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ABSTRACT

The peculiar velocities of galaxies can serve as excellent cosmological probes provided that the biases inherent to their measurements
are contained prior to the start of any study. This paper proposes a new algorithm based on an object point process model whose
probability density is built to statistically reduce the effects of Malmquist biases and uncertainties due to lognormal errors in radial
peculiar velocity catalogs. More precisely, a simulated annealing algorithm allows for the probability density describing the point
process model to be maximized. The resulting configurations are bias-minimized catalogs. We conducted tests on synthetic catalogs
mimicking the second and third distance modulus catalogs of the Cosmicflows project from which peculiar velocity catalogs are
derived. By reducing the local peculiar velocity variance in catalogs by an order of magnitude, the algorithm permits the recovery
of the expected one, while preserving the small-scale velocity correlation. It also allows for the expected clustering to be retrieved.
The algorithm was then applied to the observational catalogs. The large-scale structure reconstructed with the Wiener-filter technique
applied to the bias-minimized observational catalogs matches that of the local cosmic web well, as supported by redshift surveys of
local galaxies. These new bias-minimized versions of peculiar velocity catalogs can be used as a starting point for several studies, from
plausible estimations of the most probable value for the Hubble constant, H0, to the production of simulations constrained to reproduce
the local Universe.
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1. Introduction

The peculiar velocities of galaxies result from the action of the
entire underlying gravitational field. Additionally, they are lin-
ear and correlated on large scales. As such, they are excellent
cosmological probes for studying the dark side of the Universe.
However, peculiar velocity catalogs are also grandly affected by
different sources of biases. Some are known, some are not. In
any case accounting for their effects is not completely mastered.
Disentangling the true underlying signal from noises in radial
peculiar velocity catalogs has become a major issue within the
last decade with the advent of using them to derive cosmolog-
ical parameters (e.g., Nusser & Davis 2011; Feix et al. 2017;
Howlett et al. 2017; Nusser 2017; Wang et al. 2018), to map the
local distribution of matter (e.g., Tully et al. 2014; Hoffman et al.
2018), and to constrain initial conditions that evolve into our local
neighborhood, the Local Universe (e.g., Gottlöber et al. 2010;
Sorce et al. 2014a, 2016b).

Tully et al. (2013) and later Tully et al. (2016) released
two large peculiar velocity catalogs. The second improves on
the first one with additional major contributions from the
6dF Galaxy Survey (e.g., Wakamatsu et al. 2003; Campbell
et al. 2014) and two Spitzer surveys: CosmicFlows with Spitzer
(CFS, Sorce et al. 2014b) and the Spitzer Survey of Stel-
lar Structure in Galaxies (S4G, Sheth et al. 2010). However,
with the increasing distance coverage, the impact of biases

affecting the catalogs has grown stronger. Sorce (2015) pro-
posed a technique to minimize the biases in such peculiar
velocity catalogs. It permitted their effects, such as a spurious
strong infall onto the reconstructed Local Volume, to be elim-
inated. Later, it allowed for simulations of local clusters such
as our closest neighbor, the Virgo cluster of galaxies (Sorce
et al. 2016a, 2019, 2021), as well as other local clusters (e.g.,
Centaurus, Coma, and Perseus, Sorce 2018; Sorce et al. 2023).
Even more recently, Graziani et al. (2019); Boruah et al.
(2022) and Valade et al. (2022), borrowing from Lavaux (2016),
proposed Bayesian techniques that could reasonably reduce
the infall onto the reconstructed Local Volume. As with any
Bayesian techniques, they relied on theoretical expectations, in
their case: those mostly coming from the ΛCDM cosmological
paradigm. However, they also relied (heavily) on prior knowl-
edge of the dataset. They invoke multiple functions making it
difficult to disentangle what can really be deduced from the data
from what is included as a prior to correct the data. On the
other hand, although Sorce (2015) relied only on the expected
radial peculiar velocity 1D distribution, they neglected the 3D
small-scale correlations related to the 3D spatial distributions of
galaxies.

In this paper, we propose to focus on the 3D small-scale
correlations using a probabilistic approach. More precisely, con-
sidering the finite size of the peculiar velocity catalogs of
galaxies in a finite region (the Local Universe), we base our
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approach on an object point process model that is built in a
way that its probability density tends to be maximal when bias
effects are minimal. The configurations (or realizations) max-
imizing the probability density are then bias-minimized radial
peculiar velocity catalogs. From a broad point of view, it is a
typical inverse problem regularly solved in various fields (includ-
ing in astrophysics), for instance, for image restoration (e.g.
Van Lieshout 1994; Bijaoui 2013).

In our case, functions used within the core of the algorithm
should not rely heavily on the cosmological model nor on the
dataset configuration. This makes it easier to: 1) change for
another cosmological model; 2) change for another dataset; and
3) disentangle the underlying signal in the data from the signal
that is induced by priors.

More specifically, galaxy radial peculiar velocities are
derived via a cosmological model from galaxy distance moduli
and observational redshifts, with the latter being far more pre-
cisely determined than the former and uncertainties on the latter
usually considered negligible. Galaxy observational redshifts are
thus assumed to be fixed. The algorithm should then output the
most probable location of the galaxies given the uncertainty on
their distance modulus measurements and the associated derived
radial peculiar velocities. This kind of configuration should be
likely to maximize the proposed probability density. We note
that it is possible to advocate for using observational redshifts
as proxies for distances. Radial peculiar velocities derived from
such distances would all be zero, which would be an unrealistic
result. Thus, the resulting configuration should not maximize the
proposed probability density.

To include 3D small-scale correlations, for a set of galaxy
distance moduli and uncertainties (µ, σ), the algorithm should
consider for each galaxy a pre-determined spatial region that
characterize a zone of interactions. This zone should depend
on the galaxy distance modulus and uncertainty and, by exten-
sion, on its radial peculiar velocity. The algorithm should rely
on the underlying correlation, in the catalog of galaxy distance
moduli, between the directly derived peculiar velocities of galax-
ies. Radial peculiar velocities of galaxies sharing a same local
region in space are indeed linked to the local underlying gravi-
tational field, namely, the local structure. As mentioned above,
given our spatial data set (a distribution of galaxies in a finite
Local Volume), we assume that the realization that maximizes
the probability density of our point process model should permit
retrieving the underlying correlation. The probability density,
p, with respect to the unit intensity Poisson reference measure,
should depend on the data, (µ, σ), and the model parame-
ters, (c), (see Stoica 2010, and references therein for detailed
explanations). Given the intractability of the underlying prob-
ability density, to derive the configuration that maximizes it,
we need instead to construct a function, U(µ|d, c), where d =
(µinit, σinit, zobs), and sample from it (cf. Metropolis-Hastings
algorithm). This function should reach its maximum for a real-
ization (set of distance moduli µi and associated uncertainties
σi) that minimizes the biases. Moreover, since the function is
not a priori convex (i.e., not a single maximum), the realization
should be obtained with a global optimization technique through
a simulated annealing to sample a probability law in the form
p(µ|d, c)1/T ∝ exp(−U(µ|d, c)/T ) with T slowly going to zero.

Such techniques have been used in the past in astronomy
to find, for instance, filaments and groups in redshift sur-
veys (Tempel et al. 2016b, 2018) as well as to build maps of
optimal tile distributions for efficiently observing multi-source
catalogs (Tempel et al. 2020). However, in these examples, celes-
tial object (galaxy and star) distributions are considered fixed.

Considering these distributions, one of the realizations maxi-
mizing the probability gives one of the optimal arrangement
of filaments, groups and tiles. In our case, the galaxy distri-
bution is not fixed but constitutes a realization by itself. One
of the galaxy distributions that maximizes the probability can
be retrieved, in particular, thanks to the local underlying veloc-
ity correlations. Contrary to Sorce (2015), bias-minimized radial
peculiar velocities of galaxies are not obtained on a one-to-one
basis (probability of the velocity to exist given the 1D veloc-
ity probability distribution) but collectively (probability of the
velocity to exist given the 1D velocity probability distribution
and given the 3D velocity local variance probability). In both
cases, the resulting bias-minimized peculiar velocity catalog
should be considered as a whole; namely, the data points cannot
be considered individually as better estimates. The realization,
namely, the full catalog, constitutes a statistically improved rep-
resentation of the true data point distribution. This concept is at
the core of the algorithm we propose in this work.

This paper starts with a description of the biases affecting the
catalogs and the computation of radial peculiar velocities. The
third section builds the probability law as well as the algorithm
and the associated inference processes. The algorithm is subse-
quently applied to mock catalogs mimicking observational ones.
The building of the latter is also detailed. The results of the appli-
cation of the algorithm to the synthetic catalogs are analyzed.
For the sake of concision, plots are shown for one of the mock
catalogs. To show one use-example of the bias-minimized cata-
logs, they are plugged into a Wiener-filter algorithm to recover
the full 3D velocity and density fields. This technique is chosen
as a case study because of its sensitivity to biases. The tech-
nique was then applied to the observational catalogs. Again, for
concision, results are shown only for one of them: the third cat-
alog of the Cosmicflows project, namely, cosmicflows-3 (Tully
et al. 2016). The Wiener-filter is also applied to the initial and
post-treatment observational catalogs to validate further the bias-
minimization algorithm. We quantified the influence of the H0
parameter value on the results using both the synthetic and
observational catalogs, and we present our conclusions.

2. Biases and uncertainties

2.1. Biases and effects

The matter of peculiar velocity measurements1 and their collec-
tion into catalogs are complicated by several biases described at
length in Sorce (2015) and references therein. Whilst they are
generally all gathered under the term “Malmquist bias,” three
types of Malmquist bias can, in fact, be distinguished. In addi-
tion to these biases, there is a lognormal error distribution,
which requires some attention. Here, we present only a short
description of these biases below.

b1. The Malmquist bias: due to selection effects, it is usually
taken care of when calibrating distance indicators. The latter are
then used to derive distances and then velocities (Kapteyn 1914;
Malmquist 1922; Han 1992; Sandage 1994; Teerikorpi 1997,
1995, 1993, 1990; Hendry & Simmons 1994; Willick 1994). This
is the case in the catalogs use here (e.g., Tully & Courtois 2012;
Sorce et al. 2013, 2014b).

b2. The homogeneous Malmquist bias: due to a higher
probability of scattering galaxies further away closer than the
opposite (increasing surface of shells centered on us with the
distance), this aspect needs to be dealt with (Kapteyn 1914;

1 Derived from distances, themselves obtained from distance moduli.
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Malmquist 1922; Lynden-Bell et al. 1988; Han 1992; Sandage
1994; Teerikorpi 1990, 1993, 1995, 1997; Hendry & Simmons
1994; Strauss & Willick 1995). When considering a complete
up-to-a-given-distance galaxy sample, on average, post-bias-
minimized galaxies should end up with larger distance estimates
than originally measured. Although it must not be an explicit
requirement of the algorithm (i.e., no function should directly
enforce larger distances per se), it must be checked that it ends
up being the case when comparing the initial and bias-minimized
catalogs that are mainly constituted of complete galaxy surveys2.

b3. The inhomogeneous Malmquist bias: due to a higher
probability of scattering galaxies from high density regions
to low density regions, it is not taken into account either
(e.g., Dekel 1994; Hudson 1994). Similarly, post-bias-minimized
galaxies should be more numerous in high density regions than
initially. We thus check that although it is not a direct require-
ment, the algorithm tends to cluster galaxies. We note that we
group galaxies gathered into one group/cluster to derive a unique
distance or velocity estimate, that of the group or cluster. This
permits the removal of non-linear virial motions from the cat-
alog (Sorce & Tempel 2017, 2018), which is a source of biases
for the Wiener-filter technique. Clustering will thus be smoothed
out on very small scales.

b4. The logarithmic relation between distance moduli and
distances (hence, the velocities too) introduces a non-Gaussian
distribution of errors on velocities, called the lognormal
error distribution. Typically, an overestimated distance modulus
results in a higher error on the velocity estimate than would an
underestimated distance modulus (e.g., Tully et al. 2016). Thus,
over- and underestimates of distance must not be considered in
the same way. There are analytical and ad hoc solutions to take
care of this bias (e.g., Landy & Szalay 1992; Hoffman et al.
2021). We note although that unlike the errors on the distances,
the errors on the distance moduli can be considered symmetric.
We thus ensured that the distance moduli – rather than distances
– are the starting point of the algorithm. There will be no need
to deal with this bias at the distance modulus level.

