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Abstract

In this paper, we report the numerical results obtained using the Langevin Navier-Stokes (LNS)

simulation of the velocity distribution of three-dimensional (3D) protoplasmic streaming in plant

cells, such as those of Nitella flexilis. The LNS simulations are performed on 3D cylinders dis-

cretized by regular cubes in which fluid velocities are activated by boundary velocities parallel and

nonparallel to the longitudinal direction and a random Brownian force with strength D. We find

that, for a finite D, the velocity distribution h(V ), V = |V⃗ |, has two different peaks at a small non-

zero V and a finite V , and the distribution h(Vz) for |Vz| along the longitudinal direction also has

a peak at finite Vz. These results are in good agreement with the reported velocity distributions

observed using laser Doppler velocimetry. Moreover, we study the effects of the Brownian force on

biological material mixing and find that mixing along the V⃗ direction enhanced by the nonparallel

circular motion is further improved by the Brownian force in the experimentally relevant region of

D. In addition, the experimentally relevant D is found to be consistent with the expectation from

the fluctuation dissipation relation between the random stress and viscosity in the LNS equation

of Landau and Lifschitz for incompressible fluids.

I. INTRODUCTION

The diameter of plant cells such as those of Nitella flexilis can be as high as 1 (mm) in

water. Flow in these cells, termed protoplasmic streaming, has recently attracted consider-

able interest from researchers in biology and agriculture [1–3]. Figures 1(a) and (b) show

an optical image of a plant in water and illustrate the streaming and its direction inside a

cell, respectively.

The flow in plant cells is driven by a molecular motor in which a myosin molecule moves

along actin filaments. Hence, the flow activation mechanism is the same as that in animal

cells [4–7]. Recently, Tominaga et al. reported that the size of a plant depends on the

streaming velocity, which implies that the velocity of myosin molecules determines plant

size [3]. To date, protoplasmic streaming has been extensively studied using experimental

and theoretical techniques, including fluid dynamics simulations [8–13].
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FIG. 1. (a) Plant in water (image obtained using an optical camera), (b) illustration of the

boundary flow that causes streaming inside cells, and the flow directions at the boundary region in

a cell section. The symbol ⊙ (⊗) indicates the direction of velocity of the incoming side (outgoing

to the opposite side).

Kamiya and Kuroda first measured the flow velocity Vz(µm/s) along the longitudinal

direction of a cell by using an optical microscope (Vz in Fig. 2(a)) [14, 15]. Corresponding

physical quantities have also been reported; the kinematic viscosity is approximately 100

times larger than that of water [16–18]. In Ref. [19], Pickard reported further observations

of streaming including the angular and radial variations in the velocity with theoretical

analyses. The flow direction along the side of the cell boundary is not always parallel to

the longitudinal axis; rather, it is twisted, forming an indifferent zone (Fig. 2(a)). Angle

ϕ of the indifferent zone of Nitella axilliformis Imahori in Fig. 2(b) is approximated to

be ϕ = 73◦ [20]. Subsequently, using magnetic resonance velocimetry on cylinder cross

sections, Goldstein et al. measured the velocity and reported the positional dependence of

several different lines on the cross sections with a theoretical study on the Stokes equation

[8]. They also theoretically studied the flow field by combining the Stokes equation and

an advection-diffusion equation to describe the mixing of biological materials using a new

variable concentration [9–11]. Their results agreed well with the experimental results and

they reported that biological material mixing is enhanced by the rotational boundary flow

[8–11].

Approximately 25 years after Kamiya and Kuroda’s measurements, Mustacich and Ware

observed streaming using a laser-light scattering technique [21–24]. They reported that the

scattered light spectra exhibit two different peaks at V → 0 and V ̸= 0 (Fig. 2(c)) and

single peak at V ̸=0 (Fig. 2(d)). The peak velocity at V ̸=0 corresponds to the streaming
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FIG. 2. (a) Flow velocity V⃗ in vaculoe inside a cell, almost constant velocity in the endplasm

[14, 15], (b) photograph of Nitella axilliformis Imahori taken at the inner wall of an internodal cell

[20], (c) scattered light intensity vs. Doppler shift frequency obtained using a laser light scattering

technique, where the peak at 93 Hz corresponds to a velocity of 72 (µm/s) [22], and (d) another

reported scattered light intensity in [23]. The Doppler-shift frequency depends on the scattering

angle. The solid line in (a) denotes the indifferent zone, where two opposite boundary velocities

are in contact with each other. The angle ϕ of the indifferent zone of Nitella axilliformis Imahori

is estimated to be approximately ϕ= 73◦ from ℓx/ℓz≃3/10 in (b), where the z direction is parallel

to the longitudinal axis of the cell.

velocity. It should be noted that the Brownian motion of biological materials influences the

fluid velocities not only in the V → 0 limit but also for all the velocity ranges. This is the

reason for the appearance of velocities in a range larger than the peak at finite velocity in

the velocity distributions.

Recently, the peaks were numerically reproduced in Refs. [25, 26] by simplifying the three-

dimensional (3D) streaming to two-dimensional (2D) Couette flow and using the Langevin

Navier-Stokes (LNS) equation. However, the 3D streaming nature, such as circulation at the
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cell boundary, was modified to be parallel to the longitudinal direction in the 2D simulations.

Therefore, 3D simulations are preferable for a better understanding of the streaming.

Here, we discuss the basic assumptions of the proposed model. Fluid flow inside the

vacuole of a plant cell includes many biological materials, some of which can scatter laser

light [21–24]. However, the sizes of biological materials are not uniform, and are expected to

range from the size of molecules (≃ 10 (nm)) to the size of chloroplasts (≃ 5 (µm)) or larger,

and the density of the mass is comparable to that of water. Therefore, we simply regard

the streaming as a fluid flow described by the LNS equation rather than as a colloidal

suspension, which is described by the equations of motion of particles, such as those in

Brownian Dynamics [27].

In this study, we attempt to simulate the experimentally observed effects of the Brownian

motion of biological materials on the flow field using the LNS equation without biological

materials. The primary objective is to numerically reproduce experimentally observed and

reported velocity distributions. The LNS equation in this paper is included in the frame-

work of the LNS equation of Landau and Lifschitz implying that velocity field and pressure

thermally or hydrodynamically fluctuate and that only the mean values of many samples are

meaningful as observable quantities [28]. Fluid velocities are directly activated by Gaussian

random Brownian forces in our LNS equation; hence, the implementation of the Brownian

motion of biological materials is different from that in other simulation schemes. The term

”Brownian force” is usually used as a random force to activate small particles; however, we

slightly extend it and use it for the streaming fluid itself. We also check whether the Brown-

ian force is well defined for hydrodynamic interactions in the sense that the total momentum

is conserved, even though it is not of the form of an internal force between fluids.

Colloidal suspensions in fluids are simulated using Stokesian Dynamics or Brownian Dy-

namics [29–31]. In this technique, hydrodynamic interactions between particles are imple-

mented. Fluid particles have been introduced as Dissipation Particle Dynamics (DPD) to

simulate fluids with thermal fluctuations [32–34]. Thermal fluid fluctuations have also been

studied using the so-called Immersed Boundary Method for biological systems, in which ex-

ternal forces, including the Brownian force, act on both the fluid and the immersed boundary

[35–37]. Our LNS simulation technique differs from that of the Immersed Boundary Method.

In the case of the lattice Boltzmann method (LBM), the velocity distribution functions

are simulated, and physical quantities such as the velocity and pressure are calculated using
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these functions [38–42]. Therefore, the variables solved in the LBM are different from those

in the NS equation, although the NS equation can be derived from LBM equations under

certain conditions [42]. Moreover, the velocity distribution functions in the LBM are defined

for a lump of fluid particles. Thus, the LBM shares a particle simulation scheme. A Langevin

equation is used as a numerical technique in particle physics for functions on a lattice [43–45],

so we consider that the Brownian motions can be combined with the NS equation for fluids

[46]. However, Brownian particles are not introduced; instead, the velocity and pressure of

fluids are considered to fluctuate by Brownian forces in the LNS equation, as mentioned

above. Therefore, our simulation scheme is slightly different from the LBM.

II. METHODS

A. Langevin Navier–Stokes equation and discrete equation

The LNS equation is given by a set of coupled equations for the velocity V⃗ =(Vx, Vy, Vz)(m/s)

and pressure p(Pa):

∂V⃗

∂t
= −

(
V⃗ · ∇

)
V⃗ − ρ−1∇p+ ν△V⃗ + η⃗,

∇ · V⃗ = 0,

(1)

where ρ(kg/m3) and ν(m2/s) denote fluid density and kinematic viscosity, respectively [25,

26]. The final term η⃗(m/s2) on the right-hand side of the first equation corresponds to

the random Brownian force per unit mass. Because of this random force, the variables V⃗

and p fluctuate rapidly at a small distance, and the mean value ⟨V⃗ ⟩ can be obtained as an

observable physical quantity, as mentioned in the introduction. The meaning of the symbol

⟨∗⟩ is introduced in the following subsection from a simulation perspective.

