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Abstract

Working Memory (WM) enables the temporally-ordered maintenance of sequences of stimuli over short
periods of time. This ability is critical for many cognitive and behavioral tasks. Despite its importance,
however, how WM encodes, stores and retrieves information about serial order remains a major outstanding
problem. Here, we extend our previously-proposed synaptic theory of WM to include synaptic augmentation,
as experimentally observed at the same synapses that feature short-term facilitation. We find that synaptic
augmentation leads to the emergence of a primacy gradient that can be used to reconstruct the order of
presentation at recall, by an appropriate control of the background input to the WM network. The model
reproduces prominent features of the behavior of human subjects recalling lists of items and makes a series
of experimentally-testable predictions. Intriguingly, the model suggests that WM capacity limitations could
result from a failure in retrieving, rather than encoding, information.

Keywords: serial order, working memory, synaptic augmentation, recurrent network model

Introduction

Adaptive behavior requires storing and updating relevant information over multiple time scales. Over
short time scales, this ability is supported by the Working Memory (WM), a specialized component of the
memory system (Cowan, 2001; Baddeley, 2003). The guidance of behavior, decision-making and, indeed,
practically any cognitive function rely critically on WM function.

A defining feature of WM is its surprisingly small capacity, conventionally estimated to be 4 items
or chunks (Cowan, 2001). For comparison, people can store in the visual long-term memory thousands
of pictures with an astonishing detail (Standing, 1973; Brady et al., 2008). The encoding of serial order
information is another defining feature of WM (Lewandowsky and Farrell, 2008; Hurlstone et al., 2014).
This is not surprising; the information in WM has, typically, a temporal component. For instance, to reach
the closest coffee place we just asked directions to, we have to turn left at the next corner, walk one block,
and then turn right. We’ll get no espresso following the directions in the wrong order. Experimentally, the
encoding of serial order in WM is studied with the serial recall task (Kahana, 2012). In serial recall, a list of
randomly chosen items (e.g. words) is presented, one at a time, to subjects that have to recall them in the
presented order. For lists within capacity (typically up to 4 items), people usually perform without errors;
for longer lists, subjects tend to omit the items late in the list (Lewandowsky and Farrell, 2008; Hurlstone
et al., 2014).

Interestingly, people almost invariably recall short lists of up to 4 items in the presented order even
without explicit instructions to do so, as in free recall experiments (Dimperio et al., 2005; Ward et al., 2010;
Grenfell-Essam and Ward, 2012). For longer lists, people gradually forget more and more items, and report
the recalled items in the ”wrong” order, typically beginning from the end of the list. We illustrate this
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Figure 1: Spontaneous emergence of serial order during free recall of 5-word lists. For each of the 140 subjects, the
words recalled are shown from bottom to top in the order they were recalled. The color indicates the serial position of the
corresponding word in the presented list, from blue (first) to yellow (last). White indicates omissions. Data courtesy of G.
Ward.

phenomenon by showing the results of free recall experiments for lists of 5 words that most subjects cannot
recall completely (see Fig. 1; data courtesy of G. Ward). As can be seen in the figure, only about 30% of
the subjects recalled the list without omissions (i.e., the list was within their WM capacity) and almost all
of them recalled the 5 words in the order they were presented, even though the subjects were instructed to
recall the words in an arbitrary order. On the other hand, the subjects that could not recall the full list (i.e.,
the list was above their WM capacity) exhibited significant variability in the recall order. Thus, it appears
that WM inherently stores items together with information about the order in which they were presented,
and only when WM is overloaded this information cannot be retrieved.

This suggests that the mechanisms responsible for capacity limitations and those responsible for the
encoding of serial order are closely related. However, the models originally proposed for the computational
architecture of WM did not provide any account for the encoding of serial order (Cowan, 2001; Baddeley,
2003). This shortcoming has been extensively addressed in subsequent work, reviewed in (Lewandowsky
and Farrell, 2008; Hurlstone et al., 2014).