2.2. Main source of uncertainties

To obtain the 3D galaxy distribution from observations (= initial
realization) and to control any additional source of systemat-
ics when deriving peculiar velocities (cf. bias b4 above), we
began directly with the catalog of galaxy distance moduli (µ) and
observational redshifts (zobs, Davis & Scrimgeour 2014) to which
we added supergalactic longitude and latitude coordinates. This
allows us to derive galaxy cartesian Supergalactic coordinates.
A cosmological model is then required to determine peculiar
velocities. While we use ΛCDM in this work, another model can
easily substitute it for future works.

In the following, we recall the different relations between
distance moduli, observational, and cosmological redshifts,
luminosity distances and radial peculiar velocities. From obser-
vations of all the galaxies in the catalog, thanks to distance
indicators and the Doppler effect, we can access two indepen-
dent measurements:
– Distance modulus measurements, µ;
– Observational redshifts, zobs.

2 Notably, ∼50% of the third cosmicflows dataset is constituted of the
6-degree Field Galaxy Survey peculiar velocity sample (Springob et al.
2014), a complete up-to-a-given-distance survey.

Then, we want to obtain the:
– Luminosity distances, dlum, which are obtained via distance
moduli,

µ = 5log10(dlum (Mpc)) + 25; (1)

– Cosmological redshifts, zcos, which are derived with luminosity
distances using the equation:

dlum = (1 + zcos)
∫ zcos

0

cldz

H0
√

(1 + z)3Ωm + ΩΛ
, (2)

where H0 is the Hubble constant, cl is the speed of light, and Ωm
and ΩΛ are the cosmological parameters corresponding to the
matter and the dark energy, respectively.

– Radial peculiar velocity estimates, vpec, which are finally
obtained using the observational zobs and cosmological zcos
redshifts according to the following formula:

vpec = cl
zobs − zcos

1 + zcos
, (3)

where vpec always refers to the radial peculiar velocity in
this paper.

Among all the parameters used to derive the galaxy pecu-
liar velocities, the largest source of uncertainties unquestionably
comes from their distance estimates. This reinforces our origi-
nal idea to minimize biases in peculiar velocity catalogs through
the minimization of biases in distance (modulus) catalogs. We
reiterate that starting from distance moduli allows us to avoid
the lognormal error distribution (bias b4 above) in the initial set-
ting. Considering their precision with respect to that of distance
moduli, Supergalactic latitude and longitude coordinates as well
as the observational redshift are considered to be error free in a
first approximation. Our goal is thus designed to provide a new
distance modulus estimate for each galaxy of the catalog. These
new distance moduli will give new distances (cf. Eq. (1)) thus
radial peculiar velocities (cf. Eqs. (2) and (3)).

3. Model construction: A new Gibbs field model for
minimizing biases

3.1. The main goal of the algorithm is to find the position of
galaxies that results, given their distance modulus (by extension
peculiar velocity) and uncertainty on the latter, in the highest
probability density of a point process.
To reach that goal, the principle is as follows, for each galaxy:

3.2. The distance modulus is slightly perturbed from its ini-
tial estimate inducing a new distance estimate, thus a new pecu-
liar velocity (cf. Eqs. (1)–(3)). The distance modulus is modified
proportionally to its uncertainty to be more conservative towards
distance modulus measurements with higher confidence level
than others (e.g., obtained with supernovae against Tully-Fisher
relation).

3.3. The resulting new distance modulus and associated
peculiar velocity of a galaxy are compared to the initial and pre-
vious distance modulus and velocity to ensure their likelihood
given the uncertainty.

3.4. The resulting new peculiar velocity of a galaxy has to be
compared to the peculiar velocities of surrounding galaxies. To
that end, a 3D local region shape is required to identify which
velocities should be compared. To avoid rounded structures in
density fields reconstructed with catalogs, clear signs of bias
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residuals as observed with other proposed bias minimizations,
the shape should be extended along the line-of-sight with a short
coverage tangentially. This prevents fortuitous transversal unre-
alistic correlations. This volumetric shape is essential to ensure
that both the homogeneous (further to closer positions as per
bias b2) and inhomogeneous (higher to lower densities as per
bias b3) Malmquist effects are probed during the algorithm run.
Hence, although there is an explicit requirement of the algorithm
to increase neither distances on average nor clustering, it can
have an impact on these two aspects. Whether this results in the
desired effect constitutes a proof of concept that the algorithm
reaches the bias-minimization goal.

3.5. Additionally, to be able to use the newly derived dis-
tance modulus (i.e., distance and velocity as per Eqs. (1)–(3))
for various studies, a new uncertainty must be assigned.
In the following, the first subsection sets the basis of the point
process model, that is, its density probability and the technique
to find a realization that corresponds to a maximum of the latter.
The next subsections define the different terms required to pro-
pose new configurations. They also build the terms of the density
probability function.

3.1. Maximized probability density and bias-minimized
catalog

The algorithm should give the most probable location of a galaxy
within a pre-determined spatial region given the uncertainty
on its distance modulus measurement and (by extension) the
associated radial peculiar velocity with respect to the entire cata-
log. Because supergalactic longitude and latitude coordinates are
considered to be error free in a first approximation, the spatial
region is shaped along the line of sight to retrieve the distances.
In future developments, they could be relaxed alongside obser-
vational redshift measurements and the Hubble constant, H0, or
(more generally) the cosmology. In other words, considering a
finite volume (the Local Universe), the algorithm, input with a
given set of n (µinit, i,σinit, i) with n fixed (= initial configuration),
will result in a new set of n (µ̃i,σ̃i) (one realization maximizing
the probability density). Since our number of galaxies is fixed,
we construct the probability density, p, for a Gibbs point pro-
cess (Chiu et al. 2013) with the objective that this probability
density is maximal when the effects of the biases are minimal.
The realization corresponding to the bias-minimized catalog is
thus obtained by maximizing the probability density of the point
process where:

p(µ|d, c) ∝ exp[−U(µ|d, c)], (4)

with d = (µinit, σinit, zobs), c = {ci}i∈N a set of positive parame-
ters, µ = (µ1,µ2,...,µn) the set of distance moduli, n the number of
galaxies (data points), and U the energy function. Again, given
the intractability nature of p, building U permits us to sample
and thus to propose new sets.

In addition to the standard likelihood included via a data
energy term, UD, the energy function must take into account the
local peculiar velocity correlation via an interaction energy term,
UI . The energy function, U can thus be written:

U(µ|d, c) = UD(µ|d, c) + UI(µ|d, c). (5)

More specifically, UD is required to control the galaxy
position (distance modulus) and associated uncertainty and, by
extension, the velocity. It depends on the distance modulus, its
uncertainty and the derived velocity; namely, for a given galaxy,

Table 1. Parameters used in the algorithm.

Parameter Value Function

nsa [5-10] Iteration s.a.
nmh [2-4-5]×1000 Iteration m.h.
nσ 1 Shape interaction
γ [1,3] Draw new µ (depends on σi, mmh)
T0 1 Initial temperature
αpc 0.05 Elongation shape
σv′ 3002 km2 s−2 1D radial vpec distribution variance
c1 1 Constant in data term
c2 [1-2] Constant in data term
c3 [0.5-1] Constant in interaction term

Notes. When a range is given, tests with the parameter values in this
range do not demonstrate any major change in the final datasets. For
results presented in this paper, the bold values have been used. The
constants are calibrated only once on one mock catalog and are kept
unchanged for all the other synthetic catalogs and a fortiori for the obser-
vational catalogs. The γ parameter serves the only purpose of speeding
up the algorithm.

it depends only on its associated properties. Here, UI allows con-
trolling the probability that the object is at this position given
its peculiar velocity (i.e., would it be at this distance modulus)
in conjunction with its neighboring galaxies. It thus builds also
upon the neighboring galaxy properties of a given galaxy. In that
respect, the aim of the algorithm is to obtain a result that is a
statistically bias-minimized catalog, but with no information on
individual galaxies per se.

Subsequently, the minimization of both energy terms for a
given realization of the dataset corresponds to a maximum of the
probability density, that is, to a bias-minimized catalog: a new set
of distance moduli and their uncertainties, (µ̃, σ̃). In other words,
we need to minimize with a given set of parameters:

(µ̃) = arg min{UD(µ|d, c) + UI(µ|d, c) − logp(c)}. (6)

This can be solved sampling the Gibbs point process (Chiu et al.
2013) within a simulated annealing algorithm.

3.2. New distance modulus, µ̃i

A new distance modulus, µ̃i is drawn as follows:

µ̃i = µi + Un[−0.5,+0.5] × γ σi, (7)

where Un[−0.5,+0.5] defines a random number from a uniform
distribution between -0.5 and 0.5, γ is set between 1 and 3
(see Table 1). Choosing a uniform distribution, centered on the
previous distance modulus, with a variance proportional to the
uncertainty, allows for this process to be computationally faster
than when using a fixed step (slower convergence). We note that
this choice does not affect the results.

