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THE NORM FUNCTOR OVER SCHEMES

PHILIPPE GILLE, ERHARD NEHER, AND CAMERON RUETHER

Abstract: We construct a globalization of Ferrand’s norm functor over rings
which generalizes it to the setting of a finite locally free morphism of schemes
T — S of constant rank. It sends quasi-coherent modules over T' to quasi-
coherent modules over S. These functors restrict to the category of quasi-
coherent algebras. We also assemble these functors into a norm morphism
from the stack of quasi-coherent modules over a finite locally free of constant
rank extension of the base scheme into the stack of quasi-coherent modules.
This morphism also restricts to the analogous stacks of algebras. Restricting
our attention to finite étale covers, we give a cohomological description of the
norm morphism in terms of the Segre embedding. Using this cohomological
description, we show that the norm gives an equivalence of stacks of algebras
A? = D,, akin to the result shown in The Book of Involutions.
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INTRODUCTION

One of the coincidences in the theory of algebraic groups is the excep-
tional isomorphism between the Dynkin diagrams of type A; + A; and of
type Do. One way this manifests is as an isomorphism between split sim-
ply connected groups SLy x SLy = Spiny, or between split adjoint groups
PGL:; x PGL,; = PSO,. However, due to the relationship between alge-
braic groups and algebras with involution, this also manifests as the following
equivalence of groupoids shown in [KMRT, 15.B]. Let F be an arbitrary field
and

(i) let A? be the groupoid of Azumaya algebras of degree 2 over a qua-
dratic étale extension of F with F-algebra isomorphisms as arrows,
and

(ii) let Dy be the groupoid of central simple F-algebras of degree 4
equipped with quadratic pairs (see [KMRT, §5]) with F-algebra iso-
morphisms respecting the quadratic pair as arrows.

Then, there is an equivalence of categories A? = D,. In particular, they
show in [KMRT, 15.7] that a norm functor N: A3 — D, provides this
equivalence.

The norm functor used in [KMRT] is with respect to finite étale extensions
of the base field. It is a generalization of the corestriction with respect to
a finite separable field extension K/F introduced by Riehm in [R]. Riehm’s
corestriction sends a central simple K-algebra A of degree r to a central
simple F-algebra corg /F(A) of degree ¥ in such a way that the induced
map on Brauer groups

Br(K) = H*(Gal(Fyep, K), FX ) — H?*(Gal(Fgep, F), FX ) = Br(F)

sep sep

[A] = [corg /r(A)]
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agrees with the usual corestriction in Galois cohomology. This was general-
ized by Knus and Ojanguren, who defined the norm functor of a finite étale
extensions of rings in [KO], and theirs is the version used in [KMRT]. The
norm functor was then extended further still by Ferrand in [Fer| to include
the case of a finite locally free extension of rings. By [Fer, §5], his new
construction agrees with the previous notions of norm functor. We review
Ferrand’s construction in Section 2.1.

In this paper we continue the “tradition” of extending the norm functor
to new settings. We fix a base scheme S and work on the big fppf ringed
site (Schg, O) of schemes over S with the global sections functor O. In fact,
we extend the norm functor to a morphism of stacks over Gchg between
certain stacks of quasi-coherent sheaves. We are able to do so because of
the following key property of Ferrand’s norm functor. For a finite locally
free ring extension R — R/, let Np/ /R Modp — Modp denote Ferrand’s
norm functor. If R — @ is any other ring homomorphism, thus making
Q — R' ®r Q a finite locally free extension as well, then for any R'~module
M’ there is an isomorphism

Nrr(M') ®r Q = Nrgro)/(M' @k Q)

and this is functorial in M’. This compatibility with tensor products is ex-
actly what allows the norm to be generalized to quasi-coherent sheaves as
they are characterized by a similar condition, see Lemma C.1. Our con-
struction is a general one which takes
(i) a family J of affine morphisms in Schg which is closed under arbi-
trary pullbacks and which allows descent (precisely, J should be a
substack of the stack of affine morphisms AffMior as in Appendix
C.8),
(ii) for each h: U’ — U in J with U and U’ affine, a functor

Fn: moO@(U/) — DﬁoD@(U),
(iii) and for every fiber product diagram in Gehg

V/ Ul

b

V— U
where U,U’, V, V' are all affine, a natural isomorphism of functors
Fin() ®ow) O(V) — Fu(_ @@y OV'))

and assembles them into a morphism of stacks F: Q€ohy — QCoh. Here,
QCoh; is the stack with objects (T7 — T, M’) consisting of a morphism
T" — T in J and a quasi-coherent O|p—module M’ while Q€0 is the stack
with objects (X, M) consisting of a scheme X € &chg and a quasi-coherent
O|x—module M. For a review of quasi-coherent modules on (&chg, O) and
the details of this construction, see Appendix C.
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Unsurprisingly, Ferrand’s norm functors, ranging over the family of fi-
nite locally free morphisms of a fixed degree d, satisfy the necessary con-
ditions of the constructions in Appendix C. When J is the family of finite
locally free morphisms of degree d, we write Q€ohy = QCohd,. There-
fore, we obtain a stack morphism N: QCof)ﬁf — 0¢&oh, as well as a func-
tor Nyp/g: Q€oh(T) — QCoh(S) between categories of quasi-coherent O|r—
modules and quasi-coherent O—modules for any finite locally free morphism
T — S of degree d. We verify this in Section 2.8. The functor Nr/g
of course has additional specific properties analogous to Ferrand’s functor,
most of which are in regards to polynomial laws. Since f: T — S is finite
locally free, by [St, Tag 0BD2] there is a functor

norm: f,(O|r) = O

which arises from the determinant of left multiplication by elements of
f+(Olr) on itself. Given a quasi-coherent O|r-module M, we define a
normic polynomial law to be a natural transformation ¢: fu(M) — N,
where N is a quasi-coherent O—module, such that

¢(tm) = norm(t)¢(m)

holds for all sections t € f.(O|r)(X) and m € f.(M)(X) and for all X €
Schg. We show that the norm functor Ny/g has the following properties.

A. Theorem. Let f: T — S be a finite locally free morphism of schemes
and let Np/g: Q€oh(T) — Q&oh(S) be the norm functor.

(i) For every quasi-coherent M over T there exists a normic polynomial
law vpq: fo(M) — Npjg(M) such that the pair (Npjs(M),va) is
universal in the following sense; if v': fo(M) — N’ is any other
normic polynomial law into a quasi-coherent O—module, then there
is a unique O-module morphism ¢: Np;s(M) — N' such that V' =
POoUM.

(ii) The universal property determines the image of Np,g on morphisms.
If p: My — Moy is a morphism of quasi-coherent modules over T,
then va, o fu(p) is a normic polynomial law and Ny s(p) is the
unique O—module morphism making the diagram

fo(My) Np/g(Mi)

lf*(w) iNT/s(so)
foMa) =25 Npg(Mo)

commute.
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(iii) The norm functor and universal normic polynomial law respects base
change. If we have a fiber product diagram in Schg

-9, 7

o

s 2,9
then there is an isomorphism of functors Ny g 0 g™ — g* o Np/g
and for any M € QC€oh(T) the diagram

V(M|pr)

fiM|r1) — Nprjsr(M]rr)

[ I

LM S N (M)

commutes.

(iv) Nz/s(Olr) = O and v, = norm: f(O|r) — O.

(v) If B is a quasi-coherent Ol|r-algebra, then Nr;s(B) is naturally an
O-algebra and vg is multiplicative. The norm also preserves algebra
homomorphisms and thus restricts to the categories of quasi-coherent
algebras.

Further, if T — S is finite étale of degree d we have the following.

(vi) Nr/s sends (finite) locally free modules to (finite) locally free mod-
ules.
(vii) Nr,s sends Azumaya algebras to Azumaya algebras.
(viil) Npss sends locally free O|r—modules of constant rank r to locally

free modules of constant rank r® and it sends Azumaya algebras of

constant degree r to Azumaya algebras of constant degree r¢.

Properties (i) and (ii) are shown in Proposition 2.10 and Corollary 2.11 re-
spectively. The isomorphism of functors in Property (iii) comes from Lemma
C.9 and the statement about the universal normic laws is Corollary 2.12.
Property (iv) follows from Example 2.14 after considering a sufficient local-
ization. Property (v) is shown in Lemma 2.17. Finally, when 7" — S is
étale, property (vi) follows from Example 2.14, property (vii) follows from
property (viii), and property (viii) is Lemma 2.13 and Lemma 2.20.

In Section 3 we give a description of maps on cohomology induced by the
norm morphism. In particular, we restrict the norm morphism of stacks to
various substacks, in fact subgerbes, which are equivalent to the gerbes of
torsors for some semi-direct products of groups. As is discussed in Appendix
B, the cohomology set H'(S,(GL,)? x S;), where Sy is the permutation
group, classifies isomorphism classes of objects in the fiber over S of the
gerbe whose objects are pairs (77 — T, M') where T" — T is a degree d étale
cover and M’ is a locally free O|r—module of constant rank r. Similarly,
isomorphism classes in the fiber over S of the gerbe whose objects are pairs



6 P. GILLE, E. NEHER, AND C. RUETHER

(T" — T, A"), where now A’ is an O|r—Azumaya algebra of degree r, are
classified by H'(S, (PGL,)? xS4). Details on the definitions of these gerbes
are given at the beginning of Section 3. We know by Theorem A(viii) that
the norm will send such objects to @-modules of rank 7% or Azumaya O—
algebras of degree ¢ respectively. Isomorphism classes of these modules
are classified by H'(S, GL,«) and isomorphisms of those Azumaya algebras
are classified by H'(S,PGL,a). A general fact about stack morphisms,
[Gir, I11.2.5.3], states that the resulting maps on isomorphism classes will be
induced from group homomorphisms (GL,)? x Sq — GL,s and (PGL,)? x
Sq — PGL,s. We show that these are the Segre embeddings. On the
GL level, it sends elements (Ay,...,Aq) € (GL,)? to A; ® ... ® Ay and
elements of S; to the corresponding permutation of the tensor factors of
Or?) = (O")®4. The map on the PGL level is defined similarly.

B. Theorem. The map on cohomology sets induced by the norm functor,
namely

N: HY(S, (GL,)? x Sy) = H(S, GL,)
(T — S, M)] = [Ng/s(M)],

agrees with the map induced by the Segre embedding (GL,)% x Sy — GL,a.
Furthermore, the behaviour of the norm functor on Azumaya algebras in-
duces a map of cohomology sets

Nag: HY(S, (PGL,)? % Sg) = H'(S,PGL,)
(T — S, A)] = [Nr/s(A)].

which likewise agrees with the map induced by the Segre embedding (PGL,.)%x
Sd — PGer.

Our cohomological description of the norm functor also extends beyond
first cohomology. Over a scheme, Brauer classes of Azumaya algebras lie
in the Brauer-Grothendieck group Br(S) = H?*(S,G,,), where G,, is the
multiplicative group. Since we are assuming f: T — S is finite étale, we
know that the norm functor preserves Azumaya algebras and thus maps
classes of Azumaya algebras in Br(T") to classes in Br(S). We show that this
induced action is compatible with the trace morphism tr: Br(T') — Br(S)
induced by the trace morphism f,(G,,|r) = G, of [SGA4, 1X.5.1.2]. The
following is Proposition 3.14.

C. Proposition. Let T — S be a degree d étale cover. Let B be an Azu-
maya O|p—algebra of constant degree and let A be an Azumaya O-algebra
of constant degree. Denoting Brauer classes in square brackets, we have

(i) [N7/s(B)] = tr([B]) € Br(S), and
(i) [Nr/s(Alr)] = d[A] € Br(S5).
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Our goal in Section 4 is to show that the exceptional isomorphism dis-
cussed at the beginning of this introduction still occurs at the level of Azu-
maya algebras over schemes. In fact, we show that it holds as an equivalence
of stacks. We consider the gerbes

(i) A2 of quaternion algebras over a degree 2 étale extension, and
(ii) D2 of degree 4 Azumaya algebras with a quadratic pair.

Quadratic pairs are a characteristic agnostic analogue of orthogonal involu-
tions and thus are appropriate for discussing groups of type D and related
objects over a general scheme. We include background on quadratic pairs
in Section 1.5. We begin Section 4 by constructing a quadratic pair over Z
which, after restriction, acts as the split object in ®,,, the gerbe of Azumaya
O-algebras of degree 2n with quadratic pair. By restricting the Segre ho-
momorphism to symplectic and orthogonal groups, we then show how the
norm gives a morphism from the stack of Azumaya algebras of degree 2r
with symplectic involution over an étale extension of degree d into the stack
Doyi-1,4. By noting that when » = 1 and d = 2 we get an equivalence of
categories, we obtain the following generalization of [KMRT, 15.7] to our
setting.

D. Theorem. There is an equivalence of stacks
N: 23— D,
(T/ - T, B) = (Tv (NT’/T(B)7 O-NT//T(B)v fNT//T(B)))
given by the norm functor.

This is Theorem 4.9. If we focus on the fiber over S of this morphism, we
get an equivalence of categories between the groupoid of quaternion algebras
over a degree 2 étale extension of S into the groupoid of degree 4 Azumaya
O-algebras with quadratic pair, which is a more direct analogue of [KMRT,
15.7].

The organization of the paper is essentially outlined above. Section 1 re-
calls the common objects and some basic results we use throughout the pa-
per. The important details of Ferrand’s construction over rings are in Section
2 which also contains the construction of our new norm morphism/functor
and the proofs of the many parts of Theorem A. Section 3 develops the co-
homological interpretation of the newly constructed norm functor. Section
4 uses these tools to show Theorem D.

We also include three Appendices containing general technical lemmas.
Appendix A considers a degree d étale cover f: T — S and then for any
sheaf F on &chg describes f.(F|r) in terms of twisting sheaves with torsors
or in terms of Weil restrictions in the case F is representable. Appendix B
gives a cohomological description of stacks related to semi-direct products of
groups which appear frequently in Sections 3 and 4. Finally, as mentioned
above, Appendix C contains a review of the properties of quasi-coherent
module on (Schg, O) as well as the details of the general construction we
use to define the norm morphism.
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1. PRELIMINARIES

1.1. Flat Sites. Following the style of [CF] and [GNR], most of our objects
will be sheaves on a category of schemes equipped with the fppf topology.
We now review this setting, highlighting definitions of objects that are most
important to us.

For a scheme X we denote by G¢h y the big fppfsite of X asin [SGA3, Ex-
posé IV]. The objects of &c¢chy are schemes with a fixed structure morphism
Y — X, morphisms are scheme morphisms which respect the structure mor-
phisms, and coverings in the site consist of families of the form {Y; — Y }ier
which are jointly surjective and where each Y; — Y is flat and locally of
finite presentation. When given a cover, we denote Y;; = Y; Xy Y;, as well
as Yijr = Y; Xy Y, Xy Y}, etc. Affine schemes will commonly be denoted
with U or V and affine covers by {U; — Y };cr or likewise with V. Since Y
need not be a separated scheme, an affine cover need not have its U;;’s be
affine.

1.2. Remark. In [St, Tag 021S], the Stacks project defines “a” big fppf site
of X, instead of “the”. This distinction, due to set theoretic considerations,
is avoided in [SGA3] through the use of universes. We also simply use “the”
big fppf site and similarly use “the” big affine fppf site introduced below.

We denote by ffy the big affine fppf site of X as in [St, Tag 021S (2)].
It is the full subcategory of Gchy consisting of affine schemes over X and
the covers are fppf covers of the form {U; — U}™, where each U; and U
are affine schemes. We will frequently use the following lemma to discuss
sheaves on all of Gchy by instead working with sheaves on 2ff .

1.3. Lemma. There is an equivalence of categories between sheaves on Sch
and sheaves on Affx given by restricting a sheaf F: Gchy — Gets to the
objects of Affx. Under this equivalence, intrinsic properties, such as be-
ing finite locally free or being quasi-coherent as recalled in Section 1.4, are
preserved.

Proof. The equivalence of categories (more precisely, equivalence of topoi)
is [St, Tag 021V]. The properties of Section 1.4 are intrinsic properties by
[St, Tag 03DM]. By the definition of intrinsic property at the beginning of
[St, Tag 03DG], they are preserved under equivalences of topoi. O

IfY € Gehy, then Gceby- is naturally a subcategory of Gcehx by composing
the structure morphisms Y/ — Y with the structure morphism Y — X. For
a sheaf F on Schy, we denote by F|y the restriction of the sheaf to Schy.
If Y/ — Y is a morphism of X-schemes, then borrowing notation from [St],
we use t|y+ to denote the image under F(Y) — F(Y”) of a section t € F(Y).
This will also be referred to as the restriction of ¢ to Y. It will be clear from
context which notion of restriction, for sheaves or for sections, is intended.
By a slightly further abuse of notation, we may talk about a section t € F,
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by which we mean a section ¢t € F(Y) for some Y € Gchg, i.e., t may be
any section over any Y.

Given two schemes Y7, Ys € Gchy, their presheaf of homomorphisms is
the functor

HO’I’IZ(Yl,Yg)Z GC[)X — Gets
Zr—>HomZ(Y1 XX Z,Yé Xx Z)

sending Z to the set of Z—scheme morphisms between the two fiber products.
It is a sheaf by [St, Tag 040L]. The subsheaf of isomorphisms, denoted
Zsom(Y1,Y3), is then also a sheaf.

1.4. Ringed Sites. We now fix a base scheme S. Unless otherwise stated,
we assume that a ring is unital, commutative, and associative. The global
sections functor

O: Gchg — Rings
X Ox(X)

where Rings is the category of commutative rings, is a sheaf with respect
to the fppf topology by [St, Tag 03DU]. It makes (Schg, O) into a ringed
site as in [St, Tag 03AD] and we call O the structure sheaf. If X € Gcehg is
another scheme, then the structure sheaf of Schy is O|x.

From [St, Tag 03CW], an O—module is a sheaf M: Schg — 2b of abelian
groups with a map of sheaves

OxM—>M

such that for each X € Gchg, the map O(X) x M(X) — M(X) gives
M(X) the structure of an O(X)-module. A morphism of O-modules is a
morphism of sheaves such that the map on X points is O(X)-linear for all
X € Gchg. The notion of O|x—module on Sehy is analogous and likewise
for the properties discussed below.

The internal homomorphism functor of two O-modules M and N is

Homo (M, N): Schg — 2Ab
T — Homoy, (M|, N|r).

It is another O—-module by [St, 03EM]. The internal endomorphisms of an
O-module M are denoted by Endp(M) = Homp (M, M), and the subsheaf
of automorphisms is denoted Autp(M).

If g: X — S is a morphism of schemes, then we have a direct image (or
pushforward) functor g, and a pull-back functor ¢g* as in [St, Tag 03D6].
These form an adjoint pair where g* is left adjoint to g., [St, Tag 03D7].
That is, for each O|x—module £ and each O-module F, we have a natural
isomorphism

HomO|X—M0d(g*]:7g) — HomO—Mod(J:y g*(“:)
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In particular for 7 = O we have
HomO\X—Mod(Ob(’ 8) — HomO—Mod(Oa 9*5)
or in other words £(X) — (g.£)(S).

1.4.1. Local Types of O—modules. We refer to [St, Tags 03DE, 03DL] for
definitions of various properties of O-modules. Since S € Gchyg is a final
object, [St, Tag 03DN] applies and it suffices for us to define local conditions
for an fppf-covering of S. Quasi-coherent modules are reviewed in Appendix
C. Here we briefly review finite locally free modules.

We call an O—module M finite locally free or locally free of finite type
if for all X € Gchg, there is a covering {X; — X }ier such that for each
i € I, the restriction M|x, is a free O|x,—module of finite rank. Explicitly,
M|x, = (9|7)‘(’1 for some non-negative n; € Z. If n; > 0 for all + € I we say
that M is of finite positive rank. If all n; = n for some integer n then we
say M has constant rank n. Neither of these notions depend on the cover.
If M is finite locally free, then so is Endp(M).

1.4.2. O-Algebras. An O-algebra is an abelian sheaf B: Gchg — Ab to-
gether with sheaf morphisms

O—Band Bo B — B

which makes B(X) into a O(X)-algebra for all X € Schg. It is unital,
associative, commutative, etc., if each B(X) has that property. For an O-
module M, the sheaf Endp (M) is naturally an O-algebra with multiplication
coming from composition as usual.

An O-algebra A is an Azumaya O—algebra if it is finite locally free and it
satisfies the following equivalent conditions.

(i) The enveloping morphism
A0 A% — Endp(A)
a®b— (z— axd)

is an isomorphism.

(ii) For any U € 2Affg, we have that A(U) is an Azumaya O(U)-algebra
in the sense over rings such as in [Fo] or [Knu, III §5]. In particular,
on 2Affg an Azumaya O-algebra is a sheaf of Azumaya algebras.

(iii) There exists a cover {X; — S}ier such that for each i € I, Alx, =
Endo) . (M;) for alocally free O] x,~module M of finite positive rank.

(iv) There exists a cover {X; — S}ier such that for each i € I, Alx, =
M, (O|x;) for some 0 < n; € Z.

Definition (i) above is from [Gro, 5.1], and definition (ii) is from [CF, 2.5.3.4].

Since an Azumaya O-algebra is locally a matrix algebra, it locally has a
notion of the trace Tr: M,,, (O|x,) — O|x,. These functions are compatible
on X;; and therefore glue into a global O-linear map Trd4: A — O called
the reduced trace of A. The local determinant maps are also compatible and
glue into the reduced norm Nrd4: A — O, which is multiplicative.
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By [CF, 2.5.3.6], whenever A|x = O|% for some X € Schg and n € Z,
the integer n will be a square. If n = m?2, then m is called the degree of
Alx. If Ais of constant rank m?, we say it is of constant degree m.

1.5. Quadratic Pairs. Quadratic pairs are the characteristic independent
analogue of orthogonal involutions and are used to study quadratic forms
and groups of type D when 2 need not be invertible. We refer to [CF, §2.7]
and [GNR]. Background on involutions and quadratic pairs over fields can
be found in [KMRT] and background on involutions over rings in [Knu].

An idnvolution (of the first kind) on an Azumaya O-algebra is an O—
linear order 2 anti-automorphism, i.e., o: A — A such that ¢ = Id and
o(ab) = o(b)o(a). We refer to such a pair (A, o) as an Azumaya O-algebra
with involution. By [CF, 2.7.0.25], any Azumaya O-algebra with involution
will have a cover {X; — S}ier (which in fact can be an étale cover if one
desires) over which (A|x;,o|x;) = (M, (O|x,),m,;) where n, is the adjoint
involution of a regular bilinear form b;: O[¥. x O|Y. — Olx,. If the resulting
b; are all symmetric bilinear forms, i.e., b;(z,y) = b;(y,x), then we call o
an orthogonal involution; if they are skew-symmetric, b;(z,y) = —b;(y, z),
then we call o a weakly-symplectic involution; and if they are alternating,
bi(z,x) = 0, then we call o a symplectic involution. These properties do not
depend on the cover chosen and are not the only possibilities; for example,
a bilinear form can be e-symmetric for some ¢ € O(X;) with €2 = 1. Our
terminology follows [CF] and [GNR] but differ slightly from [KMRT]. In our
conventions, if 2 =0 € O, then orthogonal and weakly-symplectic coincide.
In all cases, a symplectic involution is also weakly-symplectic and so we
allow symplectic involutions to also be orthogonal.