One class of models relies on rapid, Hebbian-like synaptic plasticity to form associations between the
(neural representations of the) items or between the items and some independent, pre-existing representa-
tions that encode serial order, such as list positions or a temporal context signal, e.g., (Lewandowsky and
Murdock Jr, 1989; Burgess and Hitch, 1999; Brown et al., 2000; Botvinick and Plaut, 2006). Another class
of models relies on the notion of encoding strength in WM, which, in turn, is assumed to affect recall so that
the stronger the encoding of an item, the larger its probability of being recalled. Then, if one further assumes
that the encoding strength of an item decreases with its position in the list, one obtains a primacy gradient
that leads to a recall in the presented order, e.g., (Grossberg, 1978; Henson, 1998; Page and Norris, 1998).
In all these models, the storage of the items and the encoding of their order rely on separate computational
substrates whose neurophysiological underpinnings are left unspecified.

Mechanistic models of WM, on the other hand, have largely focused on the neurophysiological substrate
of active maintenance and the ensuing capacity limitations. Early electrophysiological recordings pointed
to persistent spiking activity as the neuronal correlate of active maintenance (Fuster, 1973; Miyashita and
Chang, 1988; Goldman-Rakic, 1995; Amit, 1995). Subsequent work, however, has questioned the necessity
of persistent activity for maintenance (LaRocque et al., 2014; Constantinidis et al., 2018; Lundqvist et al.,
2018). We have proposed a theory – the synaptic theory of WM – that does not require persistent activity
for maintaining information in WM (Mongillo et al., 2008). The theory is broadly compatible with multiple
experimental observations and motivated further experiments aimed at disentangling persistent activity and
information maintenance (Rose et al., 2016; Wolff et al., 2017).

According to the synaptic theory of WM, the information is stored in the level of short-term synaptic
facilitation within neuronal populations that code for the items. Short-term facilitation is an experimentally
well-characterized transient enhancement of the synaptic efficacy that is quickly induced by pre-synaptic
spiking activity and can last for up to several seconds (Zucker and Regehr, 2002; Markram et al., 1998).
In particular, short-term facilitation was reported at inter-pyramidal connections in the prefrontal cortex,
a region heavily implicated in WM (Hempel et al., 2000; Wang et al., 2006). In the framework of the
synaptic theory, the maintenance of information in WM can be achieved via different regimes of neuronal
activity, depending on the background input to the network; at increasing levels of the background input, the
regimes are: (i) activity-silent regime, where the information is transiently maintained without enhanced
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spiking activity; (ii) low-activity regime, where the information is periodically refreshed, at low rate, by
brief spontaneous reactivations of corresponding neuronal populations (i.e., population spikes, PSs); (iii)
persistent-activity regime, where the information is maintained by tonically active neuronal populations. In
a subsequent study, we clarified the origin of the capacity limitations in the low-activity regime (Mi et al.,
2017). The storage capacity predicted by the theory, using experimental measures of short-term plasticity at
cortical synapses, is consistent with typical memory spans reported in behavioral studies. However, similarly
to other neurophysiologically-grounded theories of WM (e.g., (Amit and Brunel, 1997; Edin et al., 2009)),
the synaptic theory does not provide an account for the encoding of serial order information.

In the present contribution, we propose that transient synaptic enhancement on multiple time scales
provides a plausible mechanism to encode serial order information within the framework of the synaptic
theory of WM. Specifically, we extend the theory to include synaptic augmentation: an enhancement of
the synaptic efficacy that slowly builds up with repetitive pre-synaptic activity and that, once induced,
persists over tens of seconds in the absence of activity (Fisher et al., 1997; Thomson, 2000; Fioravante and
Regehr, 2011). Importantly, experiments reveal that augmentation is observed at the same synapses in the
prefrontal cortex that exhibit significant short-term facilitation (Hempel et al., 2000; Wang et al., 2006).
We find that, when the network operates in the low-activity regime, synaptic augmentation naturally leads
to the emergence of a primacy gradient that encodes the presentation order of the items.

Results

To illustrate the putative role of synaptic augmentation in the encoding of serial-order information,
we consider the simplified setting used in (Mi et al., 2017). To recapitulate, the network is composed of
P distinct excitatory populations, that represent the memory items, and one inhibitory population, that
prevents simultaneous enhanced activity in the excitatory populations. The recurrent synaptic connections
within each excitatory population display short-term synaptic plasticity according to the Tsodyks-Markram
(TM) model (Markram et al., 1998). The population-averaged synaptic input to population a (a = 1, . . . , P ),
ha, evolves in time according to