The velocity V⃗ and pressure p variables are used in Eq. (1), which differs from the LNS

equation for the flow function ψ and vorticity ω in Ref. [25], where the condition ∇ · V⃗ =0

is exactly satisfied for all t. In contrast, this divergenceless condition should manifest as

a constraint in the time evolution of Eq. (1). The discrete-time step in Eq. (1) violates

∇ · V⃗ =0. The original marker and cell (MAC) method is a simple technique to resolve this

problem [47]. However, the ∇ · V⃗ =0 is not always satisfied even at the convergent solution

satisfying ∂V⃗ /∂t = 0. Hence, a well-known simplified MAC (SMAC) method is used in this

study.
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To solve Eq. (1), we impose the steady state condition

∂V⃗

∂t
= 0. (2)

To obtain V⃗ satisfying this condition, we numerically solve the following discrete equation

with time step ∆t:

V⃗ (t+∆t) = V⃗ (t) +∆t
[(
−V⃗ · ∇

)
V⃗ (t)− ρ−1∇p(t+∆t) + ν△V⃗ (t)

]
+
√
2D∆t g⃗, (3)

where we use the same symbol t for discrete time in this equation as for real time t in the

original LNS equation in Eq. (1). This difference in time and detailed information of the

SMAC method used to obtain the solution to Eq. (3), under the conditions given in Eq. (2)

are presented in Appendix A. The Brownian fluctuation process introduced by η⃗(t) shares

the energy dissipation process via the fluctuation dissipation relation, which is discussed

in the following subsection. Therefore, the dissipation process can be described simply by

η⃗(t), whereas the corresponding energy input process, supplied by the molecular motors on

the cell surface, is highly complex. Therefore, the LNS equation Eq. (1) is used for the

simulation. The symbol D denotes the Brownian force strength, which is different from the

diffusion coefficient.

B. Lattices for simulations and boundary conditions

We show the details of the lattice construction for a cylindrical streaming domain in plant

cells. The actual cell surface is soft and is expected to bend and fluctuate. However, it is

relatively rigid compared to the surface of animal cells [48]; therefore, we assume that the

cylinder surface is rigid for simplicity. Thus, for the computational domain, we assume a

3D cylinder of radius R and length L (Fig. 3). The lattice spacing ∆x is assumed to be

∆x = 1 in this and subsequent subsections, and R∆x and L∆x are written as R and L,

respectively, for simplicity. The regions indicated by the symbols Γi(i=1, 2, 3) in the figure

denote boundary surfaces.

The fluid is activated by the molecular motors on surface Γ3, and the fluids are dragged

along the boundary, as indicated by the two large arrows in Fig. 3. The contact line along

which two different velocities coexist is called the indifferent zone and divides Γ3 into two

domains. The angle of the zone is fixed to π/3 (or 60◦) on lattice A, and the volume of the
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FIG. 3. 3D cylindrical computational domains of (a) lattice A and (b) lattice B for streaming.

The arrows in (a) and (b) indicate the directions of the boundary velocity that activates the

streaming inside the cylinder, and the small cones represent the velocity directions. The length

L of the cylinder is determined such that the indifferent zone rotates once around boundary Γ3:

L = 2π(R + 1) tanϕ (with the unit of the lattice spacing ∆x); consequently, the velocities and

pressures on Γ1 and Γ2 are connected by the periodic boundary condition on lattice A. L is fixed

to L=2R on lattice B. For clear visualization of the cones, the diameters of the cylinders in (a)

R= 8 and (b) R= 10 are four times smaller than those (a) R= 32 and (b) R= 40 used for the

simulations. The velocity V⃗ and pressure p are fixed to |V⃗ |=1 and p=0 in the simulation units

on Γ3 as boundary conditions for lattices A and B.

computational domain depends on this angle. An angle of 60◦ is assumed, which is smaller

than the actual angle in the plant cells, as shown in Fig. 2(b), to save computational time.

The length L of the cylinder is fixed such that the indifferent zone rotates once around Γ3.

Therefore, the boundaries Γ1 and Γ2 are connected by a periodic boundary condition such

that the velocities V⃗ and pressures p on Γ1 and Γ2 are nearest neighbors to each other.
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The boundary velocity V⃗ (|V⃗ | = 1 in the simulation units: Appendix B) on Γ3 on lattice

A is fixed to be a unit tangential vector, and the orientation in one domain is opposite

to that in the other, as shown in Fig. 3(a). The tangential vectors are characterized by

|Vz|=sinϕ(ϕ=60◦), where Vz is the z-component of V⃗ . On lattice B, the boundary velocity

is fixed to |V⃗ |= |Vz|=1. Another boundary condition is p=0 for all points on Γ3 of both

lattices A and B. We simply fix p = 0 for all points on Γ3 of both lattices A and B. The

boundary value of p(t) is necessary because of ∇p(t) at the inner vertices for the calculation

of a temporal velocity V⃗ ∗(t) (Appendix A).

Boundary 
vertices

Internal 
vertices

ௌ

஻

FIG. 4. The cross-section of a cylindrical lattice of size R=8, which is 4 to 5 times smaller than

the R=32 and R=40 of the lattices for the simulations. The total number of vertices is NS=241,

which includes NB = 48 boundary vertices. The radius r of the boundary vertices at which the

velocity V⃗ and pressure p are fixed is given by R−1 < r < R+1, and the r value of the internal

vertices is given by r < R−1.

To explain the lattice structure, we show the cross-section of the cylinder (Fig. 4(a)).

The building block is a regular cube with lattice spacing ∆x; therefore, the boundary shape

is not circular. Let r be the distance of a vertex from the center of the cross-section. Vertices

in region R−1 < r < R+1 form the boundary, whereas those in region r < R−1 are the

internal points, where R is the radius of the horizontal and vertical lines passing through
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the center of the cross-section. The geometries of lattices A and B are summarized in Table

I.

The size of both lattices is relatively small owing to the stochastic nature of the model,

because many convergent configurations are necessary to obtain the mean values of the

physical quantities:

⟨Q⟩ = (1/ns)
ns∑
i=1

Qi, (4)

where Qi denotes the ith convergent configuration corresponding to the ith Gaussian random

force η⃗(t). The symbol ns is the total number of convergent configurations, and ns = 1000

for the calculation of V⃗ (r, θ), which is shown in the following subsection, for all D except

D=0. For D=0, ns should be ns =1 because no Gaussian random number is assumed in

this case. For simplicity, brackets ⟨·⟩ are not used for the mean values in this paper. Here,

we emphasize that the numerical technique for obtaining physical quantities in this study

and in Refs. [25, 26] is based on Eq. (4). This calculation technique is used to obtain the

canonical ensemble averages of physical quantities in statistical mechanical simulations such

as the Metropolis Monte Carlo simulation technique [49, 50]. The aim of our LNS equation

is not to determine the time evolution of the fluid flow on a long time scale, but simply to

obtain the equilibrium velocity configuration under Brownian impulses that play a role in

thermal fluctuations.

TABLE I. Two different lattice geometries for the simulations. The ratio L/R is approximately

L/R≃ 11.2 on lattice A, while it is exactly L/R=2 on lattice B, where L is the cylinder length

and R is the radius with the unit of lattice spacing ∆x(= 1) (Fig. 3(a) and (b)). The reason for

the difference in L/R between lattices A and B is discussed in the caption of Fig. 3.

Lattice ϕ R L Internal Boundary
vertices vertices

A 60◦ 32 359 1,153,800 66,240

B 90◦ 40 80 406,053 18,468
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Lattice A

FIG. 5. Lattice sites along the lines of three different angles θ for calculating Vz(r, θ). The line at

θ=0◦ is a vertical line along the x axis, while those at θ=35◦ and θ=75◦ are two symmetric lines

due to the reflection symmetry θ → −θ. The lattice section corresponds to lattice A, whose radius

is given by R=32 with the unit of lattice spacing ∆x(=1).

C. Velocity distributions h(V ), h(Vz) and the radial dependence of Vz

The dependence of Vz(r, θ) on r is numerically measured along the lines in Fig. 5 with

angles θ=0◦, 35◦, and 75◦ on the cross-section at z=L/2 at the midpoint of the cylinder.

These angles are almost the same as those assumed in Ref. [8]. Only a single cross-section is

used for the numerical measurements of Vz(r, θ) on lattice A because the boundary velocities

are rotating and there is no equivalent cross-section along the longitudinal direction of the

cylinder, although the cross-sections at z=0 and z=L are almost equivalent owing to the

periodicity of the circulation (Fig. 3(a)). In the case of lattice B, all the cross-sections are

equivalent; however, we also use the cross-section at z=L/2 to numerically measure Vz(r, θ),

as in the case of lattice A.

The experimentally observed laser light scattering intensity in Fig. 2(c) is considered to

correspond to the velocity distribution h(Vz), which has no θ dependence. Therefore, we

calculate h(Vz) and h(V ) for all cross sections. Detailed information regarding the h(V ) and

h(Vz) calculation techniques is provided in Appendix C.
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D. Input parameters

The physical parameters that characterize protoplasmic streaming are the density

ρe(kg/m
3), kinematic viscosity νe(m

2/s), boundary velocity Ve(m/s), and diameter of the

cell de(m) (Table II). The symbols with subscript e except for Re denote experimentally

observed or observable quantities. These values are provided in Refs. [14–18] and are the

TABLE II. Physical parameters νe, Ve, and de corresponding to the protoplasmic streaming in plant

cells, expressed in physical units. The estimated Reynolds number is Re=Vede/νe=2.5×10−4. The

symbols with subscript e except for Re denote experimentally observed or observable quantities.

ρe(kg/m
3) νe (m2/s) Ve (µm/s) de (µm)

1× 103 1× 10−4 50 500

∆x(A) (µm) ∆x(B) (µm) ∆t (s)

7.8125 6.25 2×10−8

same as those assumed in the 2D LNS simulations in Refs. [25, 26]. The lattice spacings

∆x(A) and ∆x(B) of lattices A and B and the time step ∆t are listed in Table II. Note

that the boundary velocity Ve is extremely small, implying that the first term or advection

term on the right-hand side of Eq. (1) is negligible. Therefore, the LNS equation in Eq.

