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Abstract. We develop fibrational perspectives on context-free grammars and on finite
state automata over categories and operads. A generalized CFG is a functor from a free
colored operad (= multicategory) generated by a pointed finite species into an arbitrary
base operad: this encompasses classical CFGs by taking the base to be a certain operad
constructed from a free monoid, as an instance of a more general construction of an operad
of spliced arrows W C for any category C. A generalized NDFA is a functor satisfying
the unique lifting of factorizations and finite fiber properties, from an arbitrary bipointed
category or pointed operad: this encompasses classical word automata and tree automata
without ϵ-transitions, but also automata over non-free categories and operads. We show that
generalized context-free and regular languages satisfy suitable generalizations of many of the
usual closure properties, and in particular we give a simple conceptual proof that context-
free languages are closed under intersection with regular languages. Finally, we observe that
the splicing functor W : Cat → Oper admits a left adjoint C : Oper → Cat, which we call
the contour category construction since the arrows of C O have a geometric interpretation
as oriented contours of operations of O. A direct consequence of the contour / splicing
adjunction is that every pointed finite species induces a universal CFG generating a language
of tree contour words. This leads us to a generalization of the Chomsky-Schützenberger
Representation Theorem, establishing that a subset of a homset L ⊆ C(A, B) is a CFL of
arrows iff it is a functorial image of the intersection of a C-chromatic tree contour language
with a regular language.

Introduction

In “Functors are Type Refinement Systems” [MZ15], we argued for the idea that rather than
being modelled merely as categories, type systems should be modelled as functors p : D → T
from a category D whose morphisms may be considered as abstract typing derivations to
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2 P.-A. MELLIÈS AND N. ZEILBERGER

a category T whose morphisms are the terms corresponding to the underlying subjects of
those derivations. One consequence of this fibrational point of view is that the notion of
typing judgment receives a simple mathematical status, as a triple (R, f, S) consisting of
two objects R,S in D and a morphism f in T such that p(R) = dom(f) and p(S) = cod(f).
The question of finding a derivation for such a judgment then reduces to the “lifting problem”
of finding a morphism α : R→ S such that p(α) = f .

We developed this perspective in a series of papers [MZ13, MZ15, MZ18, MZ16], and
believe that it may be usefully applied to a large variety of deductive systems, beyond
type systems in the traditional sense. In this work, we focus on derivability in context-free
grammars and on recognition by non-deterministic finite-state automata – two classic topics
in formal language theory with wide applications in computer science. Although grammars
and automata are of a very different nature, both may be naturally described as certain
kinds of functors.

Free operads1 play an important role in our treatment of context-free grammars. Indeed,
we will ultimately propose that a “generalized CFG” may be defined simply as a functor
from a free operad generated by a pointed finite species into an arbitrary base operad. In
order to recover the classical definition of CFG, we rely on a construction W : Cat→ Oper
turning any category C into an operad W C, which we call its operad of spliced arrows. One
recovers the classical definition by taking C = F BΣ to be the one-object category freely
generated from the one-node “bouquet” graph with a loop a : ∗ → ∗ for every letter of the
alphabet a ∈ Σ. However, as we will see, it is very natural to consider context-free languages
of arrows in an arbitrary category, or even generalized context-free languages of constants in
an arbitrary operad.

Non-deterministic finite-state automata, it turns out, may be naturally modelled as
functors satisfying the unique lifting of factorizations and finite fiber properties. One nice
aspect of this formulation is that it captures both word automata and tree automata, which
correspond to functors satisfying these two properties into free categories and into free
operads respectively. However, again we will see that it is very natural and at times essential
to work with a more general definition of NDFA over a non-free category or operad.

A benefit of expressing both context-free grammars and non-deterministic finite state
automata as functors is that they are placed within a common framework, which facilitates
comparison and combination. The germ of this paper was planted early on in the wake of our
type refinement systems work, in 2017, when we began considering context-free grammars
as functors of multicategories. But ultimately it was only in 2022 that the key mathematical
definitions emerged very quickly (over the span of a couple weeks), when we mused that it
could be interesting to analyze the Chomsky-Schützenberger Representation Theorem, a
classic result in formal language theory that in its now-standard formulation states that a
language is context-free if and only if it is a homomorphic image of the intersection of a
Dyck language of well-bracketed words with a regular language. One reason the theorem
is interesting is that it invokes a non-trivial closure property of context-free languages,
namely closure under intersection with regular languages. Another reason is that it suggests,
intuitively, that Dyck languages are in some sense “universal” context-free languages.

We will see that both of these aspects of the theorem have good categorical explanations.
First, the intersection of a context-free language with a regular language may be computed by

1In this paper, when we say “operad” we always mean colored operad, in the sense that our operads always
carry a (potentially trivial) set of colors and operations are sorted f : A1, . . . , An → B in addition to having
an arity n. An operad in this sense is also called a multicategory, and we use the two words interchangeably.
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first taking the pullback of the functor representing the corresponding context-free grammar
along the corresponding non-deterministic finite state automaton, which for non-trivial but
elementary reasons defines a context-free grammar over the runs of the automaton. Second,
the aforementioned “spliced arrows” construction W extends to an adjunction between the
category of categories and the category of operads,

Oper ⊥ Cat
C

W

where the left adjoint builds what we call the “contour category” C O of an operad O. This
contour / splicing adjunction, which seems to be of independent interest, has as an immediate
consequence that every pointed finite species induces a universal CFG generating a language
of tree contour words. Such contour words are closely related to Dyck words, and allow us
to prove a generalization of the representation theorem for context-free languages of arrows
in an arbitrary category.

The rest of the paper is organized as follows. Section 1 is devoted to context-free
grammars, Section 2 to non-deterministic finite state automata, and Section 3 to the
representation theorem. We discuss related work at the end of each of these sections, and we
conclude in Section 4. Finally, an Addendum (not in the original conference version of the
paper) begins to develop a more abstract perspective on generalized context-free languages as
initial models of generalized context-free grammars, providing minimal solutions to systems
of polynomial equations with a fibrational interpretation.

1. Context-free languages of arrows in a category

In this section, after some preliminaries on free operads and species, we describe the
operad of spliced arrows construction, explain how to use it to define context-free grammars
over arbitrary categories generating context-free languages of arrows, and show that many
standard properties of CFGs and CFLs may be naturally reformulated in this general setting.
We also spend some time developing the fibrational view of parsing as a lifting problem,
explaining how any functor from a free operad F S→ O may be represented as a “displayed
free operad” corresponding to a lax functor O → Span(Set) that admits a certain inductive
definition. Finally, we describe how the definition of categorical CFG admits a further
natural generalization by allowing the base operad to be arbitrary, and show that this
encompasses several extensions of the notion of context-free grammar from the literature.

1.1. Preliminaries on free operads and species. We assume some basic familiarity
with operads, otherwise known as multicategories, as introduced for example in Chapter 2
of Leinster’s book [Lei04]. We write f ◦ (g1, . . . , gn) for parallel composition of operations,
and f ◦i g for partial composition after the first i inputs (so f ◦0 g denotes composition of g
into the 0th input of f). Here we recall the notion of a (colored non-symmetric) species,
and how one gives rise to a free operad.
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A colored non-symmetric species, which we abbreviate to species2 for short, is a
tuple S = (C, V, i, o) consisting of a span of sets C∗ V C

i o with the following
interpretation: C is a set of “colors”, V is a set of “nodes”, and the functions i : V → C∗

and o : V → C return respectively the list of input colors and the unique output color
of each node. Adopting the same notation as we use for operations of an operad, we
write x : R1, . . . , Rn → R to indicate that x ∈ V is a node with list of input colors
i(x) = (R1, . . . , Rn) and output color o(x) = R. However, it should be emphasized that a
species by itself only contains bare coloring information about the nodes, and does not say
how to compose them as operations.

We will be primarily interested in finite species. We say that a species is finite (also
called polynomial [Joy86]) just in case both sets C and V are finite.

A map of species ϕ : S→ R from S = (C, V, i, o) to R = (D,W, i′, o′) is given by a pair
ϕ = (ϕC , ϕV ) of functions ϕC : C → D and ϕV : V →W making the diagram commute:

C∗ V C

D∗ W D

ϕ∗
C

i o

ϕV ϕC

i′ o′

Equivalently, overloading ϕ for both ϕC and ϕV , every node x : R1, . . . , Rn → R of S must
be sent to a node ϕ(x) : ϕ(R1), . . . , ϕ(Rn)→ ϕ(R) of R. Every operad O has an underlying
species with the same colors and whose nodes are the operations of O, and this extends to
a forgetful functor U : Oper → Spec from the category of operads and functors of operads
to the category of species and maps of species. Moreover, this forgetful functor has a left
adjoint

Spec ⊥ Oper
F

U
which sends any species S to a free operad with the same set of colors and whose operations
are generated from the nodes of S. By the universal property of the adjoint pair, there is a
natural isomorphism of homsets

Oper(F S,O) ∼= Spec(S,UO)
placing functors of operads p : F S → O and maps of species ϕ : S → UO in one-to-one
correspondence. In the sequel, we will leave the action of the forgetful functor implicit,
writing O for both an operad and its underlying species UO.

1.2. The operad of spliced arrows of a category.

Definition 1.1. Let C be a category. The operad W C of spliced arrows in C is defined
as follows:
• its colors are pairs (A,B) of objects of C;
• its n-ary operations (A1, B1), . . . , (An, Bn)→ (A,B) consist of sequences w0−w1− . . .−wn
of n+ 1 arrows in C separated by n gaps notated −, where each arrow must have type
wi : Bi → Ai+1 for 0 ≤ i ≤ n, under the convention that B0 = A and An+1 = B;
2Species in this sense could also be called signatures, and are sometimes called “multigraphs” [Lam89,

Wal89] since they bear the same relationship to multicategories as graphs do to categories (though that
terminology has an unfortunate clash with a different concept in graph theory). We use “species” to emphasize
the link with Joyal’s theory of (symmetric) species [Joy81] and with generalized species [FGHW08].
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A B

A₁ B₁ A₂ B₂ A₃ B₃

C₁ D₁ C₂ D₂

w₀ w₃

w₁ w₂

u₀
u₁

u₂

A₁ B₁ A₃ B₃C₁ D₁ C₂ D₂

w₁ w₂u₀ u₁ u₂=

A

w₀

B

w₃

A B

A B

BA

w
0 1 2

Figure 1: Left: a constant of W C. Middle: an identity operation. Right: example of
partial composition. Here we compose g = u0−u1−u2 : (C1, D1), (C2, D2) →
(A2, B2) into f = w0−w1−w2−w3 : (A1, B1), (A2, B2), (A3, B3) → (A,B)
at the gap labelled 1 to obtain f ◦1 g = w0−w1u0−u1−u2w2−w3 :
(A1, B1), (C1, D1), (C2, D2), (A3, B3)→ (A,B).

• composition of spliced arrows is performed by “splicing into the gaps”: formally, the
partial composition f ◦i g of a spliced arrow g = u0− . . .−um into another spliced arrow
f = w0− . . .−wn is defined by substituting g for the ith occurrence of − in f (starting
from the left using 0-indexing) and interpreting juxtaposition by sequential composition
in C (see Fig. 1 for an illustration);
• the identity operation on (A,B) is given by idA−idB.

It is routine to check that W C satisfies the associativity and neutrality axioms of an operad,
these reducing to associativity and neutrality of composition of arrows in C. Indeed, the
spliced arrows operad construction defines a functor W− : Cat→ Oper since any functor of
categories F : C → D induces a functor of operads W F :W C →WD, acting on colors by
(A,B) 7→ (FA,FB) and on operations by w0− . . .−wn 7→ Fw0− . . .−Fwn.

Example 1.2. As referenced in the Introduction, for any alphabet Σ there is a one-object
category F BΣ, freely generated from the bouquet graph with a loop a : ∗ → ∗ for every
letter of a ∈ Σ, so that words w ∈ Σ∗ may be regarded as arrows w : ∗ → ∗ in F BΣ.
In this case, the construction yields an operad W Σ := WF BΣ that we like to call the
operad of spliced words in Σ. It has a single color, and its n-ary operations are sequences
w0− . . .−wn of n+ 1 words over Σ. For example, in the operad of spliced words over the
ASCII alphabet, we have that "Hell"−", "−"rld!" ◦ ("o", "Wo") = "Hello, World!".

Remark 1.3. Although F BΣ is a free category, this property of being freely generated
does not extend to its operad of spliced words. Indeed, an operad of spliced arrows W C is
almost never a free operad. That’s because any pair of objects A and B induces a binary
operation idA−idA−idB : (A,A), (A,B)→ (A,B), and any arrow w : A→ B of C induces
a corresponding constant w : (A,B). Since idA−idA−idB ◦ (idA, w) = w, W C cannot be a
free operad except in the trivial case where C has no objects and no arrows.

Example 1.4. Arrows in free categories with more than one object may be seen as “typed”
words, in the sense that concatenation (= composition) is only a partial operation that
combines a word u : A→ B with a word of compatible type v : B → C to produce a word
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uv : A→ C. For example, consider the graph

Bˆ$
Σ := ⊥ ∗ ⊤

ˆ

a∈Σ

$

obtained by extending the bouquet graph BΣ into a “cylinder”. Arrows w : ∗ → ∗ of F Bˆ$
Σ

correspond to ordinary words, which may be concatenated freely, but arrows u : ⊥ → ∗
may only be prepended to the beginning of a word, while arrows v : ∗ → ⊤ may only be
appended to the end of a word. As we will see in examples later on, it becomes interesting
to consider the spliced arrow operad over F Bˆ$

Σ , which includes operations of the form f =
w0− . . .−wn$ : (∗, ∗), . . . , (∗, ∗) → (∗,⊤) and g = ˆw0− . . .−wn : (∗, ∗), . . . , (∗, ∗) → (⊥, ∗)
that may be seen as spliced words with explicit “end of input” and “beginning of input”
markers.

Remark 1.5. The operad W 1 of spliced arrows over the terminal category is isomorphic
to the terminal operad, with a single color (∗, ∗), and a single n-ary operation id− . . .−id :
(∗, ∗), . . . , (∗, ∗) → (∗, ∗) of every arity n. Likewise, the operad of spliced arrows over the
product of two categories decomposes as a product of spliced arrow operads W C ×D ∼=
W C ×W D. This might suggest that the functor W− : Cat→ Oper is a right adjoint, and
we will see in §3.2 that this is indeed the case.

1.3. Context-free grammars over a category. Classically, a context-free grammar is
defined as a tuple G = (Σ, N, S, P ) consisting of a finite set Σ of terminal symbols, a finite
set N of non-terminal symbols, a distinguished non-terminal S ∈ N called the start symbol,
and a finite set P of production rules of the form R→ σ where R ∈ N and σ ∈ (N ∪Σ)∗ is a
string of terminal or non-terminal symbols. Observe that any sequence σ on the right-hand
side of a production can be factored as σ = w0R1w1 . . . Rnwn where w0, . . . , wn are words of
terminals and R1, . . . , Rn are non-terminal symbols, thus yielding

R→ w0R1w1 . . . Rnwn

as the general form of a production rule. We can use this simple observation in order to
capture derivations in context-free grammars by functors p : F S→W Σ, as illustrated in
Figure 2. More generally, we can use this observation to define context-free grammars over
arbitrary categories.

Definition 1.6. A context-free grammar over a category (or categorical CFG) is a tuple
G = (C,S, S, p) consisting of a category C, a finite species S equipped with a distinguished
color S ∈ S called the start symbol, and a functor of operads p : F S→W C. We then refer
to the colors of S as non-terminals and to the operations of F S as derivations or parse
trees. The context-free language of arrows LG generated by the grammar G is the
subset of arrows in C which, seen as constants of W C, are in the image of a closed derivation
of S, that is, LG = { p(α) | α : S } ⊆ C(A,B), where p(S) = (A,B).

As suggested in the Introduction, every context-free grammar in the classical sense G =
(Σ, N, S, P ) corresponds to a context-free grammar over F BΣ. For the grammar of Figure 2,



THE CATEGORICAL CONTOURS OF THE C-S REPRESENTATION THEOREM 7

1 : S → NP VP
2 : NP → mom
3 : NP → tom
4 : VP → loves NP

S

VPNP

NP NP VP

NP

1 2 3 4

ε-␣-ε mom tom loves␣-ε

↦ ↦ ↦ ↦
𝓦

↦

𝕊 Free 𝕊

S

VPNP

NP

1

3

2

4

ε-␣-ε ∘ (tom, loves␣-ε∘mom)
= tom␣loves␣mom

Figure 2: Example of a context-free grammar represented by a functor F S→W Σ, where
we have indicated the action of the functor on the generators as well as the induced
action on a closed derivation tree.

the corresponding species S has three colors NP,VP,S and four nodes,
x1 : NP,VP→ S

x2, x3 : NP
x4 : NP→ VP

with the functor p : F S→W Σ (=WF BΣ) uniquely defined by the action
x1 7→ ε−␣−ε
x2 7→ mom
x3 7→ tom
x4 7→ loves␣−ε

on the generators as displayed in the middle of the figure. Conversely, any finite species S
equipped with a color S ∈ S and a functor of operads p : F S→W Σ uniquely determines a
context-free grammar over the alphabet Σ. Indeed, the colors of S give the non-terminals
of the grammar and S the distinguished start symbol, while the nodes of S together with
the functor p give the production rules of the grammar, with each node x : R1, . . . , Rn →
R such that p(x) = w0− . . .−wn determining a context-free production rule x : R →
w0R1w1 . . . Rnwn.

Proposition 1.7. A language L ⊆ Σ∗ is context-free in the classical sense if and only if it
is the language of arrows of a context-free grammar over F BΣ.

An interesting feature of the general notion of categorical context-free grammar is that the
non-terminals of the grammar G = (C,S, S, p) are sorted in the sense that every color of S is
mapped by p to a unique color of W C, corresponding to a pair of objects of C. Adapting the
conventions from our work on type refinement systems, we sometimes write R ⊏p (A,B) or
simply R ⊏ (A,B) to indicate that p(R) = (A,B) and say that the non-terminal R refines
the “gap type” (A,B). We emphasize that the language LG generated by a grammar with
start symbol S ⊏ (A,B) is a subset of the homset C(A,B).

Example 1.8. To illustrate some of the versatility afforded by the more general notion of
context-free grammar, consider a CFG over the category F Bˆ$

Σ from Example 1.4. Such a
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grammar may include production rules that can only be applied upon reaching the end of the
input or only at the beginning, which is useful in practice, albeit usually modelled in an ad hoc
fashion. For example, the grammar of arithmetic expressions defined by Knuth in the original
paper on LR parsing [Knu65, example (27)] may be naturally described as a grammar over
F Bˆ$

Σ , which in addition to having three “classical” non-terminals E, T, P ⊏ (∗, ∗) contains
a distinguished non-terminal S ⊏ (∗,⊤). Knuth’s “zeroth” production rule 0 : S → E$ is
then just a unary node 0 : E → S in S, mapped by p to the operation ε−$ : (∗, ∗)→ (∗,⊤)
in WF Bˆ$

Σ .

More significant examples of context-free languages of arrows over categories with more than
one object will be given in §3, including context-free grammars over the runs of finite-state
automata.

Lastly, let us remark that it is at times useful to consider a categorical CFG equivalently
as a triple of a pointed finite species (S, S), a bipointed category (C, A,B), and a functor
of pointed operads pG : (F S, S)→ (W C, (A,B)). Note that the operad of spliced arrows
construction lifts to a functor

W• : Cat•,• → Oper•
sending a category C equipped with a pair of objects A and B to the operad W C equipped
with the color (A,B), and that the free / forgetful adjunction (1.1) likewise lifts to an
adjunction

Spec• ⊥ Oper•

F •

U•

between pointed species and pointed operads. This permits another way of understanding
the language of arrows generated by a grammar considered as a functor of pointed operads
pG : F •(S, S)→W•(C, A,B): since the set of constants of color (A,B) inW C is in bijection
with the set of arrows A→ B in C, we have a natural isomorphism con ◦W• ∼= hom for the
evident functors hom : Cat•,• → Set and con : Oper• → Set, and LG is precisely the image
of the function con(pG) : con(F S, S)→ con(W C, (A,B)) ∼= C(A,B).3

1.4. Properties of a context-free grammar and its associated language. Standard
properties of context-free grammars (cf. [SS88, Ch. 4]), considered as categorical CFGs
G = (F BΣ, S, S, p), may be reformulated as properties of either the species S, the operad
F S, or the functor p : F S→W Σ, with varying degrees of naturality:
• G is linear just in case S only has nodes of arity ≤ 1. It is left-linear (respectively,

right-linear) just in case it is linear and every unary node x of S is mapped by p to an
operation of the form ε−w (resp. p(x) = w−ε).
• G is in Chomsky normal form if S only has nodes of arity 2 or 0, the color S does not
appear as the input of any node, every binary node is mapped by p to ε−ε−ε in WF BΣ,
and every nullary node is mapped to a letter a ∈ Σ, unless R = S in which case it
is possible that p(x) = ε. (These conditions can be made a bit more more natural by
considering G as a context-free grammar over F Bˆ$

Σ with S ⊏ (∗,⊤), see Example 1.8
above.)
• G is bilinear (a generalization of Chomsky normal form [LL09, Lee89]) iff S only has nodes
of arity ≤ 2.
3The reader may refer to the Addendum for a deeper analysis of the language generated by a CFG.
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• G is unambiguous iff for any pair of constants α, β : S in F S, if p(α) = p(β) then α = β.
Note that if p is faithful then G is unambiguous, although faithfulness is a stronger
condition in general.
• A non-terminal R of G is nullable if there exists a constant α : R of F S such that
p(α) = ε.
• A non-terminal R of G is useful if there exists a pair of a constant α : R and a unary
operation β : R→ S. Note that if G has no useless non-terminals then G is unambiguous
iff p is faithful.

Observe that almost all of these properties can be immediately translated to express properties
of context-free grammars over any category C. Basic closure properties [HMU07, §7.3] of
classical context-free languages (CFLs) also generalize easily to CFLs of arrows.

Proposition 1.9.
(1) If L1, . . . ,Lk ⊆ C(A,B) are CFLs of arrows, so is their union

⋃k
i=1 Li ⊆ C(A,B).

