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Introduction

Adaptive behavior requires storing and updating relevant information over multiple time scales. Over short time scales, this ability is supported by the Working Memory (WM), a specialized component of the memory system [START_REF] Cowan | The magical number 4 in short-term memory: A reconsideration of mental storage capacity[END_REF][START_REF] Baddeley | Working memory: looking back and looking forward[END_REF]. The guidance of behavior, decision-making and, indeed, practically any cognitive function rely critically on WM function.

A defining feature of WM is its surprisingly small capacity, conventionally estimated to be 4 items or chunks [START_REF] Cowan | The magical number 4 in short-term memory: A reconsideration of mental storage capacity[END_REF]. For comparison, people can store in the visual long-term memory thousands of pictures with an astonishing detail [START_REF] Standing | Learning 10000 pictures[END_REF][START_REF] Brady | Visual long-term memory has a massive storage capacity for object details[END_REF]. The encoding of serial order information is another defining feature of WM [START_REF] Lewandowsky | Short-term memory: New data and a model[END_REF][START_REF] Hurlstone | Memory for serial order across domains: An overview of the literature and directions for future research[END_REF]. This is not surprising; the information in WM has, typically, a temporal component. For instance, to reach the closest coffee place we just asked directions to, we have to turn left at the next corner, walk one block, and then turn right. We'll get no espresso following the directions in the wrong order. Experimentally, the encoding of serial order in WM is studied with the serial recall task [START_REF] Kahana | Foundations of human memory[END_REF]. In serial recall, a list of randomly chosen items (e.g. words) is presented, one at a time, to subjects that have to recall them in the presented order. For lists within capacity (typically up to 4 items), people usually perform without errors; for longer lists, subjects tend to omit the items late in the list [START_REF] Lewandowsky | Short-term memory: New data and a model[END_REF][START_REF] Hurlstone | Memory for serial order across domains: An overview of the literature and directions for future research[END_REF].

Interestingly, people almost invariably recall short lists of up to 4 items in the presented order even without explicit instructions to do so, as in free recall experiments [START_REF] Dimperio | A comparative analysis of serial and free recall[END_REF][START_REF] Ward | Examining the relationship between free recall and immediate serial recall: the effects of list length and output order[END_REF][START_REF] Grenfell-Essam | Examining the relationship between free recall and immediate serial recall: The role of list length, strategy use, and test expectancy[END_REF]. For longer lists, people gradually forget more and more items, and report the recalled items in the "wrong" order, typically beginning from the end of the list. We illustrate this phenomenon by showing the results of free recall experiments for lists of 5 words that most subjects cannot recall completely (see Fig. 1; data courtesy of G. Ward). As can be seen in the figure, only about 30% of the subjects recalled the list without omissions (i.e., the list was within their WM capacity) and almost all of them recalled the 5 words in the order they were presented, even though the subjects were instructed to recall the words in an arbitrary order. On the other hand, the subjects that could not recall the full list (i.e., the list was above their WM capacity) exhibited significant variability in the recall order. Thus, it appears that WM inherently stores items together with information about the order in which they were presented, and only when WM is overloaded this information cannot be retrieved.

This suggests that the mechanisms responsible for capacity limitations and those responsible for the encoding of serial order are closely related. However, the models originally proposed for the computational architecture of WM did not provide any account for the encoding of serial order [START_REF] Cowan | The magical number 4 in short-term memory: A reconsideration of mental storage capacity[END_REF][START_REF] Baddeley | Working memory: looking back and looking forward[END_REF]. This shortcoming has been extensively addressed in subsequent work, reviewed in [START_REF] Lewandowsky | Short-term memory: New data and a model[END_REF][START_REF] Hurlstone | Memory for serial order across domains: An overview of the literature and directions for future research[END_REF].