Associated to an Azumaya O-algebra with involution (A,o) is the sub-
sheaf of symmetric elements Sym 4, C A, which is the kernel of the endo-
morphism z — = —o(z) on A. It is an O-module which is finite locally free
if o is orthogonal by [GNR, 3.3 (ii)]. A quadratic pair on A is a pair (o, f)
where

(i) Ais an Azumaya O-algebra,
(ii) o is an orthogonal involution on A, and
(iii) f: Symy, — O is an O-linear map such that f(z+o(z)) = Trda(z)
for all z € A.

We also refer to (A, o, f) as a quadratic triple. If % € O, then the third
condition implies that f = %Trd A is the unique f making (A, o, f) a qua-
dratic triple, see [GNR, 4.3(a)]. The fact that a unique f exists when 2 is
invertible is a reflection of the bijective correspondence between symmetric
bilinear forms and quadratic forms in characteristic not 2. The connection

between quadratic triples and quadratic forms is detailed in [GNR, 4.4] over
schemes or [KMRT, 5.11] over fields.

1.6. Algebraic Groups. We review the groups we need from [CF].
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If B is a unital associative O—algebra which is finite locally free, then the
functor of invertible elements

GL; 5: Gchg — Grp
X — B(X)*,

is called the general linear group of B. If B = Endp(O™) we write GLy g =
GL,,. The multiplicative group is G,, = GLi. The n*™roots of unity are
denoted p,, and are the kernel of the map G,, — G,, given by z — z™.

If A is an Azumaya (O-algebra, then the reduced norm is a group ho-
momorphism Nrd4: GL; 4 — G, and the kernel of this map, i.e., the
group of norm 1 elements, is the special linear group SL 4, [CF, 3.5.0.91]. If
A = Endp(O™), we similarly write SL,,.

The projective general linear group of an Azumaya O-algebra A is the
subsheaf of Autpn(A) consisting of algebra automorphisms. So we may write
PGL 4 = Auto-aig(A). When A = Endp(O™), we write PGL,,. The canoni-
cal projection GL; 4 — PGL 4 sends an element to its inner automorphism
and this projection has kernel G,,.

Orthogonal groups are defined in [CF, §4] for quadratic forms and qua-
dratic triples. In particular, let ¢: O*® — O be a regular quadratic form.
By [GNR, 4.4 (i)] or [CF, 2.7.0.31], it has a corresponding quadratic triple
(M2, (O), 04, fq) where o, is the adjoint involution. The orthogonal groups
are then

0,(X) ={x € GL2y(X) | goz = ¢}, and
OMian (0),00.14(X) = {x € GLgn(X) | og(x) = 27", fo(z_z™") = fo}

for all X € &chg. We have that Oy = Oy, (0),0,,7, DY [CF, 4.4.0.44]. The
group O;r is a smooth affine S—group scheme which is the kernel of the map

(1.6.1) O, — Z/2Z

called the Dickson map in [Knu, IV, 5.1] and called the Arf map in [CF,
4.3.0.27]. An automorphism of a quadratic form induces an automorphism
of the associated even Clifford algebra and the Dickson map sends the qua-
dratic form automorphism to the induced map’s restriction to the center of
the even Clifford algebra. We use the terminology of [Knu].

The projective orthogonal group of a quadratic form is defined to be the
automorphism group scheme PGOyy, (00,7, = At(M2,(0), 04, fg). This
is also simply denoted by PGO,. An automorphism of (Mg, (O), 0y, fq)
similarly induces an automorphism of the even Clifford algebra, and so there
is also a Dickson map PGO, — Z/2Z whose kernel is denoted PGO;. The
kernel of the canonical projection O;r — PGO;r is the center of O;r, which
is isomorphic to py.

We will also work with the symplectic group of an Azumaya O-algebra
with symplectic involution (A, ). As in [CF, §7], this is

SPa.(X) = {z € AX) | o(z) =27"}
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for all X € &chg. The projective symplectic group associated to (A, o) is
PSp 4, = Aut(A,0): the automorphism group as an algebra with involu-
tion. The kernel of the canonical projection Sp 4 , — PSp 4, is the center
of Sp 4, which is isomorphic to .

Finally, we also work with torsors for various groups using the definition
of [CF, 2.2.2.2] or [St, Tag 03AH]. If G: Gchg — Brp is a group sheaf, a
G-torsor is a sheaf P: Gchg — Gets with a map of sheaves P x G — P
such that

(i) P(X) x G(X) — P(X) gives a simply transitive right G(X)-action
on P(X) for all X € &chg, and
(ii) there exists a cover {X; — S}ier such that P(X;) # O for all i € .

The sheaf G itself, viewed simply as a sheaf of sets with right action given
by right multiplication, is called the trivial torsor. We will work with non-
abelian cohomology as in [Gir, 2.4.2], defining H'(S,G) to be the set of
isomorphism classes of G—torsors over S for any group sheaf G.

If P is a G—torsor and X € Gchg, then it is clear that P|x is a G|x—
torsor. When we wish to emphasize the morphism ¢g: X — S we will also
write ¢*(P) = P|x, mirroring the pullback notation for O-modules and
algebras.

1.7. Contracted Products. Given a group sheaf G, a sheaf of sets X
with a right action of G, and a sheaf of sets ) with a left action of G,
the contracted product as defined in [CF, 2.2.2.9] is denoted X AG Y. Tt
is the sheaf associated to the presheaf (X x ))/ ~ where the equivalence
relation ~ identifies elements (xg,y) and (z, gy) for all appropriate sections
zeX,ye), and g € G. If X also has a left action of G, then X AG Y has
an inherited left action, and similarly if ) also has a right action then so
does X NG Y.

In particular, if p: G — H is a group sheaf homomorphism and P is a
G-torsor, then giving H a left action of G through ¢ and a right action on
itself by multiplication, the contracted product P A H will have a right
H-action and by [CF, 2.2.2.12] will be an H-torsor. This is also called the
twist of H by P.

Furthermore, if P is a G—torsor and if ) has additional structure, say
it is a sheaf of groups, rings, modules, etc., and the left action of G is by
automorphisms which respect that structure, then the contracted product
P AG Y will also be a sheaf of groups, rings, modules, etc. This has been
formalized in [CF, 2.1], which we invite the interested reader to consult. The
contracted product P AS Y will also be locally isomorphic to ). Indeed, over
any cover {Y; — S};e; which trivializes P, we will have (P AG )|y, = Vly..

1.8. Stacks. We make use of stacks over the fppf site Gchg defined in Sec-
tion 1.1 though readers familiar with stacks will recognize that the following
discussion also holds over a general site. We recall this notion from [Gir]
(where the French word for “stack” is “champ”), [Ols], and [St].
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First is the notion of a fibered category. We take the following definition
from [Ols, 3.1], specifying all notions to be over the site Schg. Alternatively,
this is [St, Tag 02XJ], where they use the terminology “strongly cartesian”
where we use “cartesian”.

1.9. Definition. Let § be a category with a functor p: § — Gchg. We call
a morphism ¢: u — v in § cartesian if whenever we have another morphism
¥: w — v such that p(w) factors through p(¢), diagrammatically

p(w)
(0 LN p(¥)
X }:) L\@ p(v),

P P

2 -8

then there exists a unique morphism A: w — wu in §, taking the place of the
dashed arrow above, such that the diagram commutes and p(\) = h.

The category §, or more precisely the data p: § — Gchg, is called a
fibered category over &chg if for every x € § and morphism f: Y — p(x) in
Schg, there exists a cartesian morphism ¢: y — z such that p(¢) = f, and
therefore also p(y) = Y. The object y may be denoted y = f*(z) and called
a pullback of z along f. We will call the functor p the structure functor.

In the above definition we say “a” pullback, instead of “the” pullback,
since pullbacks need not be unique. However, they are unique up to unique
isomorphism by [Ols, 3.1]. If the morphism f: Y — p(z) is clear from
context we may write f*(x) = x|y. By [Vis, 3.4], compositions of cartesian
morphisms are cartesian and isomorphisms in § are also cartesian.

A morphism from a fibered category (§,pg) over Schg to another fibered
category (8, pg) over Gchg is a functor ¢: § — & such that pg o ¢ = pg
is an equality of functors into Gchg and ¢ sends cartesian morphisms to
cartesian morphisms.

Given a fibered category p: § — Gchg, for any scheme X € Gchg we
denote by §(X) the subcategory of objects x € § such that p(z) = X,
and morphisms ¢: x — 2’ such that p(¢) = Idx. This is called the fiber
over X. A morphism of fibered categories ¢: § — & induces functors
ox: §(X) = B(X) between the corresponding fibers. We take [Ols, 3.1.10]
as our definition and say that ¢ is an equivalence of fibered categories if every
px is an equivalence of categories.

A fibered category is called fibered in groupoids if F(X) is a groupoid for
all X € Gchg. A convenient fact about categories fibered in groupoids is
the following.

1.10. Lemma. [Vis, 3.22] If p: § — Gchg is a fibered category, then §
s fibered in groupoids if and only if every morphism in § is a cartesian
morphism.
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In particular, this means that if § is a fibered category and & is fibered in
groupoids, then any functor § — & which is compatible with the structure
functors into Gchg will be a morphism of fibered categories.

Following [St, Tag 02ZB] or [Vis, §3.7] (or [Ols, 3.4.7] when § is fibered
in groupoids), given two objects z, 2’ € F(X), we define their internal ho-
momorphism functor

Hom(z,2") = Homg(z,2"): Schy — Gets
Y = Homgy)(zly, 2'y).

Independence from the choice of pullbacks in shown in [Vis, §3.7]. The
restriction maps for this functor are defined as follows. If f: Y/ — Y is a
morphism of X—schemes and ¢: x|y — 2/|y is a morphism in §(Y"), we have
a diagram in §

where ¢, and ¢,/ are cartesian morphisms. Since ¢ is a morphism in §(Y),
we have p(p) = Idy and so tautologically p(y o ¢,) factors through p(¢,/) =
p(¢z). Therefore by Definition 1.9 there is a unique morphism in F(Y”),
which we denote |y’ or f*(¢) when emphasizing f, that takes the place of
the dashed arrow. These assignments ¢ +— ¢|ys give the restriction maps
of the functor Hom(x,z"). When x = 2’/ we write End(z) = Hom(z,x). The
subfunctors of invertible elements will be denoted Zsom(x,z’) and Aut(x)
respectively. If ¢: § — & is a morphism of fibered categories, it induces
natural transformations of functors ¢, 5 : Homg(z, ') — Home (¢(z), p(z'))
in the canonical way, and this restricts to the Zsom subfunctors.

We take our definition of stack from [St, Tag 026F]. This is slightly more
general than the definition in [Ols, 4.6.1], which requires that stacks be
fibered in groupoids.

1.11. Definition. An S-stack, or simply a stack when S is clear from con-
text, is a fibered category p: § — Schg such that the following hold.

(i) For any X € Gchg and objects z, 2’ € F(X), the functor
Hom(x,x'): Schy — Sets
is an fppf sheaf on &ch .

(ii) For any fppf covering {X; — X}ier of Schg, objects z; € F(X;),
and isomorphisms t;;: x| x,; = zjlx, ; in § satisfying the cocycle
condition

Yiklx, i © Vijlx, = Yiklxis
there exists an object x € F(X) and isomorphisms «;: z; Ay X;
in §(X;) such that

bij = ()]s, © (@i)lx,,-
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Intuitively, this means that a stack is a fibered category which allows glu-
ing (or descent) of local objects along glueing data (or descent data). Condi-
tion (i) in Definition 1.11 implies that that the functors End(x), Zsom(x,x'),
and Aut(z) are sheaves as well.

Most of the stacks we will consider consist of categories of sheaves with
certain properties, and are therefore all variations (or more precisely, sub-
stacks as defined in [Vis, 3.29, 4.18]) of the following example.

1.12. Example. Let Ghg, usually abbreviated to just Gh when S is clear,
be the category whose

(i) objects are pairs (X, F: Gchy — Gets) consisting of a scheme X €
Gchg and a sheaf F on the fppf site of schemes over X, and whose

(ii) morphisms are pairs (g, ¢): (X', F') — (X, F) where g: X' — X isa
morphism of S—schemes and ¢: F' — F|x/ is a morphism of sheaves
on Schyr. If (hyy): (X, F") — (X', F') is another morphism, then
composition is given by

(g,p) 0 (h,) = (goh,plxn 01h).

Equipping &h with the structure functor p: &h — Schg sending (X, F) —
X and (g,¢) — g makes &b the fibered category of [Vis, 3.20] where we
take C = Gchg and T to be the fppf topology. For an object (X, F) and a
morphism g: X' — X € Gchg, the pullback is given by the cartesian mor-
phism (g,1dz|,,): (X', Flx/) — (X, F) as outlined in [Vis, 3.1.3]. Since any
cartesian morphism is uniquely isomorphic to one of the form (g,Id ;|X,),
we see that a morphism (g, ) is cartesian if and only if ¢ is an isomor-
phism. The fiber over X € Gchg is the category of sheaves on Gcehy. In
fact, [Vis, 4.11] shows that &b is a stack. Briefly, this is because for any
two F,F' € Gh(X), the homomorphism functor Hom(F,F’) is simply the
sheaf of internal homomorphisms between F and F’ and because &b allows
descent since sheaves can be glued along glueing data as in [St, Tag 04TR].
We call &b the stack of sheaves over Gchg.

There is a notion of twisting objects, similar to the contracted product
discussed above, for objects in a stack. In particular, let p: § — Schg be a
stack and assume we have and object z € F(X) in the fiber over X € Schg, a
group sheaf G: Schy — Grp, and a homomorphism ¢: G — Aut(x). Then,
by [Gir, I11.2.3.1], for each G—torsor P there is an object in §(X), denoted
by P AG z or P A¥ & when we wish to emphasize ¢, such that

(i) P AG x is locally isomorphic to x, and
(ii) by [Gir, I11.2.3.2.1] there is an isomorphism of Aut(x)-torsors

P AG Aut(z) = Tsom(x, P NG )

where the sheaf on the left is given by the contracted product as in
Section 1.7.

We also refer to this construction as the contracted product.
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Most of the stacks we will be interested in are fibered in groupoids and
therefore match the definition of stack from [Ols]. In fact, they are gerbes
in the sense of [Gir| or [St]. We note that the notion of gerbe discussed in
[Ols, Ch. 12], namely p—gerbe, is more restrictive.

1.13. Definition. [[Gir, II1.2.1.1] or [St, Tag 06NZ] (or [CF, 2.2.5.1] in the
split case)] A stack p: § — Schg is a gerbe if

(i) § is fibered in groupoids,
(ii) for every X € Gchg there exists a covering {X; — X }ier such that
each §(X;) is non-empty, and
(iii) for every X € Schg and objects z, 2’ € F(X) there exists a cover
{Xi; = X}ier such that there are isomorphisms |y, = /| x, for all
1el.

1.14. Example. Consider a group sheaf G: Gchg — Grp. Let Tors(G) be
the fibered category over Gehg whose

(i) objects are pairs (X,P) where X € Gchg and P: Schy — Gets is a
G| x—torsor,

(ii) morphisms are pairs (g,¢): (X', P") — (X,P) where g: X' — X is
a morphism of S—schemes and ¢: P’ — P|x is a morphism (and
hence isomorphism) of G|x/—torsors, and whose

(iii) structure functor p: Tors(G) — Schg sends (X, P) — X.

This is a gerbe by [Gir, I11.1.4.5], however we include a justification in our
own notation. The category Tors(G) is indeed a fibered category where the
pullback of an object (X,P) along a morphism g: X' — X in Schg is given
by the morphism (g, Idp|,,): (X', P|x/) = (X, P). Because all morphisms of
torsors are isomorphisms, Tots(G) is fibered in groupoids as any morphism
over Idx is of the form (Idx, ¢) for an isomorphism . Therefore by Lemma
1.10, all morphisms in Tors(G) are cartesian.

For X € Gchg and two objects (X, Py), (X, P2) € Tors(G)(X), the func-
tor of homomorphisms Homsows(q) (X, P1), (X, P2)) is a subfunctor of the
homomorphisms Homep((X, P1), (X,P2)) in 8h. Since G-equivariance of
morphisms can be checked locally, compatible local torsor isomorphism glue
into another torsor isomorphism and so Homaews(q) (X, P1), (X, P2)) is it-
self a sheaf. Similarly, gluing torsors along descent data consisting of torsor
isomorphism will produce another torsor. Therefore, Tors(G) is a stack
over Gchg. Since torsors are by definition locally isomorphic to G, they are
locally isomorphic to each other. Therefore, Tots(G) is a gerbe.

There is a clear inclusion functor Tots(G) — Sh which we claim is a
morphism of stacks. It is straightforward to see that it respects the structure
functors and so we only need to check that cartesian morphism are preserved,
i.e., that the image of any morphism is again cartesian in 6. A morphism
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(9,9): (X',P) = (X,P) in Tors(G) can be decomposed as

X/ 7)/
(IdX/,goJ/ &)
’ gv P‘X/
(X!, Ply)

where (g, Idp|,) is cartesian in &h and (Idx/, ¢) is also cartesian in &h by
virtue of being an isomorphism. Therefore, their composition (g, ) is also
cartesian in GSh as desired. Hence, the inclusion functor Tors(G) — &b
makes the gerbe Tors(G) a substack of Gh.

The following results are analogous to those found in [CF, 2.2.4], which we
borrow some notation from. However, the authors there only consider split
fibered categories and stacks. See [CF, 2.1.2.1] for their notion of fibered
category and [CF, 2.1.3.4] for stack. Because of this, and also because the
result corresponding to Example 1.15 is left as an exercise, we include short
proofs of these facts in our context.

1.15. Example. Let p: § — Gchg be a stack and let X € Gchg. We
call objects =, 2’ € F(X) twisted forms of one another if they are locally
isomorphic, that is, if there exists a cover {X; — X};c; and isomorphisms
x|x, = 2'|x, in F(X;) for each i € I. Note that this definition is independent
of the choice of pullbacks (e.g. [Vis, Remark 3.3]). For an object s € F(5)
we denote by Forms(s) the subcategory of § whose

(i) objects are those z € § (not necessarily in §(S)) such that = is a
twisted form of s, and whose
(ii) morphisms y — = are the cartesian morphisms between y and z in
5.
By [Vis, 4.20], the subcategory of § consisting of the same objects but only
cartesian morphisms, denoted Feart, is itself a stack. It is clear that Forms(s)
is a full subcategory of Fcart. To see that Forms(s) is a substack, we will
apply [Vis, 4.19] after checking that the following two conditions hold.

(i) Any arrow in Feart Whose target is in Forms(s) is also in Forms(s).

(ii) If {X; — X}ier is a covering in Schg and x € Feart(X) is an object
such that the pullbacks z|x, € Forms(s)(X;) for all i € I, then
x € Forms(s)(X).

To check the first condition, consider an object x € Forms(s)(X) and a
morphism ¢: y — x in Feart- Let g = p(p): Y — X be the underlying
map of schemes in Gchg. Since all maps in §eart are cartesian, y = x|y
is a pullback of z along g. Let {X; — X};cr be a cover over which z is
locally isomorphic to s|x. The local isomorphisms z|x, = s|x, restrict to
isomorphisms z|x,x vy = s|x,xxv, and so y = x|y is locally isomorphic to
s|y with respect to the cover {X; X xY — Y };c;. Therefore y € Forms(s)(Y)
and so the morphism y — z is in Forms(s) as desired.
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The second condition is clear since if each z|x, is locally isomorphic to
s|x;, then there exists a refined cover over which z is locally isomorphic to
s.

Finally, we show that Forms(s) is a gerbe. First, since any arrow in
Forms(s)(X) is cartesian, it is an isomorphism by [Vis, 3.3], proving condi-
tion (i) of Definition 1.13. Next, Definition 1.13(ii) is obvious since s|x €
Forms(s)(X). Finally, by definition, all objects of Forms(s) in the same fiber
are locally isomorphic, thus also Definition 1.13(iii) holds. This shows that
Forms(s) is a gerbe.

The following proposition connects isomorphism classes in a stack to co-
homology sets of automorphism sheaves. In the context of [CF], part (ii)
is [CF, 2.2.4.5] and part (iii) follows from [CF, 2.2.3.6]. Part (ii) is [Gir,
I11.2.5.1].

1.16. Proposition. Letp: § — &chg be a stack and let s € F(S). Consider
the gerbe Forms(s).
(i) For any X € Gchg and x € Forms(s)(X), the sheaf Isom(s|x,x) is
an Aut(s)|x —torsor.
(ii) There is an equivalence of stacks ¢: Forms(s) — Torvs(Aut(s)) which
acts on objects by
T = (p($)7190m(8|p(x)7$))

and on morphisms as follows. Let f : y — x be a morphism in
Sorms(s) and p(f): Y — X be the underlying morphism in Schg.
For a chosen cartesian morphism f": x|y — x, there exists a unique
isomorphism f':y > x|y in the fiber Forms(s)(Y) such that the

! "
composition y i—> x|y f—> x 1s f. Furthermore, there is a canonical
isomorphism

g: Isom(s|y, z|y) — Zsom(s|x, z)|y.

Therefore, we define o(f) to be the morphism (p(f),p) where ¢ is
the isomorphism of Ault(s)|y —torsors

¢: Isom(sly,y) — Lsom(s|x, )|y
h s g(f' oh).

A quasi-inverse is given by the contracted product, namely the func-
tor

Torvs(Aut(s)) — Forms(s)
(X, P) — P ANAEIX g 5.

(iii) For any s’ € Forms(s)(S), the sheaves Aut(s) and Aut(s') are twisted
forms of one another as group sheaves. In particular, giving Ault(s)
the left action on itself by inner automorphisms, we have

Tsom(s, s') N ut(s) = Au(s").
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(iv) Denote by H'(S,Forms(s)) the isomorphism classes of the groupoid
Forms(s)(S) and recall that H'(S, Aut(s)) is the set of isomorphism
classes of Aut(s)—torsors. This is a pointed set and there is a bijective
map of pointed sets

HY(S, Forms(s)) — H' (S, Aut(s))
[s'] = [Zsom(s, s')]

where we choose [s] as the basepoint of H'(S, Forms(s)).

Proof. (i): The sheaf Zsom(s|x,x) has a natural right action of Aut(s)|x
given by composition. For any Y € &chy, the action Zsom(s|x,x)(Y) x
Aut(s)(Y) — Zsom(s|x,z)(Y) is simply transitive since any two isomor-
phisms o1, @2 € Zsom(s|x,z)(Y) differ by 7' o o € Aut(s)(Y). There also
exists a cover over which Zsom(s|x, ) is non-empty since x is a twisted form
of s|x by definition. Thus, Zsom(s|x, z) is a Aut(s)|x—torsor.

(ii): As mentioned above, this is [Gir, IT11.2.5.1].

(iii): The map of presheaves

(Zsom(s, s') x Aut(s))/ ~ — Aut(s")
(9:9) > gopog,

where ~ is the equivalence relation defined in Section 1.7, is easily seen to be
well defined and it is bijective whenever Zsom(s, s’) has a section. Therefore,
since Zsom(s, s') is an Auf(s)-torsor, after sheafification it produces a sheaf
isomorphism Zsom(s, s') AS) Aut(s) - Aut(s') as desired.