3.3. Data energy term, UD

The data energy term controls that new drawn distance moduli
and newly derived velocities are probable given the initial and
previous distance modulus and velocity values. It can be decom-
posed into a first term controlling the newly assigned distance
moduli, UD1, and a second term controlling the associated newly
derived velocities, UD2:

UD(µ|d, c) = UD1(µ|d, c) + UD2(µ|d, c). (8)
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3.3.1. Data energy term 1, UD1

The data energy term 1 for each data point, e1, is associated to
the likelihood. It must ensure that any new drawn distance mod-
ulus, µi, for a galaxy is contained within a restricted range of
values imposed by its uncertainty, σinit, i. In particular, a term
preserving a relative memory with respect to the initial distance
modulus and its related uncertainty value is essential to prevent
an infall onto the observer (at the center of the catalog by def-
inition). Since the probability distribution of a galaxy distance
modulus follows a Gaussian of variance σinit, i, centered on µinit, i,
the term e1 can be written:

e1(µi) = c1 ×
(µi − µinit, i)2

2σ2
init, i

, (9)

where c1 is a constant (see Table 1 for its value), σis are the
uncertainties on the µis, and the subscript init refers to the initial
values in the catalog. The derivation of new uncertainty esti-
mates, σis, is detailed in Sect. 3.5. While theoretically σis can
be equal to zero, in practice, it is never the case; thus, hereafter,
we do not specify a special treatment. We again note that since
distance moduli constitute the starting point of the algorithm, we
avoid bias b4 mentioned above. That is to say, it is possible to use
a Gaussian for the probability distribution of a galaxy distance
modulus without any approximation.

The total data energy term 1, UD1, is then:

UD1(µ|d, c1) =
n∑

i=1

e1(µi), (10)

where n is the total number of galaxies. We note that in practice
at a given time, this term is different from that of the previ-
ous time step only for the point perturbed from its previous
step position.

3.3.2. Data energy term 2, UD2

A second data energy term is essential to encourage the
decrease of high velocities in absolute value when initializing
the Metropolis-Hastings random sampling. Indeed, initially the
interaction term (cf. next subsection) can be null because galax-
ies are either isolated or clustered but biased in the same way;
namely, with matching velocities and associated uncertainties
(cf. biases b2 and b3). It needs also to prevent points at the edge
of the sample to simply flee away where they would have no
interaction (cf. next subsection).

The data energy term 2 for each data point, e2, can thus be
written as:

e2(µi) = c2 × |vpec, i(µi, zobs)|/vref , (11)

with c2 as a constant (see Table 1 for its value) and vref a reference
velocity set to 10 000 km s−1. We note that vref allows us to ensure
that all the constants have no physical unit. In addition, vref value
is chosen so that when all the constants are of the same order
of magnitude, all the terms in U are also of the same order of
magnitude. All the terms weight similarly in U.
The total data energy term 2, UD2, is then:

UD2(µ|d, c2) =
n∑

i=1

e2(µi). (12)

Currently, the energy terms are simple. Later H0, etc could
vary to include their uncertainties. We might also consider a
different cosmology. In the current paper, we consider though
that H0, zobs (and so on) are constants. The line-of-sight position
(distance modulus and radial peculiar velocity) and its uncer-
tainty are the only measurements allowed to vary. In particular,
we assume that distance moduli (and, by extension, the peculiar
velocities) are the only measurements with an error. Therefore, a
likelihood term needs to be written only for them. Nonetheless,
Appendix A presents results using another set of cosmological
parameters and Sect. 3.5 quantifies the significance of H0 value
(and associated cosmological parameters) change on the results.

As an aside note, we define the decrease of velocity in
absolute value parameter.

The decrease of velocity in absolute value for the ith galaxy:

gi(vpec, i, ṽpec i) = |ṽpec i| − |vpec i|, (13)

with vpec i the initial or another previous peculiar velocity, ṽpec i,
the new peculiar velocity. Then, gi will appear when compar-
ing the probabilities between ancient and new data points in the
Markov chain (see below), more specifically in ∆UD2. We note
that the symmetric uncertainty on the distance modulus prop-
agates to an asymmetric uncertainty on the peculiar velocity.
In particular, the new peculiar velocity, obtained with the dis-
tance modulus, is not strictly the mean of the peculiar velocities
obtained with distance modulus plus and minus the uncertainty,
ṽ+pec i and ṽ−pec i. Tests conducted using ṽpec i or ⟨ṽ+pec i, ṽ

−
pec i⟩ reveal

that results are unchanged given the precision reached when
sampling. Indeed, this term mostly acts as a regulator not to have
very large velocities. The sign of gi is statistically unchanged
when using ⟨ṽ+pec i, ṽ

−
pec i⟩ rather than ṽpec i. In the future, increasing

precision of the algorithm might require this distinction.

3.4. Interaction energy term, UI, step by step

The sole data energy term does not give much information on
where it is best to locate the data points (i.e., their true location).
The role of the interaction energy term is to favor configura-
tions with plausible peculiar velocities in a statistical sense. It is
essential to enforce the small-scale correlations. It should result
in dealing with the effects of biases b2 and b3. It will be checked
as a proof-of-concept of the algorithm. The interaction energy
term thus compares peculiar velocities of interacting galaxies.
It must permit distinguishing between “positive” and “negative”
interactions. “Positive” means that one or both peculiar veloci-
ties are unlikely given the proximity of the two galaxies, namely,
one or both galaxies are likely not to be at the proper distance,
while “negative” indicates the opposite3. Consequently, in order
to define the interaction energy term, we first need to introduce
an interaction shape (Sect. 3.4.1) that permits a determination of
interacting galaxies and a function accounting for the small-scale
velocity correlation (Sect. 3.4.2) that allows us to attribute a state
to the interactions.

3.4.1. Interaction shape, S

The shape, S , allows us to determine whether two galaxies must
be considered as interacting. The shape length and size depend
3 While the naming convention might seem counterintuitive, it makes
sense when refereeing to the ultimate goal that is minimizing the energy
function, U, i.e., lowering the interaction energy term, UI , or looking for
maximizing the number of “negative” interactions.
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Fig. 1. Schematic view of the interaction shape. Top: interaction shape
in 2D showing how i’s shape is derived. j belongs to i’s shape. Bottom:
examples of interactions: a) i and j are both within one another shapes;
b) k is in the shape of j, but j is not in that of k; c) l and k are not in one
another shapes.

on the galaxy distance and associated uncertainty. However, its
direction is always aligned with the line-of-sight. It is a 3D
region shown in 2D in Fig. 1 top with the following properties:
dmin/max are the distances obtained with µi ± nσσinit, i (see Table 1
for nσ value) to prevent introducing the lognormal error effect
(bias b4) at this stage. We note that to ensure a minimum size for
the shape, the initial uncertainty is used. The final uncertainty
within a single run of the algorithm (see the detailed explana-
tion below) indeed tends toward zero, thus decreasing the size
of the shape and preventing any interaction. M is the projection
of a given point, j, on the line of sight of the perturbed point,
i. r is equivalent to the aperture of the shape and is defined by
r = αpc × dM (see Table 1 for αpc value) with dM as the distance
of a point, M.

Any point, j, within the region of another point, i, is then
considered to be interacting and their velocities are compared.
The only difficulty is to check that the origin (us) is not in the
shape. If this is the case, a point, j, on the opposite side of the
origin with respect to the point, i should not be considered as an
interacting point. Consequently if the dot product between the
direction of the two points is -1, then there is no interaction by
definition. Figure 1 (bottom) shows three types of situations: a)
i and j are in each others’ shapes; b) k is in the shape of j, but
j is not in the shape of k; and c) l and k are not in each others’
shapes.

3.4.2. Small-scale velocity variance function, σv

The small-scale velocity variance, σv, and its fit are shown in
Fig. 2 with filled circles and a solid line respectively. The filled
circle values and their standard deviations are obtained by throw-
ing randomly shapes, S , of different hypothetical sizes onto a
mock catalog of radial peculiar velocities free of any errors.
Each size corresponds to a given uncertainty, σ. The velocity
variance σv of objects within each shape is then derived. We
note that changing the value of the parameters defining the shape
(e.g., αpc) requires us to re-derive the corresponding correlation
of velocities at small-scale. In practice, small variations of the
parameter values do not drastically modify the relation. We note
that modifying the cosmological model implies also re-deriving
the small-scale velocity variance using a mock catalog without
errors from the corresponding model for consistency.

Fig. 2. Correlation between the velocity variance and the uncertainty.
More precisely, variance between velocities of objects in the same shape
S whose size is defined by the uncertainty. Filled circles are obtained
throwing shapes, as defined in Fig. 1, onto mock catalogs without errors.
The solid line is the polynomial fitting a+bx+cx2 with a = 64, b = 70,
c = 22 km s−1 assuming uncertainty magnitudes (Mag) in dex.

The small-scale velocity variance function, σv, is a polynomial
fitting of the small-scale velocity variance:

σv = a + b × σ + c × σ2, (14)

where a = 64, b = 70 and c = 22 km s−1 assuming uncertainty
magnitudes (Mag) in dex. It determines the average maximum
authorized difference between velocities of galaxies belonging to
the same shape as a function of the size of the shape. This shape
is itself related to uncertainties on distance moduli. We note
that the small-scale velocity correlations, obtained by casting
shapes onto different synthetic catalogs (either mimicking the
second or third Cosmicflows catalog distributions but without
error; see the description below) are within their 3σ uncertainty
range. Using fitted parameters within their 3σ uncertainty range
does not drastically impact the final output new distance modu-
lus catalog. However, it certainly depends on the cosmological
model. In the future, they will need to be relaxed together with
the latter.

3.4.3. Interaction functions, h, f, and q

The shape and the velocity correlation allows us to define the
interaction functions those values depend on the galaxy positions
(shape membership) and velocity values (difference). Addition-
ally, an interaction with a galaxy, j, that has a small distance
uncertainty must have a higher weight than that with a galaxy
with a large distance uncertainty. The inverse of the uncertainty
is thus used as a weight.
The interaction between two points (galaxies), i and j, exists, i ∼s
j, if:

– i ∈ S j and j < S i, or
– j ∈ S i and i < S j, or
– j ∈ S i and i ∈ S j.

The weighted “positive” interaction function, h, between
point, i, and the other points, j, with which it interacts, is
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then defined as4:

hi =

n∑
j=1, j,i

1{i ∼s j} × 1{||vpec,i| − |vpec, j|| > σv} × 1/σ2
j . (15)

The weighted total – “positive or negative” – interaction func-
tion, f between point, i, and other points, j, with which it
interacts, is then defined as:

fi =
n∑

j=1, j,i

1{i ∼s j} × 1/σ2
j . (16)

The absence of interaction function, namely, if i /s j, q between
point, i, and the other points, j, is then defined as:

qi = 1{∀ j, j , i, i /s j}. (17)

Here, 1 is an indicator function equal to 1 if the condi-
tion within is met and 0 otherwise. In particular, in the f case,
1{i ∼s j} equals 1 if the interaction between i and j exists (cf.
conditions above). In h case, 1{||vpec,i| − |vpec, j|| > σv} equals 1 if
i and j velocities differ by more than σv(σi). We note that the
qi = 1 choice when there is no interaction induces a constant
penalization of isolated points. While values between 0.5 and
1 do not drastically change the results, we stick to 1 to prevent
potential fleeing away points. We avoid values between 0 and
0.5 to prevent ending up with an almost repulsive configuration
(especially with the 0 value).