One class of models relies on rapid, Hebbian-like synaptic plasticity to form associations between the (neural representations of the) items or between the items and some independent, pre-existing representations that encode serial order, such as list positions or a temporal context signal, e.g., [START_REF] Lewandowsky | Memory for serial order[END_REF][START_REF] Burgess | Memory for serial order: A network model of the phonological loop and its timing[END_REF][START_REF] Brown | Oscillator-based memory for serial order[END_REF][START_REF] Botvinick | Short-term memory for serial order: a recurrent neural network model[END_REF]. Another class of models relies on the notion of encoding strength in WM, which, in turn, is assumed to affect recall so that the stronger the encoding of an item, the larger its probability of being recalled. Then, if one further assumes that the encoding strength of an item decreases with its position in the list, one obtains a primacy gradient that leads to a recall in the presented order, e.g., [START_REF] Grossberg | Behavioral contrast in short term memory: serial binary memory models or parallel continuous memory models[END_REF][START_REF] Henson | Short-term memory for serial order: The start-end model[END_REF][START_REF] Page | The primacy model: a new model of immediate serial recall[END_REF]. In all these models, the storage of the items and the encoding of their order rely on separate computational substrates whose neurophysiological underpinnings are left unspecified.

Mechanistic models of WM, on the other hand, have largely focused on the neurophysiological substrate of active maintenance and the ensuing capacity limitations. Early electrophysiological recordings pointed to persistent spiking activity as the neuronal correlate of active maintenance [START_REF] Fuster | Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory[END_REF][START_REF] Miyashita | Neuronal correlate of pictorial short-term memory in the primate temporal cortex[END_REF][START_REF] Goldman-Rakic | Cellular basis of working memory[END_REF][START_REF] Amit | The hebbian paradigm reintegrated: Local reverberations as internal representations[END_REF]. Subsequent work, however, has questioned the necessity of persistent activity for maintenance [START_REF] Larocque | Multiple neural states of representation in short-term memory? it'sa matter of attention[END_REF][START_REF] Constantinidis | Persistent spiking activity underlies working memory[END_REF][START_REF] Lundqvist | Working memory: delay activity, yes! persistent activity? maybe not[END_REF]. We have proposed a theory -the synaptic theory of WM -that does not require persistent activity for maintaining information in WM [START_REF] Mongillo | Synaptic theory of working memory[END_REF]. The theory is broadly compatible with multiple experimental observations and motivated further experiments aimed at disentangling persistent activity and information maintenance [START_REF] Rose | Reactivation of latent working memories with transcranial magnetic stimulation[END_REF][START_REF] Wolff | Dynamic hidden states underlying working-memory-guided behavior[END_REF].

According to the synaptic theory of WM, the information is stored in the level of short-term synaptic facilitation within neuronal populations that code for the items. Short-term facilitation is an experimentally well-characterized transient enhancement of the synaptic efficacy that is quickly induced by pre-synaptic spiking activity and can last for up to several seconds [START_REF] Zucker | Short-term synaptic plasticity[END_REF][START_REF] Markram | Differential signaling via the same axon of neocortical pyramidal neurons[END_REF]. In particular, short-term facilitation was reported at inter-pyramidal connections in the prefrontal cortex, a region heavily implicated in WM (Hempel et al., 2000;[START_REF] Wang | Heterogeneity in the pyramidal network of the medial prefrontal cortex[END_REF]. In the framework of the synaptic theory, the maintenance of information in WM can be achieved via different regimes of neuronal activity, depending on the background input to the network; at increasing levels of the background input, the regimes are: (i) activity-silent regime, where the information is transiently maintained without enhanced 2 spiking activity; (ii) low-activity regime, where the information is periodically refreshed, at low rate, by brief spontaneous reactivations of corresponding neuronal populations (i.e., population spikes, PSs); (iii) persistent-activity regime, where the information is maintained by tonically active neuronal populations. In a subsequent study, we clarified the origin of the capacity limitations in the low-activity regime [START_REF] Mi | Synaptic correlates of working memory capacity[END_REF]. The storage capacity predicted by the theory, using experimental measures of short-term plasticity at cortical synapses, is consistent with typical memory spans reported in behavioral studies. However, similarly to other neurophysiologically-grounded theories of WM (e.g., [START_REF] Amit | Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex[END_REF][START_REF] Edin | Mechanism for top-down control of working memory capacity[END_REF]), the synaptic theory does not provide an account for the encoding of serial order information.