(iv): This follows from (ii). The equivalence of stacks includes an equiva-
lence of categories Forms(s)(S) — Tors(Aut(s))(S) which in turn produces
a bijection of pointed sets

HY(S, Forms(s)) = H(S, Tors(Aut(s)))
[s] = [Zsom(s, s")]

and the latter cohomology set is by definition H(S, Aut(s)). O

1.17. Remark. If p: § — Gchy is itself a gerbe, then Forms(s) = § by
condition 1.13(iii) and we may apply Proposition 1.16 to all of §. In this
case, we will often view the isomorphism H'(S,F) — H(S, Aut(s)) as
an identification and write expressions such as [s'] € H'(S, Aut(s)) where
s’ € §F(S). This is a natural shorthand and, for example, is equivalent
to considering H'(S, GL,) as the set of isomorphism classes of locally free
O-modules of constant rank 7.

Our main technique throughout Section 3 will be an application of the
following lemma. This lemma is [Gir, I11.2.5.3] and it also follows from [CF,
2.2.3.9].



THE NORM FUNCTOR 21

1.18. Lemma. Let p: § — & be a morphism of gerbes. For s € §(S) there is
an associated morphism of group sheaves @g: Autz(s) — Auts(p(s)). Then,
the map on first cohomology induced by ps is the map

H'\(S, Auty(s)) — H'(S, Aute(2(5)))
[s'] = [p(s")]

where we view H(S, Autz(s)) as the set of isomorphism classes in §(S) and
HL(S, Auts (¢(s))) as the isomorphism classes in &(S).

We also identify equivalences of gerbes using the following Theorem. This
is folklore, but we provide a proof since it is not stated in this exact fashion
in [Gir].

1.19. Theorem ([Gir]). Let ¢: § — & be a morphism of gerbes. Assume
there exists s € §(S) such that the induced group sheaf homomorphism
st Autz(s) — Auts(¢(s)) is an isomorphism. Then, ¢ is an equivalence
of gerbes.

Proof. By [Gir, I11.2.5.1] there is an equivalence of stacks
§ — Tors(Autz(s))
T = (p(a:),l'som(slp(x),x))

and likewise for & — Tovs(Autg(¢(s))). In the case of this second equiva-
lence, we use the quasi-inverse

Tors (Auts (p(s))) — &
(X, P) s P A ()lx ()] x.

where X € Gchg. Additionally, since ¢s is an isomorphism, there is an
obvious equivalence of categories

Tors (Autz(s)) — Tors(Aute (p(s)))
(X, P) = (X, P A?IX Autg (0(5))|x)

which simply interprets an Aufz(s)-torsor P as an Autg(p(s))-torsor by
giving it the left action coming from ¢;!. Therefore, we have a chain of
equivalences

T — Tovs(Autz(s)) — Tors(Aute(o(s))) &
x Tsom(s|p(z), T) APslp() ©(8) lp(a)-

Now, by composing the equivalence § — Tovs(Autz(s)) with its quasi-
inverse, we see that there is an isomorphism

& — Tsom(s|y(y), ) A (3)|p() 8 p(a)-
Furthermore, by [Gir, I11.2.3.11] we have that
(p(ZS’O’ITL(Sb,(m), l‘) /\Aafg(sﬂp(z) S|p(m)) - Isom(s|p(x), l’) NP (10(8)|p(w)-
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Therefore, ¢ is canonically isomorphic to the composition of three equiva-
lences above and is hence an equivalence itself, as claimed. O

2. GLOBALIZING FERRAND’S NORM FUNCTOR

We begin by reviewing Ferrand’s construction over rings from [Fer|, which
generalizes the construction of Knus and Ojanguren [KO] (see [Fer, 5.3]) and
also Tignol’s construction over a field from [Ti]. In the subsequent sections,
we generalize this construction to our setting over a scheme. The norm
functor has also been generalized in various other ways, for example to
quasi-coherent sheaves on algebraic spaces, by Rydh in his thesis [Ry]. The
interested reader can find the details in [RyII].

2.1. Ferrand’s Norm Functor over Rings. Ferrand’s construction be-
gins with the I'-algebra, also called the divided power algebra, of a module.
We summarize this construction and refer to [B:A2, IV,§5.4] and the related
exercises as well as [Ro] for more details.

2.1.1. The Construction. Let R be a unital, commutative, associative ring
and let M be an R—module. We let I'r(M) be the unital, commutative,
associative R-algebra generated by symbols v¢(m) for d € N = {0,1,...}
and m € M, subject to the relations

7(m) = 1rar)
v (rm) = r?y%(m)

d
A1) = 377 () ()
r=0

A (m) (m) = (dl . d2>vdl+d2 (m)

for all d,d1,dy € N, m,n € M, and r € R. Here (dljlcb) = (dj:ciﬁ)! is the
binomial coefficient. We note that [B:A2] uses the notation 4(m) where we
follow [Fer] and use v¢(m). The algebra I'g(M) is N-graded by total degree
of the “exponents”, i.e., setting

k
I'%(M) = Spang <{7d1 (m1)Y® (mg) ...y (my,) | Zdi =d,m; € M})
i=1

gives an N-grading Tr(M) = @gen['G(M). The assignment M + T'r(M)
is functorial in M. Given a morphism f: My — My of R—modules, we set
T'r(f) to be the map defined on generators as

FR(f): FR(Ml) — FR(MQ)
v (m) = A (f(m)).

This is an algebra homomorphism and thus we have a functor I'p: 900 —
Ringsp. The morphisms I'g(f) are also graded morphisms and therefore
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via restriction to homogeneous components we also obtain endofunctors
F%: Moor — MooRg.

Given two R-modules M and N, [Fer, 2.4.1] says that there exists a
unique R-linear map

(2.1.1) p: TH(M) @p TH(N) — IT'4(M @5 N)

with the property that v%(m) @ y%(n) — 7%(m @ n) for all m € M and
n € N.

Now consider a ring extension R — R’. We may consider R’ as an R
module and for d € N obtain the R-module I'},(R’). Using the map of (2.1.1)
and the multiplication of R', m: R’ ® g R’ — R’, we define a multiplication
on I'4(R') by

d [ p! d/pn Hodpf n TR g

PR(R ) QR FR(R ) — FR(R ®r R ) —_— PR(R )

This makes I'4(R’) a unital, commutative, associative R-algebra as it in-
herits these properties from R’. If we are now also given an R'—module M’,
we may similarly view it as an R-module and construct I'4(M’). This can
be equipped with the structure of a F%(R’ )-module, again using the map
(2.1.1) and the map R'®@p M’ — M’ defined by " @ m’ — r'm/ coming from
the R’-module structure of M’. Therefore, the composition

I'(R) @r TH(M') & TH(R @ M) — TH(M')
makes ['4(M’) a T'4(R')-module, as in [Fer, 2.4.6]. This structure has the
property that ¥¢(r') - y%(m') = y4(r'm/).

Now, assume that the ring extension R — R’ is locally free of finite rank d.

We therefore have the determinant map, det: Endg(R’) — R. For v/ € R/,
the determinant of the left multiplication by r’ yields the norm map

(2.1.2) normp /p: R — R.
By [Fer, 3.1.2], there exists an R-algebra homomorphism 7: T'%4(R') — R

with the property that 7(v%(r')) = normp /p(r') for all ' € R'. This is used
to define the norm of an R'~module M’. Namely, the R—module

Npijp(M') =TH(M') B gy 1

where I'}(R') acts on R via m. Since I'}; is a functor, so is Np//p: Modp —
Modg. The norm of each M’ comes equipped with a canonical (non-linear)
function

Upngr e M/ — NR’/R(M/)
m' — y4(m') @ 1.

This function has the property that for all m’ € M’ and v’ € R’, we have
v (r'm') = normp (1) - vap (m'). This can be seen by calculation since

r'm = Al m') @ 1 = (y4() -4 (m')) ® 1
=74 m) @ n(y'(r")) - 1r
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= fyd(m') ® normR//R(r').

2.1.2. Polynomial Laws. While the above description is the essentials of Fer-
rand’s construction, he instead primarily works with polynomial laws. Let
Ringsp denote the category of R-algebras which are themselves associative,
commutative, and unital. For an R—module N, denote by Wr(NV): Ringsp —
b the functor Q — N ®g . Note that Wg is functorial itself. A mor-
phism ¢: N1 — Ny of R—modules gives rise to a natural transformation
Wgr(p): Wgr(Ny) — Wg(Ny) defined over @ € Ringsp by Wgr(p)(Q) =
p®R1: Ny ®r Q — No ®p Q. For two R—modules N; and N>, a natural
transformation of functors Wr(N1) — Wgr(N2) is called a polynomial law.
Of course, Wg(p) defined above is an example. Such examples are linear,
however a general polynomial law need not be. For example, a polynomial
law v: WR(N1) — Wg(Ns) is called homogeneous of degree d if we have
v(qn) = q%v(n) for all Q € Ringsp, r € Q, and m € N; @ Q. We will gen-
erally denote polynomial laws in bold. The canonical, and indeed universal
as explained below, example of such a homogeneous of degree d polynomial
law is

(2.1.3) v Wg(N1) = Wr(TE(N))
which behaves over () € Ringsp by

k
Yomi@g— Y (). () @it gt
=1 (aq,..ey ak)GNk

a1+m+ak:d

By [Fer, 2.2.4], which itself quotes [Ro, IV.1], if v: Wr(N;) - Wg(N2)
is a homogeneous polynomial law of degree d between two R—modules, then
there exists a unique R—module homomorphism ¢, : F‘}%(Nl) — Ny such
that v = Wgr(g,) o v4.

If R — R’ is a finite locally free extension, for any @ € fRingsp the
extension Q — R’ ®p @ is also finite locally free and hence has a its own
norm map. Given a morphism f: ()1 — Q2 in Ringsp, the associated norm
maps are related by the commutative diagram

norm /

R SR Q2 (RF®RpQ2)/Qx2 Q2 1®I1d R@R QQ

(2.1.4) Tld@)f ; TId@f
norm,  p/

R R Ql (R'®RpQR1)/Q1 Ql 1®1d R@R Q2-

Therefore, we have a polynomial law, norm: Wx(R') — Wg(R), given by
the norms. If R’ is of rank d, then the norm is a homogeneous polynomial
law of degree d. The map 7: I’ dR(R’ ) — R used above is simply ¢norm
coming from the universal property of T'%(R').

If M’ is an R'—module and N is an R—module, we may consider polynomial
laws v: Wr(M') — Wg(N). If such a v has the property that

v(r'm’) = norm(r" v (m')
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for all Q € Ringsp, " € R ®r Q, and m' € M’ ®p @, then using the
terminology of Ferrand we say that v is a normic polynomial law. Of course,
norm: Wgr(R') — Wg(R) is a normic polynomial law since the norm is
multiplicative, i.e., we have

NorM R/ »Q)/Q (ab) = NOTM R/ 0)/Q (a)norm(R/®RQ)/Q(b)

for all ) € Ringsp.

2.1.3. Base Change. The construction of the I'-algebra is compatible with
ring extensions as follows, demonstrated in [Ro, II1.3]. Given an arbitrary
ring extension R — @ and an R—-module M, there is a canonical graded
isomorphism of ()—algebras

(2.1.5) ¢q: TrR(M) ®r Q — To(M ®r Q)

YH(m)® g~ q-7 (me1).
Since this isomorphism is graded, for each d it restricts to an isomorphism
of Q-modules ¢f: TH(M) ®r Q — T'4(M ®r Q). In the case R — R’
is another ring extension, then gpé: I'4Y(R) ®r Q — TH(R' ®r Q) is an
isomorphism of ()—algebras.

Since gpé is the restriction of a ring homomorphism, for > a; = d and
m; € M we have

e (Y (ma) ...y (my,) @ q)
d

—o (71 (m1) @ @) - (12 (m3) ©1)..... (7% (i) © 1))
—g 7" (1 @ 1) .7 (my, @ 1),

For our purposes, we will be interested in the following notion of base
change. Consider a pushout diagram of commutative R—algebras, or equiv-
alently simply a pushout diagram of rings,

Rl f, Ql

-1, ]

R#Q

where the left vertical arrow is a finite locally free extensions of rank d,
which then also holds for the right vertical arrow. Moreover, since this is a
pushout diagram, there is a unique isomorphism of R-algebras

(2.1.6) P R @rQ — Q.

However, because we have applications to stacks in mind, we avoid identi-
fying Q" and R’ @ Q.
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2.2. Lemma. Assume we have a pushout diagram of rings as above. Then,
there is a commutative diagram

d rd (¥)
T9(R) 125 T4 (R) ©r Q —2 TH(R @8 Q) —+ T4(Q)

TR Jﬂ'R/@Id J/TFR’®RQ iﬂ—Ql

Id ®1

f

where gp‘é is as defined in (2.1.5), wgr is the unique morphism such that
Wr(rr) ov? = norm: Wg(R') — Wg(R), and likewise for mrig.q and
7TQ’ .

Proof. The commutativity of the left square of the diagram is obvious. The
commutativity of the middle square of the diagram is more involved, follow-
ing from the universal properties defining 7p and 7r/g Q-

We consider the canonical isomorphism W (f): Wr(R)|g — W(Q)
arising from the isomorphisms f®Id: ROrP —— Q®qP forall P € Rings
as well as the isomorphism Wo(Id®1g): Wr(R)|g — Wo(R ®r Q)
arising from the isomorphisms R' @ P —— (R ®r Q) ®¢g P. Similarly,
there is an isomorphism

Wo(ph o (1d@1g)): Wa(TR(R))lg — WoTH(R @k Q).
Let v4: Wg(R') — Wg(I'4(R')) be the polynomial law of (2.1.3) and
likewise let 7sz Wo(R ®r Q) — WQ(FdQ(R’ ®gr Q)) be the analogous
polynomial law for R’ ® g Q. We claim that the diagram

Wr(R)lo — 1% Wt (m)

J{WQ(Id ®1Q) lWQ(gaon(Id ®1Q))
d

Wo(R ®r Q) —2s Wo(I'h(R 95 Q))

commutes. For P € Ringsg), one can trace the image of an element Sk e
p; € R’ ®p P through the diagram, obtaining

k
S v @p; ST M) () @ pY L
=1

l ay+...+ap=d
k [

Z(ré@lg)@pi — Z Y (ri ®@1g) ...y (r, ® 1g) ® pi* ... pik
i=1 (a1,...,a})ENK
a1+4.4+ak:d
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which justifies our claim. Next, we let normp : Wg(R') — Wg(R) be
the normic polynomial law associated to the norm of R’ and likewise we let
normpg,q: Wo(R ®r Q) - W(Q) be the one associated to R’ ®@p Q.
We claim that the diagram

normpg |

Wr(R)lq Wr(R)lq
JWQ(Id ®10) lvv@(f)
Wo (R ®r Q) MRS Wo(Q)

commutes. For a ring P € Ringsg this diagram becomes

R’ ®R p norm(R/®Rp)/P P 1p®Id R ®R p

l(ld ®1g)®Id H Jf@ld
NOIM((R/® pQ)®q P)/P 1o®Id

(R orQ)® QP Ree P Q Q@g P,

The right square clearly commutes. The leftmost arrow in the diagram is an
isomorphism of P—-modules and the determinant respects such isomorphisms.
In particular, the determinant of left multiplication by z € R’ @p P will
be the same as the determinant of left multiplication by (Id®1g)(z) €
R ®@r Q) ® QP. Thus, the left square commutes and hence the original
diagram commutes as claimed.

Therefore, we have a commutative diagram

normpg |

4| Wg(mg)|
Wr(R)|g — % WR(TL(R))g —— " Wr(R)|q
JWQ(Id@Q) lWQ(@%O(Id‘@lQ)) Jch(f)
d

Wo(R 5 Q) —2s Wo(I'h(R 95 Q)) Wo(Q).

W

The composition Wq(f) o Wgr(mg)|g o WQ(gpé o (Id®1g))~! appears over
P € Rings(y as the outer edges in the following commutative diagram.

7TR/®IC1

I'L(R) @p P R®p P
Tcan@Id (Id ®1Q)®IdJ{
T ®Id)RId
(T4(R) @r Q) ®g P [ @10)® (R®rQ)®q P |feld
T(cpé)*l(g)ld can®ldl

TH(R ®rQ) ®q P Qeq P
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By instead using the bottom rectangle, we obtain the equality
Wo(f)oWr(mr)lgoWa(pho(ld®lg)) ™" = Wo(cano(rr @1d)o(ph) ™).

Finally, the universal property which defines mr/g o then enforces that

TReRQ = cano (Tp ®1Id) o (gpcé)_l

as desired. Thus the middle square commutes.
For the commutativity of the right square we have a similar argument.
We consider the commutative diagram

noer/

T

Wo(Q) —2 s Worh (@) —272) Wiy (@)

TWM) , TW@@‘Z?W)) H
Y
Wo(R @, Q) — Wo(Th(R @1 Q) Wo(Q)

W

where it is clear the left square commutes and the outer square involv-
ing the norms commutes because the determinant is invariant under mod-
ule isomorphisms as above. Therefore, since Wg(mg) o Weo(T' dQ(¢)) =

Wo(mg o F‘é(zﬁ)), the universal property of mp/g . enforces that

TRerQ = TQ o TH(1)
as claimed. This finishes the proof. O
2.3. Lemma. Consider a pushout diagram of rings

R/ f, Q/

-1,

R$>Q

where the vertical arrows are finite locally free extensions of rank d.

(i) For an R'—module M’ there is a canonical isomorphism of Q-modules

9D,M’: NR’/R(M,) ®r Q = NQ’/Q(M/ QR Q,)
I I
(PH(M") ®ra gy R) @R Q Fo(M' @r Q) ®ra @) @

(v (mh) ... 4% (m}) ® 1) @ ¢ —— ¥ (M) ®1)...4%(m}, ® 1) ® f(r)q

for a; € N with > a; = d.
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(ii) There is an isomorphism of functors

0p: Npr(_) ®r Q@ — Ngrjo(_ ®r Q')
induced by the isomorphisms of (i).

Proof. (i): Because D is a pushout diagram, we have a unique isomorphism
Y: R ®pQ =+ Q' as in (2.1.6). This isomorphism also gives us an isomor-
phism

(1d ®1)®1d
—

s M @5 Q M @p R 9rQ L% M @

which is ¢—equivariant. Now, we consider the following composition of iso-
morphisms

can

(CH(M") ®ra gy R) ®r Q T (TH(M') O Q) ©rd (ropq (R R Q)

p‘é@can d ,
— T @R Q) @y (repg) @

I'd () @1d
Q—>FCCZQ(M/ O/ Q,) ®Fg(Q’) Q

where gp‘é is the isomorphism of (2.1.5) and the final two isomorphisms are

well-defined due to the results of Lemma 2.2. Tracing an element through

this composition yields

(Y (mh) ..y () ® 1) @ ¢ = (Y () ..y () ® 1) @ (r @ q)

=y (M) @ 1q) ... ™ (g, ® 1) ® f(r)g
=y (m) @ 1gr) ...y (m), @ 1) @ f(r)g

which is the claimed formula.

(ii): The fact that €p is a natural transformation follows from the functo-

riality of the I'-algebras. In particular, for a morphism ¢: M| — My of
R’~modules, tracing an element of Ng//p(M7) ®r Q through the diagram

0 (M)
Npyp(M) 9 Q ——2" Noijo(Ms @r Q')

TNR’ /r($)®1d TNQ/ /q(o®1d)
, 0p(M7) , ,
Npyp(M]) ®p Q@ ————— Ny jo(M; @p Q')

yields, using the formula of (i) above,

Y (P(mh)) -y (P(my)) @ r @ q = " (P(my) @1) ...y (¢(m)) @ 1) @ f(r)g

[ [

Y (mh) .y (M) @ r ® ¢ ———— Y (m) @ 1) ...y (m), @ 1) ® f(r)g

and so we see the diagram commutes. O
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2.4. Remark. In the case when Q' = R'®rQ, Ferrand states that there is an
isomorphism of functors Np/p(_)®rQ = N(pg,q)/Q(_®@rQ) as his prop-
erty (N2) in [Fer, §1]. Composing this with the isomorphism N(rs ,0)/0(p),
where p: M'®pQ ~+ M'®@p (R'®rQ) is the canonical isomorphism, yields
the isomorphism of Lemma 2.3(ii) above.

2.4.1. Universal Property. For an R'-module M’, Ferrand assembles the
canonical functions vy : M" — Npijp(M') from Section 2.1.1 into a normic
polynomial law as follows. For @) € Ringsp, we define the function

o
vy (Q): M'®rQ Nipora)/oM @k Q) =% N r(M') @k Q

where the final map ¢¢ is the isomorphism ((cde) ® can) o can)_l, using the
notation of Lemma 2.3. For a morphism f: Q1 — @2 in Ringsp, we claim
the diagram

YM'®RQ

VM'®RQ (0%a)
M ®r Q2 — 3’ N(ri@r0,)/0:(M' ®r Q2) — N /p(M') ®r Q2
TId@f TId@f
YM'®rQ

@
M' ®@pr Q1 — Nraoro)/o (M ®@r Q1) TN Npyp(M') ®r Q1

commutes. Indeed, tracing an element along the bottom and up we get
k k

Somi@ g =y (Y mi®a) ® 1,
i=1 =1

= Y A mieq).. % (m, @ q) ® 1o,
= Z qtlll s QZ’WC” (m/l ® 1Q1) oy (m;c ® 1Q1) ®1g,

= Z 7a1(m,1®1Q1)---’7ak(m§c®1Q1)®qa}l--'qgk

Sl ) ) @ 1 | @ gt g

— Z Y (mh) . % (my) @ 1k | @ flgft ... qiF).
(a1, ak)ENk
a1+.4.+ak:d

Instead, going up and then across the top begins by sending

k k
domi@qier Y mi ® fla),
i=1 i=1
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which then follows similar computations to arrive at

S ATy % (ml) @ 1g | © fla)™ ... flar)®.

(ag,.- ak)ENk
a1+.4.+ak:d

The two paths are therefore equal.

This shows that vy : Wr(M') — Wgr(Ng/ /gr(M')) is a well-defined nat-
ural transformation given over @ € Ringsyp by vy (Q), justifying our pre-
vious notation. It is clear that this is a normic polynomial law since each
vy is normic. Ferrand proves that this polynomial law has the following
properties.

2.5. Theorem (Ferrand). The functor Np p: Modr — Modr together
with the normic polynomial laws vyy: Wr(M') — Wr(Npgig(M')) for
every R'-module M’ have the following properties.

(i) Np/r(R') = R and vp = norm.

(ii) The pair (Ng/r(M'),var) is universal among such pairs. If (E,v')
is an R—module and normic polynomial law v': Wr(M') — Wg(E)
pair, then there is a unique morphism of R—modules p: NR//R(M/) —
E such that v/ = Wgr(p) ovyy.

(iii) The universal property of vy above induces the image of the norm
functor on morphisms. If ¢: M{ — My is an R'-module morphism,
then vy, o Wg(p) is a normic polynomial law and

Ng/r(@): Ngyp(Mi) = N yr(Ms)
s the unique map making the diagram below commute.

V]\/[/

Wg(M{) —— Wgr(Ng r(M]))
J{WR(S") lWR(NR’/R(CP))
Wg(Mj) — Wgr(Ng r(Mj))

To give an example of the form these norms take, and for later reference,
we quote another result of Ferrand.