3.4.4. Interaction energy term, UI

Finally, the energy term ensures that, for objects that are close-by
transversally and with position uncertainties on the line-of-sight
allowing them to be within the range of distances of one another
(given dmin and dmax), their peculiar velocities in absolute value
are on the same order.

The pairwise interaction process, e3, in the interaction energy
term for each point is then defined as follows:

e3(µi) = c3 (hi/ fi + qi), (18)

where c3 is a constant (see Table 1 for its value) and with the
convention hi/ fi = 0 when fi = 0, namely, there is no interaction.

The total interaction energy term is:

UI(µ|d, c3) =
n∑

i=1

e3(µi). (19)

We note that this term has to be computed for every point
because their interaction term can be affected by the perturbed
point. In practice, we considered only the interaction between
the perturbed point and each other point because of the required
reciprocity of the interaction (see the interaction requirements
with the “or” condition).

4 Given the precision of the small-scale velocity variance function,
again using peculiar velocities derived from distance moduli rather than
the mean of the peculiar velocities derived from distance moduli plus
and minus their uncertainties, does not impact the output (µ,σ) set.

3.5. New uncertainty on distance moduli, σ̃i

New distance modulus uncertainties must be assigned to the data
points. Typically, new uncertainties should depend on the prob-
ability of the new data point position thus peculiar velocity with
respect to the entire catalog. Since the catalog is statistically
bias-minimized but not individual data points, new uncertainty
and distance modulus cannot be used individually but within the
context of the entire catalog.

We thus first define pv as the cumulative distribution function
of the velocity value probability given the theory. Indeed, Sheth
& Diaferio (2001) proved that the distribution of radial pecu-
liar velocities considering groups and clusters (virial motions
removed) is a Gaussian. Unless the Milky Way is at a pecu-
liar position in the Universe, the distribution of radial peculiar
velocities obtained from our position should be close to a Gaus-
sian too. This was verified by Sorce (2015) with constrained
simulations of the Local Universe.

The (cumulative distribution function of the) probability of a
peculiar velocity (in absolute value), pv, is then defined as
follows:

pv =
1

σv′
√

2π

∫ −|vpec |

−∞

exp
(
−
v2

2σ2
v′

)
dv, (20)

with σv′ derived from mock catalogs mimicking the distribu-
tion of the observational catalog to be bias-minimized. Its value
is given in Table 1. For the sake of simplicity, in the follow-
ing we will refer to pv as the probability of a given velocity
value. We note that here again because of the precision with
which the current algorithm computes this integral, using vpec
instead of ⟨v+pec, v

−
pec⟩ does not impact the final result. In future

developments, if this precision were to increase, this lognormal
distribution effect on the peculiar velocity value might need to
be taken into account. Then,

i. The higher the probability, the more the uncertainty should
decrease. Thus, the term, (1− pv),must appear to derive the new
uncertainty from the previous step uncertainty.

ii. However, since the maximum probability, pv, is at a
zero velocity value, the interaction term h/ f (see previous
subsection) is also required. The text in the previous sub-
subsection explains this term in more detail. In brief, the
smaller the value of h/ f is, the less “positive” (in the sense
of “more unrealistic”) interactions, the data point has with
its neighbors (with respect to all its interactions). Thus, the
more probable the velocity is and the smaller the uncertainty
may be.

iii. Still, with the increasing probability pv of the velocity,
the interaction term h/ f should have an increasing weight with
respect to the probability term (1 − pv) (from (i)) and vice versa.
This prevents the gathering of wrongly high absolute veloc-
ity values that have a low probability, pv, but few “positive”
interactions (small h/ f ) because together they form an isolated
ensemble of high velocity values. The weight on the probabil-
ity (i) and interaction (ii) terms is thus simply the probability
pv for the interaction term (ii) and, by extension, (1 − pv) for
the probability term (i). Since the individual probability of the
velocity appears in the uncertainty term, it can reasonably reduce
the small-scale correlation of the errors on distance moduli (by
extension, the peculiar velocities) inherent to the interaction
shape. In any case, this small-scale correlation of errors has no
impact on large-scale studies because of the small sizes of the
shapes.
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Fig. 3. Details of the steps to obtain the new set of (µi, σi), namely
(µ̃i, σ̃i). [Step ii] is done nmh times for the n points. [Step iii] implies
fictively decreasing the temperature of the new points after and before
going back to [Step ii]. There are nsa timesteps, i.e., temperature
decreases.

The new uncertainty, σ̃i, is thus:

σ̃i = σi[(1 − pv)2 + pv (hi/ fi + qi))], (21)

where hi, fi and qi are the interaction and absence of interaction
functions defined in the previous subsubsection.

3.6. Simulation method

We used a Metropolis-Hastings sampling embedded into a sim-
ulated annealing algorithm (as detailed by Fig. 3) with blue and
orange colors, respectively. The first yellow panel gives the ini-
tialization with the initial realization and the last yellow panel
gives the resulting realization (one maximum of the density
probability). More precisely, the steps are as follows:

Step i. We compute the data and interaction energy terms.
Step ii. We perturb the distance moduli, µis using a draw

from a uniform distribution between [−0.5,0.5[ given the σis to
get µ̃is. For each perturbed distance modulus, we compute the
corresponding new distance, dlum, velocity, vpec, energy term,
U and uncertainty, σ̃i. We define α = min{1, pµ̃i,σ̃i/pµi,σiσi/σ̃i},
where p is the Bayesian probability. We draw a number R from a
uniform distribution between [0,1[ if α ≥ R, accepting the mod-
ification or else keeping the previous configuration. We repeat
the process, for every single point (n points), nmh times.

Step iii. We decrease the probability ratio as follows:
(pµ̃i,σ̃i/pµi,σi )

1/Tt with Tt going slowly to zero at each end of [Step
iii] according to the equation defined below. Then we go back to
[Step ii]. Again, we repeat this process nsa times.

Step iv. We exit with a new catalog of data points with new
positions along the line of sight and, thus new peculiar velocities
and new uncertainties – more precisely a new inseparable (µ,σ)
set.
The temperature, Tt, required by the simulated annealing algo-
rithm after each loop of the Metropolis-Hastings algorithm times
the number of galaxies, n, is defined as follows:

Tt =
T0

1 + ln(t + 1)
, (22)

with t the time-step. The initial temperature T0 is given in
Table 1 together with the number of steps of the two embedded
algorithms: nmh and nsa.

To speed up of the process, we implemented slight modifica-
tions as follows. We emphasize that they have no impact on the
final result.

We parallelized the algorithm using both MPI and openMP
to run on several points from different part of the Local Volume
at the same time and to speed up the interaction term calcula-
tion. That is to say, we perturbed several points simultaneously
(points sufficiently far away do not interact) and we derived their
interaction energy term cumulatively and respectively. We split
points on processors depending on their Supergalactic longitude.

Points with an uncertainty below a certain threshold
are not perturbed anymore. The threshold is determined as
max{(σi)}/10 × (10 − m) where m is increased by one unit each
nmh/10 iterations of the Metropolis-Hastings algorithm. Addi-
tionally, the minimum is set to 10−4. This limit is just above the
minimum change possible on the distance moduli given the pre-
cision of our algorithm. It thus prevents irrelevant iterations on
data points those distance moduli would end up unchanged at the
given precision in [Step ii].

Also, γ is used to draw a new distance modulus decreases
each nmh/10 iterations as γ = 1 + 2/10 × (10 − m), m as defined
before. It drastically decreases the number of rejected new points
in [Step ii] thus the number of irrelevant iterations.

If ṽpec, i is greater in absolute value than the largest initial
peculiar velocity absolute value in the catalog, we immediately
reject the new distance modulus.

If the new distance modulus is smaller than 25 (i.e., di <
1 Mpc), we immediately reject it since it is the size of the Local
Group (Milky Way, Andromeda, and their satellites).

4. Application to synthetic catalogs

In this section, we apply the newly developed algorithm and test
it on synthetic catalogs. For the sake of concision, given the
results are identical for all the synthetic catalogs, we offer details
for one of the mock catalogs.

4.1. Building synthetic catalogs

To build mock catalogs matching our observational catalogs,
we used a CLONE (Constrained LOcal & Nesting Environ-
ment) simulation obtained with the technique described in Sorce
(2018). It contains 20483 particles in a ∼738 Mpc box and it
ran from z = 120 to z = 0 in the Planck cosmology framework
(Ωm = 0.307 ; ΩΛ = 0.693 ; H0 = 67.77 km s−1 Mpc−1).

To obtain the different synthetic catalogs (hereafter dubbed
“true” and “biased” with the latter used as input for the algo-
rithm), we proceeded as follows:

We cut the catalog in mass and remove substructures to
mimic grouping. We are not interested in testing again the group-
ing technique here (see e.g., Sorce & Tempel 2017, for such
tests). Only dark matter halos with masses greater than 1012 M⊙
are preserved.

We set an observer at the center of the box. From the x,
y, z coordinates and vx, vy, vz velocity components derive the
distance, d, Supergalactic longitude and latitude, sgl, sgb, and
radial peculiar velocity, vpec, of each halo with respect to the
observer.

We compute cosmological redshifts, zcos with
d =

∫ zcos

0
cdz

H0

√
(1+z)3Ωm+ΩΛ

. We compute luminosity distances,
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Fig. 4. Galaxies in 5 h−1 Mpc thick slices of the XY supergalactic plane. From left to right: black lines show the projected distances between
true (yellow filled circles) and biased (black filled diamonds), after nmh. Metropolis Hastings loops but no cooling for the n data points (in the
text iteration 1, blue-filled square) and, at the end of all loops (red-filled circles), data point positions. The filled symbol sizes are proportional to
velocities in a logarithmic scale. Because errors are large in the left panel, yellow filled circles are harder to distinguish. The algorithm reduces on
average errors on data point positions thus on their peculiar velocities, namely, on average, shorter black lines and, by extension, better matching
filled symbol sizes of different colors.

dlum = (1 + zcos) d, distance moduli, µ = 5 × log10(dlum) + 25,
and observational redshifts, zobs = vpec/c (1 + zcos) + zcos.

We build a mock zone of avoidance by removing any halo,
at more than dlum = 10 Mpc from the center of the box, within
a cone which apex is the box origin and, whose aperture is
0.2 radian assuming the same orientation within the XYZ sim-
ulated volume as the observational one in the Supergalactic
XYZ volume.

For each data point in the observational catalog, we find
all the halos such that |zobs − zobs, datapoint| < 0.01, then sort
these points by this value and by |sgl − sgldatapoint| and |sgb −
sgbdatapoint|. We take the first halo of the sorted list as the
mock point for the observational data point. The obtained
(sgl,sgb,zobs,µ) set constitutes the true synthetic catalog.