In the present contribution, we propose that transient synaptic enhancement on multiple time scales provides a plausible mechanism to encode serial order information within the framework of the synaptic theory of WM. Specifically, we extend the theory to include synaptic augmentation: an enhancement of the synaptic efficacy that slowly builds up with repetitive pre-synaptic activity and that, once induced, persists over tens of seconds in the absence of activity [START_REF] Fisher | Multiple overlapping processes underlying short-term synaptic enhancement[END_REF][START_REF] Thomson | Facilitation, augmentation and potentiation at central synapses[END_REF][START_REF] Fioravante | Short-term forms of presynaptic plasticity[END_REF]. Importantly, experiments reveal that augmentation is observed at the same synapses in the prefrontal cortex that exhibit significant short-term facilitation (Hempel et al., 2000;[START_REF] Wang | Heterogeneity in the pyramidal network of the medial prefrontal cortex[END_REF]. We find that, when the network operates in the low-activity regime, synaptic augmentation naturally leads to the emergence of a primacy gradient that encodes the presentation order of the items.

Results

To illustrate the putative role of synaptic augmentation in the encoding of serial-order information, we consider the simplified setting used in [START_REF] Mi | Synaptic correlates of working memory capacity[END_REF]. To recapitulate, the network is composed of P distinct excitatory populations, that represent the memory items, and one inhibitory population, that prevents simultaneous enhanced activity in the excitatory populations. The recurrent synaptic connections within each excitatory population display short-term synaptic plasticity according to the Tsodyks-Markram (TM) model [START_REF] Markram | Differential signaling via the same axon of neocortical pyramidal neurons[END_REF]. The population-averaged synaptic input to population a (a = 1, . . . , P ), h a , evolves in time according to

τ ḣa = -h a + I a (t) + A EE u a x a r a -A EI r I (1)
where τ is the neuronal time constant; I a (t), the external input to population a, is the sum of two components: a background input, to control the activity regime of the network, and a selective input, to elicit enhanced activity during the presentation of the corresponding item; A EE is the average strength of the synapses within an excitatory population; r a , the average activity of population a, is a smoothed thresholdlinear function of h a , i.e.,

r a = ϕ (h a ) ≡ α log 1 + exp h a α (2)
where α > 0 is a parameter controlling the smoothing; u a and x a are, respectively, the levels of shortterm facilitation and depression of the recurrent synapses within population a; A EI is the strength of the synapses from the inhibitory population to any excitatory population; r I = ϕ (h I ) is the average activity of the inhibitory population, and

τ ḣI = -h I + I I + A IE P a=1 r a (3)
where I I is the constant background input to the inhibitory population and A IE is the strength of the synapses from any excitatory population to the inhibitory population.

The levels of short-term facilitation and depression, u a and x a , evolve in time according to

3 ua = U a -u a τ F + U a (1 -u a ) r a (4) ẋa = 1 -x a τ D -u a x a r a (5)
where U a is the baseline release probability of the recurrent synapses within population a (a = 1, . . . , P ); τ F and τ D are the facilitation and depression time constants, respectively. In words: Activity in the population induces both facilitation, i.e., it increases u a , and depression, i.e., it decreases x a , while, in the absence of activity (i.e., r a = 0), facilitation and depression decay to their respective baseline levels, u a = U a and x a = 1.

In [START_REF] Mi | Synaptic correlates of working memory capacity[END_REF], the U a 's in Equation ( 4) are time-independent parameters with the same value for all the excitatory populations. By contrast here, to model synaptic augmentation, the U a 's are activitydependent dynamic variables that increase with the r a 's according to

Ua = U 0 -U a τ A + K A (1 -U a ) r a (6)
where U 0 is the basal release probability (i.e., following a long period of synaptic inactivity), τ A is the augmentation time constant, and the parameter K A controls how fast the baseline release probability increases with the activity. The physiological mechanisms responsible for synaptic augmentation are poorly understood. Nevertheless, the empirical evidence suggests that augmentation results from an increase in the release probability rather than an increase in the number of release sites and/or an increase in the unitary quantal response [START_REF] Fisher | Multiple overlapping processes underlying short-term synaptic enhancement[END_REF][START_REF] Thomson | Facilitation, augmentation and potentiation at central synapses[END_REF][START_REF] Fioravante | Short-term forms of presynaptic plasticity[END_REF]. Equation ( 6) provides a minimal phenomenological description of such an increase in the release probability, in the spirit of the original TM model [START_REF] Markram | Differential signaling via the same axon of neocortical pyramidal neurons[END_REF]. The description of augmentation requires only two additional parameters (i.e., K A and τ A ) as compared to the TM model. However, as it will become clear in the following, our results do not critically depend on this modeling choice. For instance, one would obtain the same results by modeling augmentation as an activity-dependent increase in the synaptic strength A EE .