(2) If L1 ⊆ C(A1, B1), . . . ,Ln ⊆ C(An, Bn) are CFLs of arrows, and if w0− . . .−wn :
(A1, B1), . . . , (An, Bn) → (A,B) is an operation of W C, then the “spliced concatena-
tion” w0L1w1 . . .Lnwn = {w0u1w1 . . . unwn | u1 ∈ L1, . . . , un ∈ Ln } ⊆ C(A,B) is also
context-free.

(3) If L ⊆ C(A,B) is a CFL of arrows in a category C and F : C → D is a functor of
categories, then the functorial image F (L) ⊆ D(F (A), F (B)) is also context-free.

Proof. The proofs of (1) and (2) are just refinements of the standard proofs for context-free
languages of words, keeping track of the underlying gap types:
(1) Given grammars Gi = (C, Si, Si, pi) for i = 1 . . . k, where all of the Si refine the same

gap type (A,B), we define a new grammar G = (C,S, S, p) that generates the union
of the languages LG =

⋃k
i=1 LGi

by taking S to be the disjoint union of the colors and
nodes of S1, . . . ,Sk combined with a distinguished color S and unary nodes xi : Si → S
for i = 1 . . . k, and defining ϕ : S→W C to be the cotupling of ϕ1, . . . , ϕk extended by
the mappings S 7→ (A,B) and xi 7→ idA−idB for i = 1 . . . k.

(2) Given grammars G1 = (C,S1, S1, p1), . . . , Gn = (C, Sn, Sn, pn) where Si ⊏ (Ai, Bi) for
each 1 ≤ i ≤ n, together with an operation w0− . . .−wn : (A1, B1), . . . , (An, Bn) →
(A,B) of W C, we construct a new grammar G = (C, S, S, p) that generates the spliced
concatenation w0LG1

w1 . . .LGn
wn by taking S to be the disjoint union of the colors

and nodes of S1, . . . ,Sn combined with a distinguished color S and a single n-ary node
x : S1, . . . , Sn → S, and defining ϕ : S→W C to be the cotupling of ϕ1, . . . , ϕn extended
by the mappings S 7→ (A,B) and x 7→ w0− . . .−wn.

For (3), suppose given a grammar G = (C, S, S, p) and a functor of categories F : C → D.
Then the grammar F (G) generating the language F (LG) is defined by postcomposing
p with W F : W C → WD while keeping the species S and start symbol S the same,
F (G) = (D,S, S, pW F ).

Finally, we note that there is a natural definition of morphisms between context-free grammars
over the same category, which we refer to as translations.

Definition 1.10. Let G1 = (C,S1, S1, p1) and G2 = (C, S2, S2, p2) be two grammars over the
same category. A translation T : G1 → G2 is given by a functor of operads T : F S1 → F S2
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that commutes with the projection functors

F S1 F S2

W C
p1

T

p2

and preserves the start symbol T (S1) = S2. We say T is a strong translation if the
underlying functor T : F S1 → F S2 is fully faithful, and then write T : G1 ↪→ G2.

Proposition 1.11. If T : G1 → G2 is a translation then LG1
⊆ LG2

. If T : G1 ↪→ G2 is a
strong translation, then LG1

= LG2
, moreover with the grammars generating isomorphic sets

of parse trees for the arrows in the language.

Proof. A translation induces a function from constants α : S1 of F S1 to constants β =
T (α) : S2 of F S2 lying over the same arrow p1(α) = p2(β), and hence LG1

⊆ LG2
. If

the translation is strong (i.e., T is fully faithful), then this function is invertible, hence
LG1

= LG2
, and the sets of derivations of any given word are isomorphic.

We will refer to the halves of the proposition as the weak translation principle and the strong
translation principle.

1.5. A fibrational view of parsing as a lifting problem. We have seen how any context-
free grammar G = (C,S, S, p) gives rise to a language LG = { p(α) | α : S }, corresponding to
the arrows of C which, seen as constants of W C, are in the image of some constant of color S
of the free operad F S. However, beyond characterizing the language defined by a grammar,
in practice one is often confronted with a dual problem, namely that of parsing: given a
word w, we want to compute the set of all its parse trees, or at least determine all of the
non-terminals which derive it. In our functorial formulation of context-free derivations, this
amounts to computing the inverse image of w along the functor p, i.e., the set of constants
p−1(w) = {α | p(α) = w }, or alternatively the set of colors in the image of p−1(w) along
the output-color function.

To better understand this view of parsing as a lifting problem along a functor of operads,
we find it helpful to first recall the correspondence between functors of categories p : D → C
and lax functors F : C → Span(Set), where Span(Set) is the bicategory whose objects are
sets, whose 1-cells S : X −→| Y are spans X ← S → Y , and whose 2-cells are morphisms of
spans. Suppose given such a functor p : D → C. To every object A of C there is an associated
“fiber” F (A) = p−1(A) of objects in D living over A, while to every arrow w : A→ B of C
there is an associated fiber F (w) = p−1(w) of arrows in D living over w, equipped with a pair
of projection functions F (A)← F (w)→ F (B) mapping any lifting α : R→ S of w : A→ B
to its source R ∈ F (A) and target S ∈ F (B). Moreover, given a pair of composable arrows
u : A→ B and v : B → C in C, there is a morphism of spans

F (u)F (v) F (uv) : F (A) F (C)| (1.1)

from the composite of the spans F (u) : F (A)−→| F (B) and F (v) : F (B)−→| F (C) associated
to u : A→ B and v : B → C to the span F (uv) : F (A)−→| F (C) associated to the composite
arrow uv : A→ C. This morphism of spans is realized using composition in the category D,
namely by the function taking any pair of a lifting α : R→ S of u and a lifting β : S → T of v
to the composite αβ : R→ T , which is a lifting of uv by functoriality p(αβ) = p(α)p(β) = uv.
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Similarly, the identity arrows in the category D define, for every object A of the category C,
a morphism of spans

idF (A) F (idA) : F (A) F (A)| (1.2)

from the identity span F (A)← F (A)→ F (A) to the span associated to the identity arrow
idA : A→ A. Associativity and neutrality of composition in D ensure that the 2-cells (1.1)
and (1.2) make the diagrams below commute:

F (u)F (v)F (w) F (u)F (vw)

F (uv)F (w) F (uvw)

F (u)

F (idA)F (u)

F (u)

F (u)

F (u)F (idB)

F (u)

for all triples of composable arrows u : A→ B, v : B → C and w : C → D, and therefore
that this collection of data defines what is called a lax functor F : C → Span(Set). In general
it is only lax, in the sense that the 2-cells F (u)F (v)⇒ F (uv) and idF (A) ⇒ F (idA) are not
necessarily invertible.

Conversely, starting from the data provided by a lax functor F : C → Span(Set), we can
define a category noted ∫ F together with a functor π : ∫ F → C. The category ∫ F has objects
the pairs (A,R) of an object A in C and an element R ∈ F (A), and arrows (w,α) : (A,R)→
(B,S) the pairs of an arrow w : A→ B in C and an element α ∈ F (w) mapped to R ∈ F (A)
and S ∈ F (B) by the respective legs of the span F (A)← F (w)→ F (B). The composition
and identity of the category ∫ F are then given by the morphisms of spans F (u)F (v)⇒ F (uv)
and idF (A) ⇒ F (idA) witnessing the lax functoriality of F : C → Span(Set). The functor
π : ∫ F → C is given by the first projection. This construction of a category ∫ F equipped
with a functor π : ∫ F → C starting from a lax functor F : C → Span(Set) is a mild variation
of Bénabou’s construction of the same starting from a lax normal functor F : Cop → Dist
[B0́0, §7], which is itself a generalization of the well-known Grothendieck construction of
a fibration starting from a pseudofunctor F : Cop → Cat. One can show that given a
functor of categories p : D → C, the construction applied to the associated lax functor
F : C → Span(Set) induces a category ∫ F isomorphic to D, in such a way that p coincides
with the isomorphism composed with π. Recently, Ahrens and Lumsdaine [AL19] have
introduced the useful terminology “displayed category” to refer to this way of presenting
a category D equipped with a functor D → C as a lax functor C → Span(Set), with their
motivations coming from formalization of mathematics.

The constructions which turn a functor of categories p : D → C into a lax functor
F : C → Span(Set) and back into a functor π : ∫ F → C can be adapted smoothly to
functors of operads, viewing Span(Set) as a 2-categorical operad whose n-ary operations
S : X1, . . . , Xn −→| Y are multi-legged-spans

X1

... S Y

Xn

or equivalently spans X1 × · · · × Xn ← S → Y , and with the same notion of 2-cell. We
will follow Ahrens and Lumsdaine’s suggestion and refer to the data of such a lax functor
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F : O → Span(Set) representing an operad D ∼= ∫ F equipped with a functor p : D → O as
a displayed operad.

1.6. An inductive formula and a sequent calculus for displayed free operads. It is
folklore that the free operad over a species S = (C, V, i, o) may be described concretely as
a certain family of trees: operations of F S are interpreted as (rooted planar) trees whose
edges are colored by the elements of C and whose nodes are labelled by the elements of V ,
subject to the constraints imposed by the functions i : V → C∗ and o : V → C. The formal
construction of the free operad may be viewed as a free monoid construction, adapted to
a situation where the ambient monoidal product (in this case, the composition product of
species) is only distributive on the left, see [MSS02, II.1.9] and [BJT97, Appendix B].

From the perspective of programming semantics, it is natural to consider the underlying
species of F S as an inductive data type, corresponding to the initial algebra for the
endofunctor WS on C-colored species defined by

WS = R 7→ I + S ◦ R
where + denotes the coproduct of C-colored species which is constructed by taking the
disjoint union of nodes, while ◦ and I denote respectively the composition product of C-
colored species and the identity species, defined as follows. Given two C-colored species
S and R, the n-ary nodes R1, . . . , Rn → R of S ◦ R are formal composites g • (f1, . . . , fk)
consisting of a node g : S1, . . . , Sk → S of S and of a tuple of nodes f1 : Γ1 → S1, . . . ,
fk : Γk → Sk of R, such that the concatenation of the lists of colors Γ1, . . . ,Γk is equal to
the list R1, . . . , Rn. The unit I is the C-colored species with a single unary node ∗R : R→ R
for every color R ∈ C, and no other nodes.

As the initialWS-algebra, the free operad over S is equipped with a map of species I+S◦
F S −→ F S, which by the Lambek Lemma is invertible, with the following interpretation:
any operation of F S is either an identity operation, or the parallel composition of a node
of S with a list of operations of F S. Note that this interpretation also corresponds to a
canonical decomposition

...

= +

... ...

...

(1.3)
of rooted planar trees, by iterated examination of the root. An operation of F S may be
seen as a rooted planar tree whose edges and nodes are labelled by the species S, and we
sometimes refer to such an operation as an S-rooted tree (cf. [BLL98, §3.2]).

It is possible to derive an analogous inductive characterization of functors p : F S→ O
from a free operad into an arbitrary operad O considered as displayed free operads, i.e., as
lax functors F : O → Span(Set) generated by an underlying map of species ϕ : S→ O. Two
subtleties arise. First, that the species S and the operad O may in general have a different
set of colors, related by the change-of-color function ϕC . To account for this, rather than
restricting the operations +, ◦, I to the category of C-colored species, one should consider
them as global functors

+, ◦ : Spec ×Set Spec → Spec I : Set→ Spec
on the “polychromatic” category of species, which respect the underlying sets of colors
in a functorial way. Second, and more significantly, the above functor WS transports a
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species R living over O to a species living over I +O ◦ O, so that in order to obtain again a
species living over O (and thus define an endofunctor) one needs to “push forward” along
the canonical WO-algebra [e,m] : I +O ◦ O −→ O that encodes the operad structure of O,
seen as a monoid in (Spec, ◦, I). A detailed discussion is beyond the scope of this paper, but
we nevertheless state the following proposition, whose intuitive content should be clear:

Proposition 1.12. Let ϕ : S→ O be a map of species from a species S into an operad O,
and let p : F S→ O be the corresponding functor from the free operad. Then the associated
lax functor F : O → Span(Set) computing the fibers of p is given by F (A) = ϕ−1(A) on
colors of O, and by the least family of spans F (f) indexed by operations f : A1, . . . , An → A
of O such that

F (f) ∼=
∑

f=idA
ϕ(R)=A

idR +
∑

f=g◦(h1,...,hk)
ϕ−1(g) • (F (h1), . . . , F (hk)) (1.4)

where we write ◦ for composition in the operad O and • for formal composition of nodes in
S with operations in F S. Specializing the formula to constant operations, the left summand
disappears and (1.4) simplifies to:

F (c) ∼=
∑

c=g◦(c1,...,ck)
ϕ−1(g) • (F (c1), . . . , F (ck)) (1.5)

The inductive characterization of displayed free operads may be equivalently expressed as
a sequent calculus, see Figure 3, which is parameterized by an underlying map of species
ϕ : S→ O. Adapting a convention from our type refinement systems work, we write

R1, . . . , Rk
ϕ=⇒
g
R

to indicate the existence of a node x : R1, . . . , Rk → R in S such that ϕ(x) = g, and similarly

S1, . . . , Sn
p=⇒
f

R

for an operation f : S1, . . . , Sn → R in F S such that p(α) = f . Again, we write R ⊏p A
to indicate that R is a color of F S with image p(R) = A in O. As standard, we treat the
inference rules as an inductive definition, in the sense that the set of derivations of the
calculus is the least set closed under the inference rules. Then formulas (1.4) and (1.5) are
equivalent to the following:

Proposition 1.13. For the sequent calculus of Fig. 3, parameterized with respect to a map
of species ϕ : S → O and the corresponding functor p : F S → O, derivations of Γ ⇒p

f R

are in one-to-one correspondence with operations α : Γ→ R in F S such that p(α) = f . As
a special case, constants α : R such that p(α) = c are in one-to-one correspondence with
derivations of ⇒p

c R, which necessarily only use instances of the node rule.

1.7. Application to parsing. Instantiating (1.5) with the underlying functor of a categor-
ical CFG generated by a map of species ϕ : S→W C, we immediately obtain the following
characteristic formula for the family of sets of parse trees F (w) of an arrow w in C, seen as
liftings of the constant w in W C to a constant in F S:

F (w) ∼=
∑

w=w0u1w1...unwk

ϕ−1(w0− . . .−wk) • (F (u1), . . . , F (uk)) (1.6)
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leaf
R

p
⊏ A

R
p=⇒
idA

R
node

f = g ◦ (h1, . . . , hk)
R1, . . . , Rk

ϕ=⇒
g
R Γ1

p=⇒
h1

R1 . . . Γk
p=⇒
hk

Rk

Γ1, . . . ,Γk
p=⇒
f

R

Figure 3: A sequent calculus for displayed free operads.

Equivalently, specializing the sequent calculus of Figure 3 and translating the generic
judgment forms into traditional CFG notation by

R1, . . . , Rk
ϕ=⇒

w0−...−wn
R ⇝ R→ w0R1w1 . . . Rnwn

p=⇒
w

R ⇝ R→+ w

we obtain the following inference rule:
w = w0u1w1 . . . ukwk R→ w0R1w1 . . . Rkwk R1 →+ u1 . . . Rk →+ uk

R→+ w (1.7)
inductively defining the set of closed context-free derivations. For any given word w, let
Nw = {R | R→+ w } be the set of non-terminals that derive it, corresponding to the image
of F (w) along the function returning the root label of a parse tree. We have that:

R ∈ Nw ⇐⇒ w = w0u1w1 . . . ukwk ∧
R→ w0R1w1 . . . Rkwk ∧R1 ∈ Nu1 ∧ · · · ∧Rk ∈ Nuk

(1.8)
This equation is essentially the characteristic formula expressed by Leermakers [Lee89] for the
defining relation of the “C-parser”, which generalizes the well-known Cocke-Younger-Kasami
(CYK) algorithm. Presentations of the CYK algorithm are usually restricted to grammars
in Chomsky normal form (cf. [LL09]), but as observed by Leermakers, the relation Nw

defined by (1.8) can be solved effectively for any context-free grammar G and given word
w = a1 . . . an by building up a parse matrix Ni,j indexed by the subwords wi,j = ai+1 . . . aj
for all 1 ≤ i ≤ j ≤ n, and yields a cubic complexity algorithm in the case that G is bilinear
in the sense of §1.4. Moreover, by adding non-terminals, it is always possible to transform a
CFG into a bilinear CFG that generates the same language, even preserving the original
derivations up to isomorphism.
Proposition 1.14. For any categorical context-free grammar G = (C,S, S, p), there is
a bilinear CFG Gbin = (C,Sbin, S, pbin) together with a fully faithful functor of operads
B : F S → F Sbin such that p = Bpbin. In particular, by the strong translation principle
(Prop. 1.11) we have that LG = LGbin

with isomorphic sets of parse trees.

Proof. Given G = (C,S, S, p), a bilinear grammar Gbin = (C, Sbin, S, pbin) is constructed as
follows. Sbin includes all of the colors and all of the nullary nodes of S, with ϕbin(R) = ϕ(R)
and ϕbin(c) = ϕ(c). Additionally, for every node x : R1, . . . , Rn → R of S of positive arity
n > 0, where ϕ(x) = w0− . . .−wn : (A1, B1), . . . , (An, Bn)→ (A,B) in W C, we include:
• n new colors Ix,0, . . . , Ix,n−1, with ϕbin(Ix,i−1) = (A,Ai) for 1 ≤ i ≤ n;
• one nullary node x0 : Ix,0, with ϕbin(x0) = w0;
• n binary nodes x1, . . . , xn, where xi : Ix,i−1, Ri → Ix,i and ϕbin(xi) = idA−idAi−wi for all

1 ≤ i ≤ n, under the convention that Ix,n = R.
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We define the functor B : F S → F Sbin on colors by B(R) = R, on nullary nodes by
B(c) = c, and on nodes x : R1, . . . , Rn → R of positive arity by B(x) = xn ◦0 · · · ◦0 x1 ◦0 x0.
By induction on n, there is a one-to-one correspondence between nodes x : R1, . . . , Rn → R
of S and operations B(x) : R1, . . . , Rn → R of F Sbin, so the functor B is fully faithful.

1.8. Generalized context-free grammars. We conclude this section by observing that
for many purposes, a functor of operads from a free operad generated by a finite species S
into an arbitrary operad O may be considered (after selection of a start symbol in S) as a
“generalized” context-free grammar, generating a language of constants in O.
Definition 1.15. A generalized context-free grammar (over an operad) is a tuple
G = (O, S, S, p) consisting of an operad O, a finite species S equipped with a distinguished
color S ∈ S, and a functor of operads p : F S → O. The generalized context-free
language of constants generated by the grammar G is given by the subset of constants
(or “conset”) LG = { p(α) | α : S } ⊆ O(A), where p(S) = A.
Hence a classical context-free word grammar can be seen as a generalized CFG (gCFG)
over a spliced word operad O = W Σ, and a categorical CFG as a gCFG over a spliced
arrow operad O =W C. By selecting O appropriately, Definition 1.15 encompasses other
extensions of the notion of context-free grammar from the literature.
Example 1.16. For any operad P, one can construct a new operad !affP whose colors are
lists [A1, . . . , Ak] of colors in P and whose n-ary operations [Γ1], . . . , [Γn] → [A1, . . . , Ak]
are pairs ([f1, . . . , fk], σ) of a list of operations f1 : Ω1 → A1, . . . , fk : Ωk → Ak in P and
an injection σ : Ω1, . . . ,Ωk ↪→ Γ1, . . . ,Γn from the concatenation of the inputs of the k
operations to the concatenation of the n input lists. Observe that if P is an un(i)colored
operad, then the colors of !affP are isomorphic to natural numbers. Let us also remark that
!affP is in fact the free semi-cartesian (or “affine”) strict monoidal operad over P.4

A gCFG over !affW Σ with start symbol S ⊏ 1 is precisely a multiple context-free
grammar [SMFK91], while more generally a gCFG over !affW C with S ⊏ [(A,B)] (for some
objects A and B of C) could be called a “multiple categorical CFG”. Such a grammar is a
k-multiple CFG (again in the sense of [SMFK91]) just in case every non-terminal R ⊏ [Γ]
refines a list of length |Γ| ≤ k.

For instance, let C be the free category over the following graph:

A B C

a

#

b

#′

c

We can define a 3-mCFG generating the language an#bn#′cn with a pair of non-terminals
S ⊏ [(A,C)]
R ⊏ [(A,A), (B,B), (C,C)]

and production rules specified by the triple of nodes in S
x1 : R
x2 : R→ R

x3 : R→ S

4See [Lei04, p. 56–58] for discussion of the similar constructions of the free PRO(P) over a colored operad.
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mapped respectively to the following operations in !affW C

[idA, idB, idC ] : [(A,A), (B,B), (C,C)]
[a−idA, b−idB, c−idC ] : [(A,A), (B,B), (C,C)]→ [(A,A), (B,B), (C,C)]

[−#−#′−] : [(A,A), (B,B), (C,C)]→ [(A,C)]

where we have elided the injection component and only shown the lists of operations in W C,
since the injection σ used is always the identity.

Example 1.17. The free cartesian strict monoidal operad !cartP over an operad P is
constructed just as !affP, but replacing injections by arbitrary functions σ : Ω1, . . . ,Ωk →
Γ1, . . . ,Γn. A gCFG over !cartW Σ is precisely a parallel multiple context-free grammar in
the sense of [SMFK91], and more generally a gCFG over !cartW C could be called a “parallel
multiple categorical CFG”.

Examples of generalized context-free languages of a more semantic flavor can also be derived
by taking O to be Set or similar. Recall that Set is the (large) operad whose colors are sets
and whose operations f : X1, . . . , Xn → X are n-ary functions f : X1 × · · · ×Xn → X, with
composition defined as expected.

Example 1.18. (Adapted from [CE12, §1.1.3].) Let DiGr•,• be the set of finite directed
graphs equipped with two distinct vertices labeled src and tgt. The parallel composition
G ∥ H of a pair of graphs (G,H) ∈ DiGr•,•×DiGr•,• is formed by starting from the disjoint
union of the two graphs and identifying their two sources and two targets to form a graph
G ∥ H ∈ DiGr•,• with src(G ∥ H) = src(G) = src(H) and tgt(G ∥ H) = tgt(G) = tgt(H).
The series composition G;H is formed by similarly starting from the disjoint union ofG andH
but then identifying tgt(G) = src(H) and taking src(G ;H) = src(G) and tgt(G ;H) = tgt(H).
We can define a gCFG over Set with one non-terminal S ⊏ DiGr•,• and three production
rules corresponding to a pair of binary nodes par : S, S → S and seq : S, S → S mapped
to the operations ∥ and ; respectively, plus a constant e : S mapped to the unique directed
graph • → • with one edge and two vertices. The language of constants generated by this
gCFG is exactly the set of series-parallel graphs.

