 

when the mice were 13 weeks old.  106 

NC and CC male mice were obtained from the IRCM (Montpellier Cancer Research Institute) at the 107 

age of 6 weeks and maintained at the breeding facilities of the IRD (Institute of Research and 108 

Development) in Montpellier. Before the start of the experiment they were maintained in groups of 2 109 

to 4 mice in transparent plastic cages (26.8cmW*21.5cmL*14.1cmH). Each cage contained sawdust, a 110 

cellulose square, hay and a cardboard tunnel. The mice were observed and weighted once a week 111 

during the entire experimental period to monitor their health. All mice were euthanized at the end of 112 

the experiment at the IRCM at 25 weeks-of age. The non-cancerous status of all NC and the cancerous 113 

status of all CC mice were confirmed by histopathological analysis of haematoxylin & eosin stain of 114 

whole lung sections obtained after necropsy.   115 

2.3 Odour source sampling  116 

Odour sources were two-week old soiled bedding of CC and NC mice.  Each mouse was isolated at 117 

the age of 10 weeks in a cage containing 130g sawdust and a cellulose square. The housing conditions 118 

of all donors were homogenized as much as possible, and all mice were given the same quantity of 119 

food. Every two weeks, all the soiled bedding of every cage was collected in a plastic bag and kept at -120 

20 ° C and replaced by cleaned bedding (i.e. 130g sawdust).  Soiled bedding analyzed in this study 121 

were pools of bedding obtained from 3 to 4 different mice. A sample of clean sawdust was also 122 

collected in a plastic bag and frozen to serve as a control for the VOCs analyses.  123 

 124 

2.4 VOCs extraction 125 
 126 
 PMDS-DVD (polydimethylsiloxane and divinylbenzene) SPME fibers, recently purchased, and which 127 

had never been used before, were used in this study (thickness 65μm, Stable Flex 24Ga, Sigma-128 

Aldrich, Bellefonte, USA). The odour samples were processed as follows. A frozen soiled bedding 129 

was thawed while being maintained on ice during the entire procedure. Then a 3g aliquot was 130 
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transferred into a 125 ml glass vial, which was then sealed with a rubber septum. The VOCs sampling 131 

phase took place in an oven maintained at 22°C. The SPME fiber was introduced into the vial after 132 

piercing the septum with a needle after a 3min equilibration time, its position was always the same, 133 

~2cm above the stimulus (Fig. 1).  134 

 135 

2.5 VOCs characterisation by Gas Chromatography- Mass Spectrometry 136 
 137 

The SPME extract was injected into a Gas Chromatography - Mass Spectrometry (GC-MS), quadrupole 138 

mass spectrometer Shimadzu QP2010-SE (Shimadzu, Kyoto, 282 Japan) for further identification and 139 

relative quantification of its chemical content. Desorption was achieved by inserting the SPME fiber 140 

into the Ultra Inlet liner (for SPME/Purge and trap, 0.75mmID, Agilent CrossLab, Santa-Clara, USA) 141 

placed in Split/Splitless GC-MS injector heated at 250°C. The injection was made using a split ratio of 142 

1:4 to allow a Gaussian form of low boiling point compounds and so, a better separation and further 143 

integration. The GC was equipped with an Optima 5-MS fused silica capillary column (30 m x 0.25 mm 144 

x 0.25 µm film thickness, Macherey-Nagel, Düren, Germany). Helium was used as the carrier gas (1 145 

ml.min-1). The GC temperature was maintained at 40 °C for 2 min, after which the temperature increased 146 

by 5°C every minute till it reached 175 °C, and then by 12°C/min. till it reached 220°C.  147 

2.6 Identification of the VOCs present in the extracts  148 

Spectra were analysed with the resident software (GCMS Solution, Shimadzu, Kyoto, Japan). 149 

Identification of compounds was based on chromatograms analysis of peak retention time (RT) and 150 

examination of their mass spectra. Retention indices (RI) were calculated using as reference the RI of a 151 

series of n-alkanes  injected in the same apparatus (Alkanes standard solution, 04070, Sigma-Aldrich). 152 

Identification of compounds was made by both spectral and RI comparison with reference databases 153 

(NIST 2011, Wiley 292 Registry Ninth; e.g. Adams, 2007, Pubchem, 293 154 

https://pubchem.ncbi.nlm.nih.gov/). Synthetic compounds were also used as a reference to confirm the 155 

identity of some VOCs. The peak surface area of each compound was based on the Total Ion Current 156 

Chromatogram (TICC). To be conservative, we excluded from the analyses compounds that were 157 

present in both our controls (clean bedding) and our biological samples, even when they were in higher 158 

proportion in the biological samples.  159 

Compounds identified with their mass spectra but present in the form of traces could not be quantified 160 

with the above described method and were given an arbitrary value corresponding to 10% of the surface 161 

area calculated for the smallest peak identified in the entire dataset. Peak areas for all compounds were 162 

then summed per chromatogram, and their relative proportion calculated as the ratio of the compound 163 

surface area divided by the sum of the surface areas of all other compounds identified in that 164 

chromatogram. 165 
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2.7 Testing the repeatability of odour sampling 166 

 167 

We tested the repeatability of odour sampling among two different SPME fibers (F1 and F2) 168 

pertaining to the same new pack of 3 fibers (Sigma-Aldrich). The fibers were conditioned following 169 

the manufacturer's recommendations, i.e. 30 minutes at 250°C. They were simultaneously introduced 170 

into a glass bottle containing the odour sample (3g of soiled bedding of 13-weeks old NC mice, Fig.1) 171 

and were exposed at the same time to the bottle headspace for 1h. The distance from the odour sample 172 

was controlled to be the same for the two fibers (~2cm), and the distance between the two fibers was 173 

~1.5 cm. The same procedure was repeated at seven occasions with the same fibers and the aliquots 174 

extracted were obtained from the same odour source, maintained at -20° between samplings. The 175 

seven occasions corresponded to the first, 8th, 15th, 22th, 30th, 39th and 45th use of each fiber. 176 