Facilitating synaptic transmission observed at inter-pyramidal synapses in the prefrontal cortex is well reproduced by the above model with the following choice of synaptic parameters: U 0 ∼ 0.2, τ F ∼ 1s, τ D ∼ 0.1s, τ A ∼ 10s and K A ≪ 1 (Hempel et al., 2000;[START_REF] Wang | Heterogeneity in the pyramidal network of the medial prefrontal cortex[END_REF][START_REF] Barri | Quantifying repetitive transmission at chemical synapses: a generativemodel approach[END_REF]. In Fig. 2, we illustrate the model described by Equation (1) (with I a (t) = 0, r I = 0 and A EE = 1/U 0 ) and Equations ( 4)-( 6), when driven by a train of 10 spikes at 50Hz, followed by 1 spike 500ms after the end of the train and 1 spike 10s after the end of the train (top panel). The equations are solved with substituting the firing activity, r a (t), with a sum of delta functions corresponding to the pre-synaptic spikes: r a (t) = 12 k=1 δ (t -t k ), where the sum is over all spike times, t k .

Repetitive synaptic activation at a rate much larger than 1/τ D induces significant short-term depression (i.e., the decrease of x; middle panel), as can be seen by comparing the response to the first spike in the train with the response to the last spike in the train (bottom panel). However, high-rate activity also induces short-term facilitation and augmentation (i.e., the increase of u and U ; middle panel). Due to the difference in time scales (i.e., τ D ≪ τ F ≪ τ A ), both short-term facilitation and augmentation are still present after a period of inactivity long enough to allow the almost-complete recovery from short-term depression. This can be seen in the responses to the two isolated spikes. Note that the response to the last spike, 10s after the end of the train, is still slightly larger than the response to the first spike due to augmentation.

The full set of network and short-term plasticity parameters used in the simulations is summarized in Fig. 3. It is instructive to first understand why the model without augmentation (K A = 0) cannot encode serial order. For illustration, in Fig. 3A we show the response of the network to a list of 3 items. The interval between presentations is 1.5 seconds, a typical rate of presentation in the experiments. At the end of the presentation, the neuronal populations that have been stimulated reactivate in a repeating cycle, indicating that the corresponding items have been stored in WM. This regime of activity, which results in a constant 3 to the background input depicted in the bottom panel. The background input undergoes a 4-fold decrease compared to its baseline level for Tsupp = 1.5τ F followed by 40% increase compared to its baseline level. The middle panel shows the resulting time course of ux in the corresponding synaptic population. Immediately before the background input is increased again, ux ≃ U .

order of reactivation (i.e., 1 3A), is an attractor of the network dynamics. By symmetry, there is one attractor for each possible (cyclical) order of reactivations. In our specific example, there is only one other such attractor, corresponding to the order 1 → 2 → 3 → 1 → • • • . With 3 items, however, there are 6 possible orders of presentation. After the presentation, the network dynamics converge to one of the two attractors. In other words, the network dynamics will map different order of presentations onto the same attractor; the information about the order of presentation is asymptotically lost. At least in principle, information about the order of presentation could be extracted from the transient dynamics. In the model, however, the time to converge to the attractor(s) is on the order of a second (i.e., ∼ τ F ). Thus, transient effects are too short-lived to encode serial order on the time scales relevant to the experiments (i.e, tens of seconds).

→ 3 → 2 → 1 → • • • in Fig.
The above discussion suggests two possible solutions: (i) having as many attractors as the possible orders of presentation; (ii) having suitably slow dynamics that transiently carries information about the order of presentation. To implement the first solution one would need, for instance, 24 different attractors to encode the possible orders of presentation of a list of 4 items. The coexistence of so many attractors, however, makes the dynamics extremely sensitive to the initial conditions [START_REF] Pisarchik | Control of multistability[END_REF]. In this case, the attractor asymptotically reached would depend on the exact timing of the presentations rather than on their order. Regardless of the possible robustness issues, there is no obvious way of implementing this solution in our model without dramatically altering the underlying theoretical framework. Instead, as we now show, incorporating synaptic augmentation provides a natural implementation of the second solution.