Many of the properties of categorical CFGs discussed in §1.4 extend directly to gCFGs,
as do all of the closure properties of CFLs and the translation principles. For the record,
we state here the appropriate generalizations for gCFLs of the closure properties listed in
Proposition 1.9, omitting the proofs since they are essentially identical.

Proposition 1.19.
(1) If L1, . . . ,Lk ⊆ O(A) are gCFLs, so is their union

⋃k
i=1 Li ⊆ O(A).

(2) If L1 ⊆ O(A1), . . . ,Ln ⊆ O(An) are gCFLs, and if f : A1, . . . , An → A is an operation of
O, then the application f(L1, . . . ,Ln) = { f(u1, . . . , un) | u1 ∈ L1, . . . , un ∈ Ln } ⊆ O(A)
is also a gCFL.

(3) If L ⊆ O(A) is a gCFL of constants in an operad O and F : O → P is a functor of
operads, then the functorial image F (L) ⊆ P(F (A)) is also a gCFL.
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1.9. Related work. Although the notion of context-free grammar over a category seems to
be new, the idea of viewing classical context-free grammars fibrationally and representing
them as functors appears in various guises in the literature. Walters briefly described [Wal89]
how context-free grammars may be represented by certain morphisms of multigraphs that
we would call maps of species (see Footnote 2 above) and might notate ϕ : S→ Σ̃, where Σ̃
is defined similarly to the underlying species of W Σ but with two distinct kinds of nodes:
nullary nodes a : ∗ for every letter a ∈ Σ, and n-ary nodes µn : ∗n → ∗ standing for
concatenation. Note that taking Σ̃ so-defined as the target of ϕ imposes a restriction on the
grammar (similar to Chomsky normal form), that all production rules are either of the form
R → a or R → R1 . . . Rn. In order to recover the language generated by a grammar with
start symbol S, Walters next considers the functor F×ϕ : F×S → F×Σ̃ between the free
categories with products generated by the species, then composes with the canonical functor
ψ : F×Σ̃→ MonΣ into the Lawvere theory of monoids containing Σ, and finally takes the
image ψ(F×ϕ(F×S(1, S))). All in all, we find the encoding of classical CFGs by functors of
operads F S→W Σ to be simpler, more direct and more general, but Walters’ approach is
certainly similar in spirit.

The methodology of abstract categorial grammars introduced by De Groote [dG01] is
probably even more closely related to our approach. Based on linear lambda-calculus, the
approach consists of expressing different kinds of grammars by specifying a signature Σ1
as an “abstract vocabulary”, a signature Σ2 as an “object vocabulary”, and a “lexicon”
given by a morphism of signatures Σ1 → Σ2. In particular, context-free grammars are
represented by taking the abstract vocabulary Σ1 to have a type for each non-terminal and
a constant x : R1 ⊸ · · ·⊸ Rn⊸ R for every production rule x : R→ w0R1 . . . Rnwn, the
object vocabulary Σ2 to have a single type ∗ and a constant a : ∗ ⊸ ∗ for every letter,
and the lexicon to map every non-terminal R to ∗⊸ ∗, and every constant x as above to
the lambda-term λu1 . . . un.w0 ◦ u1 ◦ · · · ◦ un ◦ wn. Although the definition of ACGs was
originally given type-theoretically rather than categorically, the framework could very clearly
be reformulated naturally in an operadic setting, using free closed operads, and seems to
have deep connections with the approach described here. One way of making this connection
more precise could be to prove that the interpretation (A,B) 7→ A⊸ B extends to a full and
faithful embedding W C → F ⊸ C of the operad of spliced arrows W C into the free closed
operad over C, where the operations of F ⊸ C may be represented by βη-normal (ordered)
linear lambda terms. It is worth emphasizing that ACGs were introduced to capture a wide
variety of grammatical formalisms, including categorial grammars in the style of Lambek
calculus but also extensions of context-free grammars (like we discussed in §1.8) such as
multiple CFGs [dGP04].

2. Finite state automata over categories and operads

We have seen how the classical notion of context-free grammar generalizes naturally to
define context-free grammars over any category C, or even over any operad O, presented by
a functor of operads F S→W C or F S→ O together with a distinguished start symbol in
S. In this section, we carry on in the same fibrational vein and begin by explaining how
classical non-deterministic finite-state word automata may be generalized to define NDFAs
over any category, presented by functors of categories Q → C that are both finitary and
have the unique lifting of factorizations (ULF) property, together with distinguished initial
and accepting states in Q. The base category C is often freely generated, as in the case of
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Figure 4: Left: an NDFA represented with a traditional state-diagram. Right: the bare
NDFA as a finitary ULF functor p : F Q→ F BΣ. (We do not label the generators
of F Q or indicate composite arrows, and we use colors to indicate the images of
the generators in F BΣ.)

word automata, but we also give natural examples of automata over non-free categories.
One important aspect of this approach is that it adapts smoothly when one shifts from
word automata to tree automata, simply by replacing categories with operads. Indeed, a
key fact is that the splicing construction transports any finitary ULF functor of categories
p : Q → C to a finitary ULF functor of operads W p : WQ → W C, thereby transforming
an NDFA over a category into an NDFA over its operad of spliced arrows. As we will see
in the following section (§3), this observation greatly facilitates the proof that context-free
languages are closed under intersection with regular languages.

2.1. Non-deterministic word automata as finitary ULF functors over categories.
Classically, a non-deterministic finite state automaton may be represented by a finite
alphabet Σ, a finite set Q of states, a finite set Tran of transitions together with a labelling
function δ : Tran → Q×Σ×Q, and a choice of initial and accepting states. We will focus first
on the underlying “bare” automaton M = (Σ, Q, δ) before the choice of initial and accepting
states. Every such bare automaton M induces a functor of categories p : Q → F BΣ where
Q is the category with set of objects Q and with arrows freely generated by arrows of the
form t : q → q′ for every transition t ∈ Tran such that δ(t) = (q, a, q′), and where the functor
p : Q → F BΣ transports every such generator t : q → q′ to the arrow a : ∗ → ∗ representing
the letter a ∈ Σ in the category F BΣ. See Figure 4 for an example. Under this formulation,
any composite arrow α : q0 → qf of the category Q describes a run of the automaton M
over the word w = p(α) : ∗ → ∗ which starts in state q0 ∈ Q and ends in state qf ∈ Q, as
depicted below:

q0 qf Q

∗ ∗ F BΣ

α

p

w

One distinctive property of the functor p : Q → F BΣ is that it has the unique lifting
of factorizations (ULF) property [Law86, BN00, BF00, LM10]. Recall that a functor of
categories has the ULF property (or “is ULF”) when any factorization of the image of an
arrow lifts uniquely to a factorization of that arrow.
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Definition 2.1. A functor p : D → C is said to be ULF if for every arrow α of D, if
p(α) = uv for some pair of arrows u and v of C, there exists a unique pair of arrows β and γ
in D such that α = βγ and p(β) = u and p(γ) = v.

Such functors are also known as discrete Conduché fibrations [Joh99, Gue20], and they
provide a common generalization of both discrete fibrations and discrete opfibrations. The
ULF condition arises naturally when considering the correspondence recalled in §1.5 between
functors D → C and lax functors C → Span(Set).

Proposition 2.2. A functor of categories p : D → C is ULF iff the associated lax functor
F : C → Span(Set) is a pseudofunctor.

Proof. The definition of ULF says precisely that the structure maps F (u)F (v) =⇒ F (uv)
of the lax fiber functor are invertible. Moreover, it is an immediate consequence of the
definition that p(α) = idA implies α is an identity arrow, since otherwise there would be
two distinct liftings α = id α and α = α id of the factorization idA = idA idA. Hence the
structure maps idF (A) =⇒ F (idA) are also invertible, and F is a pseudofunctor.

The ULF property reflects an important structural property of non-deterministic finite state
automata: that every arrow α : q0 → qf lying above some arrow p(α) = w corresponding
to a run of the automaton can be factored uniquely as a sequence of transitions along the
letters of the word w. In the case of the ULF functor p : Q → F BΣ that we construct from
a classical NDFA, both the categories Q and F BΣ are freely generated, and the functor p
is generated from a homomorphism of graphs. (In effect, on the right-hand side of Figure 4
we visualize the functor by this generating graph homomorphism.) This is not a coincidence,
as any ULF functor into a free category is necessarily of this form.

Proposition 2.3 ([Str96], [Gue20]). Let p : D → C be a functor into a category C = F G
freely generated by some graph G. Then p is ULF iff D = F H is free over some graph H
and p = F ϕ is generated by a graph homomorphism ϕ : H→ G.

Proof. The right-to-left direction is immediate. For the left-to-right implication, we take
H = p−1(G) to be the graph containing just those arrows of D lying over the generators of
C. Since the image of any arrow α in D uniquely decomposes as a composition of edges
p(α) = e1 · · · en in G, the ULF property implies that α uniquely decomposes as a composition
of edges in H, and p is generated by its restriction to the generators ϕ : H→ G.

Of course another important property of NDFAs is their finite nature, which may also
be expressed as a property of the corresponding functor p : Q → F BΣ.

Definition 2.4. We say that a functor p : D → C is finitary if either of the following
equivalent conditions hold:
• the fiber p−1(A) as well as the fiber p−1(w) is finite for every object A and arrow w in the
category C;
• the associated lax functor F : C → Span(Set) factors via Span(FinSet).

The unique lifting of factorizations and finitary fiber properties characterize classical NDFAs
in the following sense.

Proposition 2.5. Let ϕ : H → G be a homomorphism into a finite graph G. Then
F ϕ : F H→ F G is finitary iff H is finite.

Proof. By the infinite pigeonhole principle.
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Proposition 2.6. A functor p : Q → F BΣ corresponds to the underlying bare automaton
of a NDFA iff p is ULF and finitary.

Proof. By Props. 2.3 and 2.5, p is ULF and finitary iff Q ∼= F Q is generated by a finite
graph with p induced by a homomorphism, thereby defining the transition graph of a bare
NDFA.

This leads us to the following definition of NDFA over an arbitrary category.

Definition 2.7. A non-deterministic finite state automaton over a category is
given by a tuple M = (C,Q, p, q0, qf ) consisting of two categories C and Q, a finitary ULF
functor p : Q → C, and a pair q0, qf of objects of Q. An object of Q is then called a
state and an arrow of Q is called a run of the automaton. The regular language of
arrows LM recognized by the automaton is the set of arrows w in C that can be lifted
along p to an arrow α : q0 → qf in Q, that is LM = { p(α) | α : q0 → qf } ⊆ C(A,B), where
p(q0) = A, p(qf ) = B.

Similarly to the way a categorical CFG may be considered as a functor of pointed operads
pG : (F S, S)→ (W C, (A,B)), it is also sometimes helpful to view a categorical NDFA as
a finitary ULF functor of bipointed categories pM : (Q, q0, qf )→ (C, A,B). We emphasize
that the definition does not require the base category C to be free, which we will see in
examples later on.

Before continuing to develop this definition, let us briefly comment on our treatment
of initial and accepting states, as well as the treatment of determinism and ϵ-transitions.
Rabin and Scott’s original definition of NDFA [RS59] (also adopted by Eilenberg [Eil74]),
takes a set of initial states together with a set of accepting states, while some more recent
authors [HMU07, Sip13] take a single initial state together with a set of accepting states.
By Rabin and Scott’s determinization theorem, a language L ⊆ Σ∗ may be recognized by a
NDFA with a set of initial and accepting states just in case it may be recognized by a DFA
with a single initial state and a set of accepting states, so the choice of having a single initial
state or a set of initial states does not matter in terms of recognition power. Classically,
the same is not quite true for NDFAs over a fixed alphabet with a single initial state and
a single accepting state (in the absence of ϵ-transitions), since the language recognized by
such an automaton is necessarily closed under concatenation if it contains the empty word.
Nevertheless, it is easy to see that any NDFA with a set of initial and accepting states may
be converted to an equivalent NDFA with a single initial state and a single accepting state,
over an alphabet extended with distinguished symbols marking the beginning and the end
of the word. This construction is particularly natural to express using the category F Bˆ$

Σ
introduced in Example 1.4.

Proposition 2.8. A language L ⊆ Σ∗ is regular in the classical sense if and only if ˆL$ is
the language of arrows recognized by a non-deterministic finite state automaton over F Bˆ$

Σ .

Proof. Given a classical NDFAM with underlying bare automaton Q → F BΣ, we construct
an NDFA Mˆ$ = (F Bˆ$

Σ ,Q′, p′ : Q′ → F Bˆ$
Σ , q0, qf ) where Q′ and the functor p′ are

constructed from Q and p by freely adjoining a pair of objects q0 and qf lying over ⊥ and
⊤ respectively, together with an arrow q0 → q over ˆ : ⊥ → ∗ for every initial state q and
an arrow q′ → qf over $ : ∗ → ⊤ for every accepting state q′ of M . By construction, every
accepting run of M over the word w corresponds to an accepting run of Mˆ$ over the arrow
ˆw$ : ⊥ → ⊤.
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Although Definition 2.7 could be adapted to take a set of initial and accepting states, we
find the convention of taking a single pair (q0, qf ) of initial and accepting states to align well
with the definition of context-free languages of arrows generated by a single non-terminal
(Definition 1.6). Let us also observe here that the category F Bˆ$

Σ in the statement of
Proposition 2.8 is isomorphic to the input category Iword used in Colcombet and Petrişan’s
definition of categorical automata. (See bottom of Figure 1 of [CP20]; we will give a more
detailed comparison with Colcombet and Petrişan’s framework in §2.5 below.)
Definition 2.9. An NDFA M = (C,Q, p : Q → C, q0, qf ) is deterministic if the functor p
is a discrete opfibration, i.e., for any arrow w : A→ B in C and any state q ∈ Q such that
p(q) = A, there is a unique arrow α : q → q′ such that p(α) = w. M is codeterministic if
p is a discrete fibration, i.e., for any arrow w : A→ B in C and any state q′ ∈ Q such that
p(q′) = B, there exists a unique arrow α : q → q′ such that p(α) = w. M is bideterministic
if it is both deterministic and codeterministic, i.e., p is a discrete bifibration. Finally, M
is a partial (co/bi)deterministic automaton if the functor p : Q → C is a partial discrete
op/bi/fibration, in the sense that for any w : A→ B in C and q ∈ Q such that p(q) = A (or
q′ such that p(q′) = B), there is at most one α : q → q′ such that p(α) = w.
Remark 2.10. With this way of representing finite-state automata by functors p : Q → C,
ϵ-transitions may be naturally interpreted as non-identity arrows α : q → q′ in Q mapped by
p to an identity arrow idA : A→ A in C. However, it is an immediate consequence of the ULF
property that an NDFA in the sense of Definition 2.7 cannot contain any non-trivial fiber
categories p−1(A) (Proposition 2.2). One would therefore need a more general notion of ULF
functor in order to accommodate categorical NDFAs with ϵ-transitions. This seems to raise
some subtle issues. In particular, the standard treatment of ϵ-removal [HMU07, §2.5] seems
to indicate that one needs to design a notion between ULF functors and general Conduché
fibrations. Recall that the standard notion of Conduché fibration weakens the ULF property
by only requiring uniqueness of factorizations up to zigzag in the fiber, which means here
zigzag of ϵ-transitions. The right definition of categorical NDFA with ϵ-transitions should
probably ensure more, that there is a universal (initial or terminal) solution in the space of
possible factorizations.
As we have seen, our definition of NDFA over a category does not require the base category
C to be free. We now list some examples of such automata and the regular languages of
arrows that they generate.
Example 2.11 (Product automata). The product of two finitary ULF functors p : Q → C
and p′ : Q′ → C′ is again a finitary ULF functor p× p′ : Q×Q′ → C ×C′. This enables us to
construct the product of two NDFAs M and M ′ as an NDFA M ×M ′ whose underlying bare
automaton is p× p′ and whose initial and accepting states are given by the pairing of the
respective initial states (q0, q

′
0) and (qf , q′

f ). Note that even if M and M ′ are NDFAs over
free categories C = F G and C′ = F G′, the product automaton M ×M ′ will not be since
the product of free categories is not a free category. Intuitively, M ×M ′ may be interpreted
as an automaton that reads pairs of arrows in parallel. It recognizes the cartesian product
L × L′ of the languages recognized by M and M ′.
Example 2.12 (Singleton automata). For any word w = a1 . . . an of length n, there is a
partial bideterministic (n+ 1)-state automaton Mw that recognizes the singleton language
{w }, with initial state 0, accepting state n, and transitions of the form (i, ai+1, i+1) for each
0 ≤ i < n. This construction may be generalized to define a (not necessarily deterministic
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or codeterministic) NDFA Mw recognizing any arrow w in any category satisfying a certain
finitariness assumption. Indeed, for any arrow w : A→ B of a category C, the category of
factorizations Factw of w (also called the interval category of w in [LM10]) is defined by
taking objects to be triples (X,u, v) of an object X ∈ C and a pair of arrows u : A → X,
v : X → B such that w = uv, and arrows (X,u, v)→ (X ′, u′, v′) to be arrows x : X → X ′

such that u′ = ux and v = xv′. This category has an initial object (idA, w) and a terminal
object (w, idB), and it comes equipped with an evident forgetful functor µw : Factw → C
returning the middle of a factorization, which is always ULF [Joh99, LM10]. Hence

Mw = (C,Factw, µw, (idA, w), (w, idB)) (2.1)
may be considered as a non-deterministic automaton recognizing the singleton language
{w }, although it is not necessarily a finite-state automaton since the functor µw need not
be finitary in general. Let us say that a category C has finitary factorizations if this
is always the case, in other words, if the ULF functor µw : Factw → C is finitary for every
arrow w of C. Then we see that to any arrow w of a category C with finitary factorizations,
(2.1) defines an NDFA Mw recognizing exactly that arrow.

Free categories always have finitary factorizations, and indeed the category of factoriza-
tions of any arrow of a free category is isomorphic to a non-empty finite ordinal, as in the
example above of the (n+ 1)-state automaton associated to a word of length n.

A category with finitely many objects has finitary factorizations just in case every arrow
has finitely many factorizations w = uv of length 2. (Note this is weaker than the condition
of being a Möbius category in the sense of Leroux, cf. [LM10, Prop. 2.6].) For example,
consider the one-object category E containing a single non-identity arrow f : ∗ → ∗ that
is idempotent ff = f . The NDFA Mf recognizing the language { f } ⊆ E(∗, ∗) has three
states (id, f), (f, id), and (f, f), as depicted by the following transition diagram in which
all paths of length ≥ 1 commute:

id, f f, id

f, f

f

f
ff

f

Example 2.13 (Total automata). The identity functor idC : C → C on a category is trivially
ULF and finitary, since every object and arrow has a unique lifting. Hence for any pair of
objects A and B of C, there is an NDFA MC(A,B) = (C, C, idC , A,B) recognizing the total
language C(A,B), i.e., accepting every arrow w : A → B. In the case of the one-object
category C = F BΣ, this is just the familiar automaton with a single (initial and accepting)
state and a transition on that state for every letter of Σ. On the other hand, it us worth
emphasizing that MC(A,B) defines an NDFA in our sense even when C has infinitely many
objects. In particular, this example shows that what is important is finiteness of the fibers
of the functor p : Q → C defining an NDFA, and not of the total category of states Q.

Example 2.14 (Asynchronous automata). One good reason for considering NFDAs whose
base category C is not free is that they provide for interesting notions of automata when the
category C is presented by generators and equations. An equation in a graph G is a pair
f, g : A→ B of paths with same source and target. Every set R of such equations induces
a congruence ∼R on the paths of G, defined as the smallest equivalence relation between
paths of G with same source and target, compatible to composition, and such that f ∼R g
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for every equation f, g : A → B in R. We say that a category C is presented by a graph
G of generators and a set R of equations when it comes equipped with an isomorphism
c : F G/∼R → C from the category F G/∼R whose objects are nodes of G and whose
arrows are ∼R-equivalence classes of paths.

A remarkable property of ULF functors p : D → C into a category C presented by
a graph G and a set R of equations, with isomorphism c : F G/∼R → C, is that the
category D inherits a presentation by a graph p∗ G and a set p∗R of equations derived from
G and R. The graph p∗ G has nodes the pairs (x,A) of a node x in G and of an object A
of D such that c(x) = p(A), and edges the pairs (e, u) of an edge e : x → y in G and an
arrow u : A→ B in D such that c(e) = p(u). The set p∗R contains all equations between
paths of p∗ G of the form

f = (e1, u1) · · · (em, um) , g = (e′
1, v1) · · · (e′

n, vn) : (x,A) (y,B)

such that
e1 · · · em , e′

1 · · · e′
n : x y

is an equation in R and the composite arrows

u1 · · ·um , v1 · · · vn : A B

are equal in the category D. The isomorphism d : p∗ G/∼ p∗ R → D is given by the second
projection (x,A) 7→ A on objects, and by the map [e1 · · · em, u1 · · ·um] 7→ u1 · · ·um sending
an equivalence class of lists of edge/arrow pairs to the composition of the arrows in D.

We illustrate the property by giving a direct description of NFDAs on a category C defined
by a Mazurkiewicz alphabet. A concurrent alphabet (Σ,D) as defined by Mazurkiewicz
[Maz89] is a set Σ of letters, equipped with a reflexive and symmetric binary relation D ⊆
Σ× Σ. Two letters a, b ∈ Σ are called dependent when a, b ∈ D and independent otherwise.
The permutation equivalence on finite words is defined as the smallest equivalence relation ∼
such that w1 a bw2 ∼ w1 b aw2 for every pair of words w1, w2 ∈ Σ∗ and independent letters
a, b ∈ Σ. A trace is an equivalence class of the permutation equivalence. Traces w ∈ Σ∗/∼
may be regarded as the arrows w : ∗ → ∗ of a one-object category F BΣ/∼D obtained by
quotienting the category F BΣ with an equation between arrows a b = b a : ∗ → ∗ for every
pair of independent letters a, b ∈ Σ.