2.6. Proposition ([Fer, 3.2.4]). Let S1,..., Sy be finite projective R—algebras
of ranks dy, ..., dy,, respectively. Put S =51 X --- x Sy, and let F' be an S—
module. Thus, F = Fy X --- X F,,, for S;—modules F;, i = 1,...,m. Then,
there exists an isomorphism

¢: Ng/p(F1 X -+ X F,) — Ng, /r(F1) ®g - -- ®r Ng,, /r(Fn)
of R—modules such that the normic polynomial v satisfies
(Wr(®) ovp)(z1,. .., 2m) = Vi (21) @ -+ Qvp, (Tm)
forz; € F; ®@p Q, Q € Ringspg.
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In particular, if S = Rx---x R and E1, ..., E,, is a family of R—modules,
then we have an isomorphism

¢: Ng/p(E1 X -+ X Ep) — E1 ®p -+ ®p En,
such that the normic polynomial law of E1 X - -+ X Eyp, is given by

(WR(¢) o VE1><~~~><Em)(y17- . .ym) =Y QYm
fory; € E; @r Q.

The existence of the isomorphism ¢ in Proposition 2.6 is proven in [Fer,
3.2.4] and the formulas for the normic polynomials can be inferred from the
proof of loc. cit.

The universal normic polynomial laws are compatible with the isomor-
phisms 6p of Lemma 2.3(ii) in the following way.

2.7. Lemma. Consider a pushout diagram of rings

R/ f, Q/

where the vertical arrows are finite locally free extensions of rank d. Consider
the natural isomorphism Op of Lemma 2.3(i1). Let : R' ®p Q — Q' be
the unique isomorphism of (2.1.6) and ¥pp: M' @p Q — M' @p Q' the
associated isomorphism of Q-modules. For any R'—module M’, the universal
normic polynomial laws are related via the diagram

vyl
Wr(M')|o M2 W (N r(M")lo

Tcan

Y Wo(Nr/r(M') @R Q)

ijwD(M'))
Y(M'® piQ")

WQ(M’ KRR Ql) _ WQ(NQ//Q(M/ KRR Ql))

Here, the canonical isomorphism is given over P € Ringsq by the canonical
map (Ng /(M) @ Q) ®q P — Np//p(M') ®g P and the isomorphism ¢/
s given by

-1
a®©ld

P
(M/ QR Q/) ®q P ——— (M/ ®Rr Q) ®QP—CEIL>M/ ®r P.
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Proof. Working over a ring P € Rings(), the diagram becomes

MepP —D | Ny p(M) @R P
Tcan
' (P) Nryp(M') ®r Q ®q P
l@D(M’)®Id
Va1 (P)

(M'@r Q) ®Q P ———— Ngjo(M'@r Q) ®q .

Starting in M’ ® g P and tracing an element, we obtain

k
> mi@p — S m(m)). ™ (my) @ 1k | @pit .. pik
=1

(ay,...,ap)ENK
ar+...+ap=d

Z Y (my) ...y (my,) @ 1r | ® 1g @ pi* ... pp*

k
Y (miel)@p; = Yo tmien. Ayt mel)ele | @p .. pt
=1 (ay,...,ap)ENK
ay+...4ap=d
which verifies that the diagram commutes as claimed. O

2.8. The Norm of Modules. We globalize Ferrand’s norm to our setting
over a scheme by applying the constructions of Appendix C to produce a
norm morphism of stacks.

2.8.1. The Construction. We will apply Proposition C.10 in the following
context. First, as in Appendix C.8, define the stack of quasi-coherent mod-
ules over S, denoted p: Q€oh — Schg, to have the following.

(i) Its objects are pairs (X, F) with X € &chg and F a quasi-coherent
O|x-module on Gchy.

(ii) Its morphisms are pairs (g,¢): (X', F') — (X, F) where g: X' = X
is a morphism of S-schemes and ¢: F' — ¢*(F) is a morphism of
O|x—modules. Composition is given by (g, p)o(h, 1) = (goh, h*(¢)o
V).

(iii) Its structure functor is given by (X, F) — X and (g,¢) — g.

For a scheme X € Gchg, the fiber QCoh(X) over X is the category of
quasi-coherent Q| x—modules.
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Next, define the stack of quasi-coherent modules over a finite locally free
extension of rank d, denoted p: Q(’:ohﬁf — Gchg, to have

(i) objects which are pairs (h: 7" — T, M) where h: T' — T is a finite
locally free morphism of constant rank d in Gchg and M is a quasi-
coherent O|p—module,

(ii) morphisms which are triples

(f,9.90): (j: X' = X, N) = (h: T' = T, M)
where f and g are morphisms in Schg such that

X 2T

]
x .7

is a fiber product diagram and p: ' —= g*(M) is an isomorphism
of O|x/—modules, and
(iii) structure functor given by (h: 7" — T, M) — T and (f,g,¢) — f.

In the notation of Appendix C.8, we write QCoh%; = QCoh; where J is the
stack of finite locally free morphisms of constant rank d in Gehg (viewed
as a full substack of the stack of affine morphisms 2Aff%or, also defined in
C.8). For each object h: U' — U in 7J, i.e., each finite locally free morphism
of constant rank d, where U and U’ are affine schemes, we set

Fr = NO(U’)/O(U): QﬁUDO(U/) — Dﬁoao(U)

to be Ferrand’s norm functor. For each fiber product diagram in Gchg of
the form on the left below with associated pushout diagram of rings on the
right below

v o) —— OV’
S
v ., OU) —— O(V).

where h,h/ € J and where U,U’,V,V’ are all affine schemes, we use the
isomorphism of functors

Op: Fn(_) ®ow) OV) == Fu (_ 20w O(V')).

from Lemma 2.3(ii) corresponding to the pushout diagram of rings. We now
verify that these isomorphisms satisfy the required assumptions.

2.9. Lemma. For the stack J of finite locally free morphisms of rank d in

Gchg, the functors Fp, and natural isomorphisms 0p chosen above satisfy
assumptions (C.8.c) and (C.8.d).
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Proof. To verify assumption (C.8.c) holds, consider a fiber product diagram
of schemes and associated pushout diagram of rings of the following form.

U —— U oU') == o)
S I .
U—=1, o) =—— O(U).

For any O(U’)-module M’, we trace an element through the diagram
Nowjow)(M') ®ow) OU)
J{eD(M/) can

Nownowy (M @owry OU"))

~

Nownow)(M')

Nowy o) (can)
to obtain

(Y* (m]) ... y% (my,) ® u1) @ uy

I T

YU (my @ 1) .. oy% (mp, © 1) @ uug —— Y™ (M) ... Y% (m},) @ uyug
where Y a; = d and m/ € M'. This shows that the diagram

Fn() ®@ow) OU)

J{e D can

F (can)
Fn(_ ®o@n OU")) = Fn()
commutes as required.
To verify assumption (C.8.d) holds, consider fiber product diagrams of
affine schemes

V/ f/ U/ W/ g' V/ W/ flogl U/
Dy = lh’ ho Dg = lh” lh/ ; and Dyog = lh” lh
v LU w9,V w L%,

with h, R/, h” € J and the associated pushout diagrams of rings

o L oy oWy L ow) ow’) L% o)
Th* h/ﬁ h,*T h//*T and hﬁ h//*T
ow) L o), ow) - ow), ow) L% o).
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For an O(U’)-module M’, we claim that the diagram

Nowow) (M) @0y OW)
(Nown 0wy (M) @owy O(V)) @0y O(W)
lépf(M’)®Id
Nown oy (M @owy OV')) @0y O(W) 0D o (M)
J{QDg(M’@@O(U/)O(V'))
Nowjow) (M @owy OV')) @pnry O(W'))

Nowy ow)(can)

Nowow)(M' @@y O(W'))

commutes. Indeed, this can be seen by tracing an element through the
diagram. For @ = (a1,...,a;) € N¥ with Y a; = d and m/ = (m},...,m}) €
(M")k, we use the notation v%(m/) = v (m})...y% (m}). We have

(Y (M) @u) @vew ——— (Y (m) ®u) @ g*(v)w

|

(Y (m/ @ 1own) @ f*(u)v) @ w

!

Y @ Lown ® lowy) @ g* (f*(u)v)w

T

Y’ @ Toawry) @ (f 0 9)* (u)g* (v)w
=" (m' @ Town) @ g*(f* (u)v)w

for all u e O(U), v € O(V), and w € O(W), which shows that the diagram

(Frn() ®ow) OV)) @y OW) —2— Frn(_) ®ow) O(W)
l@pf@)ld

Fr (_®own O(V")) @0y O(W) 0D foq

o
Fp(can)
Frr (_ @own OV") @0y OW')) +——"Fu(_ Qo O(W'))

commutes as required. This finishes the proof. O
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Lemma 2.9 allows us to apply Proposition C.10 to our choice of functors
and natural isomorphisms, yielding a stack morphism

(2.9.1) N: Q¢obl, — QcCoh

which we call the norm morphism. Since Proposition C.10 uses the con-
struction of Lemma C.7, for each h: T/ — T in J we have a norm functor
Npoyp: QCoh(T') — QCoh(T') between categories of quasi-coherent mod-
ules. In particular, for a finite locally free cover T' — S of degree d of our
fixed base scheme S, we have a norm functor

(2.9.2) Nps: Q€oh(T) — Q€oh(S).

By construction, this functor has the property that for M € Q€oh(7T') and
U € Affg, we have NT/S(M)(U) = NO(TXsU)/O(U)(M(T x s U)). Further-
more, the restriction along a morphism V' — U in 2Affg has the following
nice expression,

(2.9.3)  Norxsvy/ow)(M(T xsU)) = Norxgv)/ow) (M(T xsV))
V(W) @ u = AT (mlrxgy) ® uly
for m = (my,...,mg) € M(T xg U)* and u € O(U).

2.9.1. The Universal Normic Polynomial Law. Let T'— S be a finite locally
free cover of degree d and consider the norm functor Ny /g: Q€ob(T) —
QCoh(S) of (2.9.2). Theorem 2.5(ii) is preserved in a sense for this globalized
norm functor. Since f: T — S is finite locally free, there is a canonical norm

norm: f,(O|r) - O

defined in [St, Tag 0BD2] or [EGA, II 6.5.1] for sheaves on schemes, but
which generalizes immediately to sheaves on Gchg. It is the globalized
version of the norm of a finite locally free ring extension as in (2.1.2). For
a quasi-coherent O|p—module M, we define a normic polynomial law to
be a natural transformation v: f,(M) — N, where N is a quasi-coherent
O-module, such that
v(tm) = norm(t)v(m)
for all appropriate sections t € f,.(O|r) and m € f.(M). For a fixed O|p—
module M, we can form the category of normic polynomial laws, denoted
NPLy/5(M), whose
(i) objects are pairs (N, v) where N is a quasi-coherent O-module and
v: fs(M) — N is a normic polynomial law, and whose
(ii) morphisms (N,v) — (N, V') are O—module maps ¢: N'— N’ such
that v/ = powv.

2.10. Proposition. Let f: T — S be a finite locally free morphism and let
M be a quasi-coherent O|p—module. Then, there is a normic polynomial law
vam: f«(M) = Np/g(M), given over U € Affg by the function

Umrxst): M(T xs U) = Norxsvyow) (M(T x5 U))
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of Section 2.4.1, such that (Ng,s(M), v r) is an initial object in the category
NPLy g(M).

Proof. We first check that the proposed functions over each U € 2ffq as-
semble into a natural transformation of sheaves on 2Ajfg. Let g: V' — U be
a morphism in Affg. We then have a fiber product diagram

TXSVLTXSU

r= ] !

vV —L U

in &cehg. To shorten notation, we set

R=0() R = O(T xgU)
Q=0() Q' =0(T xsV)
M(/JZM(TXSU) M‘//ZM(TXSV).

Because this is a fiber product diagram, there is a canonical isomorphism
o't M, ®r Q' — M]; ®r @ and since M is quasi-coherent, there is a
canonical isomorphism p: M{; @ Q" — M{,. We have a diagram

Vart
My, v N (M)
14 TNQ’/Q(:D)
I/]\J/ ®/ Q’
M/U Rp Ql - YR NQ’/Q(M/U QR Q,)
T%(M,'])
£ (M)(9) o N (M) ©r Q N5 (M) (g)
Vart H
M} ®r Q Npr(M3) @5 Q
Id®1 Tld ®1
MY, "y N yr(M})

where the top square commutes by Theorem 2.5(iii), the middle square com-
mutes by Lemma 2.7, and the bottom square commutes because Ferrand’s
universal normic polynomial law vy, : Wr(Mf;) — Wg (Np/r(Mr)) is a
natural transformation. The two faces involving curved arrows commute by
definition. Hence, we have a polynomial law

v f«(M) = Npjg(M)
which is clearly normic since each vy, is so.
To justify that this polynomial law has the claimed universal property, let

v: fo(M) — N be another normic polynomial law into a quasi-coherent O—
module. Fix an affine scheme U € 2Affg and a morphism g: W — V in 2Ajf;.
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Using the same notation as above, as well as O(W) = P, O(T xg W) = P/,
and M(T xg W) = My, we have a diagram

v(W)

Ml @z P «>— M/, ®@p P — M}, NW) +2— N(U) @ P

}d ®g* }d ®g"™ L‘* (M)(g) N(g) }d ®g

M, oRQ = M or @ —— M, Y% A1) N(U) R Q

[

and hence we may take the long horizontal compositions as vy (V) and
vy (W) respectively to define a normic polynomial law vy: Wgr(M{) —
Wgr(N(U)). Therefore, by Theorem 2.5(ii), there exists a unique R-linear
map ¢y : Nyys(M)(U) = Npyr(M;) — N(U) such that Wr(du) ovyy =
vy. For the affine scheme V', we similarly obtain a (Q—linear homomorphism
¢v: Npjs(M)(V) — N(V). Due to the isomorphisms M, = M{; ®r Q and

~

N(V)ZN(U)®rQ as well as the uniqueness of ¢y, we will have a diagram

I [

Nrr(Mir) ®r Q So®l, NU)®rQ

Tld ®1 Id®1

N r(Myy) ———— N(U)

which shows that the various ¢y assemble into a map ¢: Npg(M) — N
which is O-linear and satisfies ¢ o vy = v. If ¢o: Npyg(M) — N is any
other such map, then in a similar manner to above we can extract a natural
transformation

po,u: Wr(Mf;) = Wr(Ng (M)

satisfying Wgr(¢p2 1) o v My, = VU- Then, uniqueness of ¢y requires that
¢2.u = ¢y and since this holds for all U € Ajfg, we must have ¢ = ¢
globally. Thus, ¢ is the unique such morphism as desired. (]

For an O|r-module M, we will refer to v: fu(M) — Np (M) as the

universal polynomial law associated to M. The analogue of Theorem 2.5(iii)
also holds.
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2.11. Corollary. The universal property of Proposition 2.10 above induces
the image of the norm functor on morphisms. If ¢o: My — My is a mor-
phism of quasi-coherent O|r-modules, then v, o f(@) is a normic poly-
nomial law and Nr,s(p) is the unique O-module map making the diagram

foM1) 25 Npg(My)

lﬁdw) iNTﬂﬂ¢)
Fo(Ma) =225 Ny g(My)

commute.

Proof. Tt is clear from the explicit definitions of v, as well as Np/g () that
the above diagram commutes. Therefore, the uniqueness claim follows from
Proposition 2.10. O

The next corollary shows that the universal normic polynomial law is
stable under base change.

2.12. Corollary. Consider a fiber product diagram in Gchg

T —— T

D= Jﬂ lf
S —— S
where f: T — S is finite locally free of degree d and hence so is f': T' — S’.
Then, for any M € Q€oh(T), the diagram

V(M)

fiM|11) — Nprygr(M|7v)

I Joo

foM)ls Z N (M)

commutes. Here, 1 is the canonical isomorphism coming from the isomor-
phisms T xg X — T'xg X for any X € &chg and ¢p is the isomorphism
of Lemma C.9.

Proof. We may check over affine schemes U € Afjfq, where the diagram
becomes

VM(T! x g/ U)

M(T" x5 U) ———— Norix g u)/00) (M(T" x5 U))

Jwam J¢D

VM(Tx gU)
M(T x5 U) =52 Noyirw sy jo) (M(T x5 U)).
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Tracing an element through yields

m —— yi(m ) ®1

l l

m|rxsu —— Y |rxg) © 1
where ¢p is the composition
Y m) @1 (Y(m) @ 1) @ 1= 74 (m' @ 1) @ 1 7 (mIpxgv) © 1.
This verifies that the diagram commutes. O

We will need the following result for the next section.

2.13. Lemma. Assume thatT — S is finite étale of constant degree d. If M
is a locally free O|r-module of constant rank r, then Ny g(M) is a locally

free O-module of constant rank r¢.

Proof. By Lemma 1.3 we may examine the restriction of Ny,g(M) to Affg.
There, for each U € Affg the O(T x gU)-module M(T x gU) is projective of
rank 7. Therefore, by [Fer, 4.1.3], Ny/s(M)(U) is a projective O(U)-module

of rank ¢, which implies the stated claim globally. O

2.14. Example. Consider the split étale cover f: S¥* — S. Let £ be a
quasi-coherent O|gua—module. Any SH4 _scheme is of the form Ty U ... U Ty
for T; € Gchg and the module £ is given by the formula

5(T1 ... |_|Td) = gl(Tl) X ... X 5d(Td)-

where &1,...,&; are quasi-coherent O—modules. Then, we have the follow-
ing.
(i) The norm of £ is Ngua,g(€) = €1 ®o ... ®o Ea-
(ii) We have f.(€) = & x ... x &z and the universal normic polynomial
law is

V:EX..XERERo...Q0 &
(61,...,€d)l—>€1®...®€d.

Proof. Both claims follow from Proposition 2.6 after localizing with respect
to an affine cover. O

2.15. The Norm of Algebras. The functor Np/g of (2.9.2) restricts to
the category of quasi-coherent O|p—algebras. This is shown in Lemma 2.17,
which is a globalization of parts of [Fer, 3.2.5]. Alternatively, when T" — S
is étale, it is a globalization of [KO, 4.5]. In turn, this means that the
morphism of stacks N of (2.9.1) restricts to the stack of quasi-coherent
algebras. However, we begin with two technical lemmas about norms of
modules which will be needed.
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2.16. Lemma. Let f: T — S be a finite locally free morphism and let M
be a quasi-coherent O|p—module. Consider its universal normic polynomial
law (N7 5(M),va) from Proposition 2.10. Then, Np;s(M) is generated
as an O-module by the image of V. Precisely, we mean that Ny g(M) is
the sheaf associated to the presheaf

U+ Spano ({vu(m) | m € £M)(U)})
for U € Gchg.

Proof. This result follows from the analogous statement over rings that is
used throughout [Fer|, which in turn follows from [Fer, 2.3.1]. In particular,
for any affine scheme U € 2Affg over which T'x U — U is of constant degree
d, there exists a cover (depending on d) {V — U} such that V is an affine
scheme, O(U) — O(V) is a finite free ring extension, and Ng/g(M)(V)
is generated as an O(V)-module by the image under vy of fi.(M)(V).
Therefore, any scheme in Gchg has an affine cover on which the presheaf
above and Np,g(M) agree, so the statement follows. O

Now we can argue that the norm functor preserves algebras.

2.17. Lemma. Let T — S be a finite locally free morphism of schemes of
degree d. Let B be an Ol|r-algebra and let vg: f.(B) — Nrp/s(B) be the
universal normic polynomial law of Proposition 2.10.

(i) There is a unique morphism of O—modules
®: Nps(B) ®o Nr/s(B) = Nr/s(B®o), B)

such that ®(vp(b1) @ vi(b)) = V(b1 ® by) where V' is the universal
normic polynomial associated to BRo,,. B. In particular, since B has
an algebra structure morphism pu: B Qo B — B, the composition

& Nr/s(u)
Nps(B) ®0 Npys(B) —— Np/s(B®o), B) —— Nr/s(B)

gives NT/S(B) a natural algebra structure. It is associative or unital
or commutative if B is so. Further, the universal normic polynomial
law vp is multiplicative with respect to this natural structure. If B
s unital, then v preserves the unit as well.

(ii) The norm preserves algebra homomorphisms. If ¢: By — Bs is an
O|r—algebra homomorphism, then Nr/s(¢): Nyys(B1) — Nr/s(Ba)
1s an O-algebra homomorphism with respect to the natural algebra
structures from (i).

(iii) If T — S is finite étale, then ® is an isomorphism.

Proof. (i): The property ®(vp(b1) ® vg(by)) = v/(by ® by) is sufficient to
define a unique O—module morphism by Lemma 2.16. We leave the veri-
fication that the resulting algebra structure preserves being associative or
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commutative to the reader. The multiplicativity of vp follows from the
calculation

vi(bibe) =vpo f*(,u)(bl ® by) = NT/S(,U) o I//(bl ® ba)
= Nrys(p) o ®(vs(b1) @ va(b2)) = va(b1)va(b2)

for by, be sections in f,(B).

Now, assume B is unital. To see that Np,g(B) is also unital and that v
preserves this unit, we argue that vs(1p) is the identity in Np/g(B). Let
x € Ny g(B)(U) be a section over some U € &chg. By Lemma 2.16, there is
a cover {U; — U}ier over which x|y, = 3 ajvp(b;) for sections a; € O(U;)
and b; € f.(B)(U;). Then, the product vz(1p)|y - « is locally of the form

vs(18)|v, - =lv, = ve(18)|v, - Y ajve(b;)
= > aws(1sly, - b;)
=>_ajvs(b))

= x’Ui

where we use the multiplicativity of vz established above. This implies that
vg(1g)|v - * = z and therefore v5(15) is the identity in Ny, g(B) as claimed.
(ii): This can be verified via direct computation on the generators given by
Lemma 2.16.

(iii): This follows since, under the new assumptions, the map is an isomor-
phism over affine schemes by [Fer, 3.2.5 (c)]. O

We now turn our attention to Azumaya algebras and assume that T —
S is finite étale. The following is inspired by [Fer, 3.2.5], where Ferrand
claims that for arbitrary R'—modules M| and M/ there exists an R-linear
map between Np/ /g (Homp (M, M3)) and Hompg (Ng//p(M7), Npjr(M3))
arising via the universal property from a normic polynomial law

W gr(Hom g (M7, M3)) — Wr(Hompg (Ng /r(M}), Ng r(M;))).

We have not been able to verify that Ferrand’s construction of this normic
polynomial law works in the stated generality unless M{ is finitely gener-
ated projective. In any case, we make an equivalent assumption in Lemma
2.18 below in order to ensure that our Hom modules are quasi-coherent. A
similar assumption is made by Knus-Ojanguren in [KO, Prop. 4.4], where
the authors prove Lemma 2.18 over rings. We recall that by [Fer, 5.3], in
the setting of [KO], Ferrand’s norm functor and the one constructed by
Knus-Ojanguren are isomorphic.

2.18. Lemma. Assume that T — S is finite étale. Let My, My € Q€obh(T)
and assume that My is finite locally free. There is a normic polynomial law

n: fo(Homey, (M1, M2)) — Homo(Nyp/s(Mi), Npjg(Mz))
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defined over Uffg as follows. For U € 2Afjfg we consider the fiber product
diagram
TxgU —— T

S
U— 8
and then for

¢ € fu(Homoy, (M1, M2))(U) = Homoy,, , (Milrxsv, Ma|rxsu)
we set n(p) to be the composition

Nirx gty /v (9)

¢p(Mr)
Ny ys(Mi)lu = Nrwsrryv(Milrxsy) —— Nrsgoyu(Malrxsv)
ép(Ma2)
n(p) l v
Nr/s(M2)lu

where ¢p is the isomorphism of functors of Lemma C.9.