In Fig. 3B, we show the response of the network with augmentation (K A > 0) to the same protocol as in Fig. 3A. As before, the stimulated neuronal populations cyclically reactivate at the end of the presentation (Fig. 3B, top panel). Unlike before, however, this regime of activity does not correspond to a steady state (attractor) of the network dynamics. This is evident from the levels of synaptic augmentation in the reactivating neuronal populations, shown in the bottom panel of Fig. 3B, which are still changing with time. Similarly, as can be seen in the top panel of Fig. 3B, the amplitudes of PSs in each population are slightly different. Clearly, in a steady state the levels of synaptic augmentation as well as the amplitudes of the PSs are stationary and will have the same value for all the reactivating populations. This transient regime is long-lived because K A is small and, hence, the level of augmentation grows rather slowly with each reactivation. Furthermore, the decay of the level of augmentation between two consecutive reactivations of the same population (∼ τ D ) is negligible, because τ D /τ A ≪ 1. Therefore, the longer an item has been in WM -that is, the larger the number of reactivations -the larger the corresponding level of augmentation.

In summary, the simulation shows that synaptic augmentation transiently induces a primacy gradient; the neuronal populations encoding items earlier in the list have larger augmentation levels. The duration of Network response to lists with an increasing number of items (from top to bottom). The background input is set to a level that allows the reactivation of the loaded items in between the presentations (i.e., the same level as in Fig. 3). Serial order is read-out by using the same control of the background input as in Fig. 4.

these transient effects is compatible with the time scales relevant to the experiments. This primacy gradient, however, has no major effect on the neuronal dynamics and is, hence, largely hidden in the levels of synaptic augmentation of the different populations. Can such a primacy gradient be used to reconstruct the order of presentation at recall? We suggest a plausible read-out mechanism, which relies on the order-of-magnitude difference between the decay times of facilitation and augmentation. It works as follows (see Fig. 4). Recall is initiated by decreasing the level of background input to the network for a time T supp ∼ τ F . This prevents further reactivations and the synaptic variables start decaying toward their baseline levels (see Fig. 4, middle panel). After T supp , the background input is then raised again to its original level, or possibly to a larger level. The levels of augmentation, i.e., the a 's, have hardly changed because T supp ≪ τ A . However, both depression and facilitation will be close to their corresponding baseline levels. That is,

x a ≃ 1; u a ≃ U a ; (a = 1, . . . , P ) (7)
The primacy gradient in the augmentation levels has been copied into the facilitation levels. For the activated neuronal populations, the steady, low-rate state of activity is unstable, once the background input is raised again. Hence, they will start reactivating, with the most unstable one (i.e., with the larger u a ) reactivating first, the next most unstable one reactivating second, and so on [START_REF] Mi | Synaptic correlates of working memory capacity[END_REF]. As a result, the reactivations follow the primacy gradient encoded in the augmentation levels (Fig. 4, top panel).

The proposed read-out mechanism is just one possible way of reconstructing the order of presentation from the primacy gradient. Another, less parsimonious, possibility is that a dedicated read-out network has access to the primacy gradient via the augmentation level of the synaptic connections it receives from the 5 and, upon the presentation of the fifth item, it is reduced to a level preventing further reactivation (4-fold decrease compared to the baseline level). Recall is initiated 1.75s after the presentation of the last item by a 40% increase of the background input as compared to its baseline level.

neuronal populations in the memory network. In this case, the order of presentation could be reconstructed by a competitive queuing mechanism as originally proposed in [START_REF] Grossberg | Behavioral contrast in short term memory: serial binary memory models or parallel continuous memory models[END_REF].

In the simulation illustrated above, the number of items presented is below the capacity, as evidenced by the absence of omissions at recall. What happens when the number of items increases? This is illustrated in Fig. 5. As can be seen in the bottom panel of Fig. 5, up to 6 items are concurrently maintained by the network. Using the same read-out procedure as before, however, the network only recalls the first 4 items. The reason for this discrepancy is that the short-term facilitation level of the fifth item is significantly lower at retrieval than during the maintenance period. Therefore, at retrieval, it is overtaken by the first item [START_REF] Mi | Synaptic correlates of working memory capacity[END_REF]. We note, however, that the augmentation level of the fifth item would allow reactivation in the absence of competing items.