We add an uncertainty to the halo distance modulus as
µ = µ + R σdatapoint. We assign σdatapoint as the uncer-
tainty for the halo distance modulus, then R is drawn from a
Gaussian distribution of mean zero and variance one. We note
that because the observational catalogs consist in a collection
of distance moduli obtained with different indicators, coupled
with the fact that several distance modulus estimates may be
available for a given galaxy and a fortiori for groups and clus-
ters, the σdatapoint ensemble spreads over a large range of values
rather than being unique for all the data points. The obtained
(sgl,sgb,zobs,µ,σdatapoint) set constitutes the biased synthetic cat-
alog. The goal of the algorithm is to retrieve a statistically
bias-minimized synthetic catalog starting from the biased one.

4.2. Results

Figures 4–7 present the results of the above-described algo-
rithm applied to one of the biased mock catalog mimicking
cosmicflows-3. The yellow color stands for true data points,
namely, without errors (true catalog), while the black color is
used for the catalog with errors (biased catalog) used as input
for the algorithm. The blue color is used for data points after
nmh Metropolis-Hastings iterations of every single one of the
n points (called iteration 1) and the red color after nmh × nsa
iterations, namely, the Metropolis Hastings samplings embedded
into the simulated annealing algorithm (in other words, iter-
ation nsa, hereafter denoted as “corrected”). In the following,
figures and the associated results are described more thoroughly.

We note that although the ultimate goal is to obtained bias-
minimized peculiar velocity catalogs, since the input consists in
distance moduli (that permit deriving ultimately peculiar veloci-
ties), analyses are conducted on the former as well as on the latter
and on distances.

Figure 4 shows the data points in the mock catalog (from
left to right) at their true positions with symbol sizes propor-
tional, on a logarithmic scale, to their true peculiar velocities
(yellow filled circles) alongside the initial biased positions and
associated velocities (black filled diamonds), after iteration 1
(blue filled squares) and, finally, the recovered or corrected posi-
tions and associated velocities (red filled circles). The solid black
lines connect the true data point positions to their biased, after
iteration 1 and corrected positions. The mean length of these
lines and its standard deviation starts from 18 ± 19 h−1 Mpc to
decrease to 3.1 ± 5.4 h−1 Mpc and ends at 2.9 ± 3.7 h−1 Mpc.
The algorithm after iteration 1 already minimizes on the aver-
age errors on data point positions. According to the definitions
given in Eqs. (1)–(3) and the propagation of uncertainty, it statis-
tically reduces the errors on luminosity distances, cosmological
redshifts, and peculiar velocities. The cooling process allows
for small refinements on a point-to-point basis, but still to be
considered within the full catalog environment.

Figure 5 confirms that errors on distance moduli are statisti-
cally reduced. The left panel shows that true and bias-minimized
distance moduli differ (on average) by less than 1% (blue and
red dashed and dotted lines) against 3-4% without corrections
(black solid line). More precisely, the middle panel shows that
true and biased minimized distance moduli (blue and red squares
and triangles) differ at most by about 0.5 mag against twice,
up to four times, that value for biased distance moduli (black
diamonds) especially at large distances. At small distances, the
average error becomes more centered on zero, a clear indication
that a systematic – galaxies too close on average as per bias b2 –
has been decreased. We note that the more data points there are
in a given region, the better the algorithm performs. This is in
agreement with the data interaction energy term. It proves that
this term is essential and that it enforces the small-scale veloc-
ity correlation in the interaction shapes. It also confirms that data
points cannot be considered individually but together as a whole:
the bias-minimized catalog. The right panel shows for informa-
tion that newly assigned uncertainties and true errors on data
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Fig. 5. Comparisons of spatial distribution properties in the datasets. Left: histograms of the ratio of the differences between biased (black solid
line), after iteration 1 (see text for a definition, blue dotted line), corrected (red dashed line), and true distance moduli to the true distance moduli,
namely, the errors in percent on distance moduli. Middle: difference between true and biased (black diamonds), after iteration 1 (blue square) and
at the end of the process or corrected (red circles) distance moduli versus true distance moduli. Right: ratio of the difference between assigned
uncertainties and true errors to the true errors on distance moduli. Same colors and line styles as the left panel.

Fig. 6. Comparisons of velocity properties in the datasets. Left: true (thick yellow solid line) and biased (black solid line) peculiar velocity
distributions vs. those derived from after iteration 1 (blue dotted line) and at the end of the process or corrected (red dashed line) distance moduli.
Middle: histograms of errors in absolute value on peculiar velocities derived from before correction, after iteration 1 and after correction distance
moduli. Same color and line style codes. Right: local velocity variance in different shape S elongations (one line per elongation) for a catalog free
of errors (solid lines with warm colors), with errors (solid lines with cold colors), after applying the algorithm (dashed lines with warm colors).
The variance is defined as the standard deviation between peculiar velocities of galaxies belonging to a same, elongated along the line-of-sight,
shape S (see exact definition in the text). Shape elongations at given distances are obtained ranging fictively distance modulus uncertainties from
0.2 (orange, red, black) to 1.8 (green, orange, light blue) mag.

points are consistent as they differ at most by a few percent of the
true error.

Finally, the two left panels of Fig. 6 highlight that peculiar
velocities (dotted and dashed blue and red versus solid black
lines), derived from statistically reduced-error distance moduli,
also have (on average) reduced errors. In the left panel, the
underlying Gaussian radial peculiar velocity distribution (thick
solid yellow line) is recovered (dashed red line), as in Sorce
(2015). However, unlike in the latter case, it is not the main aim
as efforts are focused on converging toward the most probable
distance modulus distribution. It just so happens that peculiar
velocities derived from such a new distance modulus catalog
have this property. Additionally, the expected small-scale veloc-
ity variance in different shape sizes (corresponding to different
uncertainties and shown by a color gradient) at various distances
from the center of the box is almost recovered: warm-color
dashed lines (corrected) versus warm-color solid lines (true)
with respect to cold color solid lines (biased) versus warm color
solid lines (true).

To confirm that the algorithm is not equivalent to a naive
decrease of all the peculiar velocities that would also result in

a reduced peculiar velocity variance (but fully intentional), we
proceeded with the following Gedanken experiment:
1. peculiar velocities, rather than distance moduli, constitute

the starting point;
2. all the peculiar velocities are reduced by a constant factor

chosen to find back the expected variance5;
3. new distance moduli are derived from these new peculiar

velocities.
We find that although the resulting peculiar velocity distribu-
tion presents the expected variance (by construction), close-by
galaxies and groups have strongly biased distance moduli. More-
over, the correlation of velocities on small-scale velocity reaches
extremely low values that are well below the expected values. In
addition, bias b4 is fully present and more difficult to deal with.
While it is possible to prevent from having it when starting from
distance moduli to derive peculiar velocities, it is more difficult
to extract non-b4-biased distance moduli from peculiar velocities

5 Multiplying this factor by 1
σvpec,i

, to reduce less peculiar velocities
that have smaller uncertainties, does not change the conclusions of the
experiment.
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Fig. 7. Comparisons of dataset properties. Left: median of the difference between distances obtained from after iteration 1 (filled blue squares)
and at the end of the process or corrected (filled red circles) distance moduli and those derived from biased distance moduli as a function of the
true distances. Errors on the median are obtained with bootstrapping. New distances tend to be larger than initial ones. This is in agreement with
the reduction of the homogeneous Malmquist bias that statistically tends to put objects closer than they are. After bias-minimization of distance
modulus catalog, new distances are indeed statistically larger than initial ones derived from biased distance moduli. At large distances, effects of
the catalog edges, like sharp cut-off, are preponderant. Top-right panel: histograms of the number of data points per grid cells obtained from true
(thick yellow solid line), biased (black solid line), after iteration 1 (blue dotted line) and at the end of the process or corrected (red dashed line)
distance modulus catalogs. Grids are built to split the Supergalactic coordinate space uniformly. Since catalogs are not complete, cells with no data
point have been removed. The histograms represent a measurement of the clustering. The more clustered the data points in a catalog are, the more
data points there can be per grid cells. Bottom-right panel: ratios between the biased (black solid line), after iteration 1 (blue dotted line) and at
the end of the process or corrected (red dashed line) histograms and the true one. These right panels show that data points in the biased catalog
are statistically less clustered than in the true and corrected ones. This is in agreement with the reduction of the heterogeneous Malmquist bias.
Indeed, the latter tends to reduce clustering by statistically scattering objects from high density regions to low ones. The line thickness stands for
the grid-cell size. From the thicker to the thinner lines, the cell sizes are ∼4.6, 5.5 and 6.9 h−1 Mpc.

as only one uncertainty is available (assumption of a symmetric
distribution of the uncertainty). The consistency seen among all
the panels of Figs. 5 and 6 is another strong argument in favor of
the algorithm capability.

Figure 7 shows additional verifications of the algorithm
results. In particular, it checks the reduction of the effects of
biases b2 and b3 (homogeneous and heterogeneous Malmquist
biases). Bias b2 tends to scatter galaxies and groups closer
to, rather than further away from, us. Although no data term
enforces new distance moduli to be larger than starting ones, cor-
rected distances should statistically be larger than biased ones.
The left panel of the figure shows that indeed the median differ-
ences between after iteration 1 (filled blue squares) and corrected
(filled red circles) distances and biased distances (that have been
used as a starting point) are statistically positive but at large dis-
tances. Errors on the median show that neither a positive nor
a negative difference stands out at large distances. The effects
of the catalog edges (e.g., sharp cut-off) do indeed dominate
over bias b2. Then, bias b3 reduces galaxy clustering by scatter-
ing objects from high- to low-density regions. Although no data
term enforces data points to be close to each others6, corrected
distance moduli should increase back clustering.

To derive an estimate of clustering, we built grids to split
the Supergalactic coordinate space uniformly. We then filled
in the grids with the catalog data points and proceed with a
count-in-cell. The top-right panel of Fig. 7 shows the resulting

6 Indeed, the interaction term does not favor close-by data point config-
urations but if velocities are similar. Reversely, if they differ, it disfavors
such close-by configurations.

histograms of the number of data points per grid cells for the
true (thick solid yellow line), biased (solid black line), after iter-
ation 1 (dotted blue line), and the final or corrected (dashed red
line) catalogs. The bottom panel shows the ratio of the differ-
ent histograms to the true one (same color and line style codes).
The thickness of the lines refers to the different grid-cell sizes.
From the thickest to the thinner lines, the cell size ranges from
∼4.6 to 6.9 h−1 Mpc. Because the catalogs are incomplete by
construction, cells with zero data points are removed. On a few-
megaparsecs scale, the biased catalog presents a strong excess
(deficit) of cells with only one (several) data point(s) with respect
to the true catalog. Conversely, the after iteration 1 and corrected
catalogs exhibit only a very small (if any) clustering difference
with the true catalog.

Figure 7 confirms that the algorithm reduces the effects of
biases b2 and b3. Nonetheless, theoretically, the Metropolis-
Hastings algorithm output is a sample distributed according to
the probability distribution of interest. Similarly, the simulated
annealing algorithm output is a sample distributed uniformly
over the configuration subspace maximizing the probability
distribution of interest. Under these circumstances, averaging
realizations reduces the stochastic effects (variance) inherent to
a single proposed solution.