(1) or (3) can be called the Langevin–Stokes equation, and the fact that the advection

term is negligible implies that the analyses reported in Refs. [9, 10] are suitable for pro-

toplasmic streaming. The Reynolds number of the streaming can be estimated such that

Re=Vede/νe=2.5× 10−4.

Using the factors α, β and λ for the unit change (see Appendix B), we obtain the param-

eters in Table III in the simulation units, which are used in the simulations in this study.

Note that D is expressed using the simulation units ((αm)2/(βs)3) in this study (Appendix

B). The physical scales corresponding to D are discussed in the following subsections.

We consider D as the only parameter that can be varied in the simulations. The target

phenomenon is characterized by (ρe, νe, Ve, de) in Table II, and the corresponding parameters

(ρ0, ν0, V0,∆x0) in the simulation units are listed in Table III. Thus, if we fix ∆t0 to a

certain value, then the variable parameter is only D, and we should determine a D suitable

12



TABLE III. Parameters assumed in the simulations; these values are given in the simulation units.

Lattice ρ0 [ λkg
(αm)3

] ν0 [ (αm)2

βs ] V0 [αmβs ] ∆x0 [αm] ∆t0 [βs]

A 1× 10−3 1× 106 1 3.90625 5× 10−7

B 1× 10−3 1× 106 1 3.125 5× 10−7

for the thermal fluctuations of the target system by comparing the simulated h(Vz) with the

experimentally observed and reported h(Vz).

E. Fluctuation and dissipation relation and eligibility of the LNS simulation

It is well known that myosin molecules activate chloroplasts at the cell boundary, and

chloroplasts drive the streaming, including that of biological materials inside the cells (Fig.

2(b)). From a microscopic perspective, biological materials collide with water molecules

and lose kinetic energy. This collision process for energy dissipation is the same as that

in (or can also be viewed as) the Brownian motion of biological materials owing to the

fluctuation-dissipation relation, which will be discussed in this subsection.

The LNS equation was introduced by Landau and Lifschitz in the context of the

fluctuation-dissipation relation [28]. Landau and Lifschitz assumed fluctuations in all fluid

mechanical quantities such as velocity, density, and pressure. Fluctuations in these quanti-

ties are introduced via divergence ∂sab/∂xb(=
∑3

b=1 ∂sab/∂xb) of a random stress sab, which

is a component of the stress tensor σ′
ab and plays a role as a source of the fluctuations. In

this sense, the a-th component of the η⃗(r⃗, t) term in Eq. (1) corresponds to ∂sab/∂xb such

that

ηai (t)↔ ρ−1∂sab/∂xb, (5)

where fluctuations are assumed only in the velocity and pressure because of the assumption of

incompressibility. The right-hand side describes a force of interaction between fluids, whereas

the left-hand side describes the activation force of fluids at lattice site i corresponding to

r⃗, and it appears to be an external force that can violate the momentum conservation

in the flow field. However, η⃗i is given by a Gaussian random number with mean zero

13



(Appendix A). Therefore, ⟨
∑

i η⃗i⟩ (=
∑

i⟨η⃗i⟩) = 0⃗ is satisfied in the sense of mean value.

Thus, the correspondence in Eq. (5) is well defined, which is numerically confirmed in a

later subsection.

We assume the relation

⟨ηai (t)ηbj(t′)⟩ = 2Dδijδ
abδ(t− t′), (6)

where i and j denote space points and a and b represent the directions. The symbol D is not

the diffusion coefficient but the strength of the Brownian force. No information on viscosity

is included on the right-hand side, which describes only the properties of Brownian force.

However, we call this relation the fluctuation dissipation relation, because the Brownian force

strengthD in this relation is related to the viscosity via the above-mentioned correspondence

in Eq. (5) and the fluctuation dissipation relation of the stress tensor sab of Landau and

Lifschitz, as described in Appendix D. This relation in Eq. (6) is identical to that introduced

in Ref. [25], except for the space dimension, and implies that the hydrodynamic fluctuation

activation force is negligibly small in its variation in the space and time directions compared

with the characteristic scales in space and time in the reference physical system. In our

case, the physical system is the fluid velocity V⃗ of protoplasmic streaming activated by the

boundary flow, and the randomly changing forces originate from the thermally fluctuating

water molecules, which activate biological materials flowing in the streaming with the same

velocity V⃗ . Thus, it is reasonable to study the fluctuations in V⃗ using the LNS equation

instead of particle dynamics for the Brownian motion of biological materials. Temperature

T is not explicitly included in the LNS equation; however, the random force strength D is

proportional to kBT under the correspondence in Eq. (5) (see Appendix D). Therefore,

thermal fluctuations increase as D increases.

Note that δij is used in Eq. (6) instead of δ(r⃗−r⃗ ′) for the spatial correlation of η⃗(r⃗, t) in

the fluctuation dissipation relation of sab in Ref. [28] (Appendix D). In Ref. [28], δ(r⃗− r⃗ ′)

is identified with δij/vi in the limit of zero volume vi → 0. This replacement is suitable

for the numerical simulations of the LNS equation in Eq. (1). In particular, the Brownian

force strength D in Eq. (6) depends on ∆x and ∆t; hence, if we change these parameters,

D should also be changed to obtain the same results [25, 26]. This ∆x-dependence of D

originates from the notation D in Eq. (6), which corresponds to D̄/(∆x)d(d=3) with the

strength D̄ regarding the spatial correlation δ(r⃗− r⃗ ′). Therefore, we first fix the lattice
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spacing ∆x to be sufficiently small for numerical accuracy depending on the lattice size, and

then the discrete time step ∆t is fixed sufficiently small for a combination with sufficiently

large D, maintaining a fast convergence, and varying D in the simulations to find a suitable

D for the streaming under consideration. The experimentally relevant value of D observed

in the simulations can be compared with the expectation from the correspondence between

the relation in Eq. (6) and the fluctuation dissipation relation of sab for the LNS equation of

Landau and Lifschitz, we confirm that D suitably assumed in the simulations in this study

is consistent with the expectation (Appendix D).

The discrete expression
√
2D∆t g⃗ for the random force in Eq. (3) originates from the

stochastic nature of η⃗(r⃗, t) characterized by Eq. (6). A detailed explanation of this expression
√
2D∆t g⃗(t) is discussed from the viewpoint of impulse action (Appendix D).

Using the notion of this impulse action, we calculate the Brownian force acting on the

fluid volume (∆x)3 to estimate the physical scales corresponding toD. The magnitude of the

impulsive force, which changes the velocity V⃗i of the volume (∆x)3 at lattice site i, is given by

∥η⃗i(t)∥=
√

6D/∆t, which is evaluated to ∥η⃗i(t)∥2= |η1i (t)|2+|η2i (t)|2+|η3i (t)|2=3|ηai (t)|2 and

|ηai (t)|=
√

2D/∆t, (a=1, 2, 3) in terms of the squared mean value (Appendix D). Note that

the Brownian force η⃗i(t) at i for an infinitesimal timescale is replaced by a finite constant

∥η⃗i(t)∥=
√
6D/∆t during the finite time ∆t under the same momentum transfer. In this

sense, η⃗i(t) is not a classical force because impulse H⃗i(t;∆t) =
∫ t+∆t

t
η⃗i(t)dt = η⃗i(t)∆t =

√
2D∆tg⃗i(t) satisfies the relations in Eq. (D3), which is typical of stochastic variables.

Here, we replace η⃗i(t)∆t with classical force ∥η⃗i(t)∥ =
√
6D/∆t to estimate the physical

scale corresponding to D. This replacement is equivalent to replacing the Gaussian random

number gai (t) with a squared mean value of one in Eq. (3). Using the density of fluids ρ and

lattice spacing ∆x, we obtain the magnitude of the D-dependent Brownian force.

fBR(D) = ρ(∆x)3 ∥η⃗i(t)∥=ρ(∆x)3
√

6D/∆t. (7)

For D=100, we estimate fBR(D=100) as fBR(100)=ρe(∆x)
3 ∥η⃗i(t)∥=ρe(∆x)3

√
2D/∆t≃

2.1×10−11(kgm/s2)≃ 21(pN) using ρe = 1×103(kg/m3), ∆x= 7.8125×10−6(m) and ∆t=

2×10−8(s) in Table II, and D=100(α2m2/β3s3)=6.25×10−6(m2/s3). This impulse Brownian

force fBR(100)≃21(pN) remains unchanged if ∆t is replaced by ∆τ in Eqs. (D1) and (D2)

because of the relation in Eq. (D5). Note also that ∆V is independent of the lattice spacing

∆x even though fBR(D) depends on it. This fBR changes velocity V⃗i(t) to V⃗i(t+∆t) by ∆V =
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∥V⃗i(t+∆t)∥−∥V⃗i(t)∥ such that ∆V =fBRρ
−1
e (∆x)−3∆t=∥η⃗i(t)∥∆t=

√
6D∆t≃0.9(µm/s).

This ∆V is obtained by neglecting all other forces during ∆t=2×10−8(s) and replacing

gai (t) with gai (t)→ 1 as described above. In general, the equilibrium configuration of V⃗i is

influenced by the Brownian random force, and the velocity change can be evaluated even

without the assumption that gai (t)→1. To evaluate V⃗i under an impulse H⃗i(t;∆t)= η⃗i(t)∆t,

we consider the simplified equation

∂V⃗i
∂t

(t) = η⃗i(t) (8)

obtained from Eq. (1) by neglecting all the other terms. Using this expression, we have

〈
∂V a

i

∂t
(t)
∂V a

i

∂t′
(t′)

〉
= ⟨ηai (t)ηai (t′)⟩ , (a=1, 2, 3). (9)

Hence,
〈∫ t+∆t

t

∂V a
i

∂t
(t)dt

∫ t′+∆t

t′
∂V a

i

∂t′
(t′)dt′

〉
=

〈∫ t+∆t

t
ηai (t)dt

∫ t′+∆t

t′
ηai (t

′)dt′
〉

because the ex-

pectation and integration are commutative. It is easy to determine that ⟨(∆V a
i )

2⟩=2D∆t(
⇔⟨∆V a

i ⟩=
√
2D∆t

)
from Eq. (6) in the limit of t′→ t, where ∆V a

i = V a
i (t+∆t)−V a

i (t).