τ ḣa = −ha + Ia(t) +AEEuaxara −AEIrI (1)

where τ is the neuronal time constant; Ia(t), the external input to population a, is the sum of two com-
ponents: a background input, to control the activity regime of the network, and a selective input, to elicit
enhanced activity during the presentation of the corresponding item; AEE is the average strength of the
synapses within an excitatory population; ra, the average activity of population a, is a smoothed threshold-
linear function of ha, i.e.,

ra = ϕ (ha) ≡ α log

(
1 + exp

(
ha

α

))
(2)

where α > 0 is a parameter controlling the smoothing; ua and xa are, respectively, the levels of short-
term facilitation and depression of the recurrent synapses within population a; AEI is the strength of the
synapses from the inhibitory population to any excitatory population; rI = ϕ (hI) is the average activity of
the inhibitory population, and

τ ḣI = −hI + II +AIE

P∑
a=1

ra (3)

where II is the constant background input to the inhibitory population and AIE is the strength of the
synapses from any excitatory population to the inhibitory population.

The levels of short-term facilitation and depression, ua and xa, evolve in time according to
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u̇a =
Ua − ua

τF
+ Ua (1− ua) ra (4)

ẋa =
1− xa

τD
− uaxara (5)

where Ua is the baseline release probability of the recurrent synapses within population a (a = 1, . . . , P ); τF
and τD are the facilitation and depression time constants, respectively. In words: Activity in the population
induces both facilitation, i.e., it increases ua, and depression, i.e., it decreases xa, while, in the absence
of activity (i.e., ra = 0), facilitation and depression decay to their respective baseline levels, ua = Ua and
xa = 1.

In (Mi et al., 2017), the Ua’s in Equation (4) are time-independent parameters with the same value for
all the excitatory populations. By contrast here, to model synaptic augmentation, the Ua’s are activity-
dependent dynamic variables that increase with the ra’s according to

U̇a =
U0 − Ua

τA
+KA (1− Ua) ra (6)

where U0 is the basal release probability (i.e., following a long period of synaptic inactivity), τA is the aug-
mentation time constant, and the parameter KA controls how fast the baseline release probability increases
with the activity.

The physiological mechanisms responsible for synaptic augmentation are poorly understood. Neverthe-
less, the empirical evidence suggests that augmentation results from an increase in the release probability
rather than an increase in the number of release sites and/or an increase in the unitary quantal response
(Fisher et al., 1997; Thomson, 2000; Fioravante and Regehr, 2011). Equation (6) provides a minimal phe-
nomenological description of such an increase in the release probability, in the spirit of the original TM
model (Markram et al., 1998). The description of augmentation requires only two additional parameters
(i.e., KA and τA) as compared to the TM model. However, as it will become clear in the following, our
results do not critically depend on this modeling choice. For instance, one would obtain the same results by
modeling augmentation as an activity-dependent increase in the synaptic strength AEE .

Facilitating synaptic transmission observed at inter-pyramidal synapses in the prefrontal cortex is well
reproduced by the above model with the following choice of synaptic parameters: U0 ∼ 0.2, τF ∼ 1s,
τD ∼ 0.1s, τA ∼ 10s and KA ≪ 1 (Hempel et al., 2000; Wang et al., 2006; Barri et al., 2016). In Fig. 2,
we illustrate the model described by Equation (1) (with Ia(t) = 0, rI = 0 and AEE = 1/U0) and Equations
(4)-(6), when driven by a train of 10 spikes at 50Hz, followed by 1 spike 500ms after the end of the train and 1
spike 10s after the end of the train (top panel). The equations are solved with substituting the firing activity,

ra(t), with a sum of delta functions corresponding to the pre-synaptic spikes: ra (t) =
∑12

k=1 δ (t− tk), where
the sum is over all spike times, tk.

Repetitive synaptic activation at a rate much larger than 1/τD induces significant short-term depression
(i.e., the decrease of x; middle panel), as can be seen by comparing the response to the first spike in the train
with the response to the last spike in the train (bottom panel). However, high-rate activity also induces
short-term facilitation and augmentation (i.e., the increase of u and U ; middle panel). Due to the difference
in time scales (i.e., τD ≪ τF ≪ τA), both short-term facilitation and augmentation are still present after
a period of inactivity long enough to allow the almost-complete recovery from short-term depression. This
can be seen in the responses to the two isolated spikes. Note that the response to the last spike, 10s after
the end of the train, is still slightly larger than the response to the first spike due to augmentation.