We stacked several realizations of the corrected catalog
obtained with the algorithm (i.e., slightly different realizations
with a slightly different minimized energy term – maximized
probability density – because of the a priori non-concavity of
the function). We treated each one of these realizations inde-
pendently, thus deriving a simple mean of their distance moduli
and assigned uncertainties for each data point. We then derived
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Fig. 8. Same as Fig. 4 (right panel) as well as Figs. 5 and 6 for five (left column) and ten (right column) stacked realizations of the corrected catalog
obtained with the algorithm.

the corresponding new velocities. Figure 8 shows the same plots
as the right panel of Fig. 4 and Figs. 5 and 6 for five (left
column) and ten (right column) stacked realizations. Small addi-
tional improvements are visible on a point-to-point basis. The
mean length of the lines and its standard deviation are further
decreased from 2.9 ± 3.7 h−1 Mpc to 2.2 ± 2.7 h−1 Mpc and
2.1 ± 2.3 h−1 Mpc, respectively. It is interesting to note that this
is the characteristic average size of galaxy clusters. Overall, the
major improvement is on the small-scale velocity variance (last
panel of the last row in both columns). We note that stacking
ten realizations (rather than five) does not seem to improve the
small-scale velocity variance. It might even smooth the veloci-
ties a bit too much, at least in the synthetic catalog case (see next
section for the observational catalog). Stacking realizations also
allows us to get more realistic uncertainties on the new distance
moduli rather than globally converging towards zero ones. On
the whole, the algorithm thus allows for the recovery of statis-
tically better distance moduli and, hence, the peculiar velocities
for galaxies as per the peculiar velocity definition.

4.3. Mock field reconstructions

Before applying the algorithm to the observational catalog, this
subsection gives an example of how valuable the corrected cat-
alog is as a whole. To that end, we reconstructed the density
and 3D velocity fields from the true, biased, and corrected (both
single and stacked) catalogs using the Wiener-filter technique
(Zaroubi et al. 1999). This technique is known for its lack of
capacity to deal with the different biases. Reconstructed fields
are then compared to the initial simulation from which the

synthetic catalog is built. Figure 9 shows the three Supergalac-
tic slices of the reconstructed Local Universe obtained with the
different catalogs of peculiar velocities. Black contours stand for
the overdensity field. The thick blue solid lines delimit the over-
density from the underdensity. Arrows stand for the velocities.
Yellow dots are data points constituting the synthetic catalogs.
The biased catalog results in the worst reconstruction with round
structures at the edge and a large infall onto the observer (i.e.,
the center of the box). Reconstructions based on corrected cat-
alogs present more defined structures like for the reconstruction
obtained with the true catalog. In addition, the major infall onto
the Local Volume is suppressed.

To quantify the similarity between the reconstructed fields
and the simulation, cell-to-cell comparisons between simulated
and reconstructed velocity fields were conducted. For each suc-
cessive cell-to-cell comparison between two velocity fields, cells
are selected in a larger and larger sub-volume of the reconstruc-
tion and simulation boxes. A linear fit to each one of the cell-
to-cell comparison plots (reconstructed vs. simulated velocities)
permits the derivation of the slope of the correlation between
simulated and reconstructed x, y, z velocity components as well
as its variance. Figure 10 left shows the variances (black lines
and symbols) and slopes (red lines and symbols) of the linear fits
to the relations between reconstructed and simulated velocities.
They are obtained by comparing cells in different sub-volumes
of the boxes. As expected, the best (worst) reconstruction is
obtained with the true (biased) catalog: the variance, namely, the
difference between reconstructed and simulated velocity fields,
is the smallest (largest) being below 50 km s−1 (about 100-
170 km s−1) and the slope is the closest to 1 (i.e., almost a perfect
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Fig. 9. Supergalactic slices of the simulated (first column) and reconstructed (second to sixth columns) density and velocity fields. Contours show
the overdensities and arrows indicate the velocities. The blue contours delimit the underdensities from the overdensities. Yellow points show
halos constituting the different catalogs. The peculiar velocities of these halos, obtained from distance moduli, are actually used for the different
reconstructions.

match); varying the most (i.e., no correlation) as shown by the
open black and red circles (crosses) respectively. We note that
the slopes overall decrease with the increasing compared sub-
volumes. As for reconstructions obtained with bias-minimized
catalogs, those obtained with stacked realizations present linear
fits to cell-to-cell comparison plots with smaller variances than
that obtained with a single realization: 80 against 100 km s−1

(black squares and diamonds with respect to stars). Slopes (same
red symbols) present the same trend as for the true catalog. That
is to say, the larger the sub-boxsize considered for the cell-to-
cell comparison is, the smaller the slope. This is a Wiener-filter
known effect as it goes to the mean field in absence of data.
Indeed, the number of data points (N) per Unit of Volume dras-
tically decreases with the distance to the center of the box (top
axis of the figure).

To confirm this effect, Fig. 10 (right panel) compares veloc-
ities only at selected-for-the-mock-catalog halo positions in the
simulation and in the reconstructions. It highlights that indeed
reconstructed velocities with the biased catalog are too large
at large distances and too small close by with a large disparity
(black dotted line). Reconstructed velocities obtained with the
true and corrected catalogs are alternatively slightly too small or
slightly too large (yellow and dashed red lines). Those obtained
from the corrected stacked-realization catalogs are overall too
small (dotted-dashed and three-dots-dashed red lines). Interest-
ingly the ratio between reconstructed and simulated velocities
has the smallest variance for the reconstructions obtained with
stacked realizations making it easier to correct for the smoothing
effect of the Wiener-filter.

Indeed, in a previous work, to obtain better 3D recon-
structed velocities, Sorce (2015) multiplied all the mock-catalog
velocities by the average decrease caused by the Wiener-filter
technique. Then, by applying the Wiener-filter technique to this
mock catalog, they got an average slope of 1 for the linear fits
to the cell-to-cell comparisons between the simulated and recon-
structed velocity fields. To obtain a slope value of 1 indepen-
dently of the sub-boxsize used for the cell-to-cell comparisons,
Sorce (2018) considered the 3D volume and applied an additional
smoothing (uncertainties) inversely proportional to the number
of points per sub-volume. We leave further comparisons as well
as these additional steps with potential new improvements for
the next paper of the series. The major improvement in the recon-
structions obtained with the corrected catalogs is already visible:
the difference between the reconstructed and simulated velocity
fields or variance is drastically reduced whatever the subvolume
considered.

5. Application to the observational catalogs

In this section, the algorithm is applied to the second and third
catalogs of the Cosmicflows project. Again, for the sake of con-
cision and the results being identical for the two catalogs, the
results are shown only for the third catalog.

5.1. Observational catalog

We apply the algorithm to the third dataset of the Cosmicflows
project (Tully et al. 2016). This catalog contains 17 649 galaxy
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Fig. 10. Comparisons of the velocity fields reconstructed from the different datasets. Left: variances (black color) and slopes (red color) of linear
fits to cell-to-cell simulated/reconstructed velocity field comparisons considering larger and larger sub-volumes of the total boxes. The variance,
namely, the difference between the reconstructed and simulated velocities, is the greatest when using the biased catalog (black crosses) - especially
when considering the largest sub-volumes - and the smallest when using the true catalog (black circles) to reconstruct the fields. It has intermediate
values when the corrected catalogs (black stars, squares, and diamonds) are used to reconstruct the fields. The slopes are smaller than 1 in all but
one point for the biased-catalog-based reconstruction. It represents a well-known effect of the Wiener-filter technique that goes to the mean field
in absence of data, implying reconstructed velocities with null values to be compared to simulated velocities in this case. Right: ratio between
reconstructed and simulated velocities at the sole positions of the selected-for-the-mock-catalog halos as a function of the latter’s distance. If the
Wiener-filter tends to underestimate velocities when using corrected stacked-realization catalogs (dotted-dashed and three-dots-dashed red lines)
for reconstruction, it does so quasi uniformly in the whole volume. It makes further corrections of Wiener-filter reconstructions easier than when
using the biased catalog for the reconstructions. In the latter case (black dotted line), velocities are indeed alternatively under and overestimated
with large fluctuations.

distance moduli. Using several distance estimators, mostly from
the Tully-Fisher (Tully & Fisher 1977) and fundamental plane
(Colless et al. 2001) relations, this catalog allows us to probe
distances as large as 500 Mpc. Still, 50% (90 and 99 %) of the
data are within 120 Mpc (225 and 330 Mpc). The other dis-
tance indicators are Cepheids (Freedman et al. 2001), tip of the
red giant branch (Lee et al. 1993), surface brightness fluctua-
tion (Tonry et al. 2001), supernovae of type Ia (Jha et al. 2007),
and other miscellaneous methods. We group the distance moduli
into 15 050 galaxy and group distance moduli using the group-
ing technique of Tempel et al. (2016a), as described in Sorce &
Tempel (2017), using Planck cosmology in this paper. In a future
paper of this series, we will study the impact of the cosmologi-
cal parameter value choice in thorough details. Still, since Tully
et al. (2016) estimate the third dataset of the Cosmicflows project
to be compatible with H0 = 75 ± 2 km s−1 Mpc−1, Appendix A
shows the result obtained with WMAP7-like parameters:
H0 = 74 km s−1 Mpc−1,Ωm = 0.27, andΩΛ = 0.73. Additionally,
Sect. 6 presents a quantification of the significance of the differ-
ence between results obtained with this second choice of cosmo-
logical parameter set values versus the first one (Planck-like).

5.2. Results

Figure 11 presents the results obtained applying the algorithm
to the observational catalog described above. The top row shows
one realization of the catalog that maximizes the probability den-
sity of the point process model. The bottom row shows five (ten)
stacked realizations. In the first panel of each three-panel gath-
ering, the distance modulus histograms reveal that indeed the
Malmquist bias is overall corrected: objects those distances were

underestimated (black solid line) are now further away (dashed
and dotted blue and red lines). The sharp cut in distances due
to the Fundamental plane-based 6-degree Field Galaxy Survey
peculiar velocity sample (Springob et al. 2014), one of the main
components of the cosmicflows-3 catalog, is also recovered. We
note that unlike other bias-minimization techniques, we did not
use a prior on this sharp cut-off. In the second panel of each one
of these three-panel gatherings, the 1D peculiar velocity distribu-
tion is also less flattened. The expected 1D Gaussian distribution
is recovered. Finally, the last panel of each three-panel gathering
shows that the small-scale velocity variance is reduced to reach
values in better agreement with expectations. We note that con-
trary to realizations obtained with the mock catalog, stacking
five or ten realizations does not further change the small-scale
velocity variance in a significant way.