In summary, the model reproduces the pronounced primacy effect observed in serial-recall tasks, where the subjects are able to recall the first few items (i.e., 3-4) in the correct order, while the probability to recall items later in the list declines as the number of items increases [START_REF] Ward | Examining the relationship between free recall and immediate serial recall: the effects of list length and output order[END_REF][START_REF] Grenfell-Essam | Examining the relationship between free recall and immediate serial recall: The role of list length, strategy use, and test expectancy[END_REF]. In free-recall tasks with long lists, on the other hand, subjects exhibit a recency effect: they usually quickly recall the last few items, typically in reverse order, while the probability to recall earlier items declines with the list length [START_REF] Murdock | The serial position effect of free recall[END_REF][START_REF] Ward | Examining the relationship between free recall and immediate serial recall: the effects of list length and output order[END_REF]. Can the model also account for this experimental observation? We propose that the switch to recency-dominated recall when ordered recall is not required is an automatic consequence of overloading WM. In general, the strong augmentation levels of the active populations prevent new, potentially relevant, information from entering WM, once the capacity is exceeded. A simple solution to this problem consists in suppressing the reactivations by reducing the background input as soon as WM capacity is exceeded. Additional items can still be stored and passively maintained -by the presentation-induced increase in the facilitation and augmentation levels in the corresponding neuronal populations -and recalled -by increasing the background input to a suitable high level.

The response of the network to a list of 11 items, with the control of the background input just described, is illustrated in Fig. 6. At the end of the presentation, when the background input is increased, the last two items are recalled in the backward order. This is easily understood. In the absence of reactivations, the primacy gradient becomes a recency gradient, which is dominated by short-term facilitation effects, shortly after the presentation of the list. However, due to the initial reactivations, the populations enconding the first few items in the list can have significant levels of augmentation. In fact, the first item is still retrieved when the list is not too long.
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Discussion

We have extended the synaptic theory of WM to include synaptic augmentation besides synaptic shortterm depression and facilitation. We have shown that, in the low-activity regime, where items are maintained by short-lived reactivations of the corresponding neuronal populations, the presence of synaptic augmentation naturally leads to a transient primacy gradient that encodes the order of presentation of the items. This gradient can then be used to reconstruct the order of presentation at recall. The mechanism that generates the primacy gradient is robust, because it relies on the order-of-magnitude differences between the build-up and the decay time of the augmentation and those of short-term depression and facilitation.

Our model allows the storage and retrieval of short sequences of items by relying on synaptic plasticity mechanisms that are well-characterized experimentally, that is, the transient enchancement of synaptic efficacy driven by pre-synaptic activity [START_REF] Fisher | Multiple overlapping processes underlying short-term synaptic enhancement[END_REF][START_REF] Thomson | Facilitation, augmentation and potentiation at central synapses[END_REF][START_REF] Fioravante | Short-term forms of presynaptic plasticity[END_REF]. Alternative models, as already pointed out, rely instead on some form of fast associative learning [START_REF] Lewandowsky | Memory for serial order[END_REF][START_REF] Burgess | Memory for serial order: A network model of the phonological loop and its timing[END_REF][START_REF] Brown | Oscillator-based memory for serial order[END_REF][START_REF] Botvinick | Short-term memory for serial order: a recurrent neural network model[END_REF]. At the physiological level, associative learning is thought to entail long-term synaptic plasticity. This is because the induction of long-term synaptic plasticity is dependent on the joint pattern of pre-and post-synaptic activity, as required for associativity. However, there is presently no evidence that long-term synaptic plasticity can be induced and/or expressed on the relevant time scales, that is, the presentation of a single item during a serial-recall task [START_REF] Lansner | Fast hebbian plasticity and working memory[END_REF].