The full set of network and short-term plasticity parameters used in the simulations is summarized in
Fig. 3. It is instructive to first understand why the model without augmentation (KA = 0) cannot encode
serial order. For illustration, in Fig. 3A we show the response of the network to a list of 3 items. The interval
between presentations is 1.5 seconds, a typical rate of presentation in the experiments. At the end of the
presentation, the neuronal populations that have been stimulated reactivate in a repeating cycle, indicating
that the corresponding items have been stored in WM. This regime of activity, which results in a constant
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Figure 2: Synaptic augmentation. In response to pre-synaptic spiking activity (upper panel), the depression level, x,
decreases while the facilitation and augmentation levels, u and U respectively, increase (middle panel). The slow decay of U
produces an enhanced post-synaptic response long after x and u are back to their baseline levels (bottom panel). Parameters:
top panel – train of 10 spikes at 50Hz followed by 1 spike 500ms after the end of the train, and 1 spike 10s after the end of
the train; middle panel – U0 = 0.25, KA = 0.0375, τD = 0.3s, τF = 1.5s, τA = 20s; bottom panel – Post-synaptic response are
obtained by integrating the Equations (1), (5)-(6) with τ = 8ms (see main text for details). The post-synaptic responses are
normalized with the response to the first spike in the train.
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Figure 3: The level of synaptic augmentation encodes serial order. Network responses to 3 sequentially presented
items without (A) and with synaptic augmentation (B). The bottom panel in (B) shows the level of synaptic augmentation
in the corresponding synaptic populations. The presentation of an item is simulated by 14-fold increasing of the background
input selectively to the corresponding neuronal population for 250ms (gray areas). The background input to the remaining
populations is kept constant at its baseline level. The onsets of 2 consecutive presentations are separated by 1.75s. The
population spikes in response to the onset of the stimulation are clipped for clarity of presentation (see Fig. 5). Network
parameters: P = 16, τ = 8ms, α = 1.5Hz, AEE = 8.0, AEI = 1.1, AIE = 1.75, Ibkg = 8.0Hz; Short-term plasticity
parameters: U0 = 0.25, KA = 0.0075, τD = 0.3s, τF = 1.5s, τA = 20s.
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Figure 4: Readout of serial order by background input. Top panel: Response of the network in Fig. 3 to the background
input depicted in the bottom panel. The background input undergoes a 4-fold decrease compared to its baseline level for
Tsupp = 1.5τF followed by 40% increase compared to its baseline level. The middle panel shows the resulting time course of
ux in the corresponding synaptic population. Immediately before the background input is increased again, ux ≃ U .

order of reactivation (i.e., 1 → 3 → 2 → 1 → · · · in Fig. 3A), is an attractor of the network dynamics. By
symmetry, there is one attractor for each possible (cyclical) order of reactivations. In our specific example,
there is only one other such attractor, corresponding to the order 1 → 2 → 3 → 1 → · · · . With 3 items,
however, there are 6 possible orders of presentation. After the presentation, the network dynamics converge
to one of the two attractors. In other words, the network dynamics will necessarily map different order of
presentations onto the same attractor; the information about the order of presentation is asymptotically
lost. At least in principle, information about the order of presentation could be extracted from the transient
dynamics. In the model, however, the time to converge to the attractor(s) is on the order of a second (i.e.,
∼ τF ). Thus, transient effects are too short-lived to encode serial order on the time scales relevant to the
experiments (i.e, tens of seconds).

The above discussion suggests two possible solutions: (i) having as many attractors as the possible orders
of presentation; (ii) having suitably slow dynamics that transiently carries information about the order of
presentation. To implement the first solution one would need, for instance, 24 different attractors to encode
the possible orders of presentation of a list of 4 items. The coexistence of so many attractors, however,
makes the dynamics extremely sensitive to the initial conditions (Pisarchik and Feudel, 2014). In this case,
the attractor asymptotically reached would depend on the exact timing of the presentations rather than
on their order. Regardless of the possible robustness issues, there is no obvious way of implementing this
solution in our model without dramatically altering the underlying theoretical framework. Instead, as we
now show, incorporating synaptic augmentation provides a natural implementation of the second solution.