Proof. Assuming M is finite locally free ensures that Home), (M1, Mz2)
is quasi-coherent by Lemma C.2. It also ensures that Ny g(M;) is finite
locally free by Lemma 2.13 since we are assuming T' — S is étale. Therefore,
we know Homo (Np/g(M1), Npjg(Mz)) is quasi-coherent as well by another
application of Lemma C.2.

We verify that 17 defines a natural transformation. Let g: V' — U be
a morphism in Affg and let W € Aff;,. We will show that n(p)|y (W) =
N(¢lrxsv)(W) for a morphism ¢ € fi(Homep), (M1, Mz2))(U). Since W is
arbitrary, we will conclude that n(p)|y = n(¢|rxsv) as is required.

We have the following commutative diagram

(TXSV)XVWH (T xsU) XUWHTXSW
TxsV 4>T><SU4>T

fll J f/ J{ f
W W W
hv\ hU\ hg\
14 2 U = S
where the vertical faces are fiber product diagrams. This means that ¢” and
g are isomorphisms. We set

/

TxgU -2, TxgV 2%, 1
DU = lf/ Jf and DV = lfn Jf

v—2 .3 v 9% g
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The morphism n(p)|y (W) is then the composition

Noaxsw)jow)y(Mi(T xs W))

Dy (M1)(W)
No(rxst)yxew)jow)Mi((T xs U) xy W))
T (DT x5V W)1d
No(rxst)yxgw)jow)(M2((T xs U) xy W))
¢y (Ma2)(W)

Noaxsw)jow)(Ma(T xs W)).

Since g is an isomorphism, the restriction map M;j(gj): M1 (T xg W) —
Mi((T xg U) xy W) is also an isomorphism. Therefore, the isomorphism
¢py (M1)(W) takes the form

M) @ w = Y (M (gh) L (m")) @ w.

for @ = (ay,...,ax) with Y a; = d and m” = (mf,...,m{) € My((T xg
U)xyW)E. So, denoting p((T xsU) xy W) = ¢, the morphism n(¢)|y (W)
behaves as

(M) @ w = 4 (M(gh)(m') @ w
= (9" o My(gp))(m))) @ w
= Y (Ma(gh) L o ¢ o My(gf))(m')) @ w

for m’ € My(T x5 W)F. However, since ¢ is a natural transformation, the
diagram

Ml(T Xs W) AL W) MQ(T XS W)

[ria) |Matap)

1

Ml((T X U) XU W) L> MZ((T X U) XU W)

commutes and therefore we have that

n(@)lv(W)(Y* (1) @ w) = 7 (p(T x5 W)(m/)) @ w.
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Next, we consider n(¢|rx sy )(W). This is the composition
No@xsw)/omw)y(Mi(T xs W))

épy, (M1)(W)

No(rxsv)xyw)ow)y(Mi((T x5 V) xy W))

Th o) ((TxsV)xy W))@ld

No(rxsvyxyw)ow)(Ma2((T x5 V) xy W))

by (Ma)(W)

No@xswyjomw)(Ma(T xs W)).

A symmetric argument, simply swapping U for V, then yields that

N(elrxsv) (W) (Y (1) © w) = 1 (o(T x5 W)(m')) @ w
and hence n(p)|y (W) = n(¢|rxsv)(W) as desired. Thus 7 is a well-defined
natural transformation.

Finally, it follows from the explicit descriptions of n(p)(W) above, which
also hold when W € 2ff;;, that n is normic. For t € O(T xg W), the
morphism 7(ty) will have the following formula over W.

n(te) (v (m') @ w) =7 (to(T x5 W)(m')) @ w

=11(t) - A (p(T x5 W)(m')) © w
=7 (@(T x5 W)(m')) ® norme 7« w0 (t) - w
=norm(t) - n(p)(y"*(m') ® w)

(!
Thus, we conclude n(t¢) = norm(t) - n(¢), which finishes the proof. O

2.19. Lemma. LetT — S be a finite étale morphism of schemes of degree d.
Consider a neutral Azumaya O|r-algebra B = Endp),.(Q) for a finitely locally
free Olp-module Q. Let vi: f(B) — Nr;s(B) be the universal normic
polynomial law of Proposition 2.10. Then, there is a unique isomorphism of
O-algebras ¥ making the following diagram commute

fo(B) —=F— Nrys(B

\ J

Endo (N7/5(Q))
where N is the normic polynomial law of Lemma 2.18.

Proof. Since m is a normic polynomial law, a unique such O—module map
U exists by Proposition 2.10. Additionally, since n is induced by the norm
functor, multiplication in endomorphism algebras is by composition, and
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functors respect composition, we see that m is multiplicative. Using this
along with the fact that vz is multiplicative by Lemma 2.17(i), we compute

U(vp(b1)vs(be)) = Vo Np/g(p) o @(vp(br) ® vs(b2))
=W o Npyg(p) o' (b1 © by)
=Wowgo fu(u) (b1 ®bz) = ¥ovg(biby)
= n(b1b2) = n(b1)n(b2)
= U(vp(b))¥(vs(b2))
and so ¥ is multiplicative on the image of vg. Therefore, by Lemma 2.16
and the linearity of W, this means V¥ is multiplicative in general and hence

is an algebra homomorphism. The fact that ¥ is an isomorphism follows
since it is an isomorphism over affine schemes by [Fer, 3.2.5 (c)]. 0

The following is the Azumaya algebra analogue of Lemma 2.13.

2.20. Lemma. Assume that T — S is finite étale of constant degree d. If
A is an Azumaya O|r-algebra of constant degree v, then Npg(A) is an

Azumaya O-algebra of constant degree .

Proof. This follows from Lemma 2.17(i) and Lemma 2.19. There will be
a cover {U; — Stier over which we have Alry,u, = gndO\szui(Qi) for
a locally free O|ryxqy,~module Q; of constant rank 7, and so we have the
isomorphism of Lemma 2.19

NT/S(A)’Ui = NTXsUi/Ui(A’TXSUi) % g’fldO‘Ul (NTXSUi/Ui(Qi))

where Npy v, /0, (Qi) is a locally free O[y,~—module of constant rank r¢ by
Lemma 2.13. Therefore, N7/g(A) is an Azumaya O-algebra of degree rd as

claimed. O

2.21. Remark. Since Lemma 2.17(i) and (ii) show that the norm respects
quasi-coherent algebras, it is immediate that the morphism N : QCof)gf —
QCoh of (2.9.1) restricts to a morphism

(2.21.1) Naig: QAlghe — Q2Alg
between stacks of quasi-coherent algebras. In detail, we define Q2lgd; to be
the substack of QCohd; which has
(i) objects (T" — T,B) € QCobd, where B is a quasi-coherent O|7/—
algebra, and
(ii) morphisms (f,g,¢): (X' — X,B1) — (T" — T, By) of QCohd; where
w: By — g*(Bg) is an O|x/—algebra isomorphism.
Similarly, the unadorned Q%Ilg is the substack of Q€oh which has
(i) objects (X,B) € QC€oh where B is a quasi-coherent O|x—algebra,
and
(ii) morphisms (g,¢): (X', B') — (X, B) of Q€oh where ¢: B’ — ¢*(B)
is an O|x/—algebra morphism.
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3. COHOMOLOGICAL DESCRIPTION

In this section we give a cohomological description of the norm functor
over finite étale covers of degree d by analyzing restrictions of the morphisms
N and Ny of (2.9.1) and (2.21.1) to various substacks of the stacks Q€ohg,
of Section 2.8.1 and D?Zl[gﬁf of Remark 2.21 respectively. In particular, we
will consider the following stacks.

(i) Let Mtod, be the substack of Q€olh whose objects are those (X, M) €
QCoh where M is a finite locally free O|x—module of constant rank
r, and whose morphisms are the cartesian morphisms from Q€obh.
This is equivalent to the split stack Uec, considered in [CF, 2.4.1.8].

(ii) Let A3u, be the full substack of Qg whose objects are those (X,.A) €
QUlg where A is an Azumaya O|x—algebra of constant degree r,
and whose morphisms are the cartesian morphisms of Qlg. This is
equivalent to the split stack of [CF, 2.5.3.10].

(iif) Let 900¢~¢ be the full substack of Q€ohg; whose objects are those
(T" — T, M) € QCobd; where T" — T is an étale cover (of degree d)
and M is a locally free O|»—module of constant rank r, and whose
morphisms are the cartesian morphisms of D(’:ohgf.

(iv) Let 25ul=® be the full substack of QAlgd; whose objects are those
(T" — T, A) € QUlgd, where T" — T is an étale cover (of degree d)
and A is an Azumaya O|p—algebra of constant degree r, and whose
morphisms are the cartesian morphisms of Qlgg;.

Since all four of the above stacks only contain cartesian morphisms, they
are fibered in groupoids by Lemma 1.10. In fact, all four stacks are gerbes,
which we will justify for the first two in 3.1, for Emobf_ét before Lemma 3.3,
and for Azud=¢ after Lemma 3.3.

The results of Lemma 2.20 imply that the norm morphism N : Q(’:ohﬁf —

0 &oh restricts to two morphisms of stacks,
(3.0.1) Natoo : 9002~ — 900, and Ny : Azud ™" — Asu,a.

Since all four of these stacks are gerbes, we will obtain a cohomological
description of Ngpsp and Ny, by applying Lemma 1.18. To do so, we first
identify some of the automorphism sheaves of objects in these stacks.

3.1. Automorphism Sheaves. To begin, if we consider the object (S, O") €
Mod,., then it is clear that its automorphism sheaf is Aut(S, O") = GL,. Any
locally free module of rank r is by definition locally isomorphic to O", the
stack 900, is fibered in groupoids, and the fibers Mod,.(U) for U € Scehg
are nonempty since they contain the free module, so we know 2,00, is a
gerbe. We call (S, O") the split object in 9od,.(S).

If we consider the object (S, M, (O)) € 23u,, then we have Aut(S, M, (0)) =
PGL,. Any Azumaya algebra of degree r is locally isomorphic to M,.(O) and
so Azu,. is a gerbe as well. We call (S, M,.(O)) the split object of Azu,.(S).
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Next, we define some semi-direct products of groups which will appear
later as automorphism sheaves. Let f: T — S be a degree d étale cover of
our base scheme.

First, we define the group f.(GL.|p) x Auts(T). Let X € Gchg and
let g: T xg X — T xg X be an isomorphism of X-schemes, i.e., g €
Auts(T)(X). We then have a pullback functor g* from the category of
O|rx¢x—modules to itself and ¢*(O|rxsx) = Olrxgx. This also means
that g* (Ol x) = Oy x- Therefore, for a section ¢ € fi(GL,|7)(X) =
Autor, (Ol x) we also have that g*(¢) is an automorphism of O[7, _ x-
We use this to define the semidirect product structure on f.(GL.|7) %
Auts(T') on by

v 9=99"(p)
for appropriate sections.

When T = S§“, this group becomes (GL,)? xSy where S; acts on (GL,)?
be permuting the factors as follows. To keep track of position, write S"¢ =
S1U...USg where each S; = S. Let X € Gchg be any scheme. Since X is
possibly disconnected, let X = | |;c; X; be its decomposition into connected
components. Then S"¢ xg X = Licr(X1,:U...UXg;) where each X;; = X;.
For 0 = (0i)icr € Sa(X) = [l;c; Sa(Z) (here S4(Z) is simply the abstract
group of permutations since Spec(Z) is connected), we view it as the scheme
isomorphism which sends component X;; — X, ;); via Idx;.

Now, let M be an O| yua—module. A X" scheme is of the form U;er (Y ;U
... UYy,) where each Yj; are arbitrary X-schemes and the structure mor-
phism sends Y;; — X, ;. The module M will then evaluate as

M( Lier (Yl,i L...u Ydﬂ')) = H(MLZ'(YLZ') X ... X Md,i(Yd,i))
i€l
for O|x—modules M, ;. We express this as M = (My;,...,Mg;)icr. The
pullback module o*(M) will evaluate the X“@-scheme L;c Y u...UuYy,
as if the structure morphism sends Y;; — X, ;) ;. Therefore,

o (M) (Uier (YiaU...UYg5)) = [T(Mo,1),6(Y1) X o X Moyayi(Yaa)),
icl

ie, o"(M) = (Moi(l),iv""Mcri(d),i)iel- So, for an automorphism ¢ =

(@145 - -5 ¢di)icr of M, we have

o (p) = ((pcri(l),h e 7%0cri(d),i)z'el-
In particular, this applies when all M;; = O\TXZ to describe o*(y) for ¢ €
(GL,)%(X). As an example, if X is connected, d = 3, and ¢ = (12 3) is a
cycle, then
" (1,2, 3) = (¥2, 3, ¢1)-

Likewise, we define the group f.(PGL,|r) x Auts(T). With g still as
above, we have g*(&]meXSX Olrysx)) = EndO‘TXSX((’)]%XSX) and so we
also have a semidirect product structure on f,(PGL,|r) x Auts(T) using
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the same formula, just when ¢ is an algebra automorphism. Once again,

when T = SY?, this group becomes (PGL,)? x S,.

3.2. Lemma. Consider objects of the form (f: T — S,0|}) € Modd—¢(S).
(i) We have that

Aut(T' — S, 0lp) = fu(GLy|7) % Auts(T).
(ii) In particular,
Aut(S7t — S, 0%.4) = (GL,) % S

Proof. (i): Let X € Gchg. A section in Aut(T — S, O|7)(X) is a triple of the
form (Idx, g, ) where g € Auts(T)(X) and ¢: Olp,  x = 9 Olpyx) =
Ol o x> and so ¢ € fu(GLy|7)(X). Unsurprisingly, the map of sheaves
Aut(T — S, 0|7) = f(GL,|7) x Auts(T)
(Ids,g,¢) = g

will give our desired isomorphism. It is clearly bijective and it is a group
isomorphism since we have

(Id57 h7 w)(1d57 g, (70) = (Idsv hgv g* (TIZ))(,D)
=hog g @) po=h-v-g-o=(h-¥)(g-)
(ii): This is a specific instance of Lemma B.3. Of course, (ii) also follows

immediately from (i). O

Every degree d étale cover is locally isomorphic to SY¢ — S and likewise
every rank r finite locally free module over such a cover is locally isomorphic
to O|5uq. Therefore, Moo= is a gerbe. By choosing (SV¢ — S, O%La) as
the split object, we view the groupoid Emobf_ét(S ) as the groupoid of twisted
forms of (S“¢, O%ua)- By Lemma 3.2(ii) this groupoid is equivalent to the
category of (GLY) x Sq-torsors. The isomorphism classes in 9o0?%(S) are

classified by H(S, (GL,)% x Sg). In the notation of Appendix B, Mtodd—¢
is equivalent to the stack §(GL, )4 ¢".
3.3. Lemma. Consider objects of the form (f: T — S, M,(O|r)) € Azu?=¢*(S9).

(i) We have that

Aut(T — S, M, (O|r)) = f«(PGLy|7) x Auts(T).
(ii) In particular,
Aut(S" — S, M,.(O|gua)) = (PGL,)? x S

Proof. (i): Because g*(Endo,., ., (Olryay)) = 5MO\TXSY(O’5“XSY)= this proof
is the same as the proof of Lemma 3.2(i) except ¢, ¢ € f.(PGL,|r) will in-

stead be algebra automorphisms.
(ii): This also is a specific case of Lemma B.3 or follows from (i). O
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Via a similar argument as above, any object of nguf_ét is locally isomor-
phic to (Y — S M,(O|gud)). Since (SY — S, M,(O|gua)) is a global
object, every fiber is non-empty. Hence, ng«,uf_ét is a gerbe. We choose
(S9 — S M,(O|gua)) as the split object. We view A3ul=¢(S) as the
groupoid of its twisted forms, see Proposition 1.16(ii). By Lemma 3.3(ii),
this category is equivalent to the category of (PGL,)? x Sq-torsors. The
isomorphism classes in Azu?"¢*(S) are classified by H'(S, (PGL,)% x Sy).

This stack is equivalent to the stack F(PGL,)% ¢ of Appendix B.

3.4. Cohomology Maps. Since we know from Example 2.14 that the mor-

phism Nypep maps (SH¢ — S, O%ua) € Modd = to (O7)®9 = o g Mo0,.q,

functoriality yields an associated group homomorphism between the auto-
morphism groups

NETRUD,(SUd%S,O\gud): (GLr)d X Sd — Ger

and we seek to describe the resulting map Ng\j’(_;: HY(S,(GL,)% x'Sy) —
H'(S,GL,4) on isomorphism classes.
First, we consider the Segre homomorphism
(3.4.1) Seg: GLT Xg:+Xg GLT — Ger
(A1,...,Ag) > A1 ® - ® Ag

which we extend slightly. We view the isomorphism O = (O")®? as an
identification. Let X € Gchg by any scheme. Since X may be disconnected,
let X = |J,c; X; be its decomposition into connected components. The

O(X)-module (’)(Td)(X) is spanned by elements of the form z; ® ... ® x4
with each x; = (2;;)ier € O"(X) = [[;e; O"(Xy).

For each o = (0;)ier € Sq(X) = [lie; Sa(Z), we obtain a linear transfor-
mation of O(Td)(X ) by sending

(xu)ie] ®...x0 (xd,i)iel — (x0;1(1)7i)ie] ®...R (‘Tafl(d),i)iEI‘
Here, z},; is ending up in the o;(k),i-position. For example, if X is con-
nected, d = 3, and o = (1 2 3) is a cycle, then
1 QT2 Rx3 > 23R T X Xa.

This yields an injective group homomorphism j(X): S4(X) — GL,4(X)
and together for all X € Gchg these yield an injective morphism of group
sheaves j: Sq <= GL,q. For clarity in the following computation we assume

X is connected, however the computation in the general case is the same
but with added indices as above. For 4; € GL,(X) and 0 € S4(X), we have

(Seg(A1,...,Ag)0j(0)(z1 ® ... xq)
=(A1®...0 A4)(Ty-1(1) @ ... @ Ty-1(q))
=A1(25-1(1)) @ ... ®@ Ag(T5-1(q))
=j(0) (Ap(y(21) ® ... @ Ay(a)(Ta))
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=(j(0) o (Ag() ® ... ®@ Ay@))) (21 ® ... @ 24)
:(](J) o Seg(AU(l)v s aAJ(d)))($1 ®...0 :Ed)

which shows that Seg(Ai,...,Aq) o j(0) = j(o) o Seg(Asy, -, An(a))-
Therefore, combining Seg with j we get a well defined group homomorphism

(3.4.2) Seg’: (GL,)? xSy — GL,a.
3.5. Theorem. Let Nopyy be the morphism of (3.0.1). The group homomor-

phism
Ngmoa’(sudﬁs’o‘gudy (GLr)d X Sd — Ger

is the homomorphism Seg’.

Proof. Let f: S“Y — S be the canonical projection. By Example 2.14,
Nopoo (SH4 — S, (O|gua)") = O and the universal normic polynomial law
is

v: fu((Olgua)") = (O = (07)%4 = 00
(xl,...,xd) 21 ...Qxq.

Furthermore, v is stable under base change by Corollary 2.12. Therefore,
v|x also has the same universal property as v.

Now, let ¢ = (Ay1,..., A7)0 € ((GL,)? x Sq)(X) be a section over some
X € Gchg. Denote by f': XU — X the standard cover which is the
pullback of f. Here as well we write as if X is connected, but indices may
be added for the general case. The automorphism ¢ acts on (O[%)? by

(xl, R ,a:d) — (Alxaq(l), R ,Adxo.fl(d)).
The composition v|x o ¢: fi((O]xua)") — (9|(er) is also a normic law and it
is described by

(T1,...,xq) — Alxaﬂ(l) ®...Q Adxo.—l(d).

It is therefore clear that the map Seg’ () makes the diagram below commute

172 Td
FL(O)xua)") —2— 0|

Jw JSeg’(sO)
174 Td
POl xua)) —4= O
and therefore, by Corollary 2.11, it is the unique such O]x—module isomor-

phism which does so. This means qud/x((p) = Seg/(p). Since we have that
Nogtoo, (545 O\Tud)(X) = Nxua/x on morphisms by definition, we conclude
k) ) S

that Nopgp,(sud_s SO, = Seg’ as natural transformations, as desired. [

3.6. Corollary. The map on cohomology induced by the Segre homomor-
phism Seg’ of (3.4.2) is

Seg’: H'(S, (GL,)? x Sg) — H'(S,GL,)
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[(T" = S, M)] = [Ngys(M)].

Proof. Since mobf_ét and Mo, are gerbes and we know by Theorem 3.5
that Nopeo, (suass0fr ) = Seg/, this follows by applying Lemma 1.18. O
b b S

Under the Segre homomorphism, the center of each GL, maps into the
center of GL,.a. The center of GL, is also the kernel of the canonical projec-
tion GL,, — PGL, and so there exists a group homomorphism PSeg’ which
makes the diagram

(GL,)% x Sy —_, GL..

(3.6.1) l J

(PGL,)? x Sy —>%, PGL, ..

commute. By viewing an algebra isomorphism in PGL, as simply a mod-
ule isomorphism of a locally free O-module of rank r2, we get a canonical
inclusion PGL, — GL,2 which fits into the commutative diagram

(PGL,)% xSy — (GL,2)% x S,
(3.6.2) lPSeg’T lsegig
PGer - Gerd.

where we add subscripts to PSeg’ and Seg’ to track the ranks.

3.7. Corollary. Let Ny, be the morphism of (3.0.1). We know the auto-
morphism group of (SY — S, M,(O|gua)) € Asul= is (PGL,)? x Sy by
Lemma 3.3(ii) and we have that Nyzu (S — S, M, (O|gua)) M0y (O).
Therefore, we get a group homomorphism

Notgu, (5145, M (O] gLia)) - (PGL,)? x Sy — PGL, ..
This homomorphism is PSeg’.
Proof. By Lemma 2.19 and Example 2.14, we have that
Naggu (5% = 5, M,-(Olgua)) = M0y(O).
Let ¢ € (PGL,)? x Sy. Let ¢ denote this isomorphism viewed as a mor-
phism in moaﬁg ¢ We then have
Notgu (545 M, (0] g1.a)) (P) = Notoo (5045, (0] 0a)) (') = Seg/ (')

where the second equality is given by Theorem 3.5. However, due to dia-
gram (3.6.2), this is simply PSeg’(¢) viewed as a module morphism. Thus,
Notgu, (59448, M, (O] gua)) = PSeg’ as claimed. O

3.8. Corollary. The map on cohomology induced by the morphism PSeg’ of
(3.6.1) is

PSeg’: H'(S,(PGL,)" x Sy) — H'(S,PGL,4)
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(T = S, A)] = [Nrys(A)].