By unpacking the definitions, a NFDA over F BΣ/∼D may be equivalently described
as follows, starting from the data of a finite set Q of states, a finite set Tran of transitions
together with a labelling function δ : Tran → Q×Σ×Q, and a choice of initial and accepting
states. The transition graph is moreover equipped with a set ⋄ of permutation tiles defined
as pairs (α, β) of paths α = st and β = t′s′ of length 2 of the form

δ(s) = (q, a, q′), δ(t) = (q′, b, q′′), δ(t′) = (q, b, q′′′) and δ(s′) = (q′′′, a, q′′)
where q, q′, q′′, q′′′ ∈ Q are states and the two letters a, b ∈ Σ are independent. We write α⋄β
when (α, β) ∈ ⋄. The set of permutation tiles is required to satisfy the following properties:
(1) permutation tiles are deterministic: α ⋄ β and α ⋄ β′ implies β = β′,
(2) permutation tiles are symmetric: α ⋄ β implies β ⋄ α,
(3) successive transitions with independent letters can permute: for every transition path

α = s t of length 2 with δ(s) = (q, a, q′) and δ(t) = (q′, b, q′′) where the two letters a, b ∈ Σ
are independent, there exists a permutation tile α ⋄ β.
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The correspondence works as follows. Given a finite transition system (Q,Tran, δ)
equipped with a set ⋄ of permutation tiles, one defines the category C presented by the
corresponding graph G with an equation α = β for every permutation tile α ⋄ β ; the three
properties (1), (2), and (3) ensure then that the labelling functor q : C → F BΣ/∼D is
finitary ULF. Conversely, every finitary ULF functor p : C → F BΣ/∼D induces a finite
graph G = p∗ BΣ and a set of equations ⋄ = p∗RD where RD denotes the set of equations
ab, ba : ∗ → ∗ for a and b two independent letters ; one checks that the nodes and edges of G
define a transition system (Q,Tran, δ) which satisfies properties (1), (2), and (3). Note that
property (3) reflects the ULF property for the factorisation as b followed by a of the arrow
ab in F BΣ/∼D, for any pair of independent letters a and b in Σ.

This establishes that the notion of NFDA over the category F BΣ/∼D of Mazurkiewicz
traces captures a natural notion of asynchronous automaton, corresponding to a non-
deterministic version of Bednarczyk’s asynchronous systems [Bed88, HM00, Mor05, BM06]
where property (3) is called the Independent Diamond (ID) property. A detailed comparison
of this class of asynchronous automaton with the more liberal notion of automaton with
concurrency relations [DS02, GM10] appears in [Mor05]. The ID property implies that every
NFDA over F BΣ/D satisfies the cube property (CP) discussed in [HM00] and thus defines
what is called an asynchronous graph in [MM07, Mel21]. We leave for future work the
connection with Zielonka’s theorem which is based on a more concrete and process-based
notion of concurrent automaton [Zie87, BM06].

2.2. From word automata to tree automata and beyond. Reassuringly, the foregoing
fibrational analysis of non-deterministic finite state automata based on finitary ULF functors
adapts smoothly when one shifts from word automata to tree automata [CDG+08]. As a
first step in that direction, we describe how the ULF and finite fiber properties may be
extended to functors of operads.
Definition 2.15. A functor of operads p : D → O has the unique lifting of factorizations
property (or is ULF) if any of the following equivalent conditions hold:
(1) for any operation α of D, if p(α) = g ◦ (h1, . . . , hn) for some operation g and list of

operations h1, . . . , hn of O, there exists a unique operation β and list of operations
γ1, . . . , γn of D such that α = β ◦ (γ1, . . . , γn) and p(β) = g, p(γ1) = h1, . . . , p(γn) = hn;

(2) for any operation α of D, if p(α) = g ◦i h for some operations g and h of O and index i,
there exists a unique pair of operations β and γ of D such that α = β ◦i γ and p(β) = g
and p(γ) = h;

(3) the structure maps of the associated lax functor of operads F : O → Span(Set) discussed
in §1.5 are invertible.

Definition 2.16. We say that a functor of operads p : D → O is finitary if either of the
following equivalent conditions hold:
• the fiber p−1(A) as well as the fiber p−1(f) is finite for every color A and operation f of
the operad O;
• the associated lax functor of operads F : O → Span(Set) factors via Span(FinSet).
Just as we saw in the previous section, one can easily check that the underlying bare
automaton M = (Σ, Q, δ) of a (bottom-up or top-down) non-deterministic finite state tree
automaton (cf. §1.1 and §1.6 of [CDG+08]) gives rise to a finitary ULF functor of operads
p : Q → F Σ, where
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• F Σ is the free operad generated by the ranked alphabet (= species) Σ;
• the operad Q has states of the automaton as colors and operations freely generated by
n-ary nodes of the form t : q1, . . . , qn → q for every transition t ∈ Tran of the form
δ(t) = (q1, . . . , qn, a, q), with a ∈ Σn;
• the functor p transports every such n-ary transition t : q1, . . . , qn → q to the underlying
n-ary letter a : ∗, . . . , ∗ → ∗.

Moreover, this correspondence is one-to-one.

Proposition 2.17. Let p : D → O be a functor into an operad O = F Σ freely generated
by some species Σ. Then p is ULF iff D = F S is free over some species S and p = F ϕ is
generated by a map of species ϕ : S→ Σ.

Proposition 2.18. A functor of operads p : Q → F Σ corresponds to a bare non-
deterministic finite state tree automaton iff p is ULF and finitary.

This motivates us to proceed as for word automata and propose a more general notion of
finite state automaton over an arbitrary operad.

Definition 2.19. A non-deterministic finite state automaton over an operad is
given by a tuple M = (O,Q, p : Q → O, qr) consisting of two operads O and Q, a finitary
ULF functor of operads p : Q → O, and a color qr of Q. A color of Q is called a state,
and an operation of Q is called a run tree of the automaton p : Q → O. The regular
language of constants LM recognized by the automaton is the set of constants c in O
that can be lifted along p to a constant α : qr in Q, that is LM = { p(α) | α : qr } ⊆ O(A),
where p(qr) = A.

Let us refer to NDFAs over categories in the sense of Definition 2.7 as categorical automata
for short, and NDFAs over operads in the foregoing sense as operadic automata.

We now state a simple property of ULF and finitary functors establishing a useful
connection between categorical automata and operadic automata.

Proposition 2.20. Suppose that p : Q → C is a functor of categories. If p is ULF
(respectively, finitary) then so is the functor of operads W p :WQ→W C.

Proof. Follows immediately from the fact that a lifting of an operation f0− . . .−fn in W C
along W p is a sequence of liftings of the arrows f0, . . . , fn in C along p.

Corollary 2.21. For any categorical automaton M = (C,Q, p, q0, qf ) there is an associated
operadic automaton WM = (W C,WQ,W p, (q0, qf )) generating the same language LM =
LW M .

Proof. By Proposition 2.20, and because constants of W C are exactly arrows of C.

We will see that the WM construction transforming an automaton over a category into an
automaton over its operad of spliced arrows is fundamental for computing the intersection
of a context-free language with a regular language of arrows. Moreover, we highlight that
since operads of spliced arrows are not freely generated (Remark 1.3), the WM construction
provides an important example of how operadic automata truly generalize classical tree
automata.

Remark 2.22. As an aside, we mention that it is also interesting to consider deterministic
finite-state automata over spliced arrow operads. To see why, let us first observe that any
discrete opfibration over W C, which may be viewed equivalently as a functor of operads
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W C → Set, induces a category D equipped with an identity-on-objects functor of categories
C → D, and conversely. Indeed, given a functor F : W C → Set one can construct a new
category DF with same objects as C and whose arrows α : A→ B are given by the elements
of F (A,B), with composition and identities defined by the interpretations

F (idA−idB−idC) : F (A,B)× F (B,C) −→ F (A,C)
F (idA) : F (A,A)

of the corresponding spliced arrow operations. Moreover, there is an identity-on-objects
functor C → DF given by sending every arrow w : A→ B of C, seen as a constant w : (A,B)
ofW C, to its interpretation F (w) : F (A,B). Conversely, given a category D and an identity-
on-objects functor h : C → D, one can define Fh :W C → Set by taking Fh(A,B) = D(A,B)
and defining the interpretation of the spliced arrow operations by mapping the arrows of C
into D along h and then composing:

Fh(w0−w1 . . .−wn) = (u1, . . . , un) 7→ h(w0)u1h(w1) . . . unh(wn)
From the description of this correspondence, it is clear it restricts to one between finitary
discrete opfibrations over W C (equivalent to functors W C → FinSet) and locally finite
categories D equipped with an identity-on-objects functor C → D. Thus what is a DFA
over W C? Nothing more than a locally finite category D, an identity-on-objects functor
h : C → D, and an arrow qr : A→ B of D, with the DFA accepting an arrow w : A→ B of C
just in case h(w) = qr. In the case that C is a one-object category, this is essentially the notion
of recognition by a finite monoid, which is one of the classical equivalent characterizations of
regular languages [Eil74, §III.10, p.62].5

2.3. Additional properties of ULF and finitary functors. We state here a few more
basic properties of ULF and finitary functors, in both categorical and operadic versions,
that will be important in the rest of the paper.

Proposition 2.23. If p : Y → X is a ULF (resp. finitary) functor (of categories or operads),
and G : Z → X is an arbitrary functor, then the functor G∗ p : Z ×X Y → Z defined by
pulling back p along G is ULF (resp. finitary).

Z ×X Y Y

Z X

G∗ p ULF/finitary
⌟

p ULF/finitary

G

Closure of both classes of functors under pullback along arbitrary functors may be verified
directly, or may be seen as an immediate consequence of the fact that both classes of
functors p : Y → X admit “Grothendieck-type” correspondences with pseudo or lax
functors F : X → U into a certain universe (namely, ULF functors as pseudo functors
into U = Span(Set), and finitary functors as lax functors into U = Span(FinSet)), so that
the pullback along an ordinary functor G : Z → X is simply the composite F ◦G : Z → U .

As we already saw in Example 2.13, the identity functor idC : C → C on any category is
trivially finitary and ULF, as is the identity functor idO : O → O on any operad. It is also

5A language L ⊆ Σ∗ is said to be recognizable by a finite monoid X if there exists a subset S ⊆ X
and a homomorphism h : Σ∗ → X such that L = h−1(S). Our formulation requires S to be a singleton,
cf. Proposition 2.8 above and the preceding discussion.
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easy to check that both classes of functors are closed under composition. Moreover, ULF
functors satisfy a property analogous to the pasting law for pullbacks in a category, while
finitary functors behave similarly to monomorphisms.
Proposition 2.24. Consider a commutative triangle of functors (of categories or operads):

X Y

Z

H

F

G

(1) if F and G are ULF, then so is H
(2) if F and G are finitary, then so is H
(3) if G and H are ULF then so is F
(4) if H is finitary then so is F
Proof. For concreteness, we take X, Y , and Z to be categories. (The case where they are
operads is completely analogous.)
(1) Let α be an arrow in X. Any factorization H(α) = uv in Z lifts uniquely to a

factorization of α = βγ with H(β) = u, H(γ) = v, by first lifting along G to obtain a
unique factorization of F (α), and then lifting along F .

(2) All of the fibers of H are finite (for both the objects and arrows of Z) since they may be
decomposed as a finite union of finite fibers H−1(z) =

⋃
y∈G−1(z) F

−1(y).
(3) Let α be an arrow in X and F (α) = st a factorization in Y . By projecting down along G

and then lifting the resulting factorization H(α) = G(s)G(t) along H, we obtain unique
β and γ such that α = βγ, H(β) = G(s), H(γ) = G(t). But since F (α) = F (β)F (γ) is
a lifting of the factorization G(st) = G(s)G(t) along G, this implies that F (β) = s and
F (γ) = t by the ULF property of G.

(4) All of the fibers F−1(y) are finite, since they are contained in the fibers H−1(G(y)).

We remark in passing that finitary ULF functors may be arranged into various categories
and bicategories of interest, which we describe now for the case of categorical automata (the
operadic case again being completely analogous), although we will not make explicit use
of these (bi)categories in the paper. For any category C, finitary ULF functors over C and
commutative triangles

Q Q′

C
finULF

F

finULF

define a category of bare NDFAs over C and morphisms between them, where the functor
F : Q → Q′ may be seen as a functional simulation since it sends any run α : q0 → qf
in Q over an arrow w : A → B of C to a run F (α) : F (q0) → F (qf ) in Q′ over the same
arrow. By Proposition 2.24, F is itself finitary ULF, and this category is just the slice
finULF/C of the category finULF of small categories and finitary ULF functors between
them. It is possible to formulate analogues of the weak and the strong translation principles
(Proposition 1.11): if M and M ′ are two NDFAs over the same category, and F : Q → Q′ is
a functional simulation between their underlying bare automata that preserves initial and
accepting states, then LM ⊆ LM ′ , where equality holds LM = LM ′ in the case that F is full
and faithful (i.e., if it is a functional bisimulation).
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In a different direction of abstraction, a span

Q

C D

finULF O

of a finitary ULF functor Q → C and an arbitrary functor O : Q → D may be considered
as a non-deterministic finite state transducer C −→| D, since it associates to every
run α : q0 → qf in Q over an arrow w : A → B of C a corresponding output arrow
O(α) : O(q0)→ O(qf ) in D. By Propositions 2.23 and 2.24, ordinary composition of spans

Q ×D Q′

Q Q′

C D E

finULF ⌟

finULF finULF

combines a transducer C −→| D with a transducer D−→| E to produce a transducer C −→| E ,
and one obtains a bicategory by defining a 2-cell between transducers of the same type as a
functional simulation between the underlying bare automata that commutes with the output
functors.

2.4. Closure properties of regular languages. Closure of finitary ULF functors under
pullback along arbitrary functors (Proposition 2.23) implies that regular languages of arrows
and constants are closed under inverse functorial image, restricted to a suitable choice of
objects in the source category/operad.

Proposition 2.25. Let L ⊆ C(A,B) be a regular language of arrows in C, let F : D → C be
a functor of categories, and let R,S be objects of D such that F (R) = A,F (S) = B. Then
the homset-restricted inverse image F−1(L) ∩ D(R,S) is regular.

Proposition 2.26. Let L ⊆ O(A) be a regular language of constants in O, let F : P → O be
a functor of operads, and let R be a color of P such that F (R) = A. Then the conset-restricted
inverse image F−1(L) ∩ P(R) is regular.

Note that restricting the inverse image to a homset/conset is necessary due to our conventions
for the initial and accepting states of categorical and operadic automata (although variations
of those conventions could certainly be envisaged, see discussion above after Def. 2.7). Indeed,
given a categorical automaton M = (C,Q, p, q0, qf ), a functor F : D → C, and a pair of
objects R,S of D such that F (R) = p(q0), F (S) = p(qf ), the restricted pullback automaton
is given by F ∗M |R,S = (D,D ×C Q, F ∗ p, (R, q0), (S, qf )). The restricted pullback of an
operadic automaton is constructed similarly.

Conversely, since finitary ULF functors are closed under composition (Proposition 2.24),
we immediately obtain closure of regular languages under functorial image along a finitary
ULF functor.

Proposition 2.27. If L ⊆ C(A,B) is a regular language of arrows in C and F : C → D is a
finitary ULF functor of categories, then the image F (L) ⊆ D(F (A), F (B)) is also regular.
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Proposition 2.28. If L ⊆ O(A) is a regular language of constants in O and F : O → P is
a finitary ULF functor of operads, then the image F (L) ⊆ P(F (A)) is also regular.
For example, the pushforward of a categorical automaton M = (C,Q, p, q0, qf ) along a
functor F : C → D is the automaton F∗M = (D,Q, F ◦ p, q0, qf ).

On the other hand, regular languages are not closed under image along an arbitrary
functor, as the following counterexamples demonstrate.
Counterexample 2.29. LetW be the category of Dyck walks freely generated by the graph
whose nodes are natural numbers and with a pair of edges

n n+ 1
un

dn

for every n ∈ N. Let Σ be the alphabet containing a pair of brackets ‘[’ and ‘]’ and consider
the functor F :W → F BΣ defined by

n 7→ ∗ un 7→ [ dn 7→ ]
for every n ∈ N. The total language W(0, 0) ⊆ W(0, 0) is regular (Example 2.13), but its
image F (W(0, 0)) ⊆ F BΣ(∗, ∗) is the Dyck language of well-bracketed words, which is not
a regular language in the classical sense [HMU07, p. 195] and hence cannot be a regular
language of arrows in our sense by Prop. 2.6. Observe in this case that the functor F is ULF
since it is generated from a graph homomorphism, but it is manifestly not finitary.

Counterexample 2.30. Let 2 = 0 1
f be the walking arrow category, and consider

any functor F : 2 → C, which picks out an arrow F (f) = w : A → B in C. Observe that
the functor F is finitary, but will typically not be ULF unless w is indecomposable. The
singleton language { f } is regular (Example 2.12), and its image F ({ f }) = {w } ⊆ C(A,B)
will be as well if the category C has finitary factorizations, but otherwise need not be
regular. In particular, let C = BR≥0 be the monoid of non-negative real numbers (R≥0,+, 0)
considered as a one-object category, and let w = 1 be the unit value considered as an arrow
1 : ∗ → ∗. We claim that the language { 1 } ⊆ R≥0 is not regular. Suppose by way of
contradiction that there is an automaton M recognizing { 1 } equipped with a finitary ULF
functor p : Q → BR≥0 and initial and accepting states q0 and qf . Since 1 factors in the
monoid as

1 = 1
n

+ n− 1
n

for all n ≥ 1, the accepting run α : q0 → qf of 1 factors as

α = q0 qn qf

βn γn

for some unique arrows βn and γn lying over 1
n and n−1

n , by assumption that p is ULF. Now
there are two possibilities:
(1) The objects qn are distinct for all n ≥ 1. In this case the fiber p−1(∗) is infinite,

contradicting the assumption that p is finitary.
(2) There exist i < j such that qi = qj . In this case

α′ = q0 qi qj qf

αi γj

is another accepting run of the automaton over the element p(α′) = 1
i + j−1

j > 1,
contradicting the assumption that M recognizes just the singleton language { 1 }.
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Finally, we can easily derive that regular languages are closed under intersection.

Proposition 2.31. If L1,L2 ⊆ C(A,B) (resp. L1,L2 ⊆ O(A)) are regular languages of
arrows (resp. constants), so is their intersection L1 ∩ L2.

Proof. Given two automata M1 and M2 with underlying bare automata p1 : Q1 → C and
p2 : Q2 → C over the same category C, and with initial and accepting states mapped to the
same pair of objects A and B, the intersection automaton M1 ∩M2 can be constructed in
either of two equivalent ways:
(1) By pulling back p1 along p2, and then taking the image along p2.
(2) By forming the product automaton M1×M2 (Example 2.11) over C ×C and then pulling

back along the diagonal functor C → C × C.
The construction of the intersection of operadic automata is completely analogous.

At this point, we should mention that we expect regular languages of arrows and constants
to satisfy some additional closure properties just as in the classical case, including suitably
formulated versions of closure under union, concatenation, and Kleene star. However, the
usual proof of these facts is greatly facilitated by the use of ϵ-transitions, which are ruled
out by our working definition of categorical and operadic NDFAs based on ULF functors
(see Remark 2.10). We therefore defer consideration of these additional closure properties to
the future introduction of an appropriate notion of categorical/operadic automaton with
ϵ-transitions. In any case, we will not need them to prove the representation theorem.

2.5. Related work. It is standard to represent finite state automata by their transition
graphs, and natural to consider such transition graphs as ordinary (finite directed) graphs
equipped with a homomorphism into the bouquet graph on the underlying alphabet. Such a
perspective on non-deterministic finite state automata without ϵ-transitions was developed by
Steinberg [Ste01], motivated by monoid and semigroup theory, and with special prominence
given to graph homomorphisms that are immersions, which correspond to partial bidetermin-
istic automata in the sense of Definition 2.9. Walters’ short note on context-free languages
[Wal89] that we mentioned in §1.9 also opens with a treatment of automata as graph
homomorphisms, but taking morphisms of reflexive graphs in order to allow ϵ-transitions.
As discussed in Remark 2.10, an important question is how to adapt our approach based on
finitary ULF functors to allow for ϵ-transitions, although we are confident that this can be
done by appropriately generalizing the notion of ULF. Walters’ approach to automata and
context-free grammars was further developed by Rosenthal [Ros95], considering also tree
automata, and more recently by Earnshaw and Sobociński [ES22] to define regular languages
in free monoidal categories.

The fibrational perspective on non-deterministic finite state automata over categories and
operads that we introduced here is closely related to the “functorial approach” to automata
theory developed by Colcombet and Petrişan [CP20]. Roughly speaking, the approaches
are dual and related by Grothendieck-type correspondences: whereas we consider automata
as functors into a category (or operad) with certain fibrational properties, Colcombet and
Petrişan consider them as functors out of a category into different large categories of interest,
such as Set for deterministic automata, Rel for non-deterministic automata, or Vec for
weighted automata. Given that in many cases such Grothendieck-type correspondences
rise to the level of equivalences, generally the approaches provide two complementary
perspectives on the same objects. Still, it is worth drawing attention to a few small but
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important differences between our approach and the approach described in [CP20]. First,
although many of the definitions and constructions given by Colcombet and Petrişan are
stated for an arbitrary “input category” I, in practice they consider automata over a fixed
category Iword, isomorphic to the category we call F Bˆ$

Σ , and they do not impose any
finiteness condition on automata. Second, rather than having a single initial and accepting
state, Colcombet and Petrişan take a more abstract definition of the “behavior” of an
automaton given by precomposing with a full and faithful functor ι : O → I from some
“output category” O, typically the full subcategory of Iword ∼= F Bˆ$

Σ spanned by the arrows
⊥ → ⊤. The idea is that precomposing with ι abstracts away the internal states of the
automaton, remembering just the language that it recognizes. Colcombet and Petrişan use
this to give an elegant analysis of automata minimization based on factorization systems.

q0

q1

q2

qf

a

a

b

b

Finally, and although it is by no means forced by the functorial approach,
let us observe that modelling non-deterministic automata as functors
into Rel (rather than as pseudofunctors into Span(Set) or Span(FinSet))
means equating all of the runs over a given word between a given pair of
states. For instance, the NDFA shown on the left has two distinct runs
q0 → qf over the word ab, but these are identified when considering it
as a Rel-automaton.