In Fig. 3B, we show the response of the network with augmentation (KA > 0) to the same protocol as in
Fig. 3A. As before, the stimulated neuronal populations cyclically reactivate at the end of the presentation
(Fig. 3B, top panel). Unlike before, however, this regime of activity does not correspond to a steady
state (attractor) of the network dynamics. This is evident from the levels of synaptic augmentation in the
reactivating neuronal populations, shown in the bottom panel of Fig. 3B, which are still changing with
time. Similarly, as can be seen in the top panel of Fig. 3B, the amplitudes of PSs in each population are
slightly different. Clearly, in a steady state the levels of synaptic augmentation as well as the amplitudes
of the PSs are stationary and will have the same value for all the reactivating populations. This transient
regime is long-lived because KA is small and, hence, the level of augmentation grows rather slowly with each
reactivation. Furthermore, the decay of the level of augmentation between two consecutive reactivations of
the same population (∼ τD) is negligible, because τD/τA ≪ 1. Therefore, the longer an item has been in
WM – that is, the larger the number of reactivations – the larger the corresponding level of augmentation.

In summary, the simulation shows that synaptic augmentation transiently induces a primacy gradient;
the neuronal populations encoding items earlier in the list have larger augmentation levels. The duration of
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Figure 5: Serial recall is primacy-dominated. Network response to lists with an increasing number of items (from top to
bottom). The background input is set to a level that allows the reactivation of the loaded items in between the presentations
(i.e., the same level as in Fig. 3). Serial order is read-out by using the same control of the background input as in Fig. 4.

these transient effects is compatible with the time scales relevant to the experiments. This primacy gradient,
however, has no major effect on the neuronal dynamics and is, hence, largely hidden in the levels of synaptic
augmentation of the different populations. Can such a primacy gradient be used to reconstruct the order of
presentation at recall?

We suggest a plausible read-out mechanism, which relies on the order-of-magnitude difference between
the decay times of facilitation and augmentation. It works as follows (see Fig. 4). Recall is initiated
by decreasing the level of background input to the network for a time Tsupp ∼ τF . This prevents further
reactivations and the synaptic variables start decaying toward their baseline levels (see Fig. 4, middle panel).
After Tsupp, the background input is then raised again to its original level, or possibly to a larger level. The
levels of augmentation, i.e., the Ua’s, have hardly changed because Tsupp ≪ τA. However, both depression
and facilitation will be close to their corresponding baseline levels. That is,

xa ≃ 1; ua ≃ Ua; (a = 1, . . . , P ) (7)

The primacy gradient in the augmentation levels has been copied into the facilitation levels. For the activated
neuronal populations, the steady, low-rate state of activity is unstable, once the background input is raised
again. Hence, they will start reactivating, with the most unstable one (i.e., with the larger ua) reactivating
first, the next most unstable one reactivating second, and so on (Mi et al., 2017). As a result, the reactivations
follow the primacy gradient encoded in the augmentation levels (Fig. 4, top panel).

The proposed read-out mechanism is just one possible way of reconstructing the order of presentation
from the primacy gradient. Another, less parsimonious, possibility is that a dedicated read-out network has
access to the primacy gradient via the augmentation level of the synaptic connections it receives from the
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Figure 6: Free recall is recency-dominated. Top panel: Network response to a list of 11 items, largely exceeding the storage
capacity. Bottom panel: Control of the background input. The background input is initially set at the same level as in Fig. 5
and, upon the presentation of the fifth item, it is reduced to a level preventing further reactivation (4-fold decrease compared
to the baseline level). Recall is initiated 1.75s after the presentation of the last item by a 40% increase of the background input
as compared to its baseline level.

neuronal populations in the memory network. In this case, the order of presentation could be reconstructed
by a competitive queuing mechanism as originally proposed in (Grossberg, 1978).

In the simulation illustrated above, the number of items presented is below the capacity, as evidenced by
the absence of omissions at recall. What happens when the number of items increases? This is illustrated
in Fig. 5. As can be seen in the bottom panel of Fig. 5, up to 6 items are concurrently maintained by the
network. Using the same read-out procedure as before, however, the network only recalls the first 4 items.
The reason for this discrepancy is that the short-term facilitation level of the fifth item is significantly lower
at retrieval than during the maintenance period. Therefore, at retrieval, it is overtaken by the first item
(Mi et al., 2017). We note, however, that the augmentation level of the fifth item would allow reactivation
in the absence of competing items.