Proof. This follows from Lemma 1.18 because of the result of Corollary
3.7. O

The gerbes nguf_ét and Azu,q fit into the commutative diagram of stack
morphisms

Azud—¢ —— S)Jtobf; et

lNﬂgu lNgmoa

Azu,.a — M00,24

where the horizontal maps are the canonical inclusions (equivalently, forget-
ful functors). By Corollary 3.6 and Corollary 3.8, both the above diagram
and (3.6.2) induce the same diagram on cohomology, namely

HY(S,(PGL,)? xSy) —— H'(S,(GL,2)% x Sg)
ser |5
H'(S,PGL,s) ——— H'(S,GL,24)

where the horizontal maps send isomorphism classes of algebras to their
isomorphism class simply as modules.

3.9. The Norm and the Brauer Group. In this section we fix a de-
gree d étale cover f: T — S of our base scheme and we describe how the
functor Np,5 acts on the Brauer classes of Azumaya algebras. We work
with Brauer-Grothendieck groups as in [CTS], which are second cohomol-
ogy groups. For example, these are denoted Br(S) = prpf(S, Gyn) and
Br(T) = Hfzppf(T, Gm|7). This is in contrast to [CF, 3.6.1.1] where the no-
tation “Br(S)” is used for the Brauer-Azumaya group consisting of classes
of Azumaya algebras up to Brauer equivalence. These two notions are not
isomorphic in general, but they are isomorphic over fields or more broadly
in the case covered by Gabber’s Theorem, see [CTS, 4.2.1].

We will show in Proposition 3.14(i) that the norm functor is compatible
with the trace map Hfzppf(T, Gmlr) — Hf2ppf(5, Gy,) of [SGA4, I1X.5.1.3]. The
work in [SGA4] uses étale cohomology, but by [CF, 2.2.5.15] or [M, II1.3.9],
this agrees with flat cohomology since G,, is smooth. The trace map is
defined as follows. First, as noted in [SGA4, IX.5.1], since f: T"— S is finite
étale, there is an isomorphism prpf(T, Gumlr) = prpf(S, f+«(Gp|7)). Then,
the product map p: G¢, — G,, can have its domain twisted by the Sy-torsor
Tsom(S"? T) as in Lemma A.1, which yields the trace map tr: f.(G,.|7) —
Gy, of [SGA4, 1X.5.1.2]. This trace in turn induces the desired trace map
between cohomology.

Further, for any group sheaf over S, we have a restriction map, res: G —
f+(G|7), which is the diagonal embedding G < G¢ twisted by Zsom(S"¢, T).
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Alternatively, for X € Gchg there are the restriction maps
G(X) = G(T x5 X) = fu(G|7)(X)
@ = Plrxsx

which are part of the definition of the sheaf. These homomorphisms assemble
into the restriction map res: G — f.(G|r). Since G, is abelian, we have
by [SGA4, IX.5.1.4] that the composition

G 22 £ (Glr) 2 Gy,

is the “multiplication” by d map, i.e., z — z? since G,, is written multi-

plicatively. In turn, the composition on cohomology
(3.9.1) H2(S,G) 2 H2(S, fo(Gplr)) L H2(S,Gy)

is also multiplication by d.
We now define two new stacks and compute some of their automorphism
sheaves. First, let T-2100,. be the stack with

(i) objects (X, M) where X € Gchg and M is a locally free O|pyox—
module of constant rank 7,

(ii) morphisms (g,¢): (Y, M1) — (X, M3) where g: Y — X is an S—
scheme morphism and ¢: M; — Moa|ryxsy is a O|rxsy-module
isomorphism, where My is restricted along the map T'xgY — T x g
X which is the pullback of g, and

(iii) structure functor (X, M) — X and (g,¢) — g.

It is clear that T-93100, is fibered in groupoids and since two locally free
modules of the same rank are locally isomorphic, it is also a gerbe. The
fiber T-9Mo0,.(S) is the groupoid of locally free O|r-modules of constant
rank 7. We designate (S, O|}) € T-900,(S) as the split object.

3.10. Lemma. Let f: T — S be a degree d étale cover and let T-9000, be
defined as above. Consider an object (S, M) € T-Mo0,.(S).

(i) We have that
Aut(S, M) = f.(GL(M)).
(ii) In particular,
Aut(S, Olr) = fo(GLy|7).
Proof. (i): For a scheme X € Gchg, a section (g,¢) € Aut(S, M)(X) is an
automorphism of (X, M|rx¢x) in T-9t00,(X). Since it is a morphism in
the fiber T-90t00,.(X), it must have g = Idx and therefore ¢: M|ryox —
Mrygx is an automorphism in GL(M)(T xg X) = fo(GL(M))(X). It is
clear this yields an isomorphism of groups Aut(S, M)(X) = f.(GL(M))(X)
and that these assemble into an automorphism of sheaves as claimed.
(ii): This is immediate from (i) since GL(O|}) = GLy|7. O

Second, we define an analogous stack for Azumaya algebras. Let T-2(3u,
be the substack of T-90d,2 with
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(i) objects (X, A) where X € Schg and A is an Azumaya O|pyxgx—
algebra of constant degree 7,

(ii) morphisms (g,¢): (Y, 41) — (X, As) where g: Y — X is an S-
scheme morphism and ¢: A1 — As|rxgy is an Olpy oy —algebra
isomorphism.

Since all such Azumaya algebras are locally isomorphic, T-2(3u, is a gerbe
as well. The fiber T-3u,(S) is the groupoid of degree r Azumaya O|p—
algebras.

3.11. Lemma. Let f: T — S be a degree d étale cover and let T-2A3u,. be
defined as above. Consider an object (S, A) € T-A3u,.(S5).

(i) We have that
Aut(S, A) = f.(PGL(A)).
(ii) In particular,
Aut(S, M, (Olr)) = f+(PGL,|7).

Proof. The proof of Lemma 3.10 may be replicated here, replacing module
automorphisms with algebra automorphisms and replacing GL with PGL.
O

Now, we define various stack morphism from which we will later extract
a commutative diagram of group sheaves.

res: Moo, — T-NMod, res: Azu, — T-A3u,
(X, M) = (X, Mrxsx) (X, A) = (X, Alrxgx)
(9,9) = (9: Plrxsy) (9,0) = (9, ¢lrxsv)
inc: T-Mod, — zmoa;%—ét inc: T-A3u, — nguf_ét
(X, M) = (Txg X - X, M) (X, A) = (Txs X — X, A)
(9,0) = (9,9, ) (9:0) = (9,9, )
End: Mod, — Aju, T-End: T-Mod, — T-Aju,
(X, M) = (X, Endo| (M) (X, M) = (X, Endoy ., (M)
(9:) = (g, End(p)) (9.0) = (g, End(p))

End®—t moa;‘f—ét — nguf_ét
(X' = X, M) = (X' = X, Endoy,, (M))
(f',9,0) = (f',9,End(p)).

where ¢': TxgY — T'xgX denotes the pullback of g: Y — X. We abuse no-
tation by reusing res and inc for two different restriction and inclusion maps,
however the second instance is the same map but on a substack. For the
maps res: IMod, — T-Mod,, if (g,¢): (Y, M;1) = (X, My) is a morphism,
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then ¢: M; —» Maly is an isomorphism. Since (Ma|rxox)|rxsy =
(Maly)|rx sy, the restricted morphism is

Olrxsy s Milrxgy — (Ma|rxgx)|rxsy

as required and similarly for res: 23u, — T-3u,.

If p: My — Msly is an Oly-module isomorphism (or similarly, over
Olrx sy or Oly: as would be the case for T-End or End’~"), then End(y) is
the algebra automorphism

End(p): Endpy, (M1) — Endo), (Maly) = Endp) (Ma)]y
o= oo gp_l.
These morphisms fit into a commutative diagram

N0, _ Gd Azu,

J/I"GS J/I“GS

(3.11.1) T-Mod, %, T-Azu,

Jinc linc

/ d—ét /
Movg ¢ Sy yud =,

3.12. Lemma. Tracing the image of (S,0") € Mod,. through the diagram
(3.11.1) we obtain

(S,07) + (S, Endp (O7))

! !

(5,0l1) ——— (5, &ndo(O")|r) = (S, Endo), (Ol7))

l !

(T — S,0[p) —————— (T — S, &ndp),.(O|)).

The corresponding induced homomorphisms between automorphism sheaves
are given by the following diagram.

GL, il PGL,
lres lres
F(GL|7) u f«(PGL,|7)

I !

F(GL,|7) x Auts(T) =M ¢ (PGL,|7) x Auts(T)

where m and 7' are the canonical projections and the hooked arrows indicate
the inclusions.
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Proof. The objects appearing in the first diagram have the corresponding
automorphism sheaves in the second diagram either by definition or by Lem-
mas 3.2(1), 3.3(i), 3.10(ii), or 3.11(i).

Since the restriction maps send a morphism ¢ over X € Schg to p|rxgx,
it is clear they induce the restriction map between groups.

The claim that the horizontal maps are the canonical projections is clear
since, by definition, &nd, T-End, and End*®* send a module automorphism
to its corresponding inner automorphism of the endomorphism algebra and
additionally End?~ acts as the identity on the scheme part of morphisms,
i.e., it preserves f' and g in (f’, g, p).

The fact that the hooked arrows are the inclusion is immediate since the

inclusion maps sends morphisms of the form (Idx,¢) to (Idx,Idrxgx,¥).
U

Next, we extend the commutative diagram (3.11.1) by appending the
functors Nopgp and Nggy of (3.0.1) on the bottom. This produces

Moo, —bd Azu,

res res
T-Mod, -, T-2Azu,

(3121) inc inc

7 d—ét ,
Mool ¢t & gy d—ét

Nmtoa NQl;,u

Mo0,.q —d_, A3U,.a.

where the bottom square only commutes up to canonical isomorphism. In
particular, for each (X’ — X, M) € Moo~ we have

(Nagu 0 End™ ) (X" — X, M) = (X, Nx:/x (Endg) ., (M)))
(End o Nopoo) (X' — X, M) = (X, Endoy, (Nx1)x(M)))

and by Lemma 2.19 there is a canonical isomorphism of O|x—algebras
U xrox,m): Nxvyx (Endoy (M) = Endo) (Nx1)x (M)).

Tracing the object (" — S, O|7,) through the bottom square (and through
its canonical isomorphism) produces

("= 5,0[p) —— (T = 5, &ndo, (O|7))

! |

(5, N1ys(Olr)) —— (S, Endo(Nrys(Ol7)))
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with corresponding group sheaf homomorphisms

! x1d

Fo(GL,|7) % Autg(T) =255 £,(PGL,|7) x Autg(T)
(3.12.2) J‘ﬁ Lﬁ’
GL(N7/5(0f})) — = PGL(Ny/5(0|7))

where 7" is the canonical projection. In fact, ¢ and ¢’ are twists of the
modified Segre embeddings Seg’ and PSeg’ respectively. This can be seen
by taking a sufficiently fine cover which splits 7" and then applying Theorem
3.5 or Corollary 3.7 respectively.

Combining the diagrams of Lemma 3.12 and (3.12.2) and extending the
rows into their canonical short exact sequences, we obtain

1l —— G,, ——— GL, B PGL, —— 1

J{res res res

1 — £.(Gplr) — fi(GL,|r) — = £, (PGL,|) — 1

1 = £(Gumlr) — f(GL,|7) % Auts (T3

f+«(PGL,|7) x Auts(T) — 1

3 6 ¢
1 —— Gy —— GL(Ny5(0]3)) —=— PGL(Ny/5(03) — 1.

3.13. Lemma. The dashed morphism in the diagram above is the trace ho-
momorphism, tr: f.(Gp|r) = G-

Proof. 1If we instead consider the following diagram involving the Segre ho-
momorphism,

G;dn E— (GLT)d A Sd

ltr lSeg’

Gy —— GLu)

where the trace morphism coincides with the multiplication map, it is clear
this commutes since

Seg(erl,...,cqgl) =1l ®@...Qcql = (c1...¢cq)l.
This describes the dashed morphism we are interested in locally and by

points (i) and (ii) after [SGA4, IX.5.1.3], this characterizes the trace map.
Therefore, the dashed morphism is tr: f.(G,,|r) — Gy, as claimed. O
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At this point, the third row of the large diagram above is no longer needed
and we consider the compressed diagram

1—G, —GL, ————— PGL, ——— 1

J/I‘ES lres lres

1 — £.(Gplr) — f(GLy|7) —=— £.(PGL,|y) —— 1

. b

1 —— G —— GL(Ny/5(0|3)) ™ PGL(Ny/s(0) — 1

where p = ¢ oinc and p' = ¢’ oinc. Finally, we may take the associated
diagram of long exact cohomology sequences to obtain the following result.

3.14. Proposition. Let T' — S be a degree d étale cover. Let B be an
Azumaya O|r—algebra of constant degree and A be an Azumaya O—algebra
of constant degree.

(i) [N7/s(B)] = tr([B]) € Br(S).
(i) [Nr/s(Alr)] = d[A] € Br(S5).

Proof. The diagram of long exact cohomology contains the following,

H'(S,PGL,) — H} (5,Gy,) = Br(S)

lres J/res

HY(S, f+(PGLy|1)) ——— HE, (S, f+(Gm|r)) = Br(T)

l J

HY(S,PGL(N7/5(0}))) —— Hif,i(S,Gm) = Br(S)

where the horizontal maps are the natural boundary morphisms taking an
isomorphism class of an algebra to its Brauer class.

By Lemma 1.18 and Lemma 3.12, the maps on first cohomology induced
by the group homomorphisms

PGL, ™% f.(PGL,|7) — f.(PGL,|7) x Auts(T) ?, PGL(Ny/s(O|T))
are the same as the maps induced by the functors

d—ét "

. Notau
Asu, — T-Azu, —— Asus" 5 Azu, 4.

T

Therefore, tracing the image of the isomorphism class [B] € H'(T,PGL,|r)
= H'(S, f.(PGL,|1)), we obtain

8] [B] € Br(T)

! !

[N1/s(B)] —— [Nrys(B)] = tr([B]) € Br(S5)
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justifying claim (i). Similarily, for [A] € H'(S,PGL,), we can chase it
through the diagram as follows

Al A] € Be(S)
[Alr] + [A|r] € Br(T)

! !

[N7/s(Alr)] —— [Np;s(Alr)] = d[A] € Br(S5)
where the factor of d appears by (3.9.1). This justifies claim (ii). O

4. AN EQUIVALENCE A2 = Dy

In this section we show that the norm functor provides an equivalence
between the following two stacks. First, A2 = ngug_ét is the gerbe of quater-
nion algebras over degree 2 étale extensions, see (iv) at the start of Section
3. Second, ®, is the stack whose

(i) objects are pairs (X, (A, o, f)) where X € Gchg and (A, o, f) is a
quadratic triple with A a degree 4 Azumaya O|x—algebra,

(ii) morphisms are pairs (g, ¢): (Y, (A1,01, f1)) — (X, (A2, 02, f2)) where
g: Y — X is an S—scheme morphism and the map ¢: (Ay, 01, f1) —
9*(Ag, 09, f2) is an isomorphism of quadratic triples over Y, and

(iii) structure functor sends (X, (A, o, f)) — X and (g, ) — g.

The stack D, is also a gerbe since we know by [GNR, 4.6] that all quadratic
triples are isomorphic étale locally and thus also fppf locally.

4.1. A Quadratic Triple over Z. As preparation, we begin by construct-
ing a quadratic triple over the integers from a tensor product of symplectic
involutions. Let mi,...,ng be an even number of positive integers (so d is
even), and let n be the integer such that 2n = (2n1) ... (2n4). We then have
an isomorphism of Z—-algebras

May, (Z) @z, - - - ®©7 Mo, (Z) — May(Z)

given by the tensor product of matrices. On each My, (Z), we consider the
standard symplectic involution o,,, defined by

0n;(B) = J, ' BT J,, = —J,,, BT J,, with J,,, = { 0 _I"f} :

I, O

The involution o, is adjoint to the skew-symmetric bilinear form 1, on
72" defined by 1, (v,v") = vTJ,,v', considering v and v’ as columns. The
tensor product o = 0y, ® - -+ ® 0, of these involutions is then an orthogo-
nal involution on My, (Z). Precisely, it is adjoint to the regular symmetric
bilinear form b on Z*" = Z*™ Qg - - - @7 Z*™ defined by

b(vl PSR ®Ud,2}/1 @ ®Ué) = ¢TL1(’U17’U£) e '¢nd(vdvvél)'
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Since each 1y, is symplectic, if v = v;1 ® --- ® vq is a pure tensor, then
b(v,v) = 0. Writing a general vector w = wy + -+ + wy as a sum of pure
tensors, this means that

k k
= Zb(wi,wz Z wl,w] )+ b( w],wl Z 2b( wl,w]

i,j=1
i<j

ie., b(w,w) € 2Z. Therefore, we may define a quadratic Z—form q(z) =

%b(m, x) whose polar will be b. The form q is regular since b is and therefore

it has an adjoint involution o, = o. It follows from [GNR, 4.4(i)] or [CF,

2.7.0.31] that o, is part of a quadratic pair (og, f;). Since % € Qx, after

extension to Q we must have that

(4.1.1) Fu(s) = %Tr(s)

and hence this also holds for each s € Sym(Ms,,(Z), o4). Thus, the quadratic
pair (og, fy) is unique and therefore ¢ is unique also.

4.2. Remark. The involution o, is isomorphic over Z to the split involution
no of [GNR, 4.5 (b)] and so for uniqueness reasons as in [GNR, 4.3(b)], the
isomorphism is also one of quadratic pairs, i.e., (o4, fq) = (0, fo). Further,
when d = 2 and 04 = 0y, ® 0, there is a quadratic pair (g, fg) on M4(Z)
arising from the construction in [GNR, 5.6]. Uniqueness also implies that

fq = f®-

4.3. Restricting the Segre Homomorphism. We consider the orthogo-
nal groups reviewed in Section 1.6 with respect to the quadratic form and
quadratic triple defined in Section 4.1 above. In particular, for this subsec-
tion we will consider them over the base scheme Spec(Z). The geometric
fibers of O;’ are split semisimple groups of type D,, by [KMRT, 25.12] be-
cause n > 2, so O(‘; is a semisimple Z-group scheme of type D,,. Since O;|Q
is a split semisimple group, O;r is a Chevalley Z—group scheme in view of
the uniqueness of integral models, as in [Con2, 1.4].

We also consider the symplectic groups Spy,,, = SpM%Z_ (Z),0m, and PSp,,,,
= Aut(May,, (Z), 0y,) associated to the symplectic involutions defined in Sec-
tion 4.1. The group Spy,,. is isomorphic to the symplectic group of the alter-
nating form v, and so by [KMRT, 25.11], the geometric fibers of Sp,,, are
split semisimple and simply connected groups of type Cy,. Again, Spy,.|o
is a split semisimple group, so Spy,,. is a Chevalley Z-group scheme.

4.4. Lemma. Consider the Segre homomorphism (3.4.1) and its extension
Seg’ of (3.4.2) as well as the orthogonal and symplectic groups as reviewed
above.
(i) The mapping Seg: GLgy, X7+ X7 GLay, — GLa, induces a closed
itmmersion of Z—group schemes

h: (SPaw, X2 -+ X2 SPay, )/(12)™" — OF
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where (p4)40 = ker((p,)? LR Ko) and 11 is the product map.

(i) If ny = --- = ng = m (so that 2n = (2m)?), then h extends to a
closed immersion of Z—group schemes

B ((SPow) Y12)™) 2,84 = O,

where the permutation groups acts as in (3.4.2). Furthermore, recall-
ing the Dickson homomorphism from (1.6.1), the composition map

Dickson

Sqg = Oy —— 7]27

s the signature homomorphism if m is odd and is trivial if m is
even. N
(iii) If m =1 and d = 2, then h is an isomorphism.

Proof. (i): The Segre mapping, Seg: GLg,, x7z -+ Xz GLga,, — GLaj,
induces a homomorphism of Z—group schemes

h,: Sp2n1 Xz X7, Sp2nd — Oq.

Since the symplectic groups have connected geometric fibers and O;’ is the
identity component of Oy, the map A’ factors through O;. The kernel
of B’ is the intersection of Spy, Xz --- Xz Spy,, with the kernel of the
Segre mapping, which is ker(G¢, LN Gy,). Tt follows that ker(h') = (pg)®°.
According to [SGA3, VIIL5], we can quotient out by the diagonalizable
Z-group (py)*° and get a monomorphism

h: (szn1 Xz - Xy, sznd)/(u2)d’0 — O

This is a closed immersion according to [Conl, 5.3.5].

(ii): This follows from the fact that the construction of (o, f;) is equivariant
with respect to the action of the symmetric group Sy. It remains to deal with
the composition map S; — O, — Z/2Z. It is enough to check it over the
Q-points and, in this case, the Dickson map O4(Q) — (Z/2Z)(Q) = uy(Q)
is nothing but the determinant by [Knu, IV.5.1.2]. To prove our claim,
it is then enough to compute the image of the transposition (1 2) by the
morphism j: Sy — S(2m)d. Without loss of generality, we can assume that

d = 2 so that 2n = (2m)? and
i(2)= 11 ()G,
1<i<j<2m
which is a product of m(2m — 1) transpositions. It follows that we have
det (Seg’((l 2))) = 1 if and only m is even, which justifies the claim.
(iii): Since (Sps)?/y is smooth according to [SGA3, VIp.9.2], it is both flat
and locally of finite presentation. Since Oj{ is also smooth, the fiberwise

isomorphism criterion of [EGA, IV,4.17.9.5] allows us to reduce to the case
of an algebraically closed field k. The map (Spy;,)?/pe — (O )i is a closed
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embedding between two smooth connected algebraic groups of the same
dimension (i.e., 6), which is an isomorphism according to [GW, cor. 5.8].
Using that the composition Z/2Z — O, — Z/2Z is an isomorphism, we

conclude that hy is an isomorphism. O

4.5. Remark. Another way to see that the map h in Lemma 4.4(iii) is
an isomorphism is to use the map f: SLy Xz SLy, — Oaret defined by
f(By, B2)(A) = BiABy . Here det: My(Z) — 7Z is a quadratic form where
we view My (Z) simply as a rank 4 Z-module. See [Conl, C.6.3].

To get maps of adjoint groups, we can quotient out the maps of Lemma
4.4 by the center py of each Spy,. on the left and the center u, of O;r on
the right. This yields a closed immersion

(4.5.1) h: PSpy,, Xz Xz PSpy,, — PGO;.
In the second case, we get a closed immersion
(4.5.2) B': (PSpy,,)? %z Sq — PGO,,

which is the restriction of the map PSeg’ of (3.6.1). In particular, if m = 1
and d = 2, the group homomorphism A’ is an isomorphism since the map h
of Lemma 4.4(iii) is an isomorphism in this case.

4.6. Twisting Quadratic Triples. We now use the morphism h of (4.5.1)
to define a morphism of stacks. Let the numbers d and nq,...,ng be as in
the beginning of Section 4.1. The first stack will be denoted €, ., and
will have
(i) objects (X, (A1,01),...,(Aqd,04)) where X € Schg and (A;,0;) is
an Azumaya O|x—algebra of degree 2n; with symplectic involution,
(ii) morphisms

(9,01, pa)t (Vs (Arg, 01,0)51) = (X, (Ag, 004)54)

where ¢g: Y — X is an S-scheme morphism and ¢;: (A1, 01,) =
(A24,09,)]y is an isomorphism of Azumaya Oly—algebras with in-
volution, and
(iii) structure functor which sends (X, (Ay,01),...,(Aq4,04)) — X and
(915, 0d) = g
It is clear €, n, is a gerbe. We take the split object to be M =
(S, Ma2p, (0),00,), - - -, M2, (0),0n,)) and so Aut(M) = PSpy,, x ... X
PSp,, . Hence, €, .y isequivalent to the stack of (PSpy,, X... PSpy, )~
torsors by Lemma 1.16(ii) and Remark 1.17.
The second stack is ®,,, for n > 2, which consists of
(i) objects (X, (A, o, f)) where X € Gchg and (A, o, f) is an Azumaya
O|x—algebra of degree 2n with quadratic pair,
(ii) morphisms (g,¢) where g: ¥ — X is an S-scheme morphism and
v: (A1,01, f1) = (Agz, 02, f2)|y is an isomorphism of quadratic triples
over Oly, and
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(iii) structure functor (X, (A, o, f)) — X and (g,¢) — g.