The idea of generalizing regular languages from recognizable subsets of free monoids
L ⊆ Σ∗ to recognizable subsets of arbitrary monoids L ⊆ X is classic. For instance, it
is discussed in Eilenberg’s book (see [Eil74, §III.12, p.68]) using several of the equivalent
characterizations of regular languages, including recognition by a finite monoid. He mentions
that the definition of automaton could also be suitably generalized, but does not do so
explicitly “since all the known properties of recognizable sets already follow from the definition
adopted above”. There is also precedent for the idea of generalizing from languages of words
in free monoids to languages of arrows in free categories, having been proposed at least
as early as the mid-1980s in the work of Thérien and collaborators [TSG88, WT86], who
argued that this was well-motivated by automata-theoretic considerations:

For example, we are often interested in decompositions of automata. In such
situations a component may receive its input from the output of some other
component. This “preprocessing” imposes restrictions on the possible input
sequences that need to be considered. A simple way to take into account
these restrictions is to view a machine as processing input sequences that
are paths in a finite directed multigraph. [TSG88, p.395]

Again, though, rather than taking NDFAs or DFAs as a starting point, these authors started
from the alternative characterization of regular word languages as unions of equivalence
classes of a finite index congruence on a free monoid, and explained how to generalize it to
free categories in a way that allowed proving Kleene’s theorem among other results. We take
one more opportunity to emphasize that our definition of regular language is not restricted
to free categories and operads, and that non-free categories and operads are required in
some key examples. (The work by Thérien et al. was, incidentally, revisited by Jones who
took a similar approach to define regular languages in a certain class of profinite categories
[Jon96].) We do not expect Kleene’s theorem on the equivalence between regular and rational
languages to hold for regular languages of arrows in arbitrary categories – indeed classically
it is a theorem about recognizable subsets of free monoids with counterexamples in the
non-free case [Eil74, §IV.5, p.175–178], and Counterexample 2.30 demonstrates that some
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singleton languages of arrows cannot be recognized by any NDFA. On the other hand, we
mention that Fahrenberg et al. have recently proved a Kleene theorem for higher-dimensional
automata recognizing languages of interval pomsets [FJSZ22], which it would be interesting
to analyze within our framework.

Although it is beyond the scope of this paper, we expect that regular languages of
arrows/constants in the sense of Definitions 2.7 and 2.19 should also have other equivalent
characterizations related to the aforementioned classical ones – in particular there seem to
be natural notions of recognition by a locally finite category and recognition by a locally finite
operad (cf. Remark 2.22). It may be fruitful to connect this with Salvati’s notion of regular
language of λ-terms [Sal09] (in part inspired by [dG01]), which has recently been formulated
as recognition by a locally finite and well-pointed cartesian closed category [MN24].

Finally, we only briefly touched upon the subject of constructing categories of automata
and transducers in §2.3, but this also has precedent in the literature. Our definition of a
non-deterministic finite state transducer as a span C ↞ Q → D where the left leg satisfies
a fibrational condition (namely, is finitary and ULF) is similar to the notion of “Mealy
morphism” defined by Paré using slightly different conditions [Par12].6 Hyland defined a
traced monoidal category Aut whose objects are natural numbers and whose morphisms
m→ n are finite-state automata (over a fixed alphabet Σ) equipped with m distinct initial
states and n distinct accepting states [Hyl08]. He then exhibited a traced monoidal functor
Aut→ Rat to a category whose arrows are matrices of rational languages, as one direction
of Kleene’s theorem. It could be interesting to adapt Hyland’s analysis to our setting.

3. The Chomsky-Schützenberger Representation Theorem

In this section, we give a relatively simple and conceptual proof of the representation theorem,
generalized to context-free languages of arrows in an arbitrary category. We begin in §3.1
by explaining how to represent the intersection of a context-free language with a regular
language by first taking the pullback of a CFG along an NDFA. Next, in §3.2, we exhibit a
left adjoint to the spliced arrow operad construction, which we call the contour category
construction. As a direct consequence of this adjunction, we show in §3.3 that every pointed
finite species induces a CFG that is universal in a precise sense and that generates a language
of tree contour words, which are closely related to Dyck words. Finally, in §3.4 we state and
prove an appropriate generalization of the representation theorem, which also relies in a
crucial way on the strong translation principle.

3.1. Pulling back context-free grammars along finite state automata. To compute
the pullback, we apply two lemmas.

Lemma 3.1. Suppose given a species S, a functor of operads p : F S→ O and a ULF
functor of operads pQ : Q → O. In that case, the pullback of p along pQ in the category of
operads is obtained from a corresponding pullback of ϕ : S → O along pQ : Q → O in the

6Although in our context, a transducer C ↞ Q → D is better seen as a (non-deterministic) Moore machine,
since the output in D only depends on Q, i.e., on the automaton’s internal states and transitions.
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category of species:

S′ S

Q O

ϕ′=p∗
Q ϕ

ψ′

⌟
ϕ

pQ

∈ Spec
F S′ F S

Q O

p′=p∗
Q p

F ψ′

⌟
p

pQ

∈ Oper

Proof. By Proposition 2.23, the pullback of the ULF functor pQ along the functor of operads
p is a ULF functor Q′ → F S, which must be of the form F ψ′ : F S′ → F S for some map
of species ψ′ : S′ → S by Proposition 2.17. We therefore have a pullback in Oper as on the
right above, which is sent to a pullback in Spec by the right adjoint forgetful functor. The
unit of the adjunction induces another pullback diagram

S′ S

F S′ F S

ψ′

ηS
⌟

ηS

F ψ′

and by composing these

S′ S

F S′ F S

Q O

ψ′

ηS
⌟

ηS

p′

F ψ′

⌟
p

pQ

=
S′ S

Q O

ϕ′

ψ′

⌟
ϕ

pQ

we obtain the desired pullback in the category of species.

Lemma 3.2. Consider a pullback in the category of species:
S′ S

R′ R

ψ′

ϕ′
⌟

ϕ

ψ

. If S is finite

and ψ is finitary in the expected sense (i.e., has finite fibers) then S′ is finite.

Proof. The pullback species S′ = S×RR′ admits a simple description: its colors (resp. nodes)
are pairs of colors (resp. nodes) from S and R′ lying over the same color (resp. node) in R.
Hence finiteness of S′ follows immediately from the assumption that S is finite and that ψ
has finite fibers.

Theorem 3.3. For any CFG G = (C, S, S, pG) and NDFA M = (C,Q, pM , q0, qf ) over the
same category, with pG(S) = (pM (q0), pM (qf )), there is a CFG G′ = M∗G generating the
language LG′ = p−1

M (LG) ∩Q(q0, qf ).

Proof. By Prop. 2.20, the finitary ULF functor of categories pM : Q → C induces a finitary
ULF functor of operads W pM :WQ→W C. By Lemma 3.1, the pullback of pG along pM
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may therefore be computed as a pullback of the underlying maps of species:

S′ S

W Q W C

ϕ′
G

ψ′

⌟
ϕG

W pM

∈ Spec
F S′ F S

W Q W C

p′
G

F ψ′

⌟
pG

W pM

∈ Oper

Moreover, by Lemma 3.2, the pullback species S′ = S×W C WQ is finite, so that M∗G =
(Q,S′, (S, (q0, qf )), p′

G) defines a CFG. Finally, we have LG′ = p−1
M (LG) ∩Q(q0, qf ) because

by the universal property of the pullback in Oper, G′ derives a run α : q0 → qf of M just in
case there exists a constant β : S in F S such that pG(β) = pM (α).

We emphasize that the pullback grammar M∗G generates a language of arrows in Q,
corresponding to the runs of the automaton M over the arrows in the language generated by
the original grammar G. The pullback grammar admits the following concrete description
in traditional CFG syntax:
• its non-terminals are pairs (R, (q, q′)) – which for geometric intuition we prefer to visualize
as triples (q,R, q′) – for every non-terminal R of the grammar G and pair of states q, q′ of
the automaton M such that pG(R) = (pM (q), pM (q′));
• it has a production rule (q,R, q′)→ α0(q1, R1, q

′
1)α1 . . . (qn, Rn, q′

n)αn for every production
rule R→ w0R1w1 . . . Rnwn of G and sequence of n+ 1 runs α0 : q → q1, α1 : q′

1 → q2, . . . ,
αn : q′

n → q′ of M over the respective arrows w0, . . . , wn;
• the start symbol is (q0, S, qf ), where S is the start symbol of G and q0 and qf are the
initial and accepting states of M .

Example 3.4. Recall from Example 2.1 that to any arrow w : A→ B of a category with
finitary factorizations C, there is associated an NDFA Mw recognizing exactly the singleton
language {w }. If G is a CFG over C, then by pulling back G along Mw we obtain a new
grammar M∗

wG that may be seen as a specialization of G to the factors of w. In particular,
in the classical case where w = a1 . . . an is a word of length n over Σ, the non-terminals
of M∗

wG may be taken as triples (i, R, j) of a non-terminal R of G together with a pair of
indices 0 ≤ i, j ≤ n, generating all the parses of the subword wi,j = ai+1 . . . aj as an R. If
we then view this grammar as defining a displayed operad over W Factw, as discussed in
§1.5–§1.6, we obtain precisely the classical parse matrices Ni,j referenced in §1.7.

As an immediate corollary of Theorem 3.3, we obtain the closure of CFLs of arrows under
intersection with regular languages of arrows.

Corollary 3.5. If L ⊆ C(A,B) is context-free and LM ⊆ C(A,B) is regular then L ∩LM ⊆
C(A,B) is context-free.

Proof. By taking the functorial image (Prop. 1.9(3)) of the CFL p−1
M (LG) ∩Q(q0, qf ) along

the functor pM .

Explicitly, the grammar generating L∩LM is defined by starting with the pullback grammar
G′ = M∗G from Theorem 3.3 above and postcomposing the functor p′

G : F S′ →WQ with
W pM :WQ→W C. This grammar admits almost the same concrete description as G′ but
where the production rules instead take the form

(q,R, q′)→ w0(q1, R1, q
′
1)w1 . . . (qn, Rn, q′

n)wn
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for every production rule R → w0R1w1 . . . Rnwn of G and sequence of n+ 1 runs q → q1,
q′

1 → q2, . . . , q′
n → q′ of M over the respective arrows w0, . . . , wn. The reader familiar

with the classic “Bar-Hillel construction” for combining a CFG with an NDFA [BHPS61,
Theorem 8.1] may recognize that our construction is very similar, but completely uniform
and with the benefit of being derived systematically.

Although it will not be relevant to the representation theorem for categorical CFGs, let
us observe that the construction of the pullback of a CFG along a categorical NDFA works
just as well to construct the pullback of a generalized CFG (in the sense of §1.8) along an
operadic NDFA.

Theorem 3.6. For any gCFG G = (O,S, S, pG) and operadic NDFA M = (O,Q, pM , qr)
over the same operad, with pG(S) = pM (qr), there is a gCFG G′ = M∗G generating the
language LG′ = p−1

M (LG) ∩Q(qr).

Indeed, the proof is almost identical to the proof of Theorem 3.3, simply omitting the first
step where we applied the functor W before applying Lemma 3.1. We immediately obtain
that gCFLs are closed under intersection with regular languages of constants.

Corollary 3.7. If L ⊆ O(A) is a gCFL and LM ⊆ O(A) is regular then L∩LM ⊆ O(A) is
a gCFL.

3.2. The contour category of an operad and the contour / splicing adjunction. In
§1.2, we began by explaining how to construct a functor W : Cat→ Oper transforming any
category C into an operad W C of spliced arrows of arbitrary arity, which played a central
role in our definition of context-free language of arrows in a category. We construct now a
left adjoint functor

Oper ⊥ Cat
C

W
(3.1)

which extracts from any given operad O a category C O whose arrows may be interpreted as
“oriented contours” along the boundary of the operations of the operad.

Definition 3.8. The contour category C O of an operad O is defined as a quotient of the
following free category:

• objects are given by oriented colors Rϵ consisting of a color R of O and an orientation
ϵ ∈ {u, d } (“up” or “down”);
• arrows are generated by pairs (f, i) of an operation f : R1, . . . , Rn → R of O and an
index 0 ≤ i ≤ n, defining an arrow Rdi → Rui+1 under the conventions that Rd0 = Ru and
Run+1 = Rd;
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Figure 5: Left: interpretation of the generating arrows of the contour category C O. Right:
interpretation of equations (3.2) and (3.3).

subject to the conditions that idRu = (idR, 0) and idRd = (idR, 1) as well as the following
equations:

(f ◦i g, j) =



(f, j) j < i

(f, i)(g, 0) j = i

(g, j − i) i < j < i+m

(g,m)(f, i+ 1) j = i+m

(f, j −m+ 1) j > i+m

(3.2)

(f ◦i c, j) =


(f, j) j < i

(f, i)(c, 0)(f, i+ 1) j = i

(f, j + 1) j > i

(3.3)

whenever the left-hand side is well-formed, for every operation f , operation g of positive
arity m > 0, constant c, and indices i and j in the appropriate range.

We refer to each generating arrow (f, i) of the contour category C O as a sector of the
operation f . See Fig. 5 for a graphical interpretation of sectors and of the equations on
contours seen as compositions of sectors.

The contour construction provides a left adjoint to the spliced arrow construction
because a functor of operads O →W C is entirely described by the data of a pair of objects
(A,B) = (Ru, Rd) in C for every color R in O together with a sequence f0, f1, . . . , fn of n+ 1
arrows in C, where fi : Rdi → Rui+1 for 0 ≤ i ≤ n for each operation f : R1, . . . , Rn → R of
O, under the same conventions as above. The equations (3.2) and (3.3) on the generators of
C O reflect the equations imposed by the functor of operads O →W C on the spliced arrows
of C appearing as the image of operations in O. In that way we transform any functor of
operads O → W C into a functor C O → C which may be seen as an interpretion of the
contours of the operations of O in C.

The unit and counit of the contour / splicing adjunction also have nice descriptions. The
unit of the adjunction defines, for any operad O, a functor of operads O →W CO that acts
on colors by R 7→ (Ru, Rd), and on operations by sending an operation f : R1, . . . , Rn → R
of O to the spliced word of sectors (f, 0)− . . .−(f, n) : (Ru1 , Rd1), . . . , (Run, Rdn) → (Ru, Rd).
The counit of the adjunction defines, for any category C, a functor of categories CW C → C
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that acts on objects by (A,B)u 7→ A and (A,B)d 7→ B, and on arrows by sending the ith
sector of a spliced word to its ith word, (w0− . . .−wn, i) 7→ wi.

Remark 3.9. In the case of a free operad over a species S, the contour category C F S
admits an even simpler description as a free category C F S ∼= F C S generated by the arrows
(x, i) : Rdi → Rui+1 for every node x : R1, . . . , Rn → R of the species S. Indeed, it is easy
to verify that there is an analogous adjunction between species and graphs, and that this
pair of contour / splicing adjunctions commutes with the pair of respective free / forgetful
adjunctions:

Oper ⊥ Cat

Spec ⊥ Grph

C

W

C
⊣

W

⊣ (3.4)

We refer to the generating arrows (x, i) of the contour graph C S as corners in the sense of
the theory of planar maps [Sch15], since geometrically they indeed correspond to the corners
of S-rooted trees seen as rooted planar maps. By (3.4), every sector of an operation of F S
factors uniquely in the contour category C F S as a sequence of corners.

In contrast to the situation for W (Prop. 2.20), it is not the case that C always preserves
the ULF property.

Remark 3.10. Consider the category 1 + 1 with two objects A and B and only identity
arrows, and the unique functor p to the terminal category 1. We claim that the associated
ULF functor of operadsW p induces a functor of categories CW p which is not ULF. Consider
the two binary operations f = idA−idA−idA and g = idA−idA−idB and the constant c = idA
in W (1 + 1), as well as the binary operations h = id∗−id∗−id∗ and the constant d = id∗
in W 1. The category CW (1 + 1) has the sequence of sectors α = (f, 0)(c, 0)(g, 1) as an
arrow, which is different from the identity. On the other hand, it is mapped by CW p to
the sequence w = (h, 0)(d, 0)(h, 1), which is equal thanks to Equation (3.3) to the sector
(h ◦0 d, 0) of the unary operation h ◦0 d = id∗−id∗ of W 1, and hence w = id(∗,∗)u . Since
the factorization id = idid in W 1 lifts to two distinct factorizations α = idα = αid in
W (1 + 1), p is not ULF.

Still, we can verify that maps of species induce ULF functors between their contour categories,
as an immediate consequence of Prop. 2.3 and the factorization (3.4).

Proposition 3.11. If ψ : S → R is a map of species, then C F ψ : C F S → C F R is a
ULF functor of categories.

3.3. The universal context-free grammar of a pointed species, and its associated
tree contour language. Every finite species S equipped with a color S comes with a
universal context-free grammar UnivS,S = (C F S, S, S, pS), characterized by the fact that
pS : F S→W C F S is the unit of the contour / splicing adjunction. By “universal” context-
free grammar, we mean that any categorical context-free grammar G = (C,S, S, p) with the
same underlying species and start symbol factors uniquely through UnivS,S in the sense that
there exists a unique functor qG : C F S→ C satisfying the equation
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Figure 6: Left: an S-rooted tree of root color 1 and its corresponding contour word
a0b0a1c0d0c1e0c2a2f0g0f1a3 : 1u → 1d. Right: the corresponding Dyck word
obtained by first decomposing each corner of the contour into alternating actions
of walking along an edge and turning around a node.

F S W C = F S W C F S W C
p pS W qG

We refer to the language of arrows TCS,S := LUnivS,S
as a tree contour language, and to

its arrows as tree contour words, since they describe the contours of S-rooted trees with
root color S, see left side of Fig. 6 for an illustration. The factorization above shows that
any context-free grammar G is the functorial image of the universal grammar UnivS,S along
the functor of categories qG, whose purpose is to transport each corner of a node in S to the
corresponding arrow in C as determined by the grammar. At the level of languages, we have

Proposition 3.12. LG = qG TCS,S.

Example 3.13. Consider the context-free grammar of Figure 2. The production rules of
the universal grammar UnivS,S may be depicted in traditional CFG syntax as

S→ 10 NP 11 VP 12

NP→ 20

NP→ 30

VP→ 40 NP 41

where we have written ij as shorthand for the sector (xi, j). The language LG is then
obtained as the image of TCS,S under the functor qG : C F S→ F BΣ defined by:

10 7→ id 11 7→ ␣ 12 7→ id

20 7→ mom 30 7→ tom 40 7→ loves␣ 41 7→ id

Remark 3.14. The notion of tree contour language makes sense even for infinite pointed
species (S, S), although in that case the resulting universal grammar UnivS,S is no longer a
CFG, having infinitely many non-terminals. Still, it may be an interesting object of study.
In particular, the tree contour language UnivN,∗ generated by the terminal species N with
one color and a single operation of every arity appears to be of combinatorial interest, with
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words in the language describing the shapes of rooted planar trees with arbitrary node
degrees. Nevertheless, from now on when we refer to a “tree contour language” we will
always mean the context-free tree contour language generated by a finite pointed species.

3.4. Representation theorem. The achievement of the classical Chomsky-Schützenberger
representation theorem is to separate any context-free grammar G = (Σ, N, S, P ) into two
independent components:
(1) a context-free grammar G′ with only one non-terminal over an alphabet

Σ2n = { [1, ]1, . . . , [n, ]n }
of size 2n, for some n, which generates Dyck words of balanced brackets describing the
shapes of parse trees with nodes labelled by production rules of G; and

(2) a finite state automaton M to check that the edges of these trees may be appropriately
colored by the non-terminals of G according to the labels of the nodes specifying the
productions.

The original context-free language generated by G is then obtained as the image of the
intersection of the Dyck language generated by G′ with the regular language recognized by
M , under a homomorphism Σ∗

2n → Σ∗ that interprets each bracket of the Dyck word by a
word in the original alphabet, with an arbitrary choice to either interpret the open or the
close brackets as empty words.

In this section, we give a new proof of the representation theorem, generalized to
context-free grammars G over any category C. Since the category C may have more than one
object, the appropriate statement of the representation theorem cannot require the grammar
describing the shapes of parse trees to have only one non-terminal. Nonetheless, we can
construct one that is C-chromatic in the following sense.
Definition 3.15. A categorical context-free grammar G = (C, S, S, p) is C-chromatic if
the functor p : F S→W C is injective on colors.
The non-terminals of a C-chromatic grammar may thus be considered as pairs (A,B) of
objects of C.

Moreover, rather than using Dyck words to represent parse trees, we find it more natural
to use tree contour words, based on the observation given above (Prop. 3.12) that every
context-free language may be canonically represented as the image of a tree contour language
generated by a context-free grammar with the same set of non-terminals. (We will discuss
the relationship between contour words and Dyck words as Remark 3.20 below.)

As preparation to our proof of the representation theorem, we establish:
Proposition 3.16. Any map of species ϕ : S→ R factors as

S R = S ϕC S R
ϕ ϕcolors ϕnodes

for some species ϕC S such that ϕcolors is the identity on nodes and surjective on colors and
ϕnodes is injective on colors.
Proof. A map of species is given by a commutative diagram as on the right below:

S

R

ϕ

C∗
S VS CS

C∗
R VR CR

ϕ∗
C

i o

ϕV ϕC

i′ o′
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After taking the epi-mono factorization of ϕC ,

CS CR
ϕC = CS ϕC CS CR

e m

we obtain the desired factorization of ϕ:

S

ϕC S

R

ϕcolors

ϕnodes

C∗
S VS CS

(ϕC CS)∗ VS ϕC CS

C∗
R VR CR

e∗

i o

e

m∗

ie∗ oe

ϕV m

i′ o′

Lemma 3.17. Every map of species ψ : S→ S′ injective on nodes induces a commutative
diagram

F S F S′

W C F S W C F S′

pS

F ψ

pS′

W C F ψ

(3.5)

where the canonical functor of operads from F S to the pullback of pS′ along W C F ψ is
fully faithful.