Thus, we have ⟨∆Vi⟩=
√
3 ⟨∆V a

i ⟩=
√
6D∆t, which is identical to the classical estimate ∆V .

The problem is how to observe the effects of the ∆V ≃0.9(µm/s), which is relatively small

compared with the boundary velocity Ve=50(µm/s) in Table II. However, ∆V ≃0.9(µm/s)

is due to a single impulse during ∆t, and ∆V increases proportionally to the total number

of hits because the same Brownian impulse (⇔ the same g⃗i(t)) is used at each ∆t until

the convergent configuration is obtained, and hence, a non-trivial influence of the random

force on V⃗i is expected. One possible solution is to determine its influence on the velocity

distribution, which is the mean value of many samples and is independent of the ± direction.

Thus, we consider that the estimate ∆V ≃ 0.9(µm/s) during ∆t is physically meaningful if

the simulation results of the velocity distributions are consistent with the experimentally

observed velocity distribution. Generally, if we find a suitable D such that the corresponding

simulated distribution of velocities is consistent with the experimental data, we conclude that

the LNS simulation technique under Eq. (6), is suitable for studying protoplasmic streaming.

This is discussed in the following Section.
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FIG. 6. Velocity distributions (a) h(Vz) vs. |Vz|, (b) h(V ) vs. V , (c) radial dependence of

normalized Vz(r, θ) obtained on lattice A, and (d), (e), (f) those obtained on lattice B at D=0.

The results (⃝) in (c) and (f) at θ=0 correspond to the velocity distribution illustrated in Fig.

2(a). The solid lines denoted as Th in (c) and (f) are drawn using Eq. (10).

III. NUMERICAL RESULTS

A. Velocity distribution for D=0

First, we introduce the results obtained for D = 0 on lattice A. The distributions or

histograms h(Vz) of |Vz| and h(V ) of V are plotted in Fig. 6(a) and (b), where the calculation

technique for h(Vz) and h(V ) is described in Appendix C. The plotted data are calculated

from a single convergent configuration of V⃗ . Therefore, a slightly non-smooth behavior is

observed in the data. The shape of h(Vz) versus |Vz| is nearly the same as that of h(V )

versus V . No peaks are observed in h(Vz) and h(V ), which are determined only by the

boundary fluid flow. Figure 6(c) shows the dependence of Vz(r, θ) on the distance r from

the center of the cross section and θ (Fig. 5). The solid lines show theoretical predictions

reported in Ref. [19] given by

Vz(r, θ) =
2

π
V tan−1

[
2(r/rmax) sin(90

◦ − θ)
1− (r/rmax)2

]
, (0 ≤ r ≤ rmax) (10)

under the conditions rmax=1 and V =1, which are the normalized diameter and boundary

velocity, respectively. The symbol θ(◦) denotes the angle, as shown in Fig. 5. We find that
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the simulation data are in good agreement with the theoretical prediction. Interestingly,

Vz(r, θ) is not influenced by the boundary velocity rotation. Moreover, as shown below, the

Brownian force (⇔ nonzero D) has no influence on Vz(r, θ).

The results obtained for lattice B are shown in Figs. 6(d)–(f). Distributions h(Vz) and

h(V ) in Figs. 6(d) and (e) are almost the same because the boundary velocity is along the

z direction on lattice B. By contrast, they are slightly different from each other, as shown

in Fig. 6(a) and (b) on lattice A, as expected from the boundary velocity rotating around

the cylinder. It is noteworthy that V max
z (=41.5) on lattice A is smaller than V max

z (=46.6)

on lattice B, and moreover, that h(Vz) on lattice A is slightly smaller than that on lattice B

for all Vz<40(µm/s) in Figs. 6(a), (d) as indicated by the updown arrows at Vz=25(µm/s).

By contrast, h(V ) on lattice A is apparently larger than that on lattice B for all V except

for the velocities at h(V )=1 in Figs. 6(b), (e). This difference is nontrivial and implies that

the rotating fluid circulation enhances the flow velocity inside, corresponding to the mixing

enhancement [8–11]. The r dependence of Vz(r, θ) in Fig. 6(c) are the same as those in Fig.

6(f) and almost the same as those reported in Ref. [8]. Note that the boundary velocities

are not included in the calculations of h(Vz), h(V ) and Vz(r, θ).

B. Velocity distribution for D ̸=0

The results corresponding to the D = 10 are plotted in Figs. 7(a)–(c) and 7(d)–(f) for

lattices A and B, respectively. We find that h(Vz) and h(V ) are different from those plotted

in Fig. 6 for both lattices A and B. Indeed, h(Vz) and h(V ) drop to zero at V ≃ 45(µm/s)

in Fig. 7. This implies that there are fluid velocities Vz>Ve sinϕ
◦ and V >Ve=50(µm/s),

where ϕ =60◦(90◦) on lattice A (lattice B). The reason for the appearance of Vz>Ve sinϕ
◦

and V > Ve, indicated by left-right arrows (↔, →←), is that the velocity is activated by

Brownian forces. Owing to this nontrivial contribution, a tail of the velocity appears in

h(Vz) and h(V ) in the regions of Vz>Ve sinϕ and V >Ve. The drop in h(V ) at V ≃10(µm/s)

is also a nontrivial influence of Brownian force. The r-dependence of Vz(r, θ) is independent

of lattices A and B, as shown in Fig. 7(c) and (f).

Next, we plot the results corresponding to D=50 for lattices A and B in Figs. 8(a)–(c)

and 8(d)–(f), respectively. The peak positions of V peak for h(V ) in Fig. 8(b) on lattice A

are almost the same as those in Fig. 8(e) on lattice B. In contrast, the velocity regions
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FIG. 7. (a) h(Vz) vs. |Vz|, (b) h(V ) vs. V , and (c) radial dependence of normalized Vz(r, θ)

obtained on lattice A, and (d), (e), and (f) those obtained on lattice B. D is fixed to D=10 in the

simulation units. The solid lines denoted as Th in (c) and (f) are obtained from Eq. (10).
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FIG. 8. (a) h(Vz) vs. |Vz|, (b) h(V ) vs. V , and (c) radial dependence of normalized obtained on

lattice A; (d), (e), and (f) those obtained on lattice B. D is fixed to D=50 in the simulation units.

The solid lines denoted as Th in (c) and (f) are obtained from Eq. (10).

larger than the peaks; Vz>V
peak
z and V >V peak in Figs. 8(a),(b) indicated by (↔), are wide

compared to those in Figs. 8(d),(e) implying that the rotating fluid circulation is effective for

velocity enhancement if the Brownian force is increased. The radial dependence of Vz(r, θ)
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FIG. 9. h(Vz) vs. |Vz|, h(V ) vs. V , and radial dependence of normalized Vz(r, θ) at (a)–(c) D=100,

and (d)–(f) D=1000 obtained on lattice A. The peak velocities V peak
z and V peak are slightly smaller

than the the boundary velocities Ve sinϕ=50 sin 60◦≃43(µm) and Ve=50(µm). Enhancements of

velocities, denoted by “Brownian motion”, become apparent with increasing D.

is almost the same for lattices A and B, even at D=50, as shown in Fig. 8(c) and (f).

To observe the dependence on D, we further increase D to D=100 and D=1000 for h(Vz)

and h(V ), as shown in Figs. 9(a)–(f), where only the results for lattice A are presented.

In the larger D regions, the effects of Brownian forces on the enhancement of flow velocity

are apparent. In the figures, this enhancement is denoted by left-right arrows (↔) with

the symbol “Brownian motion.” We should emphasize that the radial dependence of Vz(r, θ)

remains unchanged, even for sufficiently large D such as D=1000 as plotted in Figs. 9(c),(f).

However, this is reasonable because the fluid particles at position (r, θ) thermally fluctuate in

isotropic directions with rapid velocity, and the mean value Vz(r, θ) has no specific direction

dependence; therefore, the shape of the curves Vz(r, θ) remains unchanged.

C. Velocity distribution considering D variation

In this subsection, we analyze the dependence of the peak velocities on D and discuss

whether the peak positions are influenced by the thermal fluctuations of V⃗ to find D which

is suitable for the system under consideration in the sense that the shape of h(Vz) is close
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FIG. 10. (a) h(Vz) vs. |Vz| and (b) h(V ) vs. V obtained for 20≤D≤104 on lattice A. (c), (d) those

obtained on lattice B. The peaks are approximately V peak
z =40(µm/s) in (a) and V peak=46(µm/s)

in (b). These values are slightly smaller than the boundary velocities 43(=Ve sin 60
◦)(µm/s) and

50 (µm/s), respectively. The up-down arrows with “expt” in (a) and (c) denote the experimentally

relevant region, in the sense that the shape of h(Vz) is close to the experimentally observed shapes

in Figs. 2(c), (d).

to the experimental ones in Figs. 2(c), (d). In addition, by finding D or a range of D such

that the shape of h(Vz) is close to the experimental shape, we show that the LNS simulation

in this study is suitable for studying protoplasmic streaming, as mentioned in the final part

of the preceding section.