 177 

2.8 Testing the influence of sampling duration  178 

We analyzed the qualitative and quantitative variations of VOCs obtained from 18 samples of soiled 179 

bedding sampled with two fibers simultaneously, one exposed to the headspace for 1h the other for 180 

24h.  The odour sources were obtained from CC and NC mice at three experimental conditions: T0, 181 

i.e. before ingestion of doxycycline, T2, i.e. after two weeks’ doxycycline treatment, and T12, i.e. after 182 

12 weeks’ doxycycline treatment.  (Fig. 1). We proceeded as follows, two SPME fibers were inserted 183 

into the same glass bottle containing soiled bedding and were exposed simultaneously to an odour 184 

source. The two fibers were placed at the same distance from this source and at a 1cm-distance from 185 

each other.  After 1h exposure, one of the fibers was removed, while the other was left for another 23h. 186 

The procedure for the 18 samples lasted three days, and each day an additional glass bottle containing 187 

clean bedding was also sampled following the same protocol and served as a control.  188 

2.9 Identifying VOCs biomarkers of murine lung cancer 189 

 190 

The same 18 odour sources as the above were processed. However, here each of the sources was 191 

represented by three replicates to control for sampling bias (i.e. collection of 3g aliquots for VOCs 192 

extraction). All together we analyzed 54 biological samples, In addition, a sample of clean bedding 193 

was extracted every day to serve as a control. Two SPME fibers were used alternatively for the 194 

purpose of this analysis, randomizing their use among NC and CC.  195 

 196 

2.10 Statistical analyses 197 
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All statistical analyses were performed with Rstudio version 3.4.4 [26]. We used the following packages: 198 

ade4 [27], vegan [28], mixOmics [29], ggplot2 [30], RVAideMemoire [31], Hotelling [32]. Variation 199 

of the relative proportions of VOCs was assessed with a multivariate approach using redundancy 200 

analyses (RDAs) followed by permutation F tests [33] and the R package vegan [28]. Relative 201 

proportions were CLR-transformed prior to RDAs, and as our data included zeroes, a small constant of 202 

an order of magnitude smaller than the smallest non-zero value was added to all values prior to the 203 

transformation (i.e. 0.01 if the smallest non-zero value is 0.1). Factors included in RDAs depended on 204 

the questions tested. The first model questioned the consistency of extraction by the two SPME fibers 205 

used simultaneously at 7 sampling occasions, and included “fiber identity” and “sampling occasions” as 206 

factors. The second RDA model addressed the impact of sampling/extraction duration on detection of 207 

cancer biomarker VOCs. Two models were considered. Because the number of VOCs detected after 24h 208 

extraction was higher than that after 1h extraction, the first model analysed only the data obtained after 209 

24h and sought to identify presence of VOCs induced by cancer tumour, not detected after 1h extraction. 210 

The model included experimental conditions (T0, T2, T12), health status (CC, NC) and their interactions 211 

as factors. The second model considered the VOCs identified both after 1h and 24h sampling and 212 

addressed whether quantitative differences existed. This model included duration (1h/24h), 213 

experimental conditions (T0, T2, T12), and health status (CC, NC) and their interactions as factors.  214 

Finally, the entire data set (56 samples corresponding to 3 replicates of each of 18 odour sources) 215 

obtained after 1h extraction was analysed using four RDA models to identify candidate cancer VOCs. 216 

In the two first models we addressed the impact of experimental condition (T0, T2 and T12) on VOCs 217 

composition for each health status separately. This model included experimental conditions as a fixed 218 

factor and replicates (3 per sample) and fiber identity (2 fibers used) as random factors (condition). The 219 

third model asked whether the VOCs composition of NC and CC at T0 was similar and included health 220 

status (NC/CC) as a fixed factor and replicates (3 per sample), and fiber identity (2 fibers used) as 221 

random factors (condition). The last model excluded the VOCs identified as different between NC and 222 

CC before the doxycycline treatment (at T0) and addressed whether the rest of the VOCs differed 223 

between health status, experimental conditions and their interactions (with replicate and fiber identity 224 

as random factors).  225 

When relevant, we identified and listed the VOCs showing an absolute correlation coefficient > 0.8 with 226 

the RDA constrained axis associated with significant effects in a given model.   227 

 228 

3. Results 229 

 230 

3.1 Consistency of VOCs sampling across fibers and impact of multiple samplings 231 
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 232 

We detected 89 compounds (Table.S1) in the technical controls (clean bedding). When compounds 233 

from this list were also detected in the biological samples at similar amounts (soiled bedding), they 234 

were not considered in the final list of compounds. The composition of the volatile profiles specific to 235 

the biological samples is given in Table.1. We identified the same 17 compounds with the two fibers 236 

(Table.1). Quantitative variation was assessed with a RDA analysis including the 17 compounds with 237 

“fiber identity” (2 modalities) and “sampling occasions” (7 modalities) as factors (model 1: Table 3). 238 

VOCs composition did not vary significantly with fiber identity (F= 0.957, P = 0.395), while it did 239 

between sampling occasions (F= 34.185, P < 0.001) (model 1 : Table.2). Almost all compounds, 240 

except two, showed variations in proportions over time (Figure S1). However, these variations were 241 

not linear and did not seem to relate to fiber wear. Although the same quantity of soiled bedding from 242 

the same odour source was analysed each time, variation in the quantity and quality of urine or faeces 243 

present in each aliquot might be the source of VOCs variation. These results further suggested that it 244 

might be important to use multiple replicates of every sample when comparing relatively small 245 

quantities (here 3g) of a complex substrate such as soiled bedding. 246 

 247 

3.2 Influence of sampling duration on VOCs’ detection: 1h versus 24h  248 

 249 

The same 17 compounds as in the first experiment were detected after 1h extraction and the 17 VOCs 250 

plus 11 others after 24h extraction (Table.S2, Fig. 3). A RDA was first performed to address if among 251 

the 11 VOCs only found after 24h extraction any or all were related to cancer tumour development. We 252 

designed a model considering as fixed factors experimental conditions (T0, T2, T12), health status (CC, 253 