Proof. Every map of species ψ : S→ S′ induces a pair of naturality squares

S S′

W C F S W C F S′

ψS

ψ

ϕS′

W C F ψ

F S F S′

W C F S W C F S′

pS

F ψ

pS′

W C F ψ

(3.6)

in Spec and Oper respectively, where the functors of operads pS and pS′ associated to the
universal grammars are the units of the contour / splicing adjunction. Note that these
naturality squares will in general not be pullback squares. By Lemma 3.1, we know that the
pullback of pS′ along W C F ψ is obtained from a corresponding pullback in the category of
species

R S′

W C F S W C F S′

ρ

π

⌟
ϕS′

W C F ψ

F R F S

W C F S W C F S′

r

F π

⌟
pS′

W C F ψ

(3.7)

where the pullback species R has colors defined as tuples (R, (Ru1 , Rd2)) of a color R of S′

and colors R1, R2 of S such that ψ(R1) = ψ(R2) = R, and where the n-ary nodes of R
are defined as pairs (x, f) of a n-ary node x of S′ and an n-ary operation f of W C F S,
necessarily of the form f = (y, 0)− . . .−(y, n) for y the unique n-ary node of S such that
ψ(y) = x, by assumption that ψ : S → S′ is injective of nodes. The canonical map of
species S → R induced by the left-hand sides of (3.6) and (3.7) transports every color
R of S to the color ((ψ(R)u, ψ(R)d), R) and every n-ary node y of S to the n-ary node
(ψ(y), (y, 0)− . . .−(y, n)) of R. From this follows that the canonical map of species S→ R is
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injective on colors and bijective on nodes. Moreover, there are no nodes in R whose colors
are outside of the image of S. We conclude that the canonical functor of operads F S→ F R
induced by the right-hand sides of (3.6) and (3.7) is fully faithful.

Now, let G = (C,S, S, p) be any categorical context-free grammar, and by Prop. 3.16
consider the corresponding C-chromatic grammar Gnodes = (C, ϕC S, (A,B), pnodes), where
p(S) = (A,B). We have a commutative diagram

F S F ϕC S

W C F S W C F ϕC S

W C

pS

F ϕcolors

pϕC S

W C F ϕcolors

W qG W qGnodes

(3.8)

where the commutativity of the lower triangle follows from the equation ϕ = ϕcolorsϕnodes
and the contour / splicing adjunction. Note also that pcolors := C F ϕcolors is a ULF functor
of categories by Prop. 3.11 and also finitary because ϕcolors is finitary (and even finite). From
this follows that Mcolors = (C F ϕC S, C F S, pcolors, S

u, Sd) defines a finite-state automaton.
By the intersection construction (Cor. 3.5) together with Lemma 3.17 and the strong
translation principle (Prop. 1.11), we deduce that

pcolors TCS,S = TCϕC S,(A,B) ∩ LMcolors .

Finally, using that G is the image of the universal grammar UnivS,S and considering the
commutative diagram (3.8), we conclude:

LG = qG TCS,S = qGnodes pcolors TCS,S = qGnodes (TCϕC S,(A,B) ∩ LMcolors).

Theorem 3.18. L ⊆ C(A,B) is a CFL of arrows iff it is a functorial image of the intersection
of a C-chromatic tree contour language with a regular language.

Example 3.19. For the original example of Figure 2, the colors-nodes factorization

S W Σ = S ϕC S W Σ
ϕ ϕcolors ϕnodes

of Prop. 3.16 may be visualized as below:

ε-␣-ε
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Some examples of contour words in the tree contour language TCϕC S,(∗,∗) and their corre-
sponding images under the functor qGnodes include:

1

3

2

4

1

3 2 1

32

4

10301140204112 1030112012 40102011301241

tom␣loves␣mom tom␣mom loves␣mom␣tom

Observe that only the first contour word encodes a valid parse tree mapping to a word of
the language. Finally, the “coloring automaton” Mcolors derived by the contour construction
may be depicted by the following transition diagram:

Su NPu

VPu

NPd VPd Sd
10

20

30 1140

41 12

The reader can verify that the automaton only accepts the first contour word above.

Remark 3.20. We view the use of contour words rather than Dyck words as a mild
improvement of the original theorem by Chomsky and Schützenberger, since it removes
the need for choosing arbitrarily between left brackets and right brackets to map to empty
words. But there is a close relationship between tree contour words and Dyck words, and the
original representation can be recovered if desired. As suggested by the right-hand side of
Figure 6, there is an easy mapping from contour words to Dyck words defined by translating
each corner (x, i) of an n-ary node x as follows:

(x, i) 7→


[x0 ]x0 i = n = 0
[x0 [x1 i = 0 < n

]xi [xi+1 0 > i < n

]xn ]x0 0 > i = n

This translation doubles the number of letters, and has a visual interpretation as decomposing
each corner of the contour into alternating actions of walking along an edge and turning
around a node. Indeed, the geometric content is so clear that we are optimistic there should
be a good categorical explanation, as a way of faithfully embedding any contour category
into a larger “bipartite” contour category where every arrow has been factored in two. We
leave this to future work, adding that the situation appears intriguingly analogous to the
embedding of the oriented cartographic group used to represent maps on oriented surfaces
into the unoriented cartographic group used to represent maps on not necessarily orientable
surfaces (cf. [SV90, JS94]), a link that we think is worth developing further.
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3.5. Related work. As already mentioned, our proof that (generalized) context-free lan-
guages are closed under intersection with regular languages may be seen as a decomposition
of the Bar-Hillel construction [BHPS61]. In a similar spirit, Ludmann, Pogodalla, and
De Groote have recently analyzed Kanazawa’s proof that languages generated by abstract
categorial grammars are closed under intersection with regular languages, and shown that it
defines a pullback in an appropriate category [LPdG22].

The representation theorem is one of many results appearing in Chomsky and Schützen-
berger’s joint article on “The algebraic theory of context-free languges” [CS63]. The theorem
was sketched in a technical report by Chomsky [Cho62] with attribution to their collabo-
ration, while the first detailed proof seems to have been by Schützenberger [Sch63]. The
original formulation used two-sided7 Dyck languages, but would have worked just as well
with ordinary (one-sided) Dyck languages and most standard treatments of the theorem
now adopt that formulation [Koz97, §G]. Numerous variations of the representation theorem
and extensions to other classes of languages have since been established, see [CS16] for an
overview and bibliography.

The contour / splicing adjunction is fundamental to our analysis of the representation
theorem, providing an unexpected geometric lens on context-free languages that is evocative
of Girard’s geometry of interaction. Although the adjunction is not identified, this geometric
perspective is also apparent in Slavnov’s recent work [Sla20] (inspired both by abstract
categorial grammars and by linear logic proof-nets), wherein he constructs a compact closed
monoidal category of word cobordisms reminiscent of the operad of spliced words.

After the original version of this article was published [MZ22], the contour / splicing
adjunction was subsequently analyzed and extended by Earnshaw, Hefford, and Román, who
described applications to process algebra [EHR23, Rom23]. They noticed that the splicing
functor W : Cat → Oper is closely related to a construction by Day and Street [DS04,
Example 7.3], of a canonical promonoidal structure on Cop ⊗ C for any V-enriched category
C. We have also been further exploring the adjunction from a mathematical perspective, in
ongoing work with Peter Faul.

4. Conclusion

We have seen that the classical notions of context-free grammar and of non-deterministic
finite state automaton can be reformulated and generalized in a categorical setting, in a way
that seems to have significant explanatory power. Clearly many natural questions arise in
regards to integrating the deep body of work on automata theory and formal language theory
within this setting, some of which we have already signalled. Another obvious question is
how to define pushdown automata over categories. We find it remarkable that when one
considers the nodes of a species as the production rules of a context-free grammar, the
corners of its contour category correspond exactly to the items used in LR parsing and Earley
parsing [Knu65, Ear70], which we think suggests contour categories have a role to play in
analyzing left-to-right parsing algorithms from a categorical perspective. One of our original
motivations for studying context-free grammars as functors and looking at parsing as a lifting
problem was to develop a better understanding of the universal properties of algorithms
like these, having in mind that such an understanding could then be transferred to other

7The two-sided Dyck language on an alphabet of 2n letters x±i (1 ≤ i ≤ n) may be defined as the kernel of
the canonical homomorphism ϕ : Mon⟨x−n, . . . , x−1, x+1, . . . , x+n⟩ → Grp⟨x1, . . . , xn⟩ from the free monoid
on 2n generators to the free group on n generators defined by ϕ(x+i) = xi and ϕ(x−i) = x−1

i .
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settings including type checking and type inference algorithms. This attempt at unification
is supported by the emergence of a number of categorical and fibrational structures which
seem to connect these different kinds of symbolic systems, revealing that they are founded
on many of the same basic patterns.

Acknowledgment

We thank Peter Faul for many exciting discussions of the contour / splicing adjunction,
Thea Li for stimulating conversations about determinization and ϵ-removal for categorical
automata, and Farzad Jafarrahmani for fruitful interactions related to the material in the
Addendum. We also gratefully acknowledge Bryce Clarke for many helpful insights into
the contents of the paper, which improved some of the proofs, and for telling us about
[Par12]. We thank Daniela Petrişan, Thomas Colcombet, and the other members of the
working group on “Categories for Automata and Language Theory” at IRIF for helping
us to better understand the relationship with [CP20] and with other works. We thank
Benjamin Steinberg for telling us about [Jon96], which led us to [TSG88, WT86]. Finally,
special thanks to Hayo Thielecke for giving a very lucid presentation of LL and LR parsing
using abstract machines in 2017, which was one of our original sources of inspiration.

References
[AL19] Benedikt Ahrens and Peter LeFanu Lumsdaine. Displayed categories. Logical Methods in Computer

Science, 15(1), 2019. doi:10.23638/LMCS-15(1:20)2019.
[B0́0] Jean Bénabou. Distributors at work. Notes from a course at TU Darmstadt in June 2000, taken

by Thomas Streicher, 2000. URL: https://www2.mathematik.tu-darmstadt.de/~streicher/
FIBR/DiWo.pdf.

[Bed88] M.A. Bednarczyk. Categories of asynchronous systems. PhD thesis, University of Sussex, 1988.
[BF00] Marta Bunge and Marcelo P. Fiore. Unique factorisation lifting functors and categories of

linearly-controlled processes. Mathematical Structures in Computer Science, 10:137–163, 2000.
doi:10.1017/S0960129599003023.

[BHPS61] Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of simple phrase structure grammars.
Z. Phonetik, Sprachwissen. Kommun., 14(2):143–172, 1961. doi:doi:10.1524/stuf.1961.14.14.
143.

[BJT97] Hans-Joachim Baues, Mamuka Jibladze, and Andy Tonks. Cohomology of monoids in monoidal
categories. Contemporary Mathematics, 202, 1997. doi:10.1090/conm/202/02597.

[BLL98] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial Species and Tree-Like Structures. Cam-
bridge University Press, 1998. Translated by Margaret Readdy. doi:10.1017/CBO9781107325913.

[BM06] Nicolas Baudru and Rémi Morin. Unfolding synthesis of asynchronous automata. In Dima
Grigoriev, John Harrison, and Edward A. Hirsch, editors, Computer Science – Theory and
Applications, pages 46–57, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[BN00] Marta Bunge and Susan Niefeld. Exponentiability and single universes. Journal of Pure and
Applied Algebra, 148:217–250, 2000. doi:10.1016/S0022-4049(98)00172-8.

[CDG+08] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Christof Löding,
Sophie Tison, and Marc Tommasi. Tree Automata Techniques and Applications, 2008. URL:
https://hal.inria.fr/hal-03367725.

[CE12] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012. doi:10.1017/CBO9780511977619.

[Cho62] Noam Chomsky. Context-free grammars and push-down storage. Quarterly Progress Report 65,
Research Laboratory of Electronics, M.I.T., 1962. URL: http://hdl.handle.net/1721.1/53697.

[Con71] John Horton Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971. Reprinted
in Dover Books on Mathematics, 2012.

https://doi.org/10.23638/LMCS-15(1:20)2019
https://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf
https://doi.org/10.1017/S0960129599003023
https://doi.org/doi:10.1524/stuf.1961.14.14.143
https://doi.org/doi:10.1524/stuf.1961.14.14.143
https://doi.org/10.1090/conm/202/02597
https://doi.org/10.1017/CBO9781107325913
https://doi.org/10.1016/S0022-4049(98)00172-8
https://hal.inria.fr/hal-03367725
https://doi.org/10.1017/CBO9780511977619
http://hdl.handle.net/1721.1/53697


THE CATEGORICAL CONTOURS OF THE C-S REPRESENTATION THEOREM 45

[CP20] Thomas Colcombet and Daniela Petrişan. Automata minimization: a functorial approach. Logical
Methods in Computer Science, 16(1):32:1–32:28, 2020. doi:10.23638/LMCS-16(1:32)2020.

[CS63] N. Chomsky and M. P. Schützenberger. The algebraic theory of context-free languages. In
P. Braffort and D. Hirschberg, editors, Computer Programming and Formal Systems, volume 35
of Studies in Logic and the Foundations of Mathematics, pages 118–161. North-Holland, 1963.
doi:10.1016/S0049-237X(08)72023-8.

[CS16] Stefano Crespi-Reghizzi and Pierluigi San Pietro. An enduring trail of language characterizations
via homomorphism (talk), March 21–25 2016. Conference dedicated to the scientific legacy of
M. P. Schützenberger (Bordeaux). URL: https://mps2016.labri.fr/archives/crespi.pdf.

[dG01] Philippe de Groote. Towards abstract categorial grammars. In Association for Computational
Linguistic, 39th Annual Meeting and 10th Conference of the European Chapter, Proceedings of
the Conference, July 9-11, 2001, Toulouse, France, pages 148–155. Morgan Kaufmann Publishers,
2001. doi:10.3115/1073012.1073045.

[dGP04] Philippe de Groote and Sylvain Pogodalla. On the expressive power of abstract categorial
grammars: Representing context-free formalisms. J. Log. Lang. Inf., 13(4):421–438, 2004. doi:
10.1007/s10849-004-2114-x.

[DS02] Manfred Droste and R. M. Shortt. From petri nets to automata with concurrency. Appl. Categorical
Struct., 10(2):173–191, 2002. doi:10.1023/A:1014305610452.

[DS04] Brian Day and Ross Street. Quantum categories, star autonomy, and quantum groupoids. In Galois
Theory, Hopf Algebras, and Semiabelian Categories, pages 187–225. American Mathematical
Society, 2004.

[Ear70] Jay Earley. An efficient context-free parsing algorithm. Commun. ACM, 13(2):94–102, 1970.
doi:10.1145/362007.362035.

[EHR23] Matt Earnshaw, James Hefford, and Mario Román. The produoidal algebra of process decompo-
sition. CoRR, abs/2301.11867, 2023. arXiv:2301.11867, doi:10.48550/ARXIV.2301.11867.

[Eil74] Samuel Eilenberg. Automata, Languages, and Machines: volume A. Pure and applied mathematics.
Academic Press, 1974.

[ES22] Matthew Earnshaw and Pawel Sobociński. Regular monoidal languages. In Stefan Szeider,
Robert Ganian, and Alexandra Silva, editors, 47th International Symposium on Mathematical
Foundations of Computer Science, MFCS 2022, August 22-26, 2022, Vienna, Austria, volume
241 of LIPIcs, pages 44:1–44:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPICS.MFCS.2022.44.

[FGHW08] M. Fiore, N. Gambino, M. Hyland, and G. Winskel. The cartesian closed bicategory of generalised
species of structures. Journal of the London Mathematical Society, 77(1):203–220, 2008. doi:
10.1112/jlms/jdm096.

[FJSZ22] Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemianski. A Kleene theorem
for higher-dimensional automata. In Bartek Klin, Slawomir Lasota, and Anca Muscholl, editors,
33rd International Conference on Concurrency Theory, CONCUR 2022, September 12-16, 2022,
Warsaw, Poland, volume 243 of LIPIcs, pages 29:1–29:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2022.29, doi:10.4230/
LIPICS.CONCUR.2022.29.

[GHK17] Niels Bjørn Bugge Grathwohl, Fritz Henglein, and Dexter Kozen. Infinitary axiomatization of
the equational theory of context-free languages. Fundam. Informaticae, 150(3-4):241–257, 2017.
doi:10.3233/FI-2017-1469.

[GM10] Eric Goubault and Samuel Mimram. Formal relationships between geometrical and classical models
for concurrency. In Lisbeth Fajstrup, Eric Goubault, and Martin Raussen, editors, Proceedings
of the workshop on Geometric and Topological Methods in Computer Science, GETCO 2010,
Aalborg, Denmark, January 11-15, 2010, volume 283 of Electronic Notes in Theoretical Computer
Science, pages 77–109. Elsevier, 2010. URL: https://doi.org/10.1016/j.entcs.2012.05.007,
doi:10.1016/J.ENTCS.2012.05.007.

[GR62] Seymour Ginsburg and H. Gordon Rice. Two families of languages related to ALGOL. Journal
of the ACM, 9(3):350–371, 1962. doi:10.1145/321127.321132.

[Gue20] Léonard Guetta. Polygraphs and discrete Conduché ω-functors. Higher Structures, 4(2):134–166,
2020. doi:10.21136/HS.2020.11.

https://doi.org/10.23638/LMCS-16(1:32)2020
https://doi.org/10.1016/S0049-237X(08)72023-8
https://mps2016.labri.fr/archives/crespi.pdf
https://doi.org/10.3115/1073012.1073045
https://doi.org/10.1007/s10849-004-2114-x
https://doi.org/10.1007/s10849-004-2114-x
https://doi.org/10.1023/A:1014305610452
https://doi.org/10.1145/362007.362035
http://arxiv.org/abs/2301.11867
https://doi.org/10.48550/ARXIV.2301.11867
https://doi.org/10.4230/LIPICS.MFCS.2022.44
https://doi.org/10.1112/jlms/jdm096
https://doi.org/10.1112/jlms/jdm096
https://doi.org/10.4230/LIPIcs.CONCUR.2022.29
https://doi.org/10.4230/LIPICS.CONCUR.2022.29
https://doi.org/10.4230/LIPICS.CONCUR.2022.29
https://doi.org/10.3233/FI-2017-1469
https://doi.org/10.1016/j.entcs.2012.05.007
https://doi.org/10.1016/J.ENTCS.2012.05.007
https://doi.org/10.1145/321127.321132
https://doi.org/10.21136/HS.2020.11


46 P.-A. MELLIÈS AND N. ZEILBERGER

[Her00] Claudio Hermida. Representable multicategories. Advances in Mathematics, 151(2):164–225, 2000.
doi:10.1006/aima.1999.1877.

[Her04] Claudio Hermida. Fibrations for abstract multicategories. In George Janelidze, Bodo Pareigis,
and Walter Tholen, editors, Galois Theory, Hopf Algebras, and Semiabelian Categories, volume 43
of Fields Institute Communications. American Mathematical Society, 2004. doi:10.1090/fic/
043/11.

[HM00] Jean-François Husson and Rémi Morin. On recognizable stable trace languages. In Jerzy
Tiuryn, editor, Foundations of Software Science and Computation Structures, Third Inter-
national Conference, FOSSACS 2000, Held as Part of the Joint European Conferences on
Theory and Practice of Software,ETAPS 2000, Berlin, Germany, March 25 - April 2, 2000,
Proceedings, volume 1784 of Lecture Notes in Computer Science, pages 177–191. Springer, 2000.
doi:10.1007/3-540-46432-8\_12.

[HMU07] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory,
languages, and computation, 3rd Edition. Pearson international edition. Addison-Wesley, 2007.

[Hyl08] Martin Hyland. Abstract and concrete models for recursion. In O. Grumberg, T. Nipkow, and
C. Pfaller, editors, Proceedings of the NATO Advanced Study Institute on Formal Logical Methods
for System Security and Correctness, pages 175–198. IOS Press, 2008.

[Joh99] Peter Johnstone. A note on discrete Conduché fibrations. Theory and Applications of Categories,
5(1):1–11, 1999.

[Jon96] Peter R Jones. Profinite categories, implicit operations and pseudovarieties of categories. Journal
of Pure and Applied Algebra, 109(1):61–95, 1996. doi:10.1016/0022-4049(95)00074-7.

[Joy81] André Joyal. Une théorie combinatoire des séries formelles. Advances in Mathematics, 42(1):1–82,
1981. doi:10.1016/0001-8708(81)90052-9.

[Joy86] André Joyal. Foncteurs analytiques et espèces de structures. In Gilbert Labelle and Pierre
Leroux, editors, Combinatoire énumérative, Lecture Notes in Mathematics, pages 126–159, Berlin,
Heidelberg, 1986. Springer Berlin Heidelberg. doi:10.1007/BFb0072514.

[JS94] Gareth A. Jones and David Singerman. Maps, hypermaps, and triangle groups. In L. Schneps,
editor, The Grothendieck Theory of Dessins d’Enfants, number 200 in London Mathematical
Society Lecture Note Series. Cambridge University Press, 1994. doi:10.1017/CBO9780511569302.
006.

[Knu65] Donald E. Knuth. On the translation of languages from left to right. Information and Control,
8(6):607–639, 1965. doi:10.1016/S0019-9958(65)90426-2.

[Koz97] Dexter Kozen. Automata and Computability. Undergrad. texts in comp. science. Springer, 1997.
[Lam89] Joachim Lambek. Multicategories revisited. Contemporary Mathematics, 92:217–239, 1989. doi:

10.1090/conm/092.
[Law86] F. W. Lawvere. State categories and response functors. Unpublished, May 1986.
[Lee89] René Leermakers. How to cover a grammar. In Julia Hirschberg, editor, 27th Annual Meeting of

the Association for Computational Linguistics, 26-29 June 1989, University of British Columbia,
Vancouver, BC, Canada, Proceedings, pages 135–142. ACL, 1989. doi:10.3115/981623.981640.

[Lei04] Tom Leinster. Higher Operads, Higher Categories, volume 298 of London Mathematical Society
Lecture Note Series. Cambridge University Press, 2004. doi:10.1017/CBO9780511525896.

[LL09] Martin Lange and Hans Leiß. To CNF or not to CNF? An efficient yet presentable version of the
CYK algorithm. Informatica Didact., 8, 2009. URL: https://www.informaticadidactica.de/
index.php?page=LangeLeiss2009_en.

[LM10] F. W. Lawvere and M. Menni. The Hopf algebra of Möbius intervals. Theory and Applications of
Categories, 24(10):221–265, 2010. URL: http://www.tac.mta.ca/tac/volumes/24/10/24-10abs.
html.

[LPdG22] Pierre Ludmann, Sylvain Pogodalla, and Philippe de Groote. Multityped abstract categorial
grammars and their composition. In Agata Ciabattoni, Elaine Pimentel, and Ruy J. G. B.
de Queiroz, editors, Logic, Language, Information, and Computation, pages 105–122, 2022.
doi:10.1007/978-3-031-15298-6_7.