Figures 10(a) and (b) show h(Vz) versus |Vz| and h(V ) versus V obtained in the range of

20≤D≤104 on lattice A. The peak positions in Figs. 10(a),(b) are almost independent of

D, and these are close to or slightly smaller than Ve cos 60
◦≃43(µm/s) and Ve=50(µm/s),

respectively, in the range of D≤1000 at least. We find an experimentally relevant region of

D, as indicated by the updown arrow in Figs. 10(a),(b), where the shape of h(Vz) is close

to the experimental ones in Figs. 2(c), (d).
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We plot the h(Vz) and h(V ) results obtained on lattice B in Figs. 10(c),(d). The peak

positions of h(Vz) and h(V ) in Figs. 10(c), (d), are the same because the boundary velocity

is parallel to the z axis on lattice B. These peaks are approximately equal to V peak
z =V peak=

47(µm/s) for D ≤ 300 in Figs. 10(c), (d). We find that the shape of h(Vz) at D = 300 is

relatively close to the experimentally observed shape, and hence, the experimentally relevant

region of D, indicated by the updown arrow in Fig. 10(c), moves to slightly larger region

compared to that on lattice A in Fig. 10(a).

V peak and V peak
z are listed in Table IV with D and the corresponding De in the physi-

cal unit, which represent the strength of the numerically introduced single Brownian force

defined by Eq. (D3). De,τ corresponds to the strength of the random force in the case

∆τ = 5×10−4(s) and is obtained by the formula De,τ = De
∆τ
∆t

in Eq. (D5). Strengths

De,τ in the range of 50 ≤ D ≤ 100 are consistent with Eq. (D9), as expected from the

fluctuation-dissipation relation, as discussed in Appendix D.

TABLE IV. Assumed parameters D, De, De,τ in the simulation unit and physical unit at ∆τ =

∆t=2×10−8(s) and ∆τ=5×10−4(s), the peak values V peak
z and V peak of h(Vz) and h(V ) on lattice

A in Figs. 10(a), (b).

D De De,τ V peak
z (latA) V peak(latA)

(α0m)2

(β0s)3
m2/s3 m2/s3 µm/s µm/s

20 1.25× 10−6 3.1× 10−2 42.2 47.6

50 3.13× 10−6 7.8× 10−2 40.7 46.4

100 6.25× 10−6 1.6× 10−1 39.4 45.0

300 1.88× 10−5 4.7× 10−1 37.2 40.8

1000 6.25× 10−5 1.6 30.4 44.3

3000 1.88× 10−4 4.7 9.05 58.4

D. Theoretical prediction of the velocity distribution

In this study, we simulate the Brownian motion of biological materials by using the LNS

equation in Eq.(1) for fluids without biological materials. For this reason, it is meaningful to
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FIG. 11. (a) Plotted circles (⃝) are obtained by normalizing the simulation results of h(Vz) atD=0

in Fig. 6(a) by u = |Vz|/V cut
z with V cut

z = 41.5(µm/s) and the corresponding solid line is drawn

by fitting with a polynomial function h0(u) (Appendix E). (b) hth(vz) vs. |Vz|(= 41.5|vz|)(µm/s).

We find that the curve with c=0.18 is relatively close to the simulation data (◦) at D=100, which

is an experimentally relevant value.

compare the simulation results with the Maxwell-Boltzmann distribution of the velocity Vz

of the Brownian particles. To verify that the simulation results are reasonable, we assume

that the Brownian particles flow with the same velocity distribution h(Vz) as that of the

fluid in Fig. 6(a) for D=0. We calculate a theoretical distribution hth(vz) of the particles

by

hth(vz) ∝
∫ 1

−1

h0(u) exp
[
−(vz − u)2/c2

]
du,

h0(u) = polynomial function,

(u = 1⇔ Vz = 41.5(µm/s)) ,

(11)

where h0 is the polynomial function of u(= Vz/41.5), which is a normalized velocity (Ap-

pendix E), fitting the simulation result h(u) on lattice A at D=0 corresponding to h(Vz)

in Fig. 6(a), where the maximum velocity V cut
z = 41.5(µm/s) is indicated by the arrow.

This h0(u) represents the effect of the boundary flow. The meaning of exp [−(vz − u)2/c2],

denoted by f(vz, u), is the Maxwell-Boltzmann distribution of the fluctuating velocity vz of

particles moving with velocity u. In the expression of hth(vz), the unit velocity is assumed

to be vz = 1 ⇔ Vz = 41.5(µm/s). The constant c in the exponential function is the peak
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position of the Maxwell-Boltzmann distribution f(v) ∝ v2 exp(−v2/c2). The reasons for the

multiplication of h0(u) and the replacement v2z in f(vz, u=0) to (vz−u)2 in f(vz, u) are to

include effects of Brownian motion of all moving particles with mean velocity |u| ≤ 1 into

the distribution hth(vz), in which vz is not always limited to |vz|≤1. Specifically, the expres-

sion h0(u)du for |u|≤1 is proportional to the total number of particles with mean velocity

between u and u+du, and exp [−(vz − u)2/c2] is the contribution of the moving particles of

velocity u to hth(vz), and these contributions can be integrated out in the range −1≤u≤1.

In this calculation, it is assumed that the particles move with velocities of distribution h0(u)

along the z axis; hence, no interaction between the particles and fluids is assumed.

Figure 11(a) shows h0(u) versus u(= |Vz|/V cut
z ), where V cut

z = 41.5(µm/s). hth(vz) is

plotted with physical unit of |Vz| in Fig. 11(b), where Vz=V
cut
z vz. Simulation data obtained

at D=100 plotted with the symbol (◦) are close to the dashed line at c=0.18. This indicates

that the velocity distribution of Brownian particles is suitably reflected in the simulation

data.

E. Mean velocities and mixing enhancement
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FIG. 12. The mean values of (a) |Vz| vs. D and (b) V vs. D obtained on both lattices A and

B. The mean value V of lat A becomes larger than that of lat B at the experimentally relevant

D(∼ 100) region.

The mean values of |Vz| and V are shown in Figs. 12(a),(b). The mean values are
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calculated using Eq. (4), in which each sample is obtained from the lattice averages of

|Vz| and V such that |Vz|=
∑

i |V z
i |/

∑
i 1 and V =

∑
i ∥V⃗i∥/

∑
i 1. The convergence of the

time-evolution iterations of the lattice averages |Vz| and V is presented in Appendix F. The

total number of samples is ns =100, which is smaller than ns =1000 for the calculation of

V⃗ (r, θ) at a lattice section (Fig. 5), however, the data |Vz| and V plotted in Figs. 12(a),(b)

are calculated on the whole lattice points except the boundary Γ3 (Fig. 3), and therefore,

the statistics is considered to be sufficient. We find from Fig. 12(b) that

V (lat A) > V (lat B), (D ≥ 50) (12)

is satisfied in the region of D ≥ 50 including the experimentally relevant D region, whereas,

|Vz|(lat A) < |Vz|(lat B) (D < 3000). The result of Eq. (12) indicates that the mixing along

the V⃗ direction is enhanced by the Brownian motion under the boundary fluid circulation.

F. Snapshots of the velocity and pressure

We show snapshots of the velocity and pressure obtained on the cross-section of the

cylinder at z=L/2 on lattice A for several different D values. The direction of the boundary

velocity at z =L/2 is the opposite to that on the boundaries Γ1 at z = 0 and Γ2 at z =L

(Fig. 3(a)). The velocities denoted by the cones in Figs. 13(a)–(d) are of convergent

configurations corresponding to (a) D=0, (b) D=20, (c) D=100 and (d) D=1000. For

a clear visualization, only the velocities at every other vertex are shown. The pressures p

are normalized to 0≤ p≤ 1 and represented by the color gradation. In this normalization,

the boundary pressure p = 0 changes to p ≃ 0.5. Because Vz < 0 in the lower part of the

cross-section, the velocities are hidden behind the cross-sectional surfaces for the pressure

visualization.

An examination of Fig. 13(a) shows that the fluid regularly flows according to the

boundary velocity, and the pressure p remains almost unchanged from the boundary pressure

p(≃ 0.5) at D=0. The velocity and pressure are confirmed to be disturbed at nonzero D,

and the disturbance becomes stronger when D increases.

The pressure at higher D does not always vary smoothly but is randomly distributed over

the cross-section. This condition of the pressure configuration is relatively close to that of

Couette flow between parallel plates, which was obtained using 2D LNS simulations [26].
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(a)                                           (b)

(c)                                            (d) 

𝐷 = 0 𝐷 = 20

𝐷 = 100 𝐷 = 1000

FIG. 13. Snapshots of the velocity and pressure obtained on lattice A at the cross-section at the

middle of the cylinder z = L/2(≃ 179) corresponding to four different D. The small red cones

represent the velocity. Only the velocities at every other vertex are shown.

To visualize the difference in velocity configuration V⃗ between lattices A and B, we show

snapshots of V⃗ and pressure p obtained on lattice B in Figs. 14(a)–(d). The velocities in

Figs. 14(a)–(d) are shown at every third vertex. Because p ≃ 0.5 at every point on the

cross-section at D = 0 in the convergent configuration, we show snapshots of V⃗ and p at

D=1 instead of those at D=0 in Fig. 14(a). The velocity configurations on lattice B are

clearly different from those on lattice A for all D, as expected from the difference in the

boundary condition for V⃗ .

26



(a)                                           (b)

(c)                                            (d) 

𝐷 = 0 𝐷 = 20

𝐷 = 100 𝐷 = 1000

FIG. 14. Snapshots of velocity and pressure obtained on lattice B at the cross-section of the middle

of the cylinder z=L/2(=40) corresponding to four different D. The small red cones represent the

velocity. Only the velocities at every third vertex are shown.