This is also a gerbe. We take (5, (M2, (O), 04, fy)) to be the split object
where (Ma,(0), 04, fy) is the quadratic triple defined in (4.1.1) base changed
to S. Then, Au(S, (M2, (0), 04, f;)) = PGO, and so ©,, is equivalent to
the stack of PGOtorsors by Proposition 1.16(ii) and Remark 1.17. In
[CF, 2.7.0.30], the stack ©,, is denoted as PairesQuada,.

We use the group homomorphism

(4.6.1) V: PSPy, X ... x PSpy,. 5 PGO} < PGO,

to give a left action of (PSpy,, X ... x PSpy, )|x to (M2,(0), 04, fo)lx
for all X € Schg. This allows us to define a stack morphism as follows.
For an object C = (X, (A1,01),...,(Ad,74)) € €y, n,)» the sheaf & =
Tsom(M|x,C) is an Aut(M|x) = PSpy,, |x X ... x PSpy, |x-torsor by
Proposition 1.16(i). Since ¢ maps Aut(M|x) into PGOy|x, the contracted
product & AMIX) (My,, (0), 0, f,)|x will be another quadratic triple over
O|x. Then, defining

(4.6.2) U: €y ng)
(X, (A1,01), ..., (Ag, 94)) = (X, € NEMIX) (M, (0), 04, o)l x)

and naturally on morphisms yields a functor which is a morphism of stacks
because ©,, is a gerbe.

— D,

4.7. Lemma. We use numbersd andnq,...,nq as in the beginning of Section
4.1 and consider the morphism U of (4.6.2) defined above. Let (A;,0.4,) for
i=1,...,d be Azumaya O|x —algebras of respective degree 2n; equipped with
symplectic involutions.

(i) The induced group sheaf homomorphism
Uar: PSpy,, X ... x PSpy,,, =+ PGO,

is the map v of (4.6.1).

(ii) The image ¥(X, (A1,01),...,(Aq,04)) is a quadratic triple of the
form (A; ®o|x " Qolx Ag, 04, @ - Qo4 f).

(iii) If d = 2, this quadratic triple this agrees with the one constructed in
[GNR, 5.6].

Proof. (i): When we consider ¥(S, M), the relevant torsor £ is the trivial
torsor Zsom(M, M) = Aut(M). Therefore,

U (S, M) = Aut( M) A (M (0), 04, fy) = (M2a(0), 04, o)

and so Wy maps into Aut(Ma,(0), 04, fy) = PGO, as claimed. Given an
automorphism ¢ € Aut(M), its image under ¥ is the map which acts on the
presheaf underlying Aut(M) AAUM) (My, (0), a4, f,) by

(p, B) = (pop,B).
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for p € Aut(M) and B € (My,(0), 04, fy). However, using the equivalence
relation defining the contracted product, this is equivalently the map

(1d, 9 (p)(B)) = (1d, 9 () (¥ (p)(B))),

i.e., it is the map ¢ (p) € Aut(Ma,(0), 04, fq). This justifies the claim.

(ii): By definition, ¥ (X, (A1,01),...,(Ad4,04)) is a quadratic triple which
we denote (A, o, f). For functoriality reasons, since v is a restriction of Seg,
(A, o) must be the tensor product of the twists of each (May,,(O|x),0;) by
the PSp,,, |x-torsors Zsom((May, (O|x), 0n,), (Ai,0.4;)), s0

(“470-7]0):(“41 ®(9"'®(9Ad70-¢41®“'®O-Ad7f)‘

(iii): In the proof, we denote by (o, ® op,, fo) the canonical quadratic pair
on A; ®p), Az defined in [GNR, 5.6]. We want to show that f = fg. Since
both constructions commute with arbitrary base change, it suffices to check
this in the split case, which has been established in Remark 4.2. O

As in Lemma 4.4(ii), we now consider the case 2n = (2m)¢ and globalize
the constructions of [KMRT, §15.B] into a morphism of stacks. We consider
the stack €2-¢ which is equivalent to the stack §(PSpy,,)? " of Appendix
B, but using Remark B.7 we consider it to have objects (X' — X, (A, o))
where (A, o) is an Azumaya O|r—algebra of degree 2m with symplectic in-
volution. This is equivalent to the stack of (PSp%,. ) x Sq-torsors and we
take the split object to be M’ = (S"4 — S, (Mg, (O), 0| gud), which has
automorphism sheaf (PSp%, ) xS, For an object (X' — X, (A, 0)) € €4,
denote by

& =ITsom(M'|x, (X" — X, (A, 0)))

the corresponding ((PSp%.) x Sg)|x torsor. Using the morphism &' of
(4.5.2), we can define a morphism of stacks

(4.7.1) vl 9,
(X/ — X7 (“470-)) = (X7 (“:, /\AM(M/)‘X (M2n(o)7JQ7 fq)|X))

4.8. Proposition. Let m € Z and let n € Z such that 2n = (2m)?. Consider
the morphism W' of (4.7.1) defined above.

(i) The induced group sheaf homomorphism
U\ (PSpy,,)? xSq — PGO,
ish.
(ii) The image of an object (X' — X, (A,0)) is a quadratic triple of the
form

V(X' = X,(A,0)) = (Nxryx(A),on, fn).

Proof. (i): This follows by an analogous argument as in the proof of Lemma
4.7(i).
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(ii): By construction, we know that ¥/(X’ — X, (A,0)) = (X, (A, on, fN))
is a quadratic triple for some Azumaya O|y-algebra A’. Since b’ is a re-
striction of Seg’, for functoriality reasons we know from Corollary 3.8 that

A" = Nyi/x(A) as Azumaya O|x-algebras. O
In the special case when A’ is an isomorphism, we obtain an equivalence
of stacks by Theorem 1.19. We compose this with the equivalence of stacks
p: ?2[% — (’:g_ét
(X' = X, A) —~ (X' = X,(A,0.4)),

where 22 is the stack of quaternion algebras over a degree 2 étale extension
as defined at the beginning of Section 4, that equips a quaternion algebra
A with its canonical symplectic involution o 4.

4.9. Theorem. Assume that m =1 and d = 2. The morphism

2 P 2—ét v’
A ——— & Dy

(X/_>X7-A> % (Xa (NX’/X(-A)aUNafN))

s an equivalence of gerbes. Furthermore, those stacks are equivalent to the
following stacks over Gcehg.

(i) The stack of (PGLg x PGLy) x Z/2Z-torsors.
(ii) The stack of PGO, = PGOy,(0),0,,f,-torsors.
(iii) The stack of adjoint semisimple group schemes of type A; X Aj.
(iv) The stack of adjoint semisimple group schemes of type Ds.

Proof. As noted above, by Theorem 1.19, ¥’ is an equivalence of stacks
because h' of (4.5.2) is an isomorphism. The morphism p is the canonical
equivalence and so their composition is an equivalence as well.

All semisimple group schemes of type A; x A; are twisted forms of the split
adjoint Chevalley group scheme of the same type, namely PGLy x PGLo,
which has automorphism group (PGL9 x PGLy) x Z/2Z. This provides the
equivalence between (i) and (iii) since both are gerbes. In turn, the category
202 is equivalent to (i) by Corollary B.4.

Similarly, the adjoint semisimple groups of type Do are twisted forms
of the split adjoint Chevalley group of type Dy, which is PGO;F, and its
automorphism group is PGO,. As above, using again Theorem 1.19, this
provides the equivalence between (ii), (iv), and Ds. O

4.10. Remark. The equivalence (iii) < (iv) in Theorem 4.9 implies that
there is an isomorphism of S—group schemes (SLy x SLg)/M = O] where
M is the diagonal copy of py. Such an isomorphism is constructed in [Conl,

C.6.3).

4.11. Remark. Let S = Spec(Z) and let F be a field. Then, the fiber over
Spec(F) of the gerbes A% and D5 are the groupoids A% and Dy of [KMRT,
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§15] and the morphism between these fibers is the functor of [KMRT, §15.B].
Since any equivalence of gerbes gives rise to an equivalence of the fibres,
Theorem 4.9 gives a proof of [KMRT, 15.7] which is different from the one
in loc. cit. The analogous remark applies to Auel’s result [A, 3.1], where it
is assumed that 2 is invertible over S.

APPENDIX A. TWISTED SHEAVES AND WEIL RESTRICTION

Here we prove a general lemma about composing the pullback, i.e., re-
striction, and pushforward of a sheaf on Gchg with respect to a finite étale
cover T' — S of degree d using contracted products as in Section 1.7. As a
corollary, this describes the Weil restriction, when it exists, of Y xg T for
an S—scheme Y. We refer to [BLR, §7.6] for details on the Weil restriction.

Since T is a degree d étale cover, it is a twisted form of S"¢ =114 | S. In
particular, the sheaf

Tsom(S“L, T): Gehg — Sets
X — Isomx (XY T xg X)
is a torsor for the group Aut(S"¢) = S,.

A.l. Lemma. Let f: T — S be a degree d étale cover. Let F: Schg — Gets
be any sheaf and equip F® with the left action of Sq by permutations. Then,
there is a canonical isomorphism of sheaves of sets

¢: Tsom(S"Y, T) ASa F& =5 f.(Fr).

Proof. The contracted product Zsom(S"¢,T) NS¢ F? is the sheaf associated
with the presheaf on Gchg

X = (Isom(X" T x5 X) x FUX))/ ~

where the equivalence relation is given by (po,x) ~ (p,ox) for all ¢ €
Isom(X"Y, T xg X), 2 € F4X), and 0 € Sq(X). We show that there is
an injection from this presheaf into f.(F|r) which is locally surjective, and
therefore will induce the desired isomorphism of sheaves.

First, for any o € Sq(X), we have an isomorphism of schemes oy : X" —
XU given by permutation. Since F is a sheaf, F(X"4) = F(X)¢ and
the permutation automorphism o: F4(X) — F4(X) given by the action
is the same as the morphism F (J)}l), where the inverse occurs since F is
contravariant. Therefore, we view F¢(X) as F(X"4) where S? acts on X9
Now, consider the canonical map of presheaves defined over X by

(Isom(X" T x5 X) x F(X"))/ ~ = F(T x5 X) = fo(Flr)(X)
(p.x) = Flo™H)(@).
If Foy')(z1) = F(py ') (x2), this means that
g = (F(p2) o Flor ))(@1) = F(#1 'p2)(z1),
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but since 901_1902 € S¢(X), this means that zo = <,02_1<,01 -1 using the action
of Sq on F?. Therefore, under the relation ~;,

(02, m2) = (2,93 "p1(x1)) = (P23 o1, 21) = (p1,21)
and so the map of presheaves is injective. If there exists and element ¢ €
Isom(X", T x g X), i.e., Zsom(S"?, T)(X) # @, then for all z € F(T x5 X)

we have

(o, F(p)()) >

hence the map is surjective wherever Zsom(S"¢, T') has a point. Finally, since
Tsom(S"?, T) is a torsor, there is a cover of S over which it has points and
so the map of presheaves is locally surjective. Hence, it is an isomorphism
of sheaves as claimed. O

A.2. Remark. Lemma A.l produces an isomorphism of sheaves of groups,
abelian groups, rings, etc. whenever F has such a structure and the structure
on F¢ is given by component wise operations in F.

The torsor Zsom(S"?, T') corresponds to a cohomology class [T] € H'(S,Sy).
Under the group homomorphism Sy — Aut(F¢) induced by the action of Sy
on F%, the sheaf Zsom(S"¢,T) NS¢ F¢ corresponds to the image of [T] via
the map

H'(S,Sq) — H' (S, Aut(F?)).

Since Sq is an affine group scheme, by [M, §4, 4.3(a)] the torsor Zsom(S Hd )
is representable by an S—scheme T — S which is therefore also an S;—

torsor. For any scheme Y which has a left action of S;, the associated
sheaf Homg(__,Y) also has a left action of Sy. If the sheaf Zsom(S4, T') AS¢
Homg(__,Y) is representable, we denote the representing scheme by T /\id Y
and call it the contracted product of schemes. For example, for X € Gchg
we have T/\id XUl > X xgT.

A.3. Corollary. Let Y — S be an S-scheme such that the Weil restriction
Ry/s(Y xgT) exists as a scheme. Then there is an isomorphism

T/\%d yed =, RT/S(Y xsT),
where Sy permutes the factors of Y¢=Y xg...xgY.

Proof. We apply Lemma A.1 to hy = Homg(__,Y"). The sheaf hﬁlf is repre-
sented by the scheme Y¢. Applying the lemma we get an isomorphism

Tsom(SY4, T) ASe b =5 fo(hy|r).

We have f.(hy|r) = Homp(__ xXgT,Y xg T) and by definition the Weil
restriction Ry g(Y x5 T) exists if and only if this sheaf is representable, in
which case it is represented by the Weil restriction. Hence by assumption
these sheaves are representable, and so the left hand sheaf is represented by

T /\Efi Y?. The claimed isomorphism then follows from the Yoneda Lemma.
O
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A.4. Remark. Since T' — S is a finite étale cover, equivalently since TS
is a Galois cover, the discussion at the end of [BLR, 6.2 B] says that a
sufficient condition for Rp/g(Y X gT') to exist is that the morphism Y x g7 —
T be quasi-projective. This will occur if Y — S is quasi-projective by [St,
Tag 0B3G].

APPENDIX B. COHOMOLOGY OF SEMI-DIRECT PRODUCTS WITH
PERMUTATION GROUPS

Let G: Gchg — Stp be a sheaf of groups. Recall that S; denotes the
constant group sheaf associated to the abstract permutation group on d
letters, and consider the semi-direct product G? x Sy defined by

((g1,---194),1)(1,0) = (1,0)((9o(1)» - - - + Go(@))s 1)

for o € Sq and (g1,...,94) € G% Our goal is to describe the gerbe
Tors(G? xSy) of (G? x Sy)-torsors for the flat topology. We will show that
it is equivalent to F(G)?~®, which we define to be the S-stack as follows.

(i) The objects are pairs (T' — X,P) where X € &chg, T — X is a
finite étale cover of degree d, and P is a G|p-torsor over T

(ii) The morphisms are triples (f,g,¢): (T" — X', P") — (T — X,P)
where f and g are scheme morphisms such that

T 9% T

Lo

x -, x

is a pullback diagram of schemes and ¢: P' — ¢*(P) is a G|p—
torsor isomorphism. Composition of morphisms is given by

(f,9:0) 0 (h,j, ) = (foh,goj,j"(p) o ¥).
(iii) The structure functor sends (" — X,P) — X and (f,g,¢) — f.

It is clear that §(G)?® is a fibered category over Gchg. Since any
pullback diagram as above where f = Idx must have g be an isomorphism,
we see that F(G)? is fibered in groupoids. However, it is perhaps not as
clear that §(G)% ¢ is a stack. We argue this now, in fact showing that it is
a gerbe.

B.1. Lemma. The fibered category F(G)?= defined above is a gerbe.

Proof. To first see this is indeed a stack, we can view it as a composition of
stacks. First, let A — Gchg be the fibered category of étale cover of degree
d, i.e., the objects are such étale morphisms T — X for some X € Gchg
and morphisms are pairs (f,g): (T" — X') — (T' — X) where f and g are
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scheme morphisms making

T 9% T

Lo

x L x

a pullback diagram of schemes. This makes 2{ fibered in groupoids since if
f = Idx, then g must be an isomorphism in order to have a pullback dia-
gram. The homomorphism presheaves in 2 are sheaves by [St, Tag 040L].
Finite étale morphisms of degree d are affine morphisms and they are char-
acterized by a local condition, namely T — X is finite étale of degree d if
and only if there exists a cover {X; — X };er such that T x x X; = X for
each ¢ € I. Affine morphisms satisfy descent by [Ols, 4.4.7] and addition-
ally [Vis, Prop 2.36] shows that the resulting glued morphism will be finite
étale since it restricts to finite étale morphisms over an fppf cover (in fact,
the result is stated more generally in [Vis| for an fpqc cover). Therefore,
finite étale morphisms of degree d also satisfy descent. Thus, 2l is a stack.
Further, since finite étale morphisms of degree d are all locally isomorphic
to SY4 — S, we see 2 is a gerbe.

The gerbe 2 inherits the structure of a site from Schg according to [St,
Tag 06NUJ. Since all morphisms in 2 are cartesian by Lemma 1.10, the
covers will be families of the form {(fi,¢:;): (T; — X;) = (T — X)}ier
where {f;: X; — X }ier is an fppf covering. Since the morphisms in 2 define
pullback diagrams, this means that there are isomorphisms 7; — T x x X
and {g;: T; — T}cr is also an fppf cover.

Now, we can view

F(G) 4 5
(T — X,P)— (T — X)
(fr9,0) = (f,9)

as a fibered category over 2. This is clearly a stack since for two G|p—torsors
P1 and Ps their sheaf of torsor isomorphisms respects fppf covers of the form
{T; — T}ier and torsors allow gluing over such fppf covers.

Thus, we may invoke [St, Tag 09WX] and conclude that p: F(G)¥*t —
GSchg is a stack fibered in groupoids. To see it is a gerbe, let (T3 — X, Py)
and (T — X,P2) be two objects in the same fiber. We first choose a
cover {X; — X };e; which splits both étale covers, that is Ty x x X; & X4
and T xx X; & XF4. We then have local objects (XP4 — Xi,Pl’Xiud)
and (XM — X;, Ps|yua), each consisting of the data of d separate G|x,—
torsors. All 2d of these torsors can be made locally isomorphic over some
further cover of each X; and therefore our original objects are locally iso-
morphic. Additionally, since the fiber F(G)?*'(S) contains the object
(SY4 — S, G|gua) involving the split étale extension and the trivial torsor,
objects exist in all fibers. Hence F(G)?¢ is a gerbe and we are done. [
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B.2. Remark. The condition that T' — X be finite étale of degree d can
be replaced by any condition (p) on affine morphisms which satisfies base
change and descent, i.e., the conditions (BC) and (DESC) in [GW, App.
C]. These morphisms will then also form an intermediate stack 2 and the
above argument will show that the corresponding fibered category § (G)(p)
is a stack. This is done with quasi-coherent modules in place of G—torsors
in Appendix C.8.

We denote S“¢ = U, S and we call the object (S"? — S, G|gua) the split
object of F(G)?(S). The trivial torsor G|gua is described as follows. A
morphism X — SY? induces a decomposition X = I_I?ZIXZ- for S—schemes X;
by taking preimages of the factors of S“¢, and then G|gqua(X) = G(X1) x
... x G(Xg). In particular, if 7: "¢ — S is the canonical morphism, then
Gd == F*(G|Sud).

B.3. Lemma. Consider the split object (SY¢ — S, G|gua) € F(G)L¢(S).
We have that
Aut(SY — S, Glgua) — G4 % Sy.

Proof. Let X € Gchg. A section p € Aut(S"? — S, G|gua)(X) is a morphism
of the form p = (Idy, g, ¢) where g: X" = XY is a X -scheme automor-
phism and ¢: G|xuas — g*(G|yua) is a G|yua—torsor isomorphism. Since
¢ must be an X-automorphism of X", it is a permutation of the compo-
nents and therefore corresponds to some o4 € Sq(X). The pullback of G|xud
with respect to g is described by the same permutation. In particular, for a
scheme U¢_, X; over X4, we have

9" (Glxua) (UL, Xi) = G(ngl(l)) XX G(ngl(d))-
Thus, we have a canonical isomorphism of sheaves over X%,
pg: 9" (Glxua) = Glxua
(x0;1(1), . v$a;1(d)) = (z1,...,24)-
Therefore, the map pgyo¢: G|xus — ¢*(G|xua) — G|xua is an automor-

phism of G|yus and is in AUtG‘Xud_torS(G|Xud) = G(X)%. We now check
that

Aut(SHY — S, G gua)(X) — (G x Sg)(X)
(Ideg7 (10) = (17Jg)(pg oY, 1)

is an isomorphism of groups. Indeed, bijectivity is clear and so we check it
is a homomorphism. Multiplication in the domain is given by

(Idx, g,¢) o (Idx, j,¥) = (Idx, g0 j, 5" (¢) o ¥).
Note that 040; = 040; and that pge; = pj 0 j*(pg). A short computation
shows that for ¢ € G(X)?, we have p; o j*(¢) o pj_l = 0;(¢). Therefore,

(Ianga 90) © (Idx,j,ﬂ)) '_>(17 09)(pg °p, 1)(17 Uj)(pj © ¢7 1)
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=(1,0405)(pj 0 5" (pg 0 @) 0 p; ', 1)(pj 0 ¥, 1)
=(1,0405)(pj © 3% (pg) 0 " () 09, 1)
=(1, 090j)(Pgoj 0 5" (0) © ¥, 1)

as required. Hence, this is a group isomorphism and it is clear these iso-

morphisms assemble into our desired isomorphism of sheaves Aut(Sud —
S,G|Sud) ;GdXSd. U

B.4. Corollary. The morphism
(G = Tors(GY % Sy)
(T = X, P) — Zsom((X"“? = X, G|xua), (T = X,P))
s an equivalence of gerbes.

Proof. This follows immediately from Proposition 1.16(ii) and Lemma B.3
since §(G)9 is a gerbe and therefore F(G)?~¢ = Forms(S? — S, G|gua).
O

For the next lemma, we recall that H'(S,Sy) classifies the S-isomorphism
classes of finite étale covers of S of degree d. For such a cover T — S, we
denote its S-isomorphism class by [T].

B.5. Lemma. We have a decomposition

(B.5.1) HY(S,G"xSq) = || H'T,G|r)/Autg(T)
[T)eH(S,Sq)

where each Autg(T) acts on HY(T, G|r) by base change.

Proof. Lemma B.4 shows that the set H'(S,G? x S,) classifies the objects
of the fiber F(G)?~¢(S) so that there is a decomposition
(B.5.2)
~ Isomorphism classes [(T" — S, P)]
1 d p )
5,6 %80 = | ] { where [T'] = [T] € H'(S,Sg) |-
[TI€H(S,Sq)

We fix a finite étale cover T' — S of degree d. There is a surjection on
isomorphism classes

HY(T, Glr) — { Isomorphism classes [(T" — S, P)] }

where [T] = [T] € H'(S,Sy)
[P] = [(T" = 5, P)]

and two isomorphism classes of G|p—torsors [P;] and [Ps] provide the same
isomorphism class in §(G)4¢(S) if and only if there exists g € Autg(T)
such that P; — ¢g*(P2) as G|p-torsors. Thus, the above map induces a
bijection

1 ~_ [ Isomorphism classes [(T" — S, P)]
(B.5.3) HY(T,G|r)/ Auts(T) —>{ e e 5.5
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where Autg(T) acts (by right action) on H'(T, G|r) by base change. Com-
bining (B.5.2) and (B.5.3) yields the desired decomposition. O

B.6. Remark. The set H'(S, G xSy) is described by a decomposition with
respect to the fibers of H(S,G?% x Sq) — H'(S,Sy) in [Gil, 2.6.3]. In the
special case of Lemma B.5, we prefer a direct approach.