[Mac98] Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1998.
[Maz89] Antoni Mazurkiewicz. Basic notions of trace theory. In J. W. de Bakker, W. P. de Roever, and

G. Rozenberg, editors, Linear Time, Branching Time and Partial Order in Logics and Models
for Concurrency, pages 285–363, Berlin, Heidelberg, 1989. Springer Berlin Heidelberg.

https://doi.org/10.1006/aima.1999.1877
https://doi.org/10.1090/fic/043/11
https://doi.org/10.1090/fic/043/11
https://doi.org/10.1007/3-540-46432-8_12
https://doi.org/10.1016/0022-4049(95)00074-7
https://doi.org/10.1016/0001-8708(81)90052-9
https://doi.org/10.1007/BFb0072514
https://doi.org/10.1017/CBO9780511569302.006
https://doi.org/10.1017/CBO9780511569302.006
https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/10.1090/conm/092
https://doi.org/10.1090/conm/092
https://doi.org/10.3115/981623.981640
https://doi.org/10.1017/CBO9780511525896
https://www.informaticadidactica.de/index.php?page=LangeLeiss2009_en
https://www.informaticadidactica.de/index.php?page=LangeLeiss2009_en
http://www.tac.mta.ca/tac/volumes/24/10/24-10abs.html
http://www.tac.mta.ca/tac/volumes/24/10/24-10abs.html
https://doi.org/10.1007/978-3-031-15298-6_7


THE CATEGORICAL CONTOURS OF THE C-S REPRESENTATION THEOREM 47

[Mel21] Paul-André Melliès. Asynchronous template games and the Gray tensor product of 2-categories.
In Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2021, Roma, Italy, 2021, 2021.

[MM07] Paul-André Mellies and Samuel Mimram. Asynchronous games: innocence without alternation.
In Proceedings of the 18th International Conference on Concurrency Theory, CONCUR 2007,
volume 4703 of LNCS, pages 395–411. Springer Verlag, 2007.

[MN24] Vincent Moreau and Lê Thành Dung Nguyên. Syntactically and semantically regular languages
of lambda-terms coincide through logical relations. In 32nd EACSL Annual Conference on
Computer Science Logic, CSL 2024, February 19-23, 2024, Naples, Italy, LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2024.

[Mor05] Rémi Morin. Concurrent automata vs. asynchronous systems. In Joanna Jedrzejowicz and Andrzej
Szepietowski, editors, Mathematical Foundations of Computer Science 2005, 30th International
Symposium, MFCS 2005, Gdansk, Poland, August 29 - September 2, 2005, Proceedings, volume
3618 of Lecture Notes in Computer Science, pages 686–698. Springer, 2005. doi:10.1007/
11549345\_59.

[MSS02] Martin Markl, Steve Schnider, and Jim Stasheff. Operads in Algebra, Topology and Physics,
volume 96 of Mathematical Surveys and Monographs. American Mathematical Society, 2002.
doi:10.1090/surv/096.

[MW67] Jorge E. Mezei and Jesse B. Wright. Algebraic automata and context-free sets. Information and
Control, 11(1/2):3–29, 1967. doi:10.1016/S0019-9958(67)90353-1.

[MZ13] Paul-André Melliès and Noam Zeilberger. Type refinement and monoidal closed bifibrations.
Unpublished, arXiv:1310.0263, October 2013. URL: https://arxiv.org/abs/1310.0263.

[MZ15] Paul-André Melliès and Noam Zeilberger. Functors are type refinement systems. In Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 3–16. ACM, 2015. doi:10.1145/2676726.2676970.

[MZ16] Paul-André Melliès and Noam Zeilberger. A bifibrational reconstruction of Lawvere’s presheaf
hyperdoctrine. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, pages 555–564. ACM, 2016. doi:10.1145/2933575.2934525.

[MZ18] Paul-André Melliès and Noam Zeilberger. An Isbell duality theorem for type refinement
systems. Mathematical Structures in Computer Science, 28(6):736–774, 2018. doi:10.1017/
S0960129517000068.

[MZ22] Paul-André Melliès and Noam Zeilberger. Parsing as a lifting problem and the Chomsky-
Schützenberger representation theorem. In MFPS 2022 - 38th conference on Mathematical
Foundations for Programming Semantics, July 2022. doi:10.46298/entics.10508.

[Par12] Robert Paré. Mealy morphisms of enriched categories. Applied Categorical Structures, 20(3):251–
273, 2012. doi:10.1007/S10485-010-9238-8.

[Rom23] Mario Román. Monoidal Context Theory. PhD thesis, Tallinn University of Technology, 2023.
[Ros95] Kimmo I. Rosenthal. Quantaloids, enriched categories and automata theory. Applied Categorical

Structures, 3(3):279–301, 1995. doi:10.1007/BF00878445.
[RS59] Michael O. Rabin and Dana S. Scott. Finite automata and their decision problems. IBM Journal

of Research and Development, 3(2):114–125, 1959.
[Sal09] Sylvain Salvati. Recognizability in the simply typed lambda-calculus. In WoLLIC, volume 5514

of LNCS, pages 48–60, 2009. doi:1007/978-3-642-02261-6_5.
[Sch63] M. P. Schützenberger. On context-free languages and push-down automata. Information and

control, 6(3):246–264, 1963.
[Sch15] Gilles Schaeffer. Planar maps. In Miklós Bóna, editor, Handbook of Enumerative Combinatorics,

pages 335–396. CRC, 2015. URL: http://www.lix.polytechnique.fr/~schaeffe/Master/HB.
pdf.

[Shu] Michael Shulman. LNL polycategories and doctrines of linear logic. Logical Methods in Computer
Science, 19(2):1:1–1:54. doi:10.46298/lmcs-19(2:1)2023.

[Sip13] Michael Sipser. Introduction to the theory of computation, 3rd edition. Cengage Learning, 2013.
[Sla20] Sergey Slavnov. Classical linear logic, cobordisms and categorial grammars, 2020.

arXiv:1911.03962. URL: https://arxiv.org/abs/1911.03962.

https://doi.org/10.1007/11549345_59
https://doi.org/10.1007/11549345_59
https://doi.org/10.1090/surv/096
https://doi.org/10.1016/S0019-9958(67)90353-1
https://arxiv.org/abs/1310.0263
https://doi.org/10.1145/2676726.2676970
https://doi.org/10.1145/2933575.2934525
https://doi.org/10.1017/S0960129517000068
https://doi.org/10.1017/S0960129517000068
https://doi.org/10.46298/entics.10508
https://doi.org/10.1007/S10485-010-9238-8
https://doi.org/10.1007/BF00878445
https://doi.org/1007/978-3-642-02261-6_5
http://www.lix.polytechnique.fr/~schaeffe/Master/HB.pdf
http://www.lix.polytechnique.fr/~schaeffe/Master/HB.pdf
https://doi.org/10.46298/lmcs-19(2:1)2023
https://arxiv.org/abs/1911.03962


48 P.-A. MELLIÈS AND N. ZEILBERGER

[SMFK91] Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On multiple context-free
grammars. Theoretical Computer Science, 88(2):191–229, 1991. doi:https://doi.org/10.1016/
0304-3975(91)90374-B.

[SS88] Seppo Sippu and Eljas Soisalon-Soininen. Parsing Theory - Volume I: Languages and Parsing,
volume 15 of EATCS Monographs on Theoretical Computer Science. Springer, 1988. doi:10.
1007/978-3-642-61345-6.

[Ste01] Benjamin Steinberg. Finite state automata: a geometric approach. Transactions of the American
Mathematical Society, 353(9):3409–3464, 2001.

[Str96] Ross Street. Categorical structures. In M. Hazewinkel, editor, Handbook of Algebra, volume 1,
pages 529–577. North-Holland, 1996.

[SV90] G. Shabat and V. Voevodsky. Drawing curves over number fields. In P. Cartier, Luc Il-
lusie, Nicholas M. Katz, Gérard Laumon, Yuri I. Manin, and Kenneth A. Ribet, ed-
itors, The Grothendieck festschrift III, number 88 in Progress in Mathematics, pages
199–227. Birkhäuser, 1990. URL: https://www.math.ias.edu/vladimir/sites/math.ias.edu.
vladimir/files/drawing_curves_published.pdf.

[TSG88] Denis Thérien and Małgorzata Sznajder-Glodowski. Finite categories and regular languages. In
Mathematical Problems in Computation Theory, volume 21 of Banach Center Publications, pages
395–402. 1988.

[Wal89] R. F. C. Walters. A note on context-free languages. Journal of Pure and Applied Algebra,
62(2):199–203, 1989. doi:10.1016/0022-4049(89)90151-5.

[WT86] Alex Weiss and Denis Thérien. Varieties of finite categories. Informatique théorique et applications,
20(3):357–366, 1986.

[Zie87] Wieslaw Zielonka. Notes on finite asynchronous automata. RAIRO – Theoretical Informatics
and Applications, 21:99–135, 1987.

Addendum A. gCFLs as initial models of gCFGs

We begin to explore here another more abstract perspective on (generalized) context-free
grammars and context-free languages, under which a CFG defines a kind of theory that
generates a CFL as its initial model. On the one hand, this viewpoint encompasses the
old idea of treating CFGs as defining certain systems of polynomial equations and CFLs
as minimal solutions to those systems of equations (cf. [GR62, MW67], [Con71, Ch. 10],
[GHK17]). At the same time, our categorical formulation is in the broad spirit of functorial
semantics of algebraic theories à la Lawvere, adapted to an operadic and fibrational setting.
We will see that one benefit of this perspective is that it enables us to consider a more
expansive notion of “language” generated by a grammar, recovering the traditional notion
of formal language as subset of words (or subset of arrows/constants) as a special case.

Before stating the general definitions, let us give an example. The Dyck language of
well-bracketed words over an alphabet Σ containing a pair of brackets ‘[’ and ‘]’ may be
generated by either of the following context-free grammars with a single non-terminal:

G1 =
S → ϵ
S → [S]
S → SS

G2 = S → ϵ
S → [S]S (A.1)

Although the language L = LG1
= LG2

generated by both grammars is the same, G1 and
G2 may be seen as implicitly stating two different equations satisfied by this language,

L = ϵ+ [L] + LL (A.2)
L = ϵ+ [L]L (A.3)

where we have written + for union (and implicitly make use of the spliced concatenation
of languages as defined in Prop. 1.9(2)). Equation (A.2) has other solutions besides the
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language of Dyck words, such as the total language L = Σ∗, while interestingly (A.3)
only admits a unique solution. However, in both cases one can easily establish that the
context-free language generated by the grammar provides the unique minimal solution to
the corresponding equation, in the sense that it is included in any other solution.

To describe the proper abstract setting for such systems of equations, we need to
introduce here some fibrational concepts for functors of operads, for which we again find it
useful to adapt some conventions from our type refinement systems work. Extending the
notation from §1.6, we write α : R1, . . . , Rn ⇒q

f R to indicate that α : R1, . . . , Rn → R is an
operation in E with image q(α) = f in B, relative to a functor of operads q : E → B. We
sometimes omit the superscript and write α : R1, . . . , Rn ⇒f R if q is clear from context.
We write Ef (R1, . . . , Rn;R) for the set of operations {α | α : R1, . . . , Rn ⇒q

f R }.

Definition A.1. A cone in an operad O is a family of operations (gi : ∆i → A)i∈I in O
with the same output color A.

Definition A.2. Let q : E → B be a functor of operads. A cone (αi : Ωi ⇒q
gi
R)i∈I in E is

said to be minimal over a cone (gi : ∆i → A)i∈I in B (relative to q) if for every operation
f : Γ, A,Γ′ → B in B with |Γ| = k, the function

(− ◦k αi)i∈I : Ef (Θ, R,Θ′;S) −→
∏
i∈I
Ef◦kgi

(Θ,Ωi,Θ′;S)

induced by precomposition with the elements of the cone is invertible. In this case, we say
that R equipped with the cone (αi : Ωi ⇒q

gi
R)i∈I is a minimal lift of the cone (gi)i∈I to

the family of lists of colors (Ωi ⊏q ∆i)i∈I refining the inputs of the gi’s.

Equivalently, (αi : Ωi ⇒q
gi
R)i∈I is a minimal cone when for every operation f as above and

any cone (βi : Θ,Ωi,Θ′ ⇒q
f◦kgi

S)i∈I over the cone (f ◦k gi : Γ,∆i,Γ′ → B)i∈I , there exists a
unique operation β̄ : Θ, R,Θ′ ⇒q

f S such that βi = β̄ ◦k αi for all i ∈ I.
In the special case of a singleton family, an operation α : Ω ⇒g R of E is a minimal

cone just in case it is (strongly) opcartesian in the sense of Hermida relative to a functor
of multicategories [Her00, Her04], which extends the classical notion of opcartesian arrow
relative to a functor of categories. In this case, we say that R is the pushforward of Ω
along g, generalizing the image of a subset along a function. On the other hand, in the
special case of a minimal cone (αi : Ri ⇒idB

R)i∈I of operations in E all lying over the same
identity operation in B, we say that R is the fiberwise coproduct of the Ri, generalizing
the union of subsets of a set. This means in particular that we have an isomorphism

Ef (Θ, R,Θ′;S) ∼=
∏
i∈I
Ef (Θ, Ri,Θ′;S)

for every compatible operation f . We briefly considered minimal cones in the same sense
(relative to a functor of categories) in [MZ13], there referred to as “weighted union types”.
Definition A.2 is also in a similar spirit to the very general notion of “extremal cone” recently
introduced by Shulman in his work on LNL polycategories and doctrines of linear logic [Shu],
which inspired our terminology.

Given a cone (gi : Γi → A)i∈I and a family of lists of colors Ωi ⊏ Γi refining the inputs
of the gi’s, there exists at most one minimal lift (αi : Ωi ⇒q

gi
R)i∈I of (gi)i∈I to (Ωi)i∈I , up

to canonical isomorphism. Indeed, if (αi : Ωi ⇒gi
R)i∈I and (α′

i : Ωi ⇒gi
R′)i∈I are two

minimal lifts, the universal property immediately implies there is a unique isomorphism



50 P.-A. MELLIÈS AND N. ZEILBERGER

β̄ : R ∼= R′ in E lying over the identity idA in B such that α′
i = β̄ ◦ αi for all i ∈ I. We

indicate the presence of such a canonical isomorphism by R ≡ R′, and write
∑
i∈I gi Ωi for

some choice of object R coming together with a minimal cone(
inj : Ωj =⇒

gj

∑
i∈I

gi Ωi
)
j∈I

The notation is motivated by the fact that if the functor q : E → B has sufficient fibrational
structure, then the minimal lift may be decomposed as a fiberwise coproduct of pushforwards
(cf. [MZ13, p.13], [Shu, Thm. 4.28]).

Proposition A.3. Let q : E → B be a functor of operads. The following are equivalent:
(1) There is a minimal lift

∑
i∈I gi Ωi ⊏ A of every cone (gi : Γi → A)i∈I in B to any family

of lists of colors Ωi ⊏ Γi in E.
(2) q has all pushforwards and fiberwise coproducts, i.e., for any operation g : Γ → A

and list of colors Ω ⊏ Γ there is a pushforward gΩ ⊏ A, and for any family of colors
(Ri ⊏ A)i∈I , there is a fiberwise coproduct

∑
i∈I Ri ⊏ A.

Moreover, the equivalence holds while maintaining any bound |I| < κ on the cardinalities of
the indexing sets of the cones (gi)i∈I in (1) and the families of colors (Ri)i∈I in (2).

Proof. The implication (1)⇒ (2) is immediate. For the implication (2)⇒ (1), we build the
minimal lift of (gi : Γi → A)i∈I to (Ωi ⊏ Γi)i∈I by constructing the family of pushforwards
(Ri = gi Ωi ⊏ A)i∈I and taking their fiberwise coproduct

∑
i∈I Ri ⊏ A. Since the indexing

set I is left unchanged, existence of minimal lifts of cones of cardinality < κ is equivalent to
existence of pushforwards and finite fiberwise coproducts of cardinality < κ.

When either of the equivalent conditions of Prop. A.3 holds with κ = ω, and moreover q
comes equipped with a choice of minimal lifts, then we say that q has polynomials, or
is a “polynomial refinement system”. The terminology is motivated by the fact that the
set of colors of E is closed under taking finite sums of monomials weighted by operations
of B, and moreover that such polynomial expressions satisfy expected laws up to canonical
isomorphism.

Proposition A.4. The following identities hold∑
i∈I

∑
j∈J

Rij ≡
∑

(i,j)∈I×J
Rij (A.4)

f(Θ,
∑
i∈I

Ri,Θ′) ≡
∑
i∈I

f(Θ, Ri,Θ′) (A.5)

f(g1 Ω1, . . . , gn Ωn) ≡ (f ◦ (g1, . . . , gn))(Ω1, . . . ,Ωn) (A.6)
id(R) ≡ R (A.7)

in the sense that whenever the minimal lift on one side exists then so does the other, with a
canonical isomorphism between them.

We are now ready to define models of generalized context-free grammars and explain
the sense in which an initial model provides a minimal solution to a system of polynomial
equations. The definition depends only on the grammar’s underlying functor p : F S→ O,
which we refer to as a bare gCFG (analogous to the bare NDFA we considered in §2).
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Definition A.5. A model of an arbitrary functor of operads p : D → O inside another
functor q : E → B is just a commuting square of functors:

D E

O B

p

M̃

q

M

(A.8)

By extension, we say that (M,M̃) is a model of a gCFG G if it is a model of its underlying
bare gCFG p : F S→ O. Note that the commutative square (A.8) just says that the pair
of functors (M, M̃) form a morphism of functors from p to q, or a morphism of refinement
systems in the terminology of [MZ18]. But sometimes we want more of a model of a gCFG,
namely that the morphism (M,M̃) : p → q picks out a selection of minimal cones in the
following sense.

Definition A.6. A model (M,M̃) of a bare gCFG p : F S→ O (with associated map of
species ϕ : S → O) in q : E → B is said to be exact if for every color R of S, the cone of
nodes in S with output color R

SR = (x : R1, . . . , Rk
ϕ=⇒
g
R)x∈S

is mapped to a q-minimal cone in E

M̃SR = (M̃x : M̃R1, . . . , M̃Rk
q=⇒
Mg

M̃R)x∈S.

Thus, if we express the existence of minimal cones using the sum-of-pushforward notation
introduced above, an exact model (M, M̃) of a gCFG corresponds to a solution for the
system of equations

M̃R ≡
∑

R1,...,Rk⇒ϕ
gR

Mg(M̃R1, . . . , M̃Rk) (A.9)

with one such equation for each color of S. Let us emphasize that although such a solution
interprets each non-terminal as the apex of a minimal cone, the solution itself is not
necessarily minimal globally. However, we will establish as Proposition A.9 below that under
good conditions (namely, when q has polynomials), if (M,M̃) is the initial model of p in q,
then it is also exact and therefore the initial exact model. To make this statement precise,
we first have to define what are morphisms of models.

Recall that given two functors of operads L,M : O → P with the same source and
target, a natural transformation θ : L ⇒ M is defined as a family of unary operations
θR : LR→MR in P such that

Mf ◦ (θR1 , . . . , θRn) = θR ◦ Lf : LR1, . . . , LRn −→MR (A.10)

for every operation f : R1, . . . , Rn → R in O.

Definition A.7. Let (L, L̃) and (M, M̃) be models of p in q. A morphism of models
(L, L̃) =⇒ (M, M̃) is given by a pair of natural transformations θ : L⇒M and θ̃ : L̃⇒ M̃
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such that the diagram below commutes

D E

O B

p

L̃

M̃

q
L

M

θ̃

θ

(A.11)

in the sense that the natural transformations obtained by whiskering are equal q ◦ θ̃ = θ ◦ p.

In other words, a morphism of models is a 2-morphism (θ, θ̃) : (L, L̃) =⇒ (M,M̃) : p→ q.
We define morphisms of exact models in the same way – that is, we do not impose any extra
conditions. Given two functors of operads p and q, we write Mod(p, q) for the category of
models of p in q and 2-morphisms between them. Similarly, when p is a bare gCFG, we
write ExMod(p, q) for the full subcategory of Mod(p, q) spanned by the exact models.

Definitions A.5 and A.6 do not require the target q : E → B to have polynomials. However,
when it does, models of a bare gCFG p : F S→ O admit an equivalent characterization as
algebras of an endofunctor

(−)p : DiscMod(p, q)→ DiscMod(p, q)
on the category of discrete models of p in q, defined by DiscMod(p, q) := Mod(p ◦ incl, q),
where incl : F |S| → F S is the inclusion from the free operad over the discrete species |S|
with same set of colors as S and no nodes. Note that a discrete model (M, M̃) is the data of
a functor M : O → B together with a family of colors M̃R ⊏q MA for every color R ⊏p A
of S.

For any discrete model (M, M̃) of a bare gCFG p in q, we can construct a new discrete
model (M,M̃p) where the family of colors M̃pR is defined by the sum of pushforwards:

M̃pR =
∑

R1,...,Rk⇒ϕ
gR

Mg(M̃R1, . . . , M̃Rk)

This defines an endofunctor on DiscMod(p, q) since the pushforward and fiberwise coproduct
are functorial. Moreover, by precomposition with incl, every ordinary model (M, M̃) of p in
q has an underlying discrete model (which we will also denote (M,M̃) for ease of notation),
equipped with a canonical (−)p-algebra structure given by the family of unary operations

αM̃R : M̃pR⇒ M̃R

obtained by applying the universal property of the sum-of-pushforwards to the cone of
operations M̃SR.

Proposition A.8. The assignment of a (−)p-algebra structure αM̃ : M̃p ⇒ M̃ to any model
(M,M̃) of a bare gCFG p in a polynomial refinement system q induces an isomorphism

Mod(p, q) ∼= (−)p-Alg
between the category of models of p in q and the category of algebras for the endofunctor
(−)p : DiscMod(p, q)→ DiscMod(p, q). This restricts to an isomorphism

ExMod(p, q) ∼= (−)p-Fix
between the subcategory of exact models of p in q and the subcategory of (−)p-algebras with
an invertible algebra structure.
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Since the mapping (M, M̃) 7→ (M,M̃p) preserves the underlying interpretation M : O → B
of the base operad, it in fact defines a family of endofunctors

(−)pM : DiscModM (p, q)→ DiscModM (p, q)

where we write DiscModM (p, q) for the subcategory of discrete models of p in q with
underlying base interpretation M , and with morphisms between them such that the nat-
ural transformation in the bottom part of (A.11) is the identity θ = idM . We similarly
write ModM (p, q) and ExModM (p, q) for the corresponding subcategories of models and
exact models with base interpretation M . It follows from Proposition A.8 that we have
isomorphisms:

ModM (p, q) ∼= (−)pM -Alg (A.12)
ExModM (p, q) ∼= (−)pM -Fix (A.13)

We can use these alternative characterizations of models of a gCFG to immediately derive
the existence of initial exact models (globally, or with a given base interpretaion M) from
the existence of initial models.