IV. SUMMARY AND CONCLUSION

In this paper, we numerically study the velocity distribution for protoplasmic streaming in

plant cells using Langevin and Navier-Stokes (LNS) simulation on two different 3D lattices,

A and B. The boundary velocity rotates on the cylindrical surface of lattice A, whereas

it is parallel to the longitudinal direction on lattice B. In the LNS simulation scheme, the

velocity field V⃗ is treated as a fluctuating stochastic variable under a Brownian random

force of strength D. Therefore, the simulated velocity distributions can be compared and

identified with the reported experimentally observed velocity distribution. The goal of this
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study is to confirm this expectation. Additionally, we are interested in whether the velocity

fluctuations due to Brownian forces have nontrivial effects on the mixing of flows inside the

cells.

We find that the velocity distribution h(Vz) of |Vz| has a peak corresponding to the

boundary velocity for D≥ 10. The shape of h(Vz) on lattice A in the range 50≤D≤ 1000

is close to the reported experimental data. Moreover, the D value is predicted to be in the

region 50≤D≤ 100 from the fluctuation dissipation relation of Landau and Lifschitz. The

radial dependence of V⃗z calculated at several angles θ from the vertical direction on the cross

section is in good agreement with the theoretical prediction.

We also find two different peaks in h(V ), (V = ∥V⃗ ∥) at two different velocities V1 and

V2 (V1 < V2) when D is increased to 10≤D ≤ 100 or greater, where the second peak V2

corresponds to the boundary velocity. The Brownian force is reflected in the emergence of

a tail in h(V ) for V > V2. This appearance of velocities V > V2 higher than the boundary

velocity V2 is expected to play a nontrivial role in enhancing mixing.

The simulated velocity distribution h(Vz) is also compared with the theoretical distribu-

tion of Brownian particles moving with velocity u and distribution h(u), which is the same

as the simulated h(Vz) of the streaming with D = 0. By assuming a Maxwell-Boltzmann

distribution for the velocity of moving particles, we confirm that the obtained theoretical

prediction is in good agreement with the simulation data. This consistency implies that

the LNS equation used in this study suitably describes the Brownian motion of biological

materials.

To observe the enhancement of mixing, we calculate the mean values of Vz and V⃗ on

both lattices A and B by varying D. From these calculations, we find that the mixing

of biological materials is enhanced along the direction of V⃗ by the Brownian motion of

biological materials in the experimentally relevant region of D on lattice A with rotating

circular boundary fluids. Importantly, mixing is improved in the presence of the Brownian

motion of biological materials. In addition, using the mean values of Vz and V⃗ , we confirm

the momentum conservation, which can be a numerical check for the correspondence between

the Gaussian random force in this study and the fluid dynamical random force of Landau-

Lifshitz.
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Appendix A: SMAC method, convergence criteria and the divergenceless condition

In this Appendix, we show how to obtain the solution V⃗ (t) in Eq. (3) under the condition

∂V⃗ /∂t=0 in Eq. (2). The relationship between Gaussian random number g⃗ and Brownian

force η⃗ is given by
√
2D∆t g⃗= η⃗∆t [25]. Note that the discrete time t in Eq. (3) is introduced

to obtain the steady-state solution that satisfies Eq. (2) and is different from the real time

t in Eq. (1). This time can be called “fictitious time” because the divergenceless condition

of Eq. (2) is not always satisfied until a convergent solution corresponding to the random

force
√

2D/∆t g⃗ is obtained. Thus, the Brownian random force g⃗ is incremented only when

the convergent solution V⃗ of Eq. (3) is obtained. From Eq. (3), we understand that

∇ · V⃗ (t + ∆t) = 0 is not always satisfied even if ∇ · V⃗ (t) = 0 is satisfied because the terms

independent of V⃗ (t) on the right-hand side are not always divergenceless. Moreover, the

time evolution of p(t) is not specified. Therefore, we introduce a temporal velocity V⃗ ∗(t)

and rewrite Eq. (3) as follows:

V⃗ ∗(t) = V⃗ (t) +∆t
[(
−V⃗ · ∇

)
V⃗ (t)− ρ−1∇p(t) + ν△V⃗ (t)

]
+
√
2D∆t g⃗(t), (A1)

V⃗ (t+∆t) = V⃗ ∗(t)−∆tρ−1∇ [p(t+∆t)− p(t)] . (A2)

By applying the divergence operator ∇· to Eq. (A2), we obtain

∇ · V⃗ (t+∆t) = ∇ · V⃗ ∗(t)−∆tρ−1△ [p(t+∆t)− p(t)] . (A3)

Then, assuming the condition ∇ · V⃗ (t + ∆t) = 0, we obtain Poisson’s equation for ϕ(t) =

p(t+∆t)−p(t):

△ϕ(t) = ρ

∆t
∇ · V⃗ ∗(t), ϕ(t) = p(t+∆t)− p(t). (A4)
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Thus, combining Eq. (A1) for the time evolution of V⃗ ∗(t) with Poisson’s equation in Eq.

(A4) for ϕ(t)=p(t +∆t)−p(t), we implicitly obtain the time evolution V⃗ (t +∆t) with the

condition ∇ · V⃗ (t + ∆t) = 0. The time evolution of p from p(t) to p(t+∆t) can also be

obtained by adding the solution ϕ(t) to p(t), i.e., p(t)+ϕ(t). In this technique, an explicit

time-evolution step is assumed for V⃗ (t), whereas an implicit time-evolution is assumed for

p(t) by solving the Poisson equation for ϕ(t). The discrete time step ∆t, which is given

in Table III, is fixed, independent of D. For fast convergence, a large ∆t is preferable.

However, ∆t should be sufficiently small for a combination with a sufficiently large D such

as D = 10000. Note that if ∆t is changed, D should also be changed to obtain the same

results [25, 26].

The simulation procedure can be summarized as follows:

(i) Calculate V ∗(t) by Eq. (A1) using the current V (t), p(t) and g⃗

(ii) Solve Poisson’s equation for ϕ(t) in Eq. (A4)

(iii) Calculate V (t+∆t) and p(t+∆t) by Eq. (A2) and p(t)+ϕ(t), respectively

(iv) Repeat steps (i)–(iii) until the convergence criteria given below are satisfied

This technique for updating V⃗ (t) is slightly different from the original MAC method, where

V⃗ (t) is explicitly updated to V⃗ (t+∆t). Hence, ∇ · V⃗ =0 is not always satisfied and may be

slightly violated even for the convergent solution. This violation becomes larger for a larger

Brownian force strength D in the original MAC method; however, it is negligibly small for

the convergent solutions in the SMAC method. Detailed information on ∇ · V⃗ =0 is given

below. The most time-consuming part of this process is to solve the Poisson equation for ϕ,

which is simulated using the Open-Mp parallelization technique coded in Fortran.

We assume the following convergence criteria for V⃗ and p:

Max
[∣∣∣|∇ · V⃗ijk(t+∆t)| − |∇ · V⃗ijk(t)|

∣∣∣] < 1× 10−8,

Max
[
|V⃗ijk(t+∆t)− V⃗ijk(t)|

]
< 1× 10−8,

Max [|pijk(t+∆t)− pijk(t)|] < 1× 10−8,

(A5)

and the criterion for the Poisson equation iterations is

Max [|ϕijk(n+ 1)− ϕijk(n)|] < 1× 10−10, (A6)
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where n denotes the iteration step for solving the Poisson’s equation in Eq. (A4). The first

condition in Eq. (A5) is satisfied in the early iterations; therefore, the convergence condition

is unnecessary. Note that only the convergent solution satisfies∇·V⃗ =0. Thus, the numerical

solution of the LNS equation in Eq. (1) is a steady-state solution, characterized by Eq. (2).

ଷ
௫

ଵ
௫

ସ
௬

ଶ
௬

ௗ

FIG. 15. Illustration of divergence (2∆x)2∇ · V⃗ at lattice point 0, where the dimension is assumed

to be D=2 for simplicity and where the lattice spacing ∆x is assumed in the 3D simulations on

lattices A and in this paper.

To verify the accuracy of this technique, we calculate the lattice average Divab of |∇ · V⃗ |:

Divab = (2∆x)3
∑

ijk |∇ · V⃗ijk|/
∑

ijk 1(m
3/s), where

∑
ijk 1 is the total number of internal

lattice points and where ∇ · V⃗ijk = (V x
i+1jk−V x

i−1jk+V
y
ij+1k−V

y
ij−1k+V

z
ijk+1−V z

ijk−1)/(2∆x).

Here, Divab is considered to be the lattice average of the fluid volume flowing into or out

of a cubic lattice enclosing a lattice point per second according to Gauss’s theorem (see

Fig. 15 for the 2D case). For D = 0, we numerically obtain
∑

ijk |∇ · V⃗ijk| = 0(1/βs)

for every time step t (see Appendix B for the simulation unit β); hence, Divab = 0 for

all lattice points, which implies that ∇ · V⃗ =0 on lattice B. We also have
∑

ijk |∇ · V⃗ijk| ≃

7.9×10−9(1/βs)=1.9×10−7(1/s) on lattice A, which implies that the total divergence is given

by (2∆x)3
∑

ijk |∇ · V⃗ijk|≃7.4× 10−4(µm3/s)=7.4× 10−10(µg/s), where ∆x=7.8125 (µm),

and 1(µm3) is replaced by 10−6(µg) because the density ρ is considered to be the same as that

of water ρ=103(kg/m3)=10−3(g/mm3)=10−12(g/µm3). This value of the total divergence

7.4×10−10(µg/s), which implies Divab ≃ 6.5×10−16(µg/s), is sufficiently small for the scales

of protoplasmic streaming, where
∑

ijk 1=1, 153, 800 is used for the total number of internal

points of lattice A. Detailed information on the lattice geometry is presented in Section II B.