In summary, the model reproduces the pronounced primacy effect observed in serial-recall tasks, where
the subjects are able to recall the first few items (i.e., 3-4) in the correct order, while the probability to
recall items later in the list declines as the number of items increases (Ward et al., 2010; Grenfell-Essam
and Ward, 2012). In free-recall tasks with long lists, on the other hand, subjects exhibit a recency effect:
they usually quickly recall the last few items, typically in reverse order, while the probability to recall
earlier items declines with the list length (Murdock, 1962; Ward et al., 2010). Can the model also account
for this experimental observation? We propose that the switch to recency-dominated recall when ordered
recall is not required is an automatic consequence of overloading WM. In general, the strong augmentation
levels of the active populations prevent new, potentially relevant, information from entering WM, once
the capacity is exceeded. A simple solution to this problem consists in suppressing the reactivations by
reducing the background input as soon as WM capacity is exceeded. Additional items can still be stored
and passively maintained – by the presentation-induced increase in the facilitation and augmentation levels
in the corresponding neuronal populations – and recalled – by increasing the background input to a suitable
high level.

The response of the network to a list of 11 items, with the control of the background input just described,
is illustrated in Fig. 6. At the end of the presentation, when the background input is increased, the last
two items are recalled in the backward order. This is easily understood. In the absence of reactivations, the
primacy gradient becomes a recency gradient, which is dominated by short-term facilitation effects, shortly
after the presentation of the list. However, due to the initial reactivations, the populations enconding the
first few items in the list can have significant levels of augmentation. In fact, the first item is still retrieved
when the list is not too long.
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Discussion

We have extended the synaptic theory of WM to include synaptic augmentation besides synaptic short-
term depression and facilitation. We have shown that, in the low-activity regime, where items are maintained
by short-lived reactivations of the corresponding neuronal populations, the presence of synaptic augmenta-
tion naturally leads to a transient primacy gradient that encodes the order of presentation of the items. This
gradient can then be used to reconstruct the order of presentation at recall. The mechanism that generates
the primacy gradient is robust, because it relies on the order-of-magnitude differences between the build-up
and the decay time of the augmentation and those of short-term depression and facilitation.

Our model allows the storage and retrieval of short sequences of items by relying on synaptic plastic-
ity mechanisms that are well-characterized experimentally, that is, the transient enchancement of synap-
tic efficacy driven by pre-synaptic activity (Fisher et al., 1997; Thomson, 2000; Fioravante and Regehr,
2011). Alternative models, as already pointed out, rely instead on some form of fast associative learning
(Lewandowsky and Murdock Jr, 1989; Burgess and Hitch, 1999; Brown et al., 2000; Botvinick and Plaut,
2006). At the physiological level, associative learning is thought to entail long-term synaptic plasticity.
This is because the induction of long-term synaptic plasticity is dependent on the joint pattern of pre- and
post-synaptic activity, as required for associativity. However, there is presently no evidence that long-term
synaptic plasticity can be induced and/or expressed on the relevant time scales, that is, the presentation of
a single item during a serial-recall task (Lansner et al., 2023).

A key prediction of our theory is that multiple items are maintained in the low-activity regime. Indeed, if
the items are maintained either in the activity-silent regime or in the persistent-activity regime, the proposed
mechanism fails. In the first case, because in the absence of reactivations the gradient does not build up;
in the second case, because the augmentation levels quickly saturate due to the enhanced firing rates. This
prediction is consistent with recent experimental observations (Siegel et al., 2009; Fuentemilla et al., 2010;
Lundqvist et al., 2016). In multi-item working memory tasks, the neuronal activity during the maintenance
period is characterized by short episodes of spiking synchrony, detected as brief gamma bursts in the local
field potential (Siegel et al., 2009; Lundqvist et al., 2016) or in the MEG/EEG signal (Fuentemilla et al.,
2010). These episodes, which we identify with the population spikes in our model, are associated with the
reactivation of the neural representation of the items, as evidenced by the fact that item’s identity can be
reliably decoded only during the gamma bursts. Importantly, during a given gamma burst, only information
about one of the maintained items can be reliably decoded (Fuentemilla et al., 2010; Lundqvist et al., 2016),
suggesting that the items are reactivated one at a time, as required by our theory.