In addition, Fig. 12 shows the distribution of galaxies in the
three 40 h−1 Mpc thick Supergalactic slices. Galaxies are repre-
sented as blue (filled red) circles when their associated velocities
are negative (positive). While the top row shows galaxies in
the raw third catalog of the Cosmicflows project, the second
(third) row highlights the galaxy distribution in the corrected
(ten stacked realization) catalog. No pattern emerges in the raw
catalog distribution, except for the biases, namely: there are
solely negative velocities at large distances. Conversely, in the
corrected catalogs, the filamentary structure of the cosmic web
starts to emerge: well-defined filaments with infalling galaxies
on both side appear delimiting voids. We note that while assum-
ing redshift distances would also result in a filamentary like
structure of the cosmic web, it would lack any information on
peculiar velocities and thus on the true nature of the filamentary
structures.
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Fig. 11. Comparisons between spatial distribution and velocity properties of the observed catalog before and after bias-minimization. From left to
right: distance modulus histograms, peculiar velocity distributions obtained from the raw (black solid line) and corrected (blue and red dotted and
dashed lines) observational catalogs as well as the small-scale velocity variance (solid cold color vs. dashed warm color lines respectively). Top to
bottom left and right: results for one distribution, for five and ten stacked realizations.

5.3. Reconstruction

Wiener-filter reconstructions of the density and velocity fields
are built from the biased and corrected (both single and stacked
realizations) observational catalogs. Supergalactic slices of these
reconstructions are shown on Figs. 13 and 14, with the latter a
zoom on the inner part of the box with respect to the former.
Galaxies and groups from the 2MASS Galaxy Redshift Cata-
log (2MRS, Huchra et al. 2012; groups from Tempel et al. 2018)
are overplotted as red dots for comparison purposes solely. The
yellow dots indicate galaxies those peculiar velocities have been
used for the reconstructions. The large infall onto the center of
the box and the observer and the rounded structures observed in
the reconstruction obtained with the biased velocity catalog are
suppressed in reconstructions obtained with corrected catalogs.
These infalls and rounded structures are the result of biases that
the Wiener-filter cannot not take into account by itself. In recon-
structions obtained with bias-minimized catalogs, structures are
more sharply defined. The velocity field presents several islands
of convergence or divergence, in agreement with the clustering
of galaxies as given by the redshift survey.

We note that the central outflow is more pronounced than
the overall infall in the reconstruction obtained with the biased
observational catalog than in that obtained with the biased syn-
thetic catalog. This is because we use in both cases the same
Planck Hubble constant value, while the cosmicflows-3 catalog
zeropoint is set to a higher local Hubble constant value. The
detailed effect of the Hubble constant choice and a possible
estimation of the best fit to the data will be thoroughly inves-
tigated in a subsequent paper. Sorce & Tempel (2017) already
showed the impact of the Hubble constant value and the capabil-
ities of bias minimization techniques in standardizing the results
to suppress at several levels and first order this dependence.
Appendix A seems to further comfort this capability, while
Sect. 6 quantifies the significance of the differences between
results obtained assuming different H0 values. In any case, we
can notice that both outflow and infall are drastically reduced in
reconstructions obtained with bias-minimized catalogs.

6. The choice of H0

This section aims at quantifying the impact of H0 value on the
results shown in this paper. It starts with quantifying differences
and estimating their significance using synthetic catalogs before
propagating the study to the observational catalogs.

6.1. Synthetic catalogs

To conduct this study, we built two synthetic catalogs fol-
lowing the procedure we described hereabove (in Sect. 4.1).
One catalog uses H0 = 67.77 km s−1 Mpc−1, the other uses
H0 = 74 km s−1 Mpc−1. This constitutes two true catalogs
containing (sgl,sgb,zobs,µ) that are denoted T67 and T74, respec-
tively. Our building procedure implies that selected halo-points
are not identical in both catalogs. From these two catalogs, we
built three biased catalogs. Two of them are obtained adding
uncertainties as detailed in Sect. 4.1 to the two true catalogs.
The third one is obtained from the T67-catalog but assuming
H0 = 74 km s−1 Mpc−1 and propagating uncertainties. This con-
figuration allows us to have the same selected halo-points in
both biased catalogs. These biased catalogs are called B67, B74,
and B74with67, respectively. Only B67 and B74with67 share the
same ground truth in terms of catalogs. However, there is only
one ground truth in terms of the reference simulation. We note
that we could have instead built B67with74 without affecting the
following conclusions. Since H0 = 67.77 km s−1 Mpc−1 is not
favored for the observational catalogs, presenting the results for
B74with67 is more relevant.

We applied the algorithm to the three biased catalogs to get
the (stacked) bias-minimized catalogs called ‘H0_N’, where the
‘H0’ string is 67 or 74 and ‘_N’ is used only for the stacked
realizations with N = 5 or 10.

Table 2 compiles the average variance (V) of the distance
moduli between the ten different realizations used for the stacked
version of the bias-minimized catalogs. Namely, the algorithm
is applied ten times with a different initial seed on B67 (or
B74 or B74with67). The variance between the distance moduli
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Fig. 12. Distribution of galaxies. From top to bottom: in the raw, corrected, ten stacked realization third catalog of the Cosmicflows project in the
three supergalactic 40 h−1 Mpc thick slices (from left to right). Blue circles stand for galaxies with negative peculiar velocities. Red filled circles
represent galaxies with positive peculiar velocities. The strong biases affecting the raw catalog (top) is clearly visible with negative velocities at
large distances. The filamentary structure of the cosmic web is visible in the corrected catalogs.

obtained for a halo-point in ten resulting bias-minimized cata-
logs, C67 (or C74 or C74with67) is then derived. The average
of the variances for all halo-points is then reported in Table 2.
Additionally, the variance of the residuals between the distance
moduli is computed for pairs of realizations. The average vari-
ance of the residuals (VoR) is then reported in Table 2. The same
can be done for pairs made of one C67 and one C74with67 as
they share exactly the same halo-points. We note that the mean
of these residuals is zero in all the cases, except for C67 versus
C74with67. Final distance moduli are on average slightly smaller
(∼0.18 ± 0.05) for C74with67. This change of zeropoint is related
to the larger assumed value of H0 but it is still smaller than the
initial uncertainties on average (∼0.5 against ∼0.18 mag).

It is notable that the average variance (V) between the
different realizations is almost an order of magnitude smaller
than initial uncertainties on average (∼0.5 against ∼0.06 mag).

Although slightly higher, the average variance of the residu-
als (VoR) is also about the same order of magnitude (∼0.09
mag). The most interesting fact is that this average variance
of the residuals is not larger when using pairs of realizations
obtained with the algorithm assuming the same H0 value with
respect to using pairs based on different H0 values. Statistically,
the differences between distance moduli have the same variance
(∼0.09 mag).

To understand better the impact of these slight differences,
comparisons can be extended to the Wiener-filter reconstructed
velocity fields obtained with the different catalogs. They can
be compared between themselves or with the reference simula-
tion velocity field smoothed at the same scale. Indeed, in order
to determine whether the difference between counterparts (i.e.,
fields obtained with the same type, namely, true, biased, bias-
minimized, of the catalogs but different H0 values) is significant
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Fig. 13. Supergalactic slices of reconstructed density (contours) and velocity (arrows) fields of the Local Universe. The blue color delimits over-
from under- densities. Red points are galaxies (small filled circles) and groups (larger filled circles) from the 2MRS Galaxy Redshift Catalog for
comparison purposes only (2MRS, Huchra et al. 2012; groups from Tempel et al. 2018). Yellow points show galaxies whose peculiar velocities
obtained from distance moduli are actually used for the reconstructions. The bias effects are reduced in reconstructed fields obtained with corrected
catalogs.

or not, we need first to estimate by how much the recon-
structed field obtained with the true catalog differs from the
simulated field.

Figure 15 top shows the variance (filled circle) between the
reference simulation velocity field and that reconstructed from
the different synthetic catalogs, that is, from the true ones to the
bias-minimized ones through the biased ones. The solid red line
highlights the average variance between the simulated velocity
field and a reconstruction obtained with a true synthetic catalog.
The velocity fields are compared in the full box as well as in dif-
ferent sub-boxes (gradient of gray).Velocity fields obtained from
both true synthetic catalogs differ from the simulated velocity
field at the same level. Fields reconstructed with the biased cat-
alogs differ the most from the simulated one. Variances derived
from the bias-minimized catalogs are all of the same order and
are intermediate between those derived using the true catalogs
and those obtained with the biased ones.

Figure 15 (bottom) goes further by showing the variance
(filled circle) between reconstructed velocity fields obtained
from T67 and from all the other catalogs. The same color and

line style code as in the top panel applies. The additional dashed
blue line highlights the variance between reconstructed veloc-
ity fields obtained with both true catalogs built out of different
H0 values. Notably, velocity fields reconstructed with the bias-
minimized catalogs (especially the stacked ones) differ from that
obtained with the true catalog (T67) by the same amount that the
latter differs from the reference simulated field (solid red line).

Finally, Fig. 16 compares pairs of velocity fields obtained
with the same type of catalogs but different H0 values. It looks
not only at the total velocity fields but also only at its divergent
part denoted by the additional “d” letter at the end of the name
for “divergent.” Fields reconstructed with the ten stacked bias-
minimized realizations but different H0 values differ no more
than those obtained from the true catalogs but different H0 val-
ues (dashed blue line). In any case, they differ less than the
reconstructed velocity field obtained from the true catalog differs
from the reference field (solid red line) or than the reconstructed
fields derived from the bias-minimized catalogs differ from that
reconstructed from the true catalog. Such differences can thus be
considered insignificant at this first order.
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Fig. 14. Same as Fig. 13 but zoomed on the inner part of the box.

Table 2. Variance between synthetic catalogs.

Catalog1 Catalog2 Type σµ

C67 C67 V 0.06 ± 0.06
C74 C74 V 0.06 ± 0.06
C74with67 C74with67 V 0.06 ± 0.06
C67 C67 VoR 0.09 ± 0.08
C74 C74 VoR 0.09 ± 0.08
C74with67 C74with67 VoR 0.09 ± 0.09
C67 C74with67 VoR 0.09 ± 0.08

Notes. Average variance between distance moduli (V) in C67, C74, and
C74with67 obtained applying the algorithm, initiated with ten different
seeds, on B67, B74, and B74with67, respectively, shown in the top three
lines. Average variance of distance modulus residuals (VoR) between
pairs of bias-minimized catalogs (Catalog1 vs. Catalog2) shown in the
bottom four lines.

6.2. Observational catalogs

In this section, the study is repeated on the observational cata-
log with the exception that the ground truth is unknown. Neither

Table 3. Variance between observational catalogs.