31



In the case of D ̸= 0, the total divergence fluctuates from one convergent configuration

to another depending on the Brownian random forces. However, its mean value is almost

independent of D, and its maximum value is approximately given by
∑

ijk |∇ · V⃗ijk|= 1 ×

10−7(1/βs), which is independent of lattices A and B; this value is comparable to the above-

mentioned value for D=0 on lattice A. Thus, we find that the SMAC method is successful

for the divergenceless condition when simulating the 3D LNS equation in Eq. (1) under the

condition of Eq. (2).

Appendix B: Physical units and simulation units

In the simulations, the physical units (m, s, kg) are changed to simulation units (αm, βs, λkg)

using positive numbers α, β and λ. Using these numbers for Ve, νe, and ρe, we have

the relations Ve[m/s] = Veβ/α[αm/(βs)], νe[m
2/s] = νeβ/α

2[(αm)2/(βs)], and ρe[kg/m
3] =

ρeα
3/λ[λkg/(αm)3] in physical units. The right-hand sides of these relations can be written

as V0[αm/(βs)], ν0[(αm)2/(βs)], and ρ0[λkg/(αm)3] in the simulation units. Therefore,

α =
νe
ν0

V0
Ve
, β =

νe
ν0

(
V0
Ve

)2

, λ =
ρe
ρ0

(
νe
ν0

V0
Ve

)3

. (B1)

In addition to these numbers, we need positive numbers γ and δ for the lattice and

time discretization, such that nX → γnX and nT → δnT for the physical quantities to be

independent of nX and nT . In this expression, nX and nT are connected to the lattice

spacing ∆x(m) and discrete time step ∆t(s), respectively, such that ∆x(m) = de/nX and

∆t(s) = τe/nT , where τe is the relaxation time [51, 52]. In this paper, we do not provide

details of this problem for nX and nT , and γ and δ are fixed to γ=1 and δ=1. This problem

is studied in Ref. [26], where the ∆t dependence is studied under γ=1.

We assume the values given in Table V for the unit change. Using the assumed numbers

TABLE V. Values for the change in physical units and simulation units.

α β λ γ δ

2× 10−6 4× 10−2 8× 10−12 1 1

α, β, and γ in Table V, we have V0=Veβ/α=(50×10−6)(4×10−2)/(2×10−6)=1[αm/(βs)],
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ν0 = νeβ/α
2 = (1×10−4)(4×10−2)/(2×10−6)2 = 1×10−6[(αm)2/(βs)], and ρ0 = ρeα

3/λ =

(1×103)(2×10−6)3/(8×10−12)=1×10−3[λkg/(αm)3].

The strength of the random force De(m
2/s3) is expressed by D((αm)2/(βs)3) in the

simulation units such that

De(m
2/s3) = α−2β3De((αm)2/(βs)3) = 1.6× 105De((αm)2/(βs)3),

⇔D = α−2β3De = 1.6× 105De((αm)2/(βs)3)

⇔De = 6.25× 10−6D(m2/s3).

(B2)

In the simulations, D(= 1.6 × 105De)((αm)2/(βs)3) is varied implying that De(m
2/s3) is

varied.

The lattice spacing ∆x0 in the simulation units is given by ∆x0 = α−1 de
nX

= (2×

10−6)−1(500× 10−6)/(2R), where the diameter 2R of the cylinder is assumed to be nX ,

which is the total number of discretizations introduced for a regular square lattice of size

L×L with L=nX∆x0. For nX =2R=64 on lattice A (nX =2R=80 on lattice B), we have

∆x0 = 3.90625 (∆x0 = 3.125) in the simulation unit (αm) and ∆x= 7.8125 (∆x= 6.25) in

the physical unit (µm).

The discrete time step ∆t0 can also be expressed by ∆t0=β
−1 τe

nT
using the macroscopic

relaxation time τe and total number of time discretizations nT . However, τe is not always

given; therefore, we assume that ∆t0=5×10−7(βs) in the simulation unit and ∆t=2×10−8(s)

in the physical unit.

Appendix C: Calculation technique for the velocity distribution

In this Appendix, we present the calculation technique for the velocity distribution h(V )

in detail. The same technique is applied to h(Vz) by replacing V →|Vz|. The total number

of cross-sections is 360 in lattice A and 80 in lattice B, and the total number of sample

configurations is 100 for lattices A and B, which are smaller than 1000 for the calculation of

Vz(r, θ) at three different θ. However, h(V ) and h(Vz) are calculated for all cross-sections,

and hence, the statistics is relatively high compared to the case of Vz(r, θ), which is calculated

only on the cross section at z = L/2. W should note that the velocities of the boundary

points are not included in the sample configurations.

To calculate the distribution h(V ), we first search for the maximum velocity V max in all

sample configurations for each value of D and define the width of the velocity by ∆V =
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FIG. 16. The histogram h(V ) of velocity V numerically calculated for all cross-sections of lattices

A and B in Figs. 3(a), (b). A small ∆V is fixed to ∆V = V max/n using the maximum velocity

V max and the number n, which is n= 100 for both lattices A and B for nonzero D. For D = 0,

smaller n values are assumed. The histogram h(Vi) is obtained by counting the total number of

lattice points at which the velocity V satisfies the condition Vi≤V <Vi+1. The normalization of

V is defined as V →V/V max, where V max depends on D. The histogram h(Vz) is obtained using

the same procedure as for h(V ) by replacing V →|Vz|. Therefore, the horizontal axis is denoted as

|Vz| for the plots of h(Vz).

V max/n, where n=100 for both lattices A and B (Fig. 16). The histogram h(Vi), (0≤ i≤n)

at Vi = i∆V is calculated by counting the number of lattice sites where the velocity V

satisfies Vi≤V <Vi+1. The plot of h(V ) for the normalized velocity is obtained by replacing

V with V →V/V max.

Appendix D: Impulse action of the Brownian force and fluctuation dissipation re-

lations

First, to describe the action of a random force on fluid velocity, we introduce

H⃗i(t;∆τ) =

∫ t+∆τ

t

η⃗i(t)dt, (D1)

where the suffix i denotes a 3D lattice site. H⃗i(t;∆τ) plays a role in an impulse action,

which is ∆τ times the mean value of η⃗ in Eq. (1) from t to t+∆τ at t [25], satisfying the

relations 〈
H⃗i(t;∆τ)

〉
= 0,

〈
Ha 2

i (t;∆τ)
〉
=2Dτ∆τ, (a = 1, 2, 3), (D2)
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where Dτ corresponds to D in Eq. (6), and ⟨∗⟩ denotes the mean value of many samples

or ensemble average and is the same as that in Eq. (6). Assuming the integrand η⃗i(t) in

Eq. (D1) to be constant and finite during ∆τ , we rewrite the right-hand side of Eq. (D1)

as H⃗i(t;∆τ)= η⃗i(t)∆τ , where the same symbol η⃗i(t) is used. Using the second part of Eq.

(D2), we obtain the absolute value of the Brownian force |ηai (t)|=
√
2Dτ/∆τ in the sense of

squared mean value.

If the time step ∆t is used instead of ∆τ in Eq. (D1), the relations in Eq. (D2) are

written as 〈
H⃗i(t;∆t)

〉
= 0,

〈
Ha 2

i (t;∆t)
〉
=2D∆t, (a = 1, 2, 3), (D3)

where we write Dτ as D, and we have the expression

|ηai (t)| =
√

2D/∆t (D4)

for each component of the Brownian force. D is the strength of one impulse action, nu-

merically introduced by η⃗i∆t =
√
2D∆tg⃗i(t) for V⃗i fluctuations, where g⃗i(t) = (g1i , g

2
i , g

3
i )

is the Gaussian random number of mean 0 and variance 1 satisfying ⟨gai ⟩ = 0, ⟨ga 2i ⟩ = 1,

(a = 1, 2, 3). As described in Appendix A, ∆t is introduced to obtain a convergent V⃗i on

which impulse η⃗i∆t is applied at t, and the same impulse is applied at every ∆t during

the iterations until the convergent configuration of V⃗i is obtained. Therefore, the impulse

action H⃗i(t;∆τ), where ∆τ = n∆t, (n = 1, 2, · · · ), is proportional to ∆τ : For ∆τ = 2∆t,

H⃗i(t;∆τ)=
∫ t+2∆t

t
η⃗i(t)dt=

∫ t+∆t

t
η⃗i(t)dt+

∫ t+2∆t

t+∆t
η⃗i(t+∆t)dt=2H⃗i(t;∆t). Consequently, Dτ

is proportional to ∆t because the second of Eq. (D2):

Dτ = D
∆τ

∆t
. (D5)

In this paper, we use D for the strength of the numerically introduced random force in the

text for simplicity to save symbols.

If ∆τ is used to define H⃗i(t;∆τ) in Eq. (D1), the Brownian force can be modified from

|ηai (t)|∆t=
√
2D/∆t to |ηai (t)|∆τ =

√
2Dτ/∆τ . We can easily verify that |ηai (t)|∆t= |ηai (t)|∆τ

by using Eq. (D5). Therefore, the Brownian impulse in the discrete LNS equation for time

step ∆t is independent of ∆τ : η⃗i(t)|∆t∆t = η⃗i(t)|∆τ∆t. This implies that the effects of

Brownian force Dτ during ∆τ(>∆t) can be simulated by using D and ∆t. Therefore, ∆τ

can be arbitrarily chosen under conditions ∆τ >∆t and Eq. (D5).
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Because ∆τ is independent of ∆t, it is possible to regard ∆τ as a relaxation time to

evaluate the net effect of Brownian forces corresponding to ∆τ in a specific system in the

framework of our modeling scheme using D corresponding to ∆t. Therefore, the formula in

Eq. (D5) is used to evaluate the strength Dτ of the Brownian force for V⃗ of the protoplasmic

streaming with relaxation time ∆τ from a physically relevant D estimated by comparing

the simulated and reported experimental velocity distributions.