NC) and their interaction (model 2: Table.2). VOCs detected only after a 24-h extraction did not differ 254 

between NC and CC nor interactively with experimental conditions. Variation in VOCs composition 255 

differed significantly only between experimental conditions (F=3.910, P < 0.001), pointing out 256 

significant differences in the VOCs profiles at T0 compared to T2 and T12 (model 2 : Table.2). We 257 

then analysed the 17 VOCs common to the 1h and 24h extractions, and tested the same model with an 258 

additional fixed factor, sampling duration, and its interactions with the other two factors mentioned 259 

above (model 3 : Table 2). The results indicated a significant influence of the three main factors, but 260 

no interaction between sampling duration and health status (Fig.4) further suggesting that 24h extraction 261 

was not necessary to address the impact of cancer on the mice VOCs profile. 262 

3.3 Cancer influence on VOCs production 263 

  264 
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We did not detect qualitative differences in VOCs composition between CC and NC mice (Table.3). To 265 

address possible quantitative differences, we proceeded in several steps. First we tested the impact of 266 

experimental conditions within the CC and within the NC samples. The two RDA analyses comprising 267 

replicates (3 per sample) and fiber identity (2 fibers used) as random factors, and experimental 268 

conditions (T0, T2 and T12) as fixed factor, indicated that the random factors explained a relatively 269 

negligible part of the total variation (9.60 % and 2.60% respectively for NC and for CC). The 270 

experimental conditions explained 24.87 % (NC) and 57.85% (CC) of the total variance. The VOCs 271 

composition varied significantly between the three experimental conditions, both for NC and CC mice 272 

(NC: F = 4.174 ; CC : F = 16.085 ;  P < 0.001; post hoc tests all P< 0.001; model 4 & 5 :  Table.2), 273 

further indicating the influence of experimental conditions on the VOCs profiles of both NC and CC 274 

mice. 275 

The second step consisted in evaluating the impact of cancer. To address this question, we first verified 276 

if the VOCs composition of CC and NC mice differed significantly before the start of the doxycycline 277 

diet, at T0, which was the case (model 6 : Table.2) indicating that the two genotypes had a different 278 

VOCs profile at the start of the experiment. Seven compounds had an absolute correlation > 0.8 with 279 

the RDA main axes, and hence were identified to be involved in the differences between CC and NC at 280 

T0 (Table. 3). To further address the impact of cancer we removed these molecules from the data set 281 

and performed a RDA analysis including only the 10 VOCs that did not differ between CC and NC mice 282 

at T0 (model 7 : Table.2 and Table.4).  The two random factors, replicates and fiber identity, accounted 283 

for a negligible part of the total variance, respectively, 3.32% and 1.05%. Both experimental conditions 284 

(T0, T2 and T12), health status (NC and CC) and their interaction were found to be significant (all P < 285 

0.005; Table.2). As expected, we did not detect a significant difference in VOCs’ composition between 286 

CC and NC mice at T0 (P=0.622)(Table.4). At T2 the two mice types (CC, NC) were also characterised 287 

by the same VOCs profile (P=0.495) but different from T0 (P<0.001), suggesting that at T2 only the 288 

doxycycline diet had altered the VOCs composition and that it influenced similarly CC and NC mice. 289 

The VOCs profiles of NC and CC were significantly different at T12 (P< 0.001; Table.4), and the CC 290 

profile at T12 was significantly different from that of CC at T2 and from that of NC both at T2 and T12, 291 

indicating that lung adenocarcinoma development influenced the VOCs’ composition of CC mice (Fig. 292 

5). The doxycycline treatment did not seem to have induced a change between T2 and T12 as far as NC 293 

mice were concerned (T2-T12 NC, P = 0.259). However, our analyses pointed out 4 compounds 294 

differing between the VOCs profiles of CC at T2 and at T12. Three of these compounds, 3,4-dehydro-295 

exo-brevicomine, 2-sec-butyl-4,5-dihydrothiazole and hexan-1-ol, were present in lower relative 296 

proportions in CC mice at T12 as compared to both NC and CC individuals at T2. The fourth compound, 297 

benzaldehyde, was present in higher relative proportions in CC at T12 (Table.3). Our analyses pointed 298 

out 4 other compounds impacted by the doxycycline treatment: the hexan-1-ol, 3-methyl-butan-1-ol, 299 

(x)-2,4,4-trimethyl-pent-2-enal and the fenchone. The hexan-1-ol and the 3-methyl-butan-1-ol were 300 
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either absent or present as a track before the start of the doxycycline diet (Table.3), while (x)-2,4,4-301 

trimethyl-pent-2-enal disappeared from the VOCs profiles after tumour induction by doxycycline. 302 

Concerning the fenchone, it decreased over time in NC mice, while in CC mice it decreased at T2 and 303 

then increased again at T12 (Table.3).  304 

 305 

4. Discussion 306 

Characterization of VOCs composition can quickly become tedious when one needs to analyze 307 

a large number of samples with a single SPME fiber, and when fiber exposure duration for each 308 

sample is long. However, when several fibers are used and extraction duration per sample is reduced, 309 

the repeatability of the results and the detectability of the molecules may be questioned. This paper 310 

addressed these two methodological issues and sought to identify VOCs present in mice soiled 311 

bedding that could be considered as cancer biomarkers. 312 

 313 

Repeatability when using multiple SPME fibers.  314 

The use of several SPME fibers (with the same adsorption phase) to analyse a large number of 315 

samples might induce a bias due to inherent heterogeneity between fibers [34]. However, our results 316 

showed that, when all other conditions were controlled (duration, temperature etc.), we did not detect 317 

significant qualitative and/or quantitative difference in the VOCs profiles obtained by two distinct 318 

SPME fibers exposed simultaneously to the same source of odour. Our results also indicated that when 319 

two different fibers were used in a comparative study and fiber identity was included in the model as a 320 

random factor, the percentage of variation caused by this factor was marginal (models 4 and 5 : 321 