In neurophysiological studies of working memory for sequences, the conjunctive coding of item identity
and order information at the single-neuron level has been reported (Barone and Joseph, 1989; Funahashi
et al., 1997; Xie et al., 2022). Conjunctive coding refers to the modulation of neuron’s activity by both
item and order information, so that, for instance, the average firing rate of the neuron during the delay
period following different sequences with the same item changes depending on the position of the item in the
sequence (Xie et al., 2022). While also in our model the firing rates of neurons are sensitive to the temporal
order due to the primacy gradient (Fig. 3B), this effect is very minor compared to observations. In this
respect, an important caveat could be that animals in these studies have been extensively trained on the
task, with a limited number of sequences, while we are interested in WM representations of novel sequences
that may have never been encountered in the past. Extensive training could lead to the emergence of
stimulus-adapted neuronal representations but this mechanism is unavailable for processing novel sequences
(see above). It remains to be seen whether our model, in a more physiologically-detailed setting, is able
to account for some aspects of conjunctive coding or whether additional mechanisms are required, such as,
e.g., associative synaptic plasticity (Botvinick and Watanabe, 2007; Gillett et al., 2020; Ryom et al., 2021).

Behavioral data in serial-recall tasks, on the other hand, strongly support the notion that the encoding
of serial order relies, indeed, on a primacy gradient that prioritizes recall, and on an additional mechanism
that prevents the recall of the items already retrieved (Farrell and Lewandowsky, 2004; Hurlstone and Hitch,
2015, 2018). In computational models, however, those features are essentially postulated to account for the
behavior. By contrast, our theory makes an explicit proposal as to their neurophysiological substrates: The
primacy gradient is encoded by the augmentation levels, its generation depends on a specific interplay of
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the synaptic and neuronal dynamics (as described above), and the suppression of the (already) recalled
items is a result of the synaptic depression. As such, our theory makes novel predictions that are testable
in behavioral experiments. For instance, the primacy gradient builds up gradually with the reactivations
of the corresponding neuronal populations between consecutive presentations. This requires a presentation
rate that is slow enough for these reactivations to occur in sufficient number. Hence, as the presentation
rate is increased, the theory predicts that encoding of the serial order should degrade. Consistently with
this prediction, increasing the presentation rate of the items results in a larger number of transposition
errors, that is, some items are recalled at the wrong serial position (see, e.g., (Farrell and Lewandowsky,
2004)). Experiments with very rapid serial visual presentation (RSVP) of the items show that the subjects
are unable to report the correct order of presentation, even when the number of items is below capacity
(Reeves and Sperling, 1986). At the other extreme, if the presentation rate is too slow, or the list is too
long, then the primacy gradient will also degrade because of the saturation of the synaptic augmentation.
We are not aware of experiments having tested this prediction.

More speculatively, we have shown that the same model is able to account for the switch from primacy-
dominated to recency-dominated recall that is observed in free-recall tasks with long lists. We stress that our
account is tentative, as it relies on unverified, but not implausible, assumptions about the dynamical control
of the background input to the memory network. In fact, there is significant experimental evidence that
items can be maintained in WM in different representational states with different physiological signatures,
e.g., with or without enhanced spiking activity, and that these states can be rapidly altered by task demand
(LaRocque et al., 2014; Oberauer and Awh, 2022). Our theory suggests that this could be achieved by
regulating, more or less selectively, the background inputs to the memory network.

The explicit modeling of the recall process has revealed an intriguing dissociation between the storage
and the retrieval capacity of the model network; some of the stored items cannot be retrieved (see Fig. 5).
In fact, we expect a large storage capacity, because of the long time scales brought about by the synaptic
augmentation. The retrieval capacity, on the other hand, is largely determined by the time constant for
synaptic depression, τD, as shown in Mi et al. (2017). It would seem, hence, that taking a longer τD should
lead to a better performance (i.e., more items recalled). However, increasing τD reduces the augmentation
levels of the stored items. In fact, the refresh period (i.e., the interval between two reactivations of the
same population) is also controlled by τD. A larger τD results in slower refresh rates and, therefore, in a
slower build-up of the augmentation levels. This, in turn, leads to lower storage capacity, in general, and
to a degradation of serial order encoding, in particular. In other words, there is a trade-off between storage
capacity (and serial order encoding) and retrieval capacity. This suggests that WM capacity, which is in fact
an experimental estimate of the retrieval capacity, could result from the inability to retrieve the information,
rather than from the inability to encode and/or maintain it. In this scenario, WM capacity is ultimately
determined by the degree of selectivity that the background control – that we identify with the ”central
executive” or the ”focus of attention” of cognitive theories – can attain.
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