A key prediction of our theory is that multiple items are maintained in the low-activity regime. Indeed, if the items are maintained either in the activity-silent regime or in the persistent-activity regime, the proposed mechanism fails. In the first case, because in the absence of reactivations the gradient does not build up; in the second case, because the augmentation levels quickly saturate due to the enhanced firing rates. This prediction is consistent with recent experimental observations [START_REF] Siegel | Phase-dependent neuronal coding of objects in short-term memory[END_REF][START_REF] Fuentemilla | Theta-coupled periodic replay in working memory[END_REF][START_REF] Lundqvist | Gamma and beta bursts underlie working memory[END_REF]. In multi-item working memory tasks, the neuronal activity during the maintenance period is characterized by short episodes of spiking synchrony, detected as brief gamma bursts in the local field potential [START_REF] Siegel | Phase-dependent neuronal coding of objects in short-term memory[END_REF][START_REF] Lundqvist | Gamma and beta bursts underlie working memory[END_REF] or in the MEG/EEG signal [START_REF] Fuentemilla | Theta-coupled periodic replay in working memory[END_REF]. These episodes, which we identify with the population spikes in our model, are associated with the reactivation of the neural representation of the items, as evidenced by the fact that item's identity can be reliably decoded only during the gamma bursts. Importantly, during a given gamma burst, only information about one of the maintained items can be reliably decoded [START_REF] Fuentemilla | Theta-coupled periodic replay in working memory[END_REF][START_REF] Lundqvist | Gamma and beta bursts underlie working memory[END_REF], suggesting that the items are reactivated one at a time, as required by our theory.

In neurophysiological studies of working memory for sequences, the conjunctive coding of item identity and order information at the single-neuron level has been reported [START_REF] Barone | Prefrontal cortex and spatial sequencing in macaque monkey[END_REF][START_REF] Funahashi | Delay-period activity in the primate prefrontal cortex encoding multiple spatial positions and their order of presentation[END_REF][START_REF] Xie | Geometry of sequence working memory in macaque prefrontal cortex[END_REF]. Conjunctive coding refers to the modulation of neuron's activity by both item and order information, so that, for instance, the average firing rate of the neuron during the delay period following different sequences with the same item changes depending on the position of the item in the sequence [START_REF] Xie | Geometry of sequence working memory in macaque prefrontal cortex[END_REF]. While also in our model the firing rates of neurons are sensitive to the temporal order due to the primacy gradient (Fig. 3B), this effect is very minor compared to observations. In this respect, an important caveat could be that animals in these studies have been extensively trained on the task, with a limited number of sequences, while we are interested in WM representations of novel sequences that may have never been encountered in the past. Extensive training could lead to the emergence of stimulus-adapted neuronal representations but this mechanism is unavailable for processing novel sequences (see above). It remains to be seen whether our model, in a more physiologically-detailed setting, is able to account for some aspects of conjunctive coding or whether additional mechanisms are required, such as, e.g., associative synaptic plasticity [START_REF] Botvinick | From numerosity to ordinal rank: a gain-field model of serial order representation in cortical working memory[END_REF][START_REF] Gillett | Characteristics of sequential activity in networks with temporally asymmetric hebbian learning[END_REF][START_REF] Ryom | Latching dynamics as a basis for short-term recall[END_REF].

Behavioral data in serial-recall tasks, on the other hand, strongly support the notion that the encoding of serial order relies, indeed, on a primacy gradient that prioritizes recall, and on an additional mechanism that prevents the recall of the items already retrieved [START_REF] Farrell | Modelling transposition latencies: Constraints for theories of serial order memory[END_REF]Hurlstone andHitch, 2015, 2018). In computational models, however, those features are essentially postulated to account for the behavior. By contrast, our theory makes an explicit proposal as to their neurophysiological substrates: The primacy gradient is encoded by the augmentation levels, its generation depends on a specific interplay of 9 the synaptic and neuronal dynamics (as described above), and the suppression of the (already) recalled items is a result of the synaptic depression. As such, our theory makes novel predictions that are testable in behavioral experiments. For instance, the primacy gradient builds up gradually with the reactivations of the corresponding neuronal populations between consecutive presentations. This requires a presentation rate that is slow enough for these reactivations to occur in sufficient number. Hence, as the presentation rate is increased, the theory predicts that encoding of the serial order should degrade. Consistently with this prediction, increasing the presentation rate of the items results in a larger number of transposition errors, that is, some items are recalled at the wrong serial position (see, e.g., [START_REF] Farrell | Modelling transposition latencies: Constraints for theories of serial order memory[END_REF]). Experiments with very rapid serial visual presentation (RSVP) of the items show that the subjects are unable to report the correct order of presentation, even when the number of items is below capacity [START_REF] Reeves | Attention gating in short-term visual memory[END_REF]. At the other extreme, if the presentation rate is too slow, or the list is too long, then the primacy gradient will also degrade because of the saturation of the synaptic augmentation. We are not aware of experiments having tested this prediction.