Table.2). 322 

Unexpectedly, our results also indicated strong variation in the VOCs profile of the same source of 323 

odour sampled at several occasions. The variation in the relative proportions of the different VOCs 324 

was not linear and did not suggest an effect of fiber wear (between the first and the 45th use). A 325 

possible explanation of our results might be sample heterogeneity. Soiled bedding is a complex 326 

substrate, containing saw dust, food leftover, urine, faeces and other body secretions, difficult to 327 

homogenise.  For the purpose of our study, we used pools of two-weeks old soiled bedding that we 328 

mixed as much as possible before sampling our aliquots (3g). Our results suggest that some of the 329 

aliquots used in this part of our study were not similar, further suggesting that to avoid such bias larger 330 

volumes than 3g should be used, and if not possible several replicates should be used to control for 331 

sampling heterogeneity, which we did to address cancer impact on VOCs (see below). 332 

 333 
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Influence of sampling duration on detection of VOCs related to cancer. 334 

The release and adsorption of volatile compounds is dynamic [35–37]. Some molecules will be 335 

released immediately after exposure while others will not, this may be due to their chemical property 336 

and/or their state in the odour source (e.g. bound to urinary proteins [38,39] Low molecular weight 337 

VOCs will be quickly adsorbed by the SPME fiber while other molecules will take longer to be 338 

emitted and hence their detection could be delayed [20]. Increasing sampling duration can increase the 339 

number of molecules likely to be adsorbed. By increasing the duration of VOCs extraction to 24h, we 340 

were able to detect 11 additional molecules compared to the 1h sampling. Compounds detected only 341 

after a 24h sampling were mostly relatively heavy compounds that came out at the end of the 342 

chromatogram profile. The lower volatility of such molecules may explain why they were only 343 

observed in the 24h samples [40,41]. However, the increase in sampling duration did not necessarily 344 

result in an increase of the amount of compound trapped on the fiber for all compounds. For example, 345 

the relative proportions of some compounds such as 3,4 -dehydro-exo-brevicomine did not change 346 

between the 1h and 24h profiles while the proportion of thiazoline was higher in the 24h profiles 347 

compared to the 1h ones. This could be explained by the fact that while 3,4 -dehydro-exo-brevicomine 348 

is released during the first 20 minutes of sample exposure, thiazoline is emitted continuously for 24h 349 

[20]. Among the 11 molecules exclusively detected after 24h extraction hexanoic acid and (E)-350 

nerolidol were described in mice urine that were heated at different temperatures between 45°C and 351 

65°C, enhancing their volatility [42–45].  Some of the other compounds such as heptanoic acid and p-352 

cymen -8 -ol are derived from microbial communities [46] and their emission was facilitated by 353 

heating or longer exposure to oxidative degradation as it is the case when extraction time lasts 24h.  354 

Nonetheless, among the 11 compounds detected exclusively after a 24h extraction, none differed 355 

between CC and NC mice, further indicating that 1h sampling should suffice to address cancer impact 356 

on mice VOC’s profile (at least for such mouse model and such cancer type). Further, considering the 357 

cancer literature, none of the 11 molecules detected only in the 24h profiles was referenced as cancer 358 

biomarkers in mice. One compound was mentioned as a possible cancer biomarker in humans, the 359 

hexanoic acid, in gastric [47,48] and gastroesophageal cancer [49]. 360 

 361 

Cancer influence on VOCs production. 362 

The use of soiled bedding allows to sample VOCs emitted by mice in their everyday activities in their 363 

cages, making the sampling non-invasive and non-stressful for the mice. It also allows collection of 364 

VOCs from a variety of sources simultaneously such as faeces, urine, saliva, preputial gland etc. Among 365 

the 17 compounds identified in this study, seven had not been reported in another publication on mice 366 

to our knowledge (Table.3). The other compounds, such as propanoic acid, hexan-1-ol or butanoic acid, 367 

were described before [44]. The propanoic acid was reported to be emitted from the body or from faeces, 368 
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while other compounds such as benzaldehyde was reported to be present in mice urine [43,44,50]. Some 369 

compounds that we found both in the control and in the biological samples, that we decided not to 370 

consider here, were reported as mouse compounds in the literature, such as acetic acid, pentan-1-ol, 371 

heptanal [44], nonanal [44,51] or again p-cymene [51].  372 

Our results revealed significant quantitative differences in the VOCs profiles of the two mice lines  (NC, 373 

CC) before doxycycline treatment (at T0). As these mice were kept in exactly the same conditions, and 374 

were all same age males and litter mates, the only difference that we see that could explain their different 375 

VOCs profile is their relatively slight different genetic background: presence versus lack of CCSP-rtTA 376 

and EGFRT790M/L858R.  Small differences in genetic background were already shown to impact the VOCs 377 

profile of mice, [52–54]. Seven compounds differed between NC and CC at T0. Except for the 3-378 

methylbutan-1-ol, these compounds were present in greater relative proportion in NC than in CC mice. 379 

Among the molecules described in the mouse VOCs literature, only the propanoic acid and the 3-380 

methylbutan-1-ol were reported [55], the other four compounds, nopinone, camphor, camphene hydrate 381 

and (E)-3-pinocamphone are terpenes also found in plants.  382 

Our study revealed the effect of both doxycycline and cancer tumour development on the mice VOCs 383 

profile. Doxycyline diet seems to influence VOCs emissions both in NC and CC mice. One compounds 384 

disappeared from the profile (e.g. (x)-2,4,4-trimethyl-pent-2-enal) while two other compounds were 385 

present in higher proportions after the addition of doxycycline, i.e. hexan-1-ol and 3-methylbutanol, 386 

which are compounds notably emitted by bacteria [56], indicating that the doxycycline treatment, by 387 

eliminating some bacteria, might have favoured others, impacting the mice gut microbiome composition 388 

and thus inducing a change in the VOCs emitted by the mice [57].  389 

Our results indicated that the impact of cancer on VOCs composition was only detectable at T12, i.e. 390 

after 12 weeks of treatment when all mice harboured lung adenocarcinoma [25], and that this impact 391 

involved four compounds. Benzaldehyde was found in higher proportions in CC than NC mice at T12. 392 