Proposition A.9. For every bare gCFG p and polynomial refinement system q, any initial
object in Mod(p, q) (respectively, in ModM (p, q)) is also an initial object in ExMod(p, q)
(resp. ExModM (p, q)).

Proof. By the previous proposition, if (M,M̃) is initial in Mod(p, q) then αM̃ : M̃p ⇒ M̃ is
an initial (−)p-algebra. By Lambek’s Lemma, αM̃ is invertible and hence (M,M̃) is exact,
and therefore an initial object of ExMod(p, q) since it is a full subcategory of Mod(p, q). The
same argument works even if M̃ is only initial seen as an object (M, M̃) of ModM (p, q).

Proposition A.9 motivates us to introduce the following terminology.

Definition A.10. Let G be a gCFG with underlying bare gCFG p : F S→ O and start
symbol S ⊏p A. Let q : E → B be a polynomial refinement system, and suppose that there
is an initial model (M, M̃) of p in q (which is hence unique up to canonical isomorphism
by universality, and an exact model by Prop. A.9). We then speak of the q-language of
G, written LqG, as the interpretation M̃ S ⊏q M A of the start symbol in this initial model.
Similarly, given a base interpretation functor M : O → B, if M̃ is initial in ModM (p, q), then
we speak of the q-language relative to M of G, written LM,q

G .

We will see that the language of constants of a gCFG in the sense of Def. 1.15 may be
recovered as a particular case of q-language, for q = sub : Subset → Set defined below.
However, every gCFG also generates another q-language that is in a sense more canonical,
as we now explain.

For any operad P , there is an operad P→ whose colors are given by the unary operations
u of P, and whose n-ary operations u1, . . . , un → u are given by pairs (fs, ft) of n-ary
operations of P such that ft ◦ (u1, . . . , un) = u ◦ fs. This operad comes equipped with
two evident functors src, tgt : P→ → P defined by first and second projection. In the case
P = Set, the operad Set→ has unary functions f : Y → X as colors.

Proposition A.11. tgt : Set→ → Set has polynomials, with pushforwards and fiberwise
coproducts constructed as follows:
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• Let u1 : Y1 → X1, . . . , un : Yn → Xn be an n-tuple of unary functions, and let f :
X1, . . . , Xn → X be an n-ary function. The pushforward of (u1, . . . , un) along f is given
by their parallel composition f ◦ (u1, . . . , un), interpreted as a unary function from the
cartesian product Y1 × · · · × Yn → X.
• Let (ui : Yi → X)i∈I be a collection of unary functions into the same set. Their fiberwise

coproduct is given by the cotupling [ui]i∈I :
∐
i∈I Yi → X.

Now, every operad O comes equipped with a canonical functor

conO : O → Set

(we omit the subscript when clear from context) defined on colors by taking conA = O(·;A) =
{ c | c : A } to be the set of constants of color A in O, and on operations f : A1, . . . , An → B
by taking con f to be the function (c1, . . . , cn) 7→ f ◦ (c1, . . . , cn) that sends any n-tuple of
constants to the constant defined by parallel composition into the inputs of f . For example,
in the case of an operad of spliced arrows, con : W C → Set sends a color (A,B) to the
homset C(A,B), and an operation w0− . . .−wn : (A1, B1), . . . , (An, Bn) → (A,B) to the
function

con(w0− . . .−wn) : C(A1, B1)× · · · × C(An, Bn)→ C(A,B)
that maps an n-tuple of arrows (u1, . . . , un) to their spliced composition w0u1w1 . . . unwn.
A functor O → Set is also called an “operad algebra”, and an important property of conO
is that it is the initial O-algebra, in the sense that it has a unique natural transformation
!M : conO ⇒M to any other functor M : O → Set. This natural transformation is defined
by the family of functions conA→MA sending a constant c : A of O to the element Mc of
MA determined by the algebra structure.

For any functor of operads p : D → O, we can therefore build a triangle

D Set

O

p

conD

conO

conp

(A.14)

where the natural transformation conp = !conO ◦ p is uniquely determined by initiality of
conD. Concretely, conp is given by the family of functions sending any constant in D to the
corresponding constant in O obtained by mapping along the functor p. Now, in general,
giving a natural transformation θ : L ⇒ M : O → P is equivalent to giving a functor
θ̃ : O → P→ such that src ◦ θ̃ = L and tgt ◦ θ̃ = M . In particular, the natural transformation
(A.14) induces a functor c̃onp : D → Set→ making the below square commute:

D Set→

O Set

p

c̃onp

tgt
conO

(A.15)

Proposition A.12. The morphism (conO, c̃onp) : p→ tgt is an initial object in Mod(p, tgt).

Proof. Let M : O → Set and M̃ : D → Set→ be any pair of functors forming a morphism
(M, M̃) : p→ tgt. A 2-morphism (θ, θ̃) : (conO, c̃onp)⇒ (M,M̃) : p→ tgt is given by a pair
of natural transformations θ : conO ⇒ M and θ̃ : c̃onp ⇒ M̃ such that tgt ◦ θ̃ = θ ◦ p, or
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equivalently a pair θ : conO ⇒M and ρ : conD ⇒ src ◦ M̃ which combined with the natural
transformations conD ⇒ p◦conO and src◦M̃ ⇒ p◦M form a family of commutative squares

conR src(M̃R)

con A MA

ρR

θA

(A.16)

in Set for every color R ⊏ A of D. But such a pair of natural transformations θ and ρ exist
uniquely by initiality of conO and conD respectively, while the square (A.16) commutes by
initiality of conD since it is a composite of natural transformations.

Corollary A.13. Every bare gCFG generates an initial model in tgt : Set→ → Set.

In the case of a categorical CFG, the initial model in tgt interprets every non-terminal
R ⊏ (A,B) as the set conR of parse trees with root label R, equipped with the function

conpR : conF SR −→ C(A,B)

mapping a tree α : R to the underlying arrow p(α) ∈ C(A,B) that it derives. In particular,
the language Ltgt

G = con(S) → Σ∗ generated by an ordinary context-free grammar may
be considered as a kind of “proof-relevant” language, in the sense that it encodes not just
a subset of words generated by G but also the set of parse trees of every word in the
language. Notably, a given word may have more than one derivation, and all of those distinct
derivations are incorporated into its tgt-language.

To recover the language generated by a grammar in the traditional sense, consider next
the operad Subset whose colors are pairs (X,U) of a set X and of a subset U ⊆ X, and
whose operations f : (X1, U1), . . . , (Xn, Un)→ (X,U) are functions f : X1 × · · · ×Xn → X
such that

x1 ∈ U1, . . . , xn ∈ Un implies f(x1, . . . , xn) ∈ U .
Subset comes equipped with an evident forgetful functor sub : Subset → Set sending any
subset (X,U) to its base X.

Proposition A.14. sub has pushforwards and fiberwise coproducts, given respectively by
taking the image of an n-tuple of subsets R1 ⊆ X1, . . . , Rn ⊆ Xn along an n-ary function
f : X1, . . . , Xn → X to define the subset f(R1, . . . , Rn) ⊆ X, and by taking the union⋃
i∈I Ri ⊆ X of a collection of subsets (Ri ⊆ X)i∈I of the same set. In particular, sub has

polynomials.

Moreover, there is a morphism of refinement systems from tgt to sub,

Set→ Subset

Set
tgt

im

sub

given by the functor im : Set→ → Subset which sends any function u : X → Y to
its image u(X) ⊆ Y , and every pair (fs, ft) of functions fs : X1 × · · · × Xn → X and
ft : Y1 × · · · × Yn → Y defining an operation u1, . . . , un → u of Set→ to the function ft,
which does indeed, by the naturality equation ft ◦ (u1, . . . , un) = u ◦ fs, satisfy that

x1 ∈ u1(X1), . . . , xn ∈ un(Xn) implies ft(x1, . . . , xn) ∈ u(X).
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Observe that this morphism tgt→ sub has a right adjoint

Set→ Subset

Set
tgt

im

sub

⊥ (A.17)

given by the functor interpreting a subset U ⊆ X as a monic function U → X.

Corollary A.15. The composite morphism

F S Set→ Subset

O Set Set

p

c̃onp

tgt

im

sub
conO

(A.18)

generates an initial model of any bare gCFG p in sub.

Proof. Since postcomposition with the morphism im : tgt→ sub induces a functor
Mod(p, im) : Mod(p, tgt)→ Mod(p, sub)

which is a left adjoint, and as a left adjoint it preserves initial objects.

In the case of a classical context-free grammar G with associated functor p : F S→W Σ,
the sub-language is precisely the traditional language Lsub

G = LG ⊆ Σ∗ generated by the
grammar, and more generally for a gCFG with start symbol S ⊏ A one recovers the language
of constants LG ⊆ conA in the sense of Def. 1.15 as the sub-language. Equations such as
(A.2) and (A.3) are automatically satisfied as instances of the master equation (A.9), by
virtue of the fact that the initial model in sub : Subset→ Set is exact (Prop. A.9) and the
concrete description of the pushforward and fiberwise coproduct as image and union.

Both of these languages in tgt and sub can also be adapted relative to a fixed interpre-
tation of the base operad M : O → Set by pushing forward the respective initial models
along the unique natural transformation !M : conO ⇒ M . Abstractly, this may be seen
as a consequence of the fact that both tgt and sub are bifibrations, so that any natural
transformation θ : L⇒M induces an adjunction

ModL(p, q) ModM (p, q)

θ∗

θ∗

⊥ (A.19)

between the respective categories of models (for q = tgt and sub), and as a left adjoint the
pushforward functor θ∗ preserves initial objects. Concretely, in the case of tgt, the language
relative to M interprets a gCFG G with start symbol S ⊏ A as the composite arrow

LM,tgt
G := conF S S conO A M(A)

mapping every closed derivation α : S in F S to the interpretation M(c) of the constant
c = p(α) : A in O that it derives.

For one more example of a q-language relative to a base interpretation, let us recall the
notion of Chomsky algebra introduced by Grathwohl, Henglein, and Kozen [GHK17], defined
as an idempotent semiring that is algebraically closed in the sense that every finite system of
polynomial inequalities over the semiring has a least solution in the semiring. It is possible to
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associate a polynomial refinement system to any idempotent semiring, as follows. Given an
arbitrary (not necessarily idempotent) semiring (R,+, ·, 0, 1), one can construct an operad
R equipped with a functor πR : R →W (R, ·, 1) into the operad of spliced arrows over its
underlying multiplicative monoid seen as a one-object category. The operad R has elements
of R as colors, and operations x1, . . . , xn → y given by spliced elements a0−a1− . . .−an such
that a0x1a1 . . . xnan ≤ y, for the natural ordering defined by x ≤ y iff ∃a.x + a = y. The
functor πR always has pushforwards, given by spliced multiplication. When + is idempotent,
πR will moreover have fiberwise coproducts, corresponding to joins with respect to ≤, and
hence yield a polynomial refinement system.

Now, suppose given a gCFG G = (O, S, S, p), a Chomsky algebra (R,+, ·, 0, 1), and a
functor M : O → W (R, ·, 1). (Most commonly, i.e., for a classical CFG, O will be F BΣ
and M will be derived from a function Σ → R assigning every letter of the alphabet an
element of the semiring.) Any model of G in πR with base interpretation M is a solution to
a finite system of polynomial inequalities determined by the production rules of G and by
the functor M . Hence there is an initial model by the defining assumption on a Chomsky
algebra, i.e., LM,πR

G exists.
To conclude this preliminary exploration of the concept of q-language, we will now

explain how some mild conditions on q suffice to guarantee the existence of initial models,
as well as to establish abstract versions of both the weak and strong translation principles.
Although we are focused on modelling gCFGs, much of the story makes sense at a greater
level of generality. Thus suppose given three functors of operads p1 : D1 → O, p2 : D2 → O
and T : D1 → D2 defining a commutative diagram

D1 D2

O

T

p1 p2
(A.20)

in the category Oper, which we summarize by writing T : p1 → p2. For any fixed functor of
operads M : O → B, precomposition with T induces a functor of categories

T ∗ : ModM (p2, q) ModM (p1, q)

which transports every model (M,M̃) : p2 → q to the model (M, M̃ ◦ T ) : p1 → q. Now,
our aim is to show that under certain conditions on q, the functor T ∗ has a left adjoint
T∗. Hence, we will be in a situation where every functor T : p1 → p2 as above induces an
adjunction

ModM (p1, q) ModM (p2, q)

T∗

T ∗

⊥ (A.21)

between the corresponding categories of q-models relative to M , from which we will be able
to extract various important consequences.

A sufficient condition for the existence of this left adjoint is that q has pushforwards
and has all (small) fiberwise colimits, in the natural sense generalizing fiberwise coproducts.
Formally, we say that a functor q : E → B has fiberwise colimits when any diagram
D : J → EX of unary operations lying in the fiber over some object X ∈ B has a colimit
(colimD, (ini : D(i) → colimD)i∈D) in the fiber category EX , and moreover the universal
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property of this colimiting cocone extends to the total operad in the sense that precomposition
with the ini induces a bijection

Ef (Θ, colimD,Θ′;S) ∼= lim Ef (Θ, D(−),Θ′;S)

for every compatible operation f of B. (Note that if q is an opfibration, then it has fiberwise
colimits just in case every fiber category EX is cocomplete and all of the pushforward functors
f∗ : EX1 × · · · × EXn → EX are cocontinuous.)

Proposition A.16. Assume that q : E → B has pushforwards and fiberwise colimits. Let p1,
p2, T , and M be as above. Then the pullback functor T ∗ : ModM (p2, q)→ ModM (p1, q) has
a left adjoint T∗ : ModM (p1, q)→ ModM (p2, q).

Before proving the proposition by showing how to construct the left adjoint, let us describe
a few of its consequences.

Existence of q-languages for all gCFGs. Suppose given any gCFG G = (O, S, S, p) and a
base interpretation M : O → B. Start by constructing an initial model M̃ of the underlying
“discrete” grammar |G| = (O, |S|, S, p ◦ incl), where incl : F |S| → F S is the inclusion
functor we described earlier. (Viewed as a grammar, |G| has the same non-terminals and
start symbol as G, but no production rules.) To construct the initial model of |G| relative to
M , it suffices to take M̃ to map every non-terminal R ⊏p A to the initial object 0M A ∈ EM A

of the appropriate fiber. Then we push M̃ forward along incl. Since left adjoints preserve
initial objects, incl∗ M̃ will be an initial model of p, and we have LM,q

G := incl∗ M̃ S.
Translation principles. Suppose given a pair of gCFGs G1 = (O,S1, S1, p1) and G2 =

(O,S2, S2, p2) over the same operad, together with a translation T : G1 → G2 in the sense
of Definition 1.10. Fix a base interpretation M : O → B. By the preceding, we know that
there exist functors M̃1 : F S1 → E and M̃2 : F S2 → E such that M̃1 and M̃2 are initial
objects in ModM (p1, q) and ModM (p2, q) respectively. Initiality of M̃1 implies that there
exists a unique morphism of models θ : M̃1 ⇒ T ∗ M̃2, as depicted below:

F S2

F S1 E

O B

p2

M̃2

p1

T

M̃1

q

M

θ (A.22)

Instantiating this natural isomorphism at S1 and applying the assumption that T preserves
the start symbol, we immediately obtain a morphism

LM,q
G1

≡ M̃1(S1) M̃2(T S1) = M̃2(S2) ≡ LM,q
G2

θS1 (A.23)

in the fiber category EM A, where p1(S1) = p2(S2) = A. This may be seen as a categorification
of the weak translation principle, reducing to LG1

⊆ LG2
in the case that q = sub and

M = conO. Moreover, we know (again since pushforward preserves initial objects) that
M̃2 is isomorphic to the pushforward of M̃1 along T : p1 → p2, and that θ is equal to the
composition of this isomorphism T∗ M̃1 ∼= M̃2 with the unit η : M̃1 ⇒ T ∗ T∗ M̃1 of the
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adjunction (A.21), as depicted below:
F S2

F S1 E

O B

p2

T∗ M̃1

p1

T

M̃1

q

M

η
(A.24)

The last piece of the puzzle will be to show that when the functor T is fully faithful then η
is invertible, although this relies on an explicit formula for the pushforward functor T∗ M̃1.
From invertibility of η, we derive an isomorphism of q-languages

LM,q
G1

≡ M̃1(S1) T ∗ T∗ M̃1(S1) ∼= M̃2(S2) ≡ LM,q
G2

ηS1∼ (A.25)

which may be seen as a categorification of the strong translation principle.8
Diagram (A.24) is suggestive of a Kan extension, and indeed the computation that

we describe below of the pushforward model T∗ M̃1 may be seen as a kind of fibered and
operadic generalization of the usual construction of the left Kan extension LanF G : C2 → E
of a functor of categories G : C1 → E along another functor of categories F : C1 → C2, as a
pointwise colimit in E . The strong translation principle may then be seen as a generalization
of the fact that if F is fully faithful, then the unit 2-cell η : G ⇒ LanF G ◦ F of such a
pointwise left Kan extension is invertible [Mac98, Corollary X.3.3, p.239].

Proof of Proposition A.16. We suppose given an arbitrary commutative triangle of functors
of operads T : p1 → p2 as in (A.20) above, together with a target functor q : E → B that we
assume to have pushforwards and fiberwise colimits, and a fixed base interpretation functor
M : O → B. We also suppose given an arbitrary (not necessarily initial) model of p1 in q
relative to M , corresponding to a functor M̃ : D1 → E such that q ◦ M̃ = M ◦ p1. Our aim
is to construct a functor T∗ M̃ : D2 → E defining a model of p2 in q relative to M , equipped
with a universal morphism of models η : M̃ ⇒ T ∗ T∗ M̃ , as depicted below:

D2

D1 E

O B

p2

T∗ M̃

p1

T

M̃

q

M

η
(A.26)

To define T∗ M̃ , we map each color R ⊏p2 A of D2 to the fiberwise colimit

T∗ M̃ R := colimDM̃
R (A.27)

of a certain diagram
DM̃
R : T/R −→ EM A

defined as follows. The (relative) “operadic slice” category T/R has objects given by tuples
(R1, . . . , Rn;α)

8Indeed, in Proposition 1.11 we already tried to state the strong translation principle in a proof-relevant
way, by mentioning that the grammars generate “isomorphic sets of parse trees for the arrows in the language”.
Formally, this is really an instance of the strong translation principle for q-languages, with q = tgt!
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consisting of a sequence of colors R1, . . . , Rn of D1 and an operation α : TR1, . . . , TRn → R
of D2, and arrows

(γ1, . . . , γk) : (R1, . . . , Rn;α) −→ (S1, . . . , Sk;β)
given by a sequence of operations γ1 : Γ1 → S1, . . . , γk : Γk → Sk of D1 such that α =
β ◦(Tγ1, . . . , Tγk) (which implies that Γ1, . . . ,Γk is a composition of R1, . . . , Rn into k parts).
The functor DM̃

R is defined on objects by the pushforward formula

DM̃
R (R1, . . . , Rn;α) := Mg(M̃R1, . . . , M̃Rn) (A.28)

where g = p2(α) is the underlying image of α in O. (This pushforward is well-defined and
gives an object in the fiber EM A, by the assumption that α : TR1, . . . , TRn → R and that
p1 = p2 ◦ T and q ◦ M̃ = M ◦ p1.) It extends to the arrows of T/R by applying the action
of M̃ on operations of D1, as well as the laws of pushforwards. Finally, T∗ M̃ extends to
a functor D2 → E by the functoriality of the slicing construction T/− and the fact that
pushforwards preserve fiberwise colimits.

Now, the natural transformation η is given by taking

ηR := M̃R ∼= MidA(M̃R) colimDM̃
R (A.29)

to be the canonical injection into the colimit associated to the object (R, idTR) of T/R,
composed with a canonical isomorphism of the form (A.7) (sinceMidA = idMA). Universality
says that any model L̃ : p2 → q over M equipped with a morphism of models θ : M̃ ⇒ T ∗ L̃
factors uniquely via η and a morphism of models θ′ : T∗ M̃ ⇒ L̃. The latter corresponds to
a natural family of arrows

θ′
R : colimDM̃

R =⇒ L̃ R

in EM A for every color R ⊏p2 A of D2, the definition of which is entirely forced by the
universal property of the colimit, the definition of the diagram DM̃

R , and the input morphism
θ : M̃ ⇒ T ∗ L.

We now make two remarks by inspection of the formula for the pushforward model T∗ M̃ .
First, when the functor T : D1 → D2 is fully faithful, the relative slice category T/TR is
isomorphic to the slice category D1/R for every color R of D1. In particular, (R, idTR) is a
terminal object of T/TR when T is fully faithful. From this follows that the unit ηR defined
by (A.29) is invertible, and as a consequence we get the strong translation principle (A.25).

Second, although we assumed that q has all fiberwise colimits, clearly the cardinalities
of the indexing categories T/R of the colimit diagrams are bounded to an extent by the
cardinalities of D1 and D2. In particular, it suffices for q to have countable fiberwise colimits
to be able to define the pushforward

T∗ : ModM (p1, q) ModM (p2, q)

induced by a translation T : G1 → G2 between any pair of gCFGs, since the respective
operads D1 = F S1 and D2 = F S2 are freely generated from finite species.

We summarize the situation below.

Corollary A.17. Let q : E → B be a functor with pushforwards and countable fiberwise
colimits. Then every gCFG G over an operad O generates a q-language LM,q

G relative to any
base interpretation M : O → B. Moreover, q-languages enjoy both the weak and the strong
translation principles, as expressed by the morphism (A.23) and the isomorphism (A.25).
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Of course it remains to establish the expected closure properties for q-gCFLs (cf. Proposi-
tion 1.19), and to show that the class of q-gCFLs interacts as expected with an appropriately
formulated class of q-regular languages (cf. Corollary 3.7), which we leave as (unsolved!)
exercises for the reader. We hope to have demonstrated that there is some interest in
this slightly more abstract way of thinking about the languages generated by context-free
grammars, complementary to the more concrete approach taken in the main body of the
paper.
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