More speculatively, we have shown that the same model is able to account for the switch from primacydominated to recency-dominated recall that is observed in free-recall tasks with long lists. We stress that our account is tentative, as it relies on unverified, but not implausible, assumptions about the dynamical control of the background input to the memory network. In fact, there is significant experimental evidence that items can be maintained in WM in different representational states with different physiological signatures, e.g., with or without enhanced spiking activity, and that these states can be rapidly altered by task demand [START_REF] Larocque | Multiple neural states of representation in short-term memory? it'sa matter of attention[END_REF][START_REF] Oberauer | Is There an Activity-silent Working Memory[END_REF]. Our theory suggests that this could be achieved by regulating, more or less selectively, the background inputs to the memory network.

The explicit modeling of the recall process has revealed an intriguing dissociation between the storage and the retrieval capacity of the model network; some of the stored items cannot be retrieved (see Fig. 5). In fact, we expect a large storage capacity, because of the long time scales brought about by the synaptic augmentation. The retrieval capacity, on the other hand, is largely determined by the time constant for synaptic depression, τ D , as shown in [START_REF] Mi | Synaptic correlates of working memory capacity[END_REF]. It would seem, hence, that taking a longer τ D should lead to a better performance (i.e., more items recalled). However, increasing τ D reduces the augmentation levels of the stored items. In fact, the refresh period (i.e., the interval between two reactivations of the same population) is also controlled by τ D . A larger τ D results in slower refresh rates and, therefore, in a slower build-up of the augmentation levels. This, in turn, leads to lower storage capacity, in general, and to a degradation of serial order encoding, in particular. In other words, there is a trade-off between storage capacity (and serial order encoding) and retrieval capacity. This suggests that WM capacity, which is in fact an experimental estimate of the retrieval capacity, could result from the inability to retrieve the information, rather than from the inability to encode and/or maintain it. In this scenario, WM capacity is ultimately determined by the degree of selectivity that the background control -that we identify with the "central executive" or the "focus of attention" of cognitive theories -can attain.
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 1 Figure 1: Spontaneous emergence of serial order during free recall of 5-word lists. For each of the 140 subjects, the words recalled are shown from bottom to top in the order they were recalled. The color indicates the serial position of the corresponding word in the presented list, from blue (first) to yellow (last). White indicates omissions. Data courtesy of G. Ward.
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 234 Figure2: Synaptic augmentation. In response to pre-synaptic spiking activity (upper panel), the depression level, x, decreases while the facilitation and augmentation levels, u and U respectively, increase (middle panel). The slow decay of U produces an enhanced post-synaptic response long after x and u are back to their baseline levels (bottom panel). Parameters: top panel -train of 10 spikes at 50Hz followed by 1 spike 500ms after the end of the train, and 1 spike 10s after the end of the train; middle panel -U 0 = 0.25, K A = 0.0375, τ D = 0.3s, τ F = 1.5s, τ A = 20s; bottom panel -Post-synaptic response are obtained by integrating the Equations (1), (5)-(6) with τ = 8ms (see main text for details). The post-synaptic responses are normalized with the response to the first spike in the train.

Figure 5 :

 5 Figure5: Serial recall is primacy-dominated. Network response to lists with an increasing number of items (from top to bottom). The background input is set to a level that allows the reactivation of the loaded items in between the presentations (i.e., the same level as in Fig.3). Serial order is read-out by using the same control of the background input as in Fig.4.

Figure 6 :

 6 Figure6: Free recall is recency-dominated. Top panel: Network response to a list of 11 items, largely exceeding the storage capacity. Bottom panel: Control of the background input. The background input is initially set at the same level as in Fig.5and, upon the presentation of the fifth item, it is reduced to a level preventing further reactivation (4-fold decrease compared to the baseline level). Recall is initiated 1.75s after the presentation of the last item by a 40% increase of the background input as compared to its baseline level.
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