It  is a compound commonly found in mice urine [44,58–60], and  was already reported in studies using 393 

mice to study cancer [61–63]. Benzaldehyde was also found in human cancers and might be considered 394 

as a relatively general biomarker of lung  [64–67], colorectal [68] or breast cancer [69]. Most of the time 395 

this compound was studied in cell cultures and was found to increase in cancerous cells, here we show 396 

that cancer impact the whole body emission. Benzaldehyde was also found to be discriminating in 397 

studies on Alzheimer's disease [70]. The three other candidate VOCs identified in this study to be 398 

impacted by cancer development were found in smaller proportions in CC as compared to NC mice, 399 

namely, hexan-1-ol, 2-sec-butyl-4,5-dihydrothiazole (Thiazoline) and 3,4-dehydro-exo-brevicomine 400 

(Brevicomine). Of these three compounds, two are known mice pheromones described in male mice, 401 

brevicomine and thiazoline. These pheromones were shown to be involved in male dominance and male 402 

attractiveness to female mice [71]. Thiazoline was pointed as a candidate in another mouse lung cancer 403 
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study [72]. The onset of cancer therefore seems to impact pheromone emissions in sick mice, and hence 404 

is expected to impact their social life. The third candidate molecule is the hexan-1-ol also found in mice 405 

urine  [44]. Like in our study, hexan-1-ol was found in smaller proportions in cancerous as compared to 406 

non-cancerous individuals in investigations of human lung cancer [63], melanoma [73] and head and 407 

neck cancer [74]Finally, among the compounds identified in similar proportions in both NC and CC 408 

sources in our study, the camphor was found to discriminate against colorectal cancer in mice [75], and 409 

the 3 methylbutanoic acid was found to discriminate melanoma [73].  410 

5. Conclusion 411 

We were able to show that when used under strict controlled conditions, the use of different SPME 412 

fibers may have a marginal impact on the variance observed between samples. The use of two fibers 413 

allowed us to perform a larger number of samples in a relatively short time. In addition, our study 414 

validated the use of mouse soiled bedding to extract VOCs from mice without being invasive. A 415 

longer sampling period may make it easier to identify compounds present in small amounts during a 416 

shorter sampling period. However, in our study, 1h extraction was sufficient to isolate the compounds 417 

that differentiated cancerous from non-cancerous mice. We did not detect cancer induced VOCs 418 

variation at an early stage of tumour development (T2), although behavioural investigations showed 419 

that mice discriminated between CC and NC soiled bedding at T2 [76]. The latter results suggest 420 

either, that our study method was not sensitive enough (compared to a mouse nose) to detect 421 

informative VOCs at T2, or most probably that other molecules, e.g. proteins, might be impacted by 422 

tumour development [77].  We identified four candidate compounds that discriminated CC from NC 423 

soiled bedding at T12: the benzaldehyde and the hexan-1-ol confirming earlier studies on mice and 424 

humans cancer, and two mice pheromones the Thiazoline and the Brevicomine, indicating that cancer 425 

could potentially impact social and sexual interactions in mice natural populations and, as such, might 426 

be selected against.  427 

 428 
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FIGURE  738 

 739 

 740 

Fig. 1 : A schematic of the experimental protocol. Each bag contained a mixture of bedding obtained 741 

from 3 to 4 mice, at different experimental conditions (T0: before treatment, T2: after 2-weeks 742 

doxycycline diet; and T12: after 12 weeks doxycycline diet). Three different types of tests were 743 

performed: - 1h VOCs sampling using two different SPME fibers exposed simultaneously to the head 744 

space and involving T0 non-cancerous (NC) soiled bedding (testing “Fiber effect”);  - Two fibers 745 

exposed simultaneously, one for 1-h the other for 24h and involving soiled bedding of NC and CC 746 

(cancerous) soiled bedding sampled at T0, T2 and T12 (testing “Effect of sampling time”); and – A 747 

single fiber exposed for 1h and involving 3 replicates of the same source of NC and CC soiled bedding 748 

at T0, T2 and T12 (“Cancer influence”).  749 
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 750 

 751 

Fig. 2 :  Pic surface areas (a), and relative proportions (b) of compounds identified in mice soiled 752 
bedding samples after 1h versus 24h SPME extractions. 753 

 754 
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 755 

Fig. 3 : Score plots of the redundancy analysis (RDA) comparing variation of 17 VOCs identified in 756 
the 1h extraction profiles (T1) versus the 24h extraction profiles (T24) of non-cancerous (NC) and 757 
cancerous (CC) mice soiled bedding.  758 

 759 

  760 
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 761 

Fig. 4 : Score plots of the redundancy analyses (RDAs)  comparing variation of 17 VOCs identified 762 

following 1h SPME extraction of non-cancerous soiled bedding (A) and cancerous soiled  bedding (B) 763 

at three experimental condition (T0: before treatment, T2: after 2 weeks doxycycline diet; and T12: 764 

after 12 weeks doxycycline diet). Correlation circles represent the position of VOCs showing an 765 

absolute correlation coefficient > 0.8.  766 

 767 
 768 

 769 
 770 
Fig. 5 : Score plots of the redundancy analysis (RDA)  addressing variation of 10 VOCs present in the 771 

profiles obtained after1h extraction of NC (non-cancerous) and CC (cancerous) soiled bedding at  772 

three experimental conditions; (T0: before treatment, T2: after 2 weeks doxycycline diet; and T12: 773 

after 12 weeks doxycycline diet). The correlation circle identifies VOCs showing an absolute 774 

correlation coefficient > 0.8. 775 

 776 
 777 
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Table 1 : List of the 17 VOCs identified after simultaneous exposure of two SPME fibers to soiled 778 

bedding of non-cancerous mice at T0. Only the components not present in the technical controls (clean 779 

bedding) were retained in this list (Table S1). 780 

 781 

Compounds  

    F1  F2 F1d F2d 

RTa 

(min) 
RIb 

n=7c 

 