Now, we approximately evaluate Dτ of the protoplasmic streaming from the discrete

form of the LNS equation of Landau and Lifschitz in Ref. [28], where δ(r⃗− r⃗ ′) is replaced

by δij/vi with a small volume vi. Note that this small volume limit implies that δ(r⃗− r⃗ ′)

can be replaced by δij/vi if we use lattices with sufficiently small lattice spacing ∆x. This

replacement δ(r⃗− r⃗ ′)→ δij
(∆x)3

(∆x→ 0) is suitable for the numerical simulations of the LNS

equation. Moreover, D depends on ∆x as described in the text; hence, when ∆x and D

are fixed, ∆x can be varied if D is suitably varied such that the results remain unchanged.

For these reasons, we first fix ∆x and then vary ∆x-dependent D to find a suitable D for

the experimentally observed velocity distribution. This experimentally relevant D can be

compared with Dτ expected from the fluctuation dissipation relation using a suitable ∆τ

and Eq. (D5).

In the LNS equation for velocity V⃗ in Ref. [28], a random force term is given by ρ−1 ∂sab
∂xb

(=

ρ−1
∑3

b=1
∂sab
∂xb

), which corresponds to ηa(t) in our LNS equation in Eq. (1). Using the

expressions

sab(t, r⃗ +∆x⃗b) = sab(t, r⃗) +
∂sab
∂xb

(t, r⃗)∆x, (a, b = 1, 2, 3),

∆x⃗1 = (∆x, 0, 0), ∆x⃗2 = (0,∆x, 0), ∆x⃗3 = (0, 0,∆x),

(D6)

we find

(∆x)2
〈
∂sab
∂xb

(t, r⃗)
∂sab
∂xb

(t′, r⃗)

〉
=

〈∑
b

sab(t, r⃗ +∆x⃗b)
∑
b

sab(t
′, r⃗ +∆x⃗b)

〉

+

〈∑
b

sab(t, r⃗)
∑
b

sab(t
′, r⃗)

〉
.

(D7)

The left-hand side of Eq. (D7) corresponds to (∆x)2ρ2⟨ηa(t, r⃗)ηb(t′, r⃗)⟩ from Eq. (5). Since

the magnitude of ∆x∂sab
∂xb

(t, r⃗) is estimated to be ∆x|∂sab
∂xb

(t, r⃗)|=∆xρ|ηa(t, r⃗)|=∆xρ
√
2D∆t

using Eq. (D4), the left-hand side of Eq. (D7) is given by (∆x)2ρ22Dτ∆τ , where Eq.

(D5) is used. The first and second terms on the right-hand side are directly calculated by
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the fluctuation dissipation formula in Ref. [28] for incompressible and viscous fluids with

viscosity ρν

⟨sab(t, r⃗)scd(t′, r⃗)⟩ =
2kBTρν

vi
(δacδbd + δadδbc) δ(t− t′), (D8)

where δ(r⃗− r⃗ ′) is replaced by 1/vi at r⃗. We find that the first term of the right-hand

side of Eq. (D7) is ⟨
∑

b sab(t, r⃗+∆x⃗b)
∑

b sab(t
′, r⃗+∆x⃗b)⟩ = 8kBTρν

vi∆τ
, and the second is

⟨
∑

b sab(t, r⃗)
∑

b sab(t
′, r⃗)⟩= 8kBTρν

vi∆τ
, and therefore, the right-hand side of Eq. (D7) is 16kBTρν

vi∆τ
.

Note that δ(t− t′) is replaced by 1/∆τ because ∆t should be replaced by ∆τ when our

modeling scheme is applied to a physical system as described above. Thus, we obtain

ρ22Dτ/∆τ=
16kBTρν
vi∆τ

/∆x. Replacing vi→(∆x)3, we have

Dτ =
8νkBT

ρ(∆x)5
. (D9)

The value is Dτ = 1.14×10−1 ≃ 0.1(m2/s3) for ρe = 1×103(kg/m3), νe = 1×10−4(m2/s),

∆x=7.8125×10−6(m) for lattice A in Table II, and kBT =4.14×10−21(m2kg/s2) for room

temperature T = 300(K). The symbols with the subscript e denote the experimentally

observed or observable quantities and the quantities in the physical unit. This value Dτ ≃

0.1(m2/s3) is comparable with De,τ = 0.08(m2/s3) for D = 50 and De,τ = 0.16(m2/s3) for

D= 100 in Table IV, where De,τ is obtained by the formula De,τ =De
∆τ
∆t

in Eq. (D5). In

this formula, ∆t=2×10−8(s) is used, and we assume ∆τ=5×10−4(s).

An analog of the relaxation time ∆τsim is numerically obtained by ∆τsim = ⟨nitr⟩∆t ,

where ⟨nitr⟩ is the mean value of the total number of iterations for convergence with the

initial configuration of V⃗i = (0, 0, 0) for all positions i. ∆τsim is approximately equal to

∆τsim=2.035×10−2(βs)≃8.1×10−4(s) for D=50 and ∆τsim=2.136×10−2(βs)≃8.5×10−4(s)

for D = 100. The values of ∆τsim are almost independent of the initial configuration of

V⃗i. Let {V⃗i(tn), (n=1, 2, · · · )} represent a series of convergent configurations. If the initial

configuration V⃗i at tn+1 is fixed to the convergent configuration V⃗i(tn) instead of V⃗i=(0, 0, 0),

∆τsim remains almost unchanged. Because the assumed relaxation time, ∆τ = 5×10−4(s)

is the equilibration time of fluid volume (∆x)3 for a random Brownian force, we consider

∆τ=5×10−4(s) to be reasonable because it is comparable to ∆τsim≃8×10−4(s).

Another expression for the fluctuation dissipation relation similar to Eq. (D9) can also be

obtained by considering fluid volume (∆x)3 as a particle of mass m=ρ(∆x)3 and of size ∆x.

Let us assume that this particle of mass m flows in the fluid with a random Brownian force
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R⃗i(t) acting on the particle at position i. It is natural to assume the fluctuation dissipation

relation for R⃗i(t): 〈
Ra

i (t)R
b
j(t

′)
〉
= 2γkBTδijδ

abδ(t− t′), (D10)

where γ denotes a friction constant between the particle and fluids [53]. This random

force R⃗i(t) has the unit of force. Therefore, we have a relation m−1R⃗i(t) = η⃗i(t) from the

correspondence between the Langevin equation for the fluid particle and the LNS equation

for the velocity in this paper. Therefore, comparing the relation in Eq. (D10) for R⃗i(t) and

that in Eq. (6) for η⃗i(t), we have

m−22γkBT = 2Dτ . (D11)

The friction constant γ is replaced by the kinematic viscosity ν using the Stokes formula

γ=6πρν∆x. Thus, we obtain

Dτ =
6πνkBT

ρ(∆x)5
≃ 19νkBT

ρ(∆x)5
, (D12)

which is approximately twice as large as that of Eq. (D9).

Appendix E: Polynomial function fitting the velocity distribution at D=0

The polynomial function h0(u) of Eq. (11) corresponding to h(Vz) at D=0 of lattice A

in Fig. 6(a) is given by

h0(u) =


∑8

i=0 aiu
i, (1 ≥ u ≥ 0)∑8

i=0 ai(−u)i (−1 ≤ u < 0)
,

a0 = 3.25× 10−1, a1 = 1.25× 10−1, a2 = −1.78,

a3 = 1.49× 101, a4 = −5.58× 101, a5 = 1.18× 102,

a6 = −1.40× 102, a7 = 8.79× 101, a8 = −2.24× 101.

(E1)

Appendix F: Convergence of the time evolution iteration

In this Appendix, we examine whether the total momentum remains unchanged during

the time-evolution process. As discussed in Section II E, the Brownian force η⃗i in Eq.

(1) is expected to play a role in the fluid dynamic interaction in the sense that η⃗i is not
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FIG. 17. (a) Discrete time evolution of lattice averages of V and |Vz| calculated at all internal

vertices for D=300, D=100 and D=20, (b) dependence of the convergent V and |Vz| on samples

representing the thermal fluctuations.

contradictory to global momentum conservation. The lattice averages V and |Vz| versus

the number of iterations are plotted in Fig. 17(a), where V =
∑

i ∥V⃗i∥/
∑

i 1 and |Vz| =∑
i |V z

i |/
∑

i 1 are calculated at all the internal lattice sites i. As described in Section

IIA, the discrete time step does not always correspond to real-time evolution, because the

divergence-less condition is not always satisfied. However, the plots show that V and |Vz|

remain unchanged soon after the start of the simulations, implying that the total momentum

is conserved.

The convergent values depend on the Brownian force η⃗ and are expected to fluctuate.

To observe these fluctuations, we plot 100 samples of V and |Vz| in Fig. 17(b), where the

data are connected by solid lines for a clear visualization. The fluctuations correspond to

thermal fluctuations, and their mean values are meaningful physical quantities in statistical

mechanical analysis. Thus, we confirm that the thermally fluctuating total momentum is

conserved in terms of the mean value even though the random force η⃗i appears as an external

force. This observation indicates that the correspondence between η⃗i and the fluid dynamic

force of Landau-Lifshitz in Eq. (5) is well-defined.
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