Catalog1 Catalog2 Type σµ

C67o C67o V 0.09 ± 0.10
C74o C74o V 0.08 ± 0.09
C67o C67o VoR 0.13 ± 0.15
C74o C74o VoR 0.12 ± 0.13
C67o C74o VoR 0.13 ± 0.13

Notes. Average variance between distance moduli (V) in C67o and
C74o obtained applying the algorithm, initiated with ten different seeds,
on B67o and B74o respectively, shown in the two first lines. Aver-
age variance of distance modulus residuals (VoR) between pairs of
bias-minimized catalogs (C67o vs. C74o) shown in the three last lines.

the true field nor the true catalog are available. The letter “o”
is added to the names of the different catalogs for “observed.”
Table 3 reports the average variance between distance moduli
(V) and the average variance of the residuals (VoR). As for the
synthetic catalogs, the mean of the residuals is zero but when
comparing C67o with C74o. Final distance moduli are (on aver-
age) slightly smaller (∼0.16 ± 0.09) for C74o. All the values are
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Fig. 15. Comparisons between reconstructed velocity fields. Top: vari-
ance (filled circles) between the velocity field of the reference simula-
tion and those reconstructed from the different catalogs. Bottom: vari-
ance (filled circles) between the reconstructed velocity field obtained
with the true catalog T67 and those derived from the other catalogs.
Detailed explanations of the different catalogs are given in the text.
Names are given as follows: the letter indicates the type - T for True,
B for biased and C for bias-minimized; the number gives the Hubble
constant value −67 for 67.77 km s−1 Mpc−1, 74 for 74 km s−1 Mpc−1 and
74with67 when assuming 74 km s−1 Mpc−1 but for a 67.77 km s−1 Mpc−1

based true catalog; any additional suffix means that several realizations
have been stacked (either 5 or 10). The size and color of the filled cir-
cles stand for the sub-box size within which fields are compared. The
solid red line stands for the average variance between the reference
simulated velocity field and that reconstructed from T67. The dashed
blue line shows the average variance between the reconstructed fields
obtained from both true catalogs with different H0 values (T67 and
T74). Fields reconstructed from the bias-minimized catalogs differ from
those obtained with the true catalog by the same amount as the latter dif-
fers from the reference field.

very similar to those obtained with the synthetic catalogs and in
that respect the same conclusions can be drawn.

Wiener-filter reconstructed velocity fields are also compared.
Variances are shown on Fig. 17 in the same fashion as Fig. 16.
The solid red line highlights the average variance found when

Fig. 16. Same as Fig. 15, but comparing reconstructed velocity fields
obtained from the same type, namely, true, biased, and bias-minimized,
of the catalogs but with different H0 values. The additional “d” suffix
stands for divergent to be opposed to full velocity field. Fields recon-
structed from the ten stacked bias-minimized realizations but different
H0 values differ on average by the same order of magnitude as those
obtained from the true catalogs but different H0 values.

Fig. 17. Same as Fig. 16 but for the observational catalog (hence the
additional letter ‘o’). Fields reconstructed from the ten stacked bias-
minimized realizations but different H0 values differ on average by the
same order of magnitude than those obtained from the true synthetic
catalogs, but different H0 values. Stacked bias-minimized catalogs per-
mit obtaining reconstructions that differ at most by the same amount as
the reconstructed field from the true synthetic catalog differs from the
reference simulated field.

comparing the velocity field reconstructed with the true syn-
thetic catalog and the reference simulated field. The dashed
blue line shows the average variance between the reconstructed
velocity fields obtained with the true synthetic catalogs but
different H0 values. Conclusions are similar to those drawn
with the synthetic catalogs. Differences between reconstructed
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Fig. 18. Supergalactic slices of reconstructed density (filled contours) and velocity (arrows) fields of the Local Universe. Hot to cold colors go from
over- to under- densities. Red points are galaxies (small filled circles) and groups (larger filled circles) from the 2MRS Galaxy Redshift Catalog
for comparison purposes only (2MRS, Huchra et al. 2012; groups from Tempel et al. 2018). Yellow points show galaxies whose peculiar velocities
obtained from distance moduli are actually used for the reconstructions. Names indicate superclusters (white), clusters (grey), walls (dark green),
and voids (smaller size characters in black). The bias effects are reduced in reconstructed fields obtained with corrected catalogs using either
H0 = 67.77 km s−1 Mpc−1 or H0 = 74 km s−1 Mpc−1.

velocity fields derived from the stacked bias-minimized realiza-
tions obtained with different H0 values are insignificant at this
first order.

Finally, Fig. 18 shows the three supergalactic slices of the
overdensity and velocity fields reconstructed from the biased,
bias-minimized assuming H0 = 67.77 km s−1 Mpc−1 and
H0 = 74 km s−1 Mpc−1 observational catalogs. The color gradient

from red to violet-white highlights high over- to underdensities.
Names of structures are visible. White is used for superclusters,
grey for clusters, dark green for walls and black with smaller
character sizes for voids. Red points are still galaxies (small filled
circles) and groups (larger filled circles) from the 2MRS Galaxy
Redshift Catalog for comparison purposes only (2MRS, Huchra
et al. 2012; groups from Tempel et al. 2018). Yellow points still
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show those galaxies whose peculiar velocities obtained from
distance moduli were actually used for the reconstructions.

Clearly the reconstruction obtained with the original cata-
log is biased although high density regions and structures are
not completely off in the sense that there are over- and under-
densities where expected although too pronounced. The velocity
field though is clearly wrong. On the contrary, reconstructions
obtained with the ten-stacked bias-minimized catalogs present
several zones of velocity convergence and divergence. The agree-
ment with known structures is good with both values of H0. The
overall fields are very similar in agreement with the variance
obtained when comparing the velocity fields. Over- and under-
densities are at similar locations with tiny fluctuations that may
hint at a better reconstruction alternatively using one or the other
value of H0 with some difficulties in concluding in absence of
ground truth. Future constrained simulations obtained with these
catalogs will however also provide us with the mass of the clus-
ters that can be compared with the observational mass estimates.
Because the major differences between the reconstructions
seems to be at the level of the intensities of the over- and under-
densities, simulations seem like an excellent alternative to push
further this study. We will certainly do so in a subsequent paper.

This section can be concluded comparing reconstructed
structures from this paper to those obtained, for instance, by
Graziani et al. (2019). Structures are named just as in their
Fig. 8 to ease the comparisons and similar structures can indeed
be found. Additionally, the residual spherical imprint of biases
in the structures centered on the observer seems more dis-
sipated. Several radial structures make their apparition. This
similarity between reconstructions is to be pointed out espe-
cially because: Their grouping is different from ours and we
showed in Sorce & Tempel (2017) that it may lead to drastic
changes in the reconstruction. Their reconstruction technique
is different (Wiener-filter vs. Hamiltonian Monte-Carlo, HMC),
leading to maximum a posteriori fields versus mean of HMC
sampling fields.

7. Conclusion

As a response to the full underlying gravitational field, galaxy
peculiar velocities can be extraordinary cosmological probes
provided that biases inherent to their catalog construction are
controlled. To minimize the effect of the different biases, this
paper proposes a new technique based on a point process
model whose density probability is maximized with Metropolis-
Hastings samplings embedded into a simulated annealing
scheme. The algorithm determines realizations maximizing the
density probability. They correspond to sets of galaxy distance
moduli and uncertainties with the highest probabilities given
their corresponding radial peculiar velocities.

This new algorithm builds on our 2015 work (Sorce 2015)
and improves it by determining the most probable position of
a galaxy and its associated peculiar velocity given not only the
1D peculiar velocity probability distribution but also the 3D
small-scale velocity correlation. This concept is at the core of
the algorithm proposed.

Moreover, the model, tailored for this purpose, does not
rely on very detailed prior knowledge of the catalog nor prior
hypotheses specific to the catalog:

– It offers a great flexibility,
– It does not require as many priors as usual Bayesian tech-

niques used in the field,
– These priors are independent on the datasets unless the data

sampling in space varies from one extreme to another,

– The algorithm thus makes it possible to easily switch from
one dataset to another,

– The cosmological model and its parameters can also be
modified in the most convenient way7.

The proposed method diminishes the effects of the biases. The
obtained results and the conducted statistical tests show the
reduction of the effects of the biases in two situations. Applied
to synthetic catalogs8, when comparisons with both the true and
biased data are possible, the algorithm results in statistically
corrected datasets, namely, the distance moduli (thus distances
and peculiar velocities) are in agreement at better than an aver-
age 1%. This step also permits us to set the parameters of the
algorithm.

Subsequently, as applied to observational catalogs of the
Cosmicflows project, the algorithm gives datasets that are
input into the Wiener-filter technique to reconstruct the Local
Universe. The Wiener-filter technique, a classical restoration
method, is specifically chosen for its inefficiency in taking into
account the biases. Resulting reconstructed density fields are a
great match to the 2MASS Galaxy Redshift Catalog (2MRS)
and the velocity field does not present any significant outflow or
infall, signs of biases, out of or onto the Local Volume. Within
this context, the new proposed method improves the quality of
the peculiar velocity catalogs as a whole.

The newly derived version of the peculiar velocity datasets
will be used for future constrained simulations of the Local Uni-
verse. Nevertheless, reducing biases in cosmological data and
those appearing while exploiting the data is still an open and
challenging problem. It leads to new questions, which we will
tackle in future works. For instance, following Sorce (2018), the
extra-smoothing of the velocity field by the Wiener-filter tech-
nique, due to the fading of the number of data points with the
distance from the observer, will be taken care of.

In the meantime, subsequent studies will also focus on using
different H0 values to probe on the possibility to extract an esti-
mate of the H0 value directly from the data. A first quantitative
study based on the fields reconstructed from the bias-minimized
catalogs obtained with different H0 values hints at insignificant
changes at first order that could become significant with deeper
studies like going to constrained simulations and looking at the
resulting cluster mass function.

Later on, the cosmological model itself could be relaxed. In
addition, the observational redshift, zobs, assumed to have neg-
ligible errors with respect to distance moduli, might also be
unfixed in future developments.
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7 As a matter of fact, Appendix A gives the results for the observational
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Appendix A: H0=74 km s−1 Mpc−1

This appendix reports the results obtained for the third catalog
of the Cosmicflows project when using WMAP7-like cosmolog-
ical parameter values rather than Planck values. Indeed, Tully
et al. (2016) estimate the third dataset of the Cosmicflows project
to be compatible with H0=75±2 km s−1 Mpc−1, this appendix
thus uses WMAP7-like parameters: H0=74 km s−1 Mpc−1, Ωm =
0.27, and ΩΛ = 0.73. Figures presented in the paper core for
the observational catalog are reproduced in this appendix (Figs.
A.1 to A.4). No drastic changes appear when using either set of
cosmological parameter values. It confirms that this kind of bias
minimization techniques seems prone to smooth any effect due
to the Hubble constant value choice. A further work will con-
sist of determining whether this could also permit estimating the
Hubble constant value that is a best fit to the data.

Fig. A.1. Same as Fig. 12 but using WMAP7-like cosmological parameter values in the algorithm.
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Fig. A.2. Same as Fig. 11 but using WMAP7-like cosmological parameter values in the algorithm.

Fig. A.3. Same as Fig. 13 but using WMAP7-like cosmological parameter values in the algorithm.
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Fig. A.4. Same as Fig. 14 but using WMAP7-like cosmological parameter values in the algorithm.
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