 

% 

Propanoic acid 4,31 707 7     7   12.8 ± 0.7  12.9 ± 0.6 

3-methyl-Butan-1-ol 4,89 733  6  6  0.9±0.2  0.8±  0.1 

Butanoic acid 6,47 802 7  7   24.1± 2.6  25.2± 2.3 

(x)-2-ethyl-Hex-2-en-1-al* 6,68 809 7  7  
 10. 6± 0.7  9.9 ± 0.7 

3-methylButanoic acid  7,98 853 7  7   8.5 ± 0.6  8.3± 0.6 

2-methylButanoic acid  8,26 862 7     7   2.2 ± 0.1  2.1± 0.1 

Hexan-1-ol 8,45 869 7  7   7.9± 0.3  7.5± 0.2 

(x)-2,4,4-trimethyl-pent-2-en-1-

al* 
8,59 873 

7  7  

 3.2 ± 0.3  3.5 ± 0.5 

Benzaldehyde  11,19 956  5  5  2.4± 0.6  2.7± 0.7 

2,3-dehydro-exo-Brevicomine* 13,8 1039 7  7   3.5 ± 0.4  3.9±  0.209 

3,4-dehydro-exo-Brevicomine 14,06 1047 7  7  
 9.3± 0.3  9.1 ± 0.4 

Fenchone  15,36 1089  2  2  0.5±  0.4  0.6± 0.4 

2-sec-butyl-4,5-
Dihydrothiazole 

15,82 1103 
7  7  

 6.9 ± 0.4  6.1± 0.5 

Nopinone 16,79 1135  4  4  0.9±  0.3  1±  0.3 

Camphor 17,06 1144 7  7   3.5± 0.2  3.5 ±  0.1 

Camphene hydrate 17,25 1150 7  7      1.6 ±  0.1  1.6±   0.2 

(E)-3-Pinocamphone 17,53 1160  6  6  1.4 ±  0.3  1.4 ± 0.3 

 782 

 *: attempt of identification when the exact configuration could not be determined.  783 
a retention time  784 
b calculated retention indices 785 
c Maximum number of occurences.  786 
d relative proportion of the compounds (%, mean +/- SE) 787 

 788 

 789 
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Table 2 : Results of the permutation F tests based on redundancy analyses linking VOCs composition to health status (NC non-cancerous mice versus CC 790 

potentially cancerous mice). 791 

 random factors 
variance 

explained 
explanatory factors 

variance 

explained 
F P 

Model 1 : analysis of fibers F1 and F2   
Fibers (F1/F2) 

97,17% 
0.957 0.395 

Time (7samples) 34.185 <0.001 

Model 2 : analysis of 24h sample   

Exp condition( T0,T2,T12) 

45,70% 

2.82 <0,001 

Status (NC/CC) 1.39 0.47 

Interactions 1.53 0.08 

Model 3 : analysis of 1h and 24h sample   

Time ( 1h/ 24h) 

57.4% 

14.277 <0.001 

Exp condition(( T0,T2,T12) 3.91 <0.001 

Status (NC/CC) 2.037 0.0461 

Time : exp condition ( T0,T2,T12) 0.769 0.734 

Time : status 1.075 0.356 

Exp condition : status 1.86 0.027 

Time :exp condition : status 0.939 0.512 
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Model 4 : analysis of difference of NC sample at 1h 
Fibers + 

replicates 
9.60% NC 24.87% 4,174 <0,001 

Model 5 :  analysis of difference of CC sample at 1h 
Fibers + 

replicates 
2.60% CC 57.85% 16,085 <0,001 

Model 6 : analysis of NC and CC at T0 
Fibers + 

replicates 
10.20% T0 : NC-CC 21.64% 4,174 0,002 

Model 7 : analysis of NC and CC for 3 experimental 

condition 

Fibers + 

replicates 
4.30% 

Exp condition (T0,T2,T12) 

46.31% 

17,0065 

<0.001 

Status (NC –CC) 3,545 

Exp condition : Status 2,23 

 792 
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Table 3 : Relative proportions (%, mean ± se) of 17 VOCs identified in mice soiled bedding following 1-h SPME sampling, with reference  to health status 793 

(non-cancerous, NC, cancerous, CC) at three experimental conditions (T0, T2 and T12). VOCs present both in the biological and the control samples are not 794 

listed here. 795 

Compounds  

T0  T2 T12  Reference 

% CC 

% NC 

% CC 

% NC 

% CC 

% NC studies involving house mice  studies targeting cancer in 

house mice  

Propanoic acid+ 
15.8 ± 0.7 

19.8  ± 

1.5 13.1±1.2 

14.3±1.2 

13.1±0.5 

9.3±0.5 Faeces : [55]  

Body : [44]  

 

3-methyl-Butan-

1-ol+ 1.3±0.2 

0.2±0.1 

6.5±0.9 

2.9±0.5 

3.1 ±0.3 

3.7 ±0.2 Faeces : [55]  

 

 

Butanoic acid 18±4.3 
15.2±2.9 

0.2±0.03 
3.5 ±2.2 

10.5±3 
5.7±2.3 Urine and Body : [44]   

(x)-2-ethyl-Hex-
2-en-1-al* 6.3 ±0.8 

6. ±0.6 
3±0.4 

3.8 ±0.4 
3.9±0.4 

4.7±0.6   

3-

methylButanoic 

acid  8.3 ±1.2 

8. ±1.3 

6.8±1.4 

4.8 ±1.2 

10.2 ±1.4 

3.8±0.9 Urine : [44]  

Urine : [78] 

 

2-

methylButanoic 

acid  1.7 ±0.3 

1.2±0.3 

2.6±0.3 

1.4±0.3 

2.3 ±0.3 

0.9 ± 0.1 Urine : [44]  

 

 

Hexan-1-ol 10.8 ± 4.4 6.2 ±0..4 45.7±2.7 38.1±4.5 33. 9±3. 1 47.7±2.1 Body : [44]   

(x)-2,4,4-

trimethyl-Pent-2-
en-1-al* 2±0.5 

1.1±0.6 

0 

0 

0 

0   

Benzaldehyde  

1.4 ±0.3 

1.5±0.6 

0.12±0.1 

0.9±0.5 

1.9±0.2 

1±0.4 Urine and Body : [44]  

Urine :  [43,50,58,60,78–81]  

 

Breast cancer, urine : [61] 

 Melanoma, urine : [62] 

Lung cancer, urine :  [63] 

2,3-dehydro-exo-

Brevicomine* 3± 0.5 

2.9±0.6 

2.7±0.7 

0.7±0.2 

1.9±0.3 

2.2±0.2 Urine : [42,44,82]  

3,4-dehydro-

exo-

Brevicomine 15.5±2 

11.6± 1.8 

8.9±0.9 

8.5±0.8 

3.1 ±0.3 

5.5±0.4 Urine : [43,50,78,79,81,83–85]  

Fenchone + 1.6 ±0.2 
4.5±0.5 

0 
3.3±0.6 

2.1±0.5 
1.6±0.2   
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 796 

*: attempt of identification; in some cases the configuration could not be determined.  797 

+VOCs differing between CC and NC mice at T0 798 

 799 

2-sec-butyl-4,5-

Dihydrothiazole 
8.5 ±1 

8.5±0.7 

8.3±1.4 

7.9±0.5 

5.7±0.6 

7.4±0.8 Urine :  
[42–44,50,60,80–83,85,86] 

Body : [44]  

Lung cancer, urine : [72]  

 

Nopinone+ 1. ±0.5 1.7± 0.2 0.8±0.3 1 ±0.2 1.5±0.4 0.9 ±0.2   

Camphor+ 2.3 ±0.1 5.9 ± 0.5 0.9±0.3 3.7±0.6 3.5±0.7 2.8±0.2  Colorectal cancer, blood: [75] 

Camphene 

hydrate+ 0.7± 0.2 

2.3± 0.3 

0.2±0.1 

1.2±0.3 

1.5±0.3 

1.3±0.1   

(E)-3-

Pinocamphone+ 1.9 ± 0.2 

3.2± 0.2 

0.2±0.2 

2.1±0.3 

1.9±0.4 

1.5±0.3   
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Table 4 : Post-hoc tests following RDA model 7. 800 

  T0_CC T2_CC T12_CC T2_NC 

T0_NC 0,622     < 0,001 

T2_NC   0,4948     

T12_NC     < 0,001 0,2593 

T2_CC < 0,001       

T12_CC   < 0,001     

 801 

 802 

SUPPLEMENTARY MATERIALS :  803 

 804 

Fig.S1 : Representation of a ) Score plots of the redundancy analysis (RDA) comparing variation of 805 

relative proportion of 17 volatile organic components sampled with fibers F1 and F2 at seven occasions;  806 

b)  A correlation circle identifying compounds showing an absolute correlation coefficient > 0.8 and c) 807 

Variation of the relative proportion of the compounds pinpointed in the RDA analysis.  808 

 809 

 810 

 811 

 812 

 813 

814 
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Table S1 : List of VOCs identified both in the biological samples and the controls. In blue compounds 815 

found only in soiled bedding and retained for our analyses. In pink: the n-alkanes used as standards for 816 

the identification of the compounds. 817 

Compounds  RT
a
 RI

b
 

n-Hexane 2,79 600  

Acetic acid  2,83 603 

Pentanal  4,05 692 

n-Heptane 4,16 700 

Propanoic acid 4,31 707 

3-methylButan-1-ol 4,89 733 

NI 4,98 737 

Toluene 5,55 762 

Pentan-1-ol  5,62 765 

Hexanal 6,35 798 

n-Octane 6,40 800 

Butanoic acid 6,47 802 

2-ethyl-Hex-2-enal 6,68 809 

3-methylButanoic acid  7,98 853 

ethylBenzene 8,12 858 

2-methylButanoic acid  8,26 862 

nXylène 8,38 866 

Hexan-1-ol  8,45 869 

(x)-2,4,4-trimethyl-Pent-2-enal 8,59 873 

NI 8,90 884 

Styrene 9,00 887 

Pentanoic acid  9,19 893 

Heptanal  9,30 897 

n-Nonane 9,39 900 

NI 9,50 903 

α-Pinene* 10,48 934 

Hept-2-enal  11,06 952 

Benzaldehyde*  11,19 956 

Heptan-1-ol  11,60 969 

β-Pinene* 11,84 977 

 Oct-1-en-3-ol* 11,88 978 

 6-methyl-Hept-5-en-2-one  12,03 983 

2-pentylFuran  12,23 989 

Hexanoic acid 12,44 996 

Octanal  12,53 998 

n-Decane 12,58 1000 

δ-3-Carene 12,90 1010 

p-Cymene* 13,32 1024 

Limonene* 13,48 1029 

NI 13,65 1034 
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2,3-dihydro-exo-Brevicomine 13,80 1039 

 6-methyl-Heptan-2-one 13,96 1044 

3,4-dehydro-exo-Brevicomine 14,06 1047 

Oct-2-enal  14,28 1054 

vinylHexanoate 14,37 1057 

Unknown compound 1 14,69 1067 

Octan-1-ol  14,80 1071 

Heptanoic acid 15,19 1083 

Fenchone  15,36 1089 

Cymenene 15,34 1088 

n- Undecane 15,72 1100 

Nonanal  15,73 1100 

2-sec-butyl-4,5-Dihydrothiazole 15,82 1103 

 Fenchol 16,18 1115 

NI 16,60 1129 

Nopinone 16,79 1135 

 '(E)-Pinocarveol  16,95 1140 

Camphor 17,06 1144 

(Z)-Verbenol  17,13 1146 

Camphene hydrate 17,25 1150 

(E)-Non-2-enal 17,45 1157 

(E)-3-Pinocamphone 17,53 1160 

Pinocarvone 17,60 1162 

Borneol 17,79 1168 

(Z)-3-Pinocamphone 17,96 1174 

4-Terpineol 18,12 1179 

NI 18,19 1181 

 p-Cymen-8-ol  18,27 1184 

α-Terpineol 18,37 1187 

Unknown Monoterpene derivative 1 18,50 1191 

Myrtenal  18,60 1195 

Myrtenol 18,70 1198 

n-Dodecane 18,76 1200 

Decanal  18,80 1201 

Verbenone 18,98 1208 

 2,4-Nonadienal 19,05 1210 

Unknown compound 2 19,14 1213 

Benzothiazole 19,40 1223 

NI 19,63 1231 

Cumin aldehyde 19,85 1238 

Carvone 19,96 1242 

Piperitone 20,27 1253 

(E)-Dec-2-enal 20,43 1259 

Undecan-2-one 21,31 1290 

1-methyl-Naphthalene 21,43 1294 
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 N,N-dibutyl-Formamide 21,60 1300 

n-Tridecane 21,60 1300 

NI  22,75 1343 

α-Terpinyl acetate 22,94 1350 

NI 23,22 1361 

4-tert-butyl-Cyclohexyl acetate 23,53 1372 

NI 23,76 1381 

n-Tetradecane 24,27 1400 

NI 24,57 1412 

Geranyl acetone 25,53 1450 

n-Pentadecane 26,81 1500 

(E)-Nerolidol* 28,38 1572 

n-Hexadecane 29,00 1600 

Caryophyllene oxide 29,01 1600 

Sesquiterpenol Inconnu 29,89 1641 

(6Z,9E)-Heptadeca-6,9-diene 30,60 1673 

n-Heptadecane 31,13 1700 
aCalculated retention indices 818 

bRetention time  819 

 820 

Table S2 : VOCs identified following 24h versus 1h extraction of soiled bedding. Only the components 821 

not present in the technical controls (clean bedding) are listed here. 822 

 823 

 
  

Frequency c Relative proportion (%)d Peak surface areae 

Compounds 
RTa RIb 1h 

24h 1h  24h  1h 24h 

Propanoic acid 4,31 707 18  18  8.8 ± 1.2 1.9 1 ± 0.3 138210±21251 113800±18072 

3-methyl-Butanol 4,89 733 18  18   16.4 ± 1.1  2.4 ± 0.2 252880±20666 144730±14082 

Butanoic acid 6,47 802 18  18  12.8 ±  1.4 3.6 ± 0.5 199270±20343 211310±29576 

2-ethyl-Hex-2-
enal 6,68 809 

18  18  7.1 ±  0.7 6.1 ± 0.6 107310±11053 356570±26223 

3-methylButanoic 

acid  7,98 853 

18  18  2.5 ± 0.4 1.8 ± 0.3 38823± 6761 113740±18092 

2-methylButanoic 
acid  8,26 862 

18  18  0.8 ±  0.4 1.6 0.6 10771±5476 88525±29420 

Hexan-1-ol 8,45 869 18  18  20.7 ± 3.6 3.5 ± 0.7 328740±65452 231950±51847 

(x)-2,4,4-

trimethyl-Pent-2-

enal 

 8,59 873 

18  18  1.5 ±   0.3 1.6  ± 0.2 21019±5820 98112±9508 

Benzaldehyde  11,19 956 18  18  6.3 ± 0.5 2 ± 0.2 93406±7192 127530±14850 

Hexanoic acid 12,44 996 / 18  / 19.2 ± 2.6 / 1243400±185210 

2,3-dehydro-exo-
Brevicomine* 13,8 1039 

18  18  1.9±   0.3 0.7  ± 0.5 28640± 3800 65194±47046 
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3,4-dehydro-exo-

Brevicomine 14,06 1047 

18  18  8.06 ± 1. 3.6 ± 0.4 121530±16625 208840±19179 

vinylHexanoate 14,37 1057 / 18  / 1.5 ± 0.1 / 69453±4453 

Unknown 

compound 1  14,69 1067 / 

18    / 1.4  ± 0.2 / 82456±5608 

Heptanoic acid 15,19 1083 /    18  / 2.3 ± 0.2 / 144720±16808 

Fenchone  15,36 1089 16  18  1.3 ± 0.3 / 21307±5286 41292 ± 4808 

2-sec-butyl-4,5-
Dihydrothiazole 15,82 1103 

18  18  6.3 ± 0.4 8.4 ± 0.7 95078±6289 496870±32187 

Nopinone 

 16,79 1135 

18  18  1  ±  0.1 1.4   ± 0.2 14224± 1911 83731±9687 

Camphor 17,06 1144 18  18  2 ±   0.3 1.9 ±  0.6 31815±5998 123530±41145 

Camphene hydrate 

 17,25 1150 

18  18  0.7 ± 0.2 1.7 ± 0.2  0.000145 

(E)-3-

Pinocamphone 17,53 1160 

18  18  2.  ± 0.4 1.4 ± 0.2 10905±2208 87533±10540 

 p-Cymen-8-ol  18,27 1184 / 18  / 7.1 ± 0.3 27784±4129 91493±12709 

Unknown 

compound 2 19,14 1213 /    

18  / 1.6 ± 0.1 / 433270±20811 

Carvone 19,96 1242 /     18  / 2.4± 0.2 / 93592±4788 

Piperitone 20,27 1253 /     18  / 1.9 ± 0.4 / 142380±9281 

4-tert-butyl-

Cyclohexyl 

acetate 

 23,53 1372 /   

18  / 4.8 ± 0.3 / 111140±19920 

(E)-nerolidol  28,38 1572 /   18  / 12.9 ± 1.3 / 290280±14621 

(6Z,9E)-

Heptadeca-6,9-

diene 

 30,6 1673 / 

18  / 2.2 ± 0.3 / 845700±147880 

 824 

a retention time  825 
b calculated retention indices 826 
c frequency of occurrence of the compounds.  827 
d relative proportion of the compounds (%, mean +/- SE) 828 
e relative quantity of the compounds (mean +/- SE) 829 

 830 

 831 
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