B.7. Remark. The stack §(G)? ¢ can equivalently be defined to have ob-
jects which are pairs (" — X, ) where X € Gchg and T — X is a degree d
étale cover as before, but where £ is any twisted form of a designated split
sheaf & (of rings, modules, algebras, etc.) on Schp whose automorphism
group is G|r.

APPENDIX C. QUASI-COHERENT SHEAVES ON Gchg

Following [St, Tag 03DK], an O-module £ is called quasi-coherent if for
all X € Gchg there is a covering { X; — X }i¢r such that for each ¢ € I there
is an exact sequence of O|x,~modules

@ O’Xi — @ O‘Xi —)5’)(2. —0

JjEJ; keK;
for some index sets J; and K;. If all K; can be taken to be finite sets, we
say & is finitely generated. If both J; and K; can be finite for all ¢ € I, then
we say &£ is finitely presented. In particular, finite locally free O—modules
are quasi-coherent. Since quasi-coherence is a local condition, an O—module
€ is quasi-coherent if and only if £|7 is a quasi-coherent O|r—module for all
T e GChs.

By [St, Tag 03DX], there is an equivalence between this (site wide) notion
of quasi-coherent O-module and the classical notion of a quasi-coherent Og—
module on the locally ringed space S. Given a classical quasi-coherent sheaf
E on S, it can be extended to a quasi-coherent O-module by setting £(T") =
g*(E)(T). Conversely, for any quasi-coherent O—module &, there exists a
classical quasi-coherent sheaf E on S such that for X € Gchg with structure
morphism ¢g: X — S, we have £(T) = ¢*(E)(T). Then, E is simply the
restriction of £ to the small Zariski site consisting of open subschemes of
S. For such a pair, we use the notation Eg,pr = £ and Egman = E (in
[St] they write E* for Epype). These of course satisfy (Efgppf)sman = £ and
(gsmall)fppf =¢.

The following is a key characterization of quasi-coherent O—modules in
terms of their restriction to Affg under the equivalence of Lemma 1.3.

C.1. Lemma ([St, Tag 0GZV (1) < (7)]). Let M: 2Affg — Ab be a presheaf
of O-modules. Then, M is a quasi-coherent O—-module (in particular it is a
sheaf) if and only if for every morphism f:V — U in Affg, the morphism

pr: M(U) ®O(U) O(V) — M(V)
m®s—s-mly

is an isomorphism of O(V)—modules.
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C.2. Lemma ([St, 0GNC(6)]). Let My and Ma be quasi-coherent O-modules.
If My is finite locally free, then Homo (M1, M3) is quasi-coherent as well.

When working on the small Zariski site or small étale site, it is sufficient
to assume M is finitely presented in Lemma C.2, see [St, Tag 01I8(3)] and
[St, Tag OGNB(6)]. However, this is not sufficient when working on a big
site. The key difference is that all structure morphisms in these small sites
are flat, while structure morphisms in a big site are arbitrary scheme maps.

Quasi-coherence interacts well with pullbacks.

C.3. Lemma ([St, Tag 03LC (1)]). Let g: X — S be a morphism of schemes
and let E be a quasi-coherent sheaf on S. Then, we have an equality

(9" (E))tppt = 9" (Erppt)-

In particular, if £ is a quasi-coherent O-module, then ¢*& = (¢* (Esmall) ) fppf
and so pullbacks of quasi-coherent O—modules are quasi-coherent. In order
to have a similar result for pushforwards we assume that ¢ is affine.

C.4. Lemma. Let g: X — S be an affine morphism of schemes and let F
be a quasi-coherent O|x -module. Then, g F = (g«(Fsman))tppt, which in
particular means that g.F is a quasi-coherent O—module.

Equivalently, if F' is a quasi-coherent sheaf on X, then we have g, (Fippt) =

(g* (F))fppf-

Proof. This follows immediately from [St, Tag 02KG| which shows that,
since ¢ is affine, for any other morphism h: S’ — S there is a commutative
diagram

XXSS/LX

o

g —r g
and h* (g« (Fsman)) = g.(h™(Fsman)). The global sections of these sheaves
are

h*(gx( small))(s/) (g (-’rsmall))fppf(sl)v and
9o (" (Faman)) (S") = (B (Faman))(X x5 8") = F(X x5 8") = (9. F)(S")
and so g« F = (g« (Fsmall) )tppf as claimed. O

C.5. Remark. Since our O|x—modules are sheaves with respect to the fppf
topology, it is not sufficient in Lemma C.4 to only assume that g is quasi-
compact and quasi-separated as is done in [St, Tag 01LC] for classical (small)
quasi-coherent modules on X. An example demonstrating this is given in
[St, Tag 03LC (2)].

We may construct a quasi-coherent O—module from a collection of O(U)-
modules for every U € 2ffg, given that the O(U)-modules satisfy compati-
bility conditions with respect to tensor products similar to those in Lemma
C.1.
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C.6. Lemma. Assume that for each U € Affg we are given an O(U)-module
My and for each morphism f: V — U in Afjfg we are given an isomorphism
of O(V)~modules py: My Qo) O(V) — My such that the following con-
ditions hold.
(i) pray : My ®o@) O(U) — My is the canonical isomorphism, and
(ii) for morphisms g: V! — V and f: V — U in Uffg, the following
diagram commutes

(My @0y O(V)) @y OV') == My @ow) O(V')

lpf ®Id J{Pfo‘q

My ®@ov) oW’ bo My

where can is the canonical isomorphism.

Then, there exists a unique quasi-coherent O-module M: Gchg — Ab such
that for U € Affg, we have M(U) = My and for each morphism f: V — U
in Affg, the restriction morphism is M(f) = py o (Id®@1p(y))-

Proof. We begin by defining a presheaf on 2(ffg. Namely, we define

M’ Affg — 2Ab

Uw— My
(f: V—=U)w ppo(ld@lpny).
Conditions (i) and (ii) certify that this is a well-defined presheaf. Fur-
thermore, using the O(U)-action on each My gives M’ the structure of a
presheaf of O—modules. By construction, for each morphism f: V — U the
map
M U) ®ow) O(V) = M'(V)
mes—s- M (f)(m)
is simply py since
s M'(f)(m) =s-ps(m@1) =pp(m®s)

where we use the O(V)-linearity of p;. Hence, these maps are isomorphisms
and so Lemma C.1 says that M’ is a quasi-coherent O—module. Applying

Lemma 1.3, we obtain a unique quasi-coherent O-module M: Gchg — Ab
whose restriction to ffg is M’. This finishes the proof. O

In the remainder of the paper, in order to mirror the notation appearing,
for example, in Lemma C.6, we write the following. Given a map of rings
f: R — @, there is a base change functor b;: MModr — Mod¢ defined by the
tensor product, by (M) = M ®rQ. If we have another map of rings f': R’ —
Q' as well as functors Frr: Modp — Modg and Fr /g : Modg — Modg,
we write

Frr(_) ®rQ =byo Fr/r
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Fao(_@r Q) = Foqoby
for the two functors 9Modp — Modg. Additionally, we will write

0: Frir(_) ®r Q — Foro(_@r Q')

to denote that 6 is a natural isomorphism between the functors by o Fr/ /g
and ]:Q//Q o bf/.

The results above allow us to assemble certain families of functors be-
tween module categories into a functor between categories of quasi-coherent
sheaves in the following technical lemma. We will use the concept of an
affine morphism for which we refer to [St, Tag 01S6]. In particular, affine
morphisms are stable under base change by [St, Tag 01SD] and so for an
affine morphism f: 7" — S and any affine scheme U € Gchg, the fiber prod-
uct U xg T is an affine scheme. Recall as well that Q€oh(S) denotes the
category of quasi-coherent O—-modules on Schg. The category QCoh(T) is
then the category of quasi-coherent O|p—modules, which are functors on
Gchr.

C.7. Lemma. Let T — S be an affine morphism (as in [St, Tag 01S6])
of schemes such that the following holds. Assume that we have a family of
covariant functors

Fu: mobo(TXSU) — i)ﬁoa@(U)

for each U € Affg. Further, suppose that for each morphism f:V — U in
Affg, we have an isomorphism of functors

0r: Fu(_) o) OV) —= Fv(_ Qomrxsv) O(T x5 V))

satisfying the following conditions. For each pair of morphisms g: V' — V
and f:V = U in Affg, the following diagrams commute.

Fu() ®@ow) OU)
(C?l) J{@IdU can

Fu(can
Fu(_ ®@o@xgvy O(T xs U)) plcan) Fu()
and
(Fu (L) ®@ow) O(V)) @0y OV') —2— Fu(_) @ow) O(V')
ief@)ld
(C.7.2) Fv(_®owy OVr)) oy O(V) Ofoq

Jo
Fvi((_®owr) OVr)) @owvy) O(VT"))FM;)}'V'(_ ®owr) OVy))-
For brevity in the diagrams, we abuse notation by using can to denote vari-
ous canonical isomorphisms. We also denote T' xg U = Uy and likewise for
Vr and V. Then, there is a functor Fr;s: Q€oh(T) — QCoh(S) defined as
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follows. For each quasi-coherent O|r-module M, the O-module Fr/5(M)
has the following properties:

(i) Frys(M)(U) = Fu(M(T xs U)) for all U € Affg, and
(i) for each morphism f:V — U in Affg, the associated restriction map
Frys(M)(f) is defined by

Fo(M(Ur)) 225 Fr(M(Ur)) @) O(V)
J{af(M(UT))

Fv (M(Ur) @ow,) O(Vr))
Fr/s(M)(f) va (pg)

Fv(M(Vr))
where f': T xsV — T xg U is the pullback of f and
prr: M(T x5 U) @o(rxgvy O(T Xs V)= M(T xg V)

1s the canonical isomorphism as in Lemma C.1 arising from M being

quasi-coherent and both T xg U and T xg 'V being affine schemes.
(iii) For each morphism ¢: My — Ma of quasi-coherent O|r-modules,

the morphism Fr;s(p): F(My) = F(Ma) is defined over U € Affg

by
Frys(@)(U) = Fu(p(T xs U)): Fu(Mi(T xgU)) = Fu(Mo(T xsU)).

Proof. There are various compatibility conditions that need to be checked.
Let M be a quasi-coherent O|p—module. We begin by using Lemma C.6 to
define the sheaf Fr,4(M). Because M is quasi-coherent, by Lemma C.1 it
comes with standard isomorphisms py: M(U) ®cry O(V) — M(V) for
each morphism f: V — U in Affg.

Now, for each U € Affq, we set My = Fy(M(T xgU)). For a morphism
f:V = U in Affg, we define the isomorphism ¢y : My Qo) O(V) — My
to be

pr=Fv(ps)obp(M(Ur))

where f': T xgV — T xg U is the pullback of f. Because the map
Pidy,. - M(Ur) ®ow,) O(Ur) — M(Ur) is the canonical isomorphism, the
commutativity of (C.7.1) implies that ¢1q,, is the canonical isomorphism, as
required in Lemma C.6.
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For morphisms ¢g: V! — V and f: V — U in Affg, passing M(T xg U)
into diagram (C.7.2) yields

Fu(M(Ur)) @0y O(V')

(Fu(M(Ur)) @o@) O(V)) @0y O(V')
|ormwnyena

Fv (M(Ur) ®owy) O(Vr)) @ow) O(V') 8 fog (M(Ur))

leg(M(UTmowT)owT))

Fyi(M(Ur) @ow,) O(Vr)) @0y O(Vy))

m

Fy1(M(Ur) @owy) O(Vr)).

This diagram can be extended to

can
[ [

¢r®ld
64 (M(Ur))®1d
Fv(p)®I1d

p/
Fr(M(Vr)) ®o) O(V') 2 0100 (M(UT))

0g(MUr)®0 ) O(VT)) Prog
Og(M(Vr)) . Fyr(can)

Fyr(pp@1d) Fyr(p(srogry)

, Fyr(pgr) y
Fy1 (M (V1) @0y OVr)) —— Fyi(M(Vr))

where the bullets represent the entries in the previous diagram. The triangle
in the top left of the diagram commutes by definition of ¢;. The triangle
below it commutes because 6, is a natural transformation. The bottom
most square commutes because p(foq © can = py o (py ® Id) since M is
quasi-coherent, and this has simply been passed through Fy/. Finally, the
portions of the diagram involving the curved arrows commute by definition
of ¢4 and ¢fo4. Ultimately, this shows that ¢roy 0 can = ¢4 0 (¢ ® 1d)
as required by Lemma C.6. Hence, applying Lemma C.6 produces a quasi-
coherent O-module Fr/g(M) with properties (i) and (ii) of the statement.
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To finish constructing the functor Fr/g, we need to define the image
of morphisms. Let ¢: M; — M3y be a morphism of quasi-coherent O|p—
modules. Due to Lemma 1.3, it is sufficient to only define Fr/5(¢) over the
schemes in Affg. For U € Affg, we define Fr/5(¢)(U) = Fu(p(T xsU)) as
in condition (iii) of the statement. It is clear that if Fr/g(¢) is a well-defined
morphism, then F7/g will preserve identities and compositions and hence
will be a functor. Therefore, we just need to verify that Fr/s(¢) is a well-
defined natural transformation of functors. Let f: V — U be a morphism
in Affg. Once again, we consider a large diagram

Fu(Mi(Ur) Tutetr) Fu(Ms(Ur))
Id®1 Id®1
Fu(M(Ur)) @0y O(V) LI, 70 (Mo(Ur) @ o) O(V)
05 (M1(Ur)) 0r(M2(Ur))
Fv (M1(Ur) ®@ow,) O(Vr)) Tre@neld) 7, (M2 (Ur) ®@ow,) O(Vr))
Fv(pq,51) Fv(pa,fr)
F(Mi(Vr) Tvieltn) Fv(Ma(Vr)).

Here, p; s is the standard isomorphism from M; being quasi-coherent. The
top square is trivially commutative. The middle square commutes because
fs is a natural transformation. The bottom square commutes because pg /o
(p(Ur) ®1d) = (V) o p1  due to ¢ being a morphism of O-modules and
this has been passed through Fy . The compositions down each column are
the restriction morphisms Fr,g(M;)(f) respectively, so the commutativity
of the outermost paths shows that Fr/gs(p) is well-defined. This finishes the
construction of Fr,g and hence concludes the proof. O

C.8. Stack Morphism. If we have compatible functors between module
categories for an even wider ranger of morphisms, we can construct a mor-
phism of stacks of quasi-coherent sheaves. The codomain of the stack mor-
phism will be the substack Q€oh of Gh consisting of quasi-coherent modules.

(i) The objects of Q€oh are pairs (X, F) with X € Schg and F a
quasi-coherent O|x-module on &chy .

(ii) The morphisms of Q€ok are pairs (g,¢): (X', F') = (X, F) where
g: X’ — X is a morphism of S-schemes and ¢: F' — ¢*(F) is a
morphism of O|x,—modules. Composition is given by (g, p)o(h, ) =
(goh,h*(p) o).

Second, consider the stack of affine morphisms p: AffMMor — Schg whose

(i) objects are affine morphisms 7" — T where T' € Schg,
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(ii) morphisms are pairs (f,g): (X' = X) — (T" — T) where f and ¢
are scheme morphisms making

X T

]
x L.

a fiber product diagram in Gchg, and
(iii) the structure functor sends (7" — T') — T and (f,g) — f.

The pullback diagram condition on morphisms makes this fibered in groupoids.
It is indeed a stack since Hom(T] — T, T3 — T') = Zsomp (T}, Ty), which is a
sheaf, and affine morphisms satisfy gluing by [Ols, 4.4.7].

Let 3 C 2AffMor be any substack as defined in [Vis, 4.1.6]. If J is a
full subcategory, this is equivalent to choosing a family of affine morphisms
which are stable under base change and allow descent. The substack J —
Schg gives J an inherited site structure as in [St, Tag 06NU]. In detail,
the covers will be families of morphisms of the form {(f;, g;): (T} — T;) —
(T" — T)}ier where {f;: T; — T}ier is an fppf cover (and every (f;,g;) is
cartesian, but this holds by default since AffMot is fibered in groupoids).
Since morphisms in AffMor must define pullback diagrams, this means that
T! = T" x1 T; for each i € I and so {g;: T} — T"};e; is also an fppf cover.

Next, we define the stack of quasi-coherent sheaves over J, denoted QCob,
as follows.

(i) Objects are pairs (h: T" — T, M) with h € J and M a quasi-
coherent O|p—module.

(ii) Morphisms are triples (f,g,¢): (j: X' = X,N) — (h: T' = T, M)
where (f,g): j — h is a morphism in J and ¢: N — g*(M) is an
isomorphism of O|x/—modules. Composition is given by

(f1,91, 1) © (f2, 92, 02) = (f1 0 f2,91 © 92,93 (1) © v2).

(iii) The structure functor is p: Q€ohy — T which behaves as (h: T" —
T,M)+— (h: T" = T) and (f,9,¢) — (f,g) on objects and mor-
phisms respectively.

It is clear this is a stack since, for two objects (I7 — T, M;) and (T" —
T, My) in the same fiber, Zsomp) , (M1, Ms) is a sheaf and quasi-coherent
modules permit gluing along fppf covers. Since J is fibered in groupoids and
we require that ¢ in a morphism of Q€ohy be an isomorphism, the stack
QCohy — J is also fibered in groupoids.

However, we ultimately want to consider Q€oh; as a stack over Schg. By
[St, 09WX], the composition Q€ohy — T — Schg does produce a stack and
it is also fibered in groupoids.

Throughout the remainder of this section, we let J be a substack of
AffNtor and assume we are given the following data:

C.8.a) a functor Fj: Modp ) — Mody gy for every object h: U' — U in
(U’ ()
J for which U, U’ € 2ffg, and
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(C.8.b) for every fiber product diagram

v Ly

D= lh’ lh
v—_.u

where U, U’,V and hence V' are affine, h, b’ € J, and f € Affg is an
arbitrary morphism, we are given an isomorphism of functors
Op: Fun(_) ®ow) O(V) — Fi (_ @ow) O(V")).

Further, we assume that these functors satisfy the following compatibility
conditions.

(C.8.c) For every fiber product diagram D of the form below, the diagram
on the right commutes

U —— U Fir() @ow) OU)
D = lh lh l@p can
Fr(can
U—=1U,  F(_@ou o) 2 Fu()
where h € J and U, U’ € Affg.
(C.8.d) For all fiber product diagrams
V/ f/ U/ W/ g/ V/ W/ flogl U/
Df = J{h/ h Dg = J{h// J{h/ N and -Dfog = J{h// J{h
v LU W2V w L% U

with h € J and f, g € ™Uffq the diagram

(Frn() ®ow)y OV)) @y OW) —2— Frn(_) ®ow) O(W)

l@pf@)ld
Fr (_®own OV")) @0y O(W) 0D 0,
o
Fpr(can)
Frr (L @own OV") @0y O(W')) = Fn(_ @own OW))

commutes.

With these assumptions, we work up to a stack version of Lemma C.7.
First, let h: T — T be any morphism in J. For each U € 2ff; and each
morphism f: V' — U in Affy, we have fiber product diagrams

T/XTU%T/ T’XTV%T/XTU

Dy = lh/ Jh and Dy = lh” lh’

f

U———T Vv——— U
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If we set Fy = Fpr and 0y = Op,, then it is clear that the compatibil-
ity conditions assumed above specialize into the requirements of Lemma
C.7. Therefore, we may apply the lemma to obtain a functor denoted
Frpoyr: QCoh(T') — Q€oh(T). These functors are related to one another in
the following way.

C.9. Lemma. Let h': X' — X and h: T' — T be two morphisms in J and
let Fxi)x and Frip be the associated functors defined above. Then, for
every fiber product diagram

X T

D= lh’ ih
x -t

with f,g morphisms of Gchg, we have an isomorphism of functors
¢p: Fxryx 09" — f* o Fprip.

Proof. Since D is a fiber product diagram, for U € 2Affy we get another
fiber product diagram

X,XXULT/XTU

Dy = lh/U th

U:U

where ¢ is an isomorphism. Now, let M € Q€oh(7T”) with its canonical
isomorphisms py for morphisms f € 2ff;. We have an isomorphism

op(M)(U): Fxryx(g"(M)U) — Fryr(M)U) = f*(Frr(M))(U)
defined by

Fpr (Pg}})
Fip, M(X" xx U)) = Fpy (M(T" x7 U) @0 (17707 OX' xx U))

Fhy (M(T" x7 U)) @01y OU)

J{can

th(M(T/ XT U))

We check that these isomorphisms are compatible with the restriction along
a morphism V' — U of affine schemes in 2Affy, and hence via Lemma 1.3,
give a well-defined isomorphism of sheaves

¢p(M): Fxryx(g"(M)) —= f*(Frjp(M)).
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This also follows from constructing a large commutative diagram. First, we
have a commutative diagram

T xpV——m—o T xp U —— T’

gv gu g
hy hu

X' xxV—-o X' xxU ——— X' h
Lo L
hy % U T

where the vertical faces are all pullback diagrams. The commutativity of
the left cube means that we have an equality of pullback diagrams

X' xxV — X' xx U L5 T xp U
D'= Jh@ Dy Jh’U Dy th
V— U =——-—=1U

X' xxV LS5 T xpV—= T xp U
= Jh’v Dy th D, JhU

Therefore, our compatibility assumptions produce the following commuta-
tive diagram. To save space, we use the abbreviations 7" x7 U = U,
X' xx U = Uy, and similarly for Vi and Vx,. We also use the abuse of
notation __ ®p) O(V) = _@u V.

FhU (M(UT/)) KU 1%
(Fhy M(Ur)) @u U) @0 V (Fhy (M(Up)) @ V) @y V
9DU®IdJ/ PDQ ®Id
Fy, (M(Ur) @0y, Uxr) @0V 0p Finy (M(Ur) @y, Vi) @y V

GDll l@pv

Ty, (M(Ur) ®u,, Uxr) @uy, Vxr) | Fir, (MUrr) @uy, Vi) ®vy, Vi)

Fnt, (CaN /h@ (can)

T, M Urr) ®u,, Vxr)
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we extend the left side of this diagram (denoting its entries with e as before)

to

—— Fiy (M(Ux))

Id®1

Ferxvouy| Fny, (MUx ))®UV‘7

-

Fri, M Ux) @u, Vxr)

O @0<—— @

D iy (M(U))
op(M)(U)21d et

. .
|
.
J

. .

B *

Fry,  M(Vxr))

where arrows labelled “x” are the appropriate isomorphisms induced by the
quasi-coherence of M. Square A commutes since 6p, is a natural transfor-
mation and square B commutes because M is quasi-coherent. The remain-
ing new squares commute by definition. We also extend the right side of the
original diagram to

]:T’/T (V=U)®1

N\

op,, B

Id®1

Op,,

Fhy (M(Vp7)) —

—— Frny M) @y V

— Fip, (M (V1) @v,, Vo)

J

Friyp(V=U)
Fhy (M Ur)) —
Id®1
| |
. o* 7
Fry, (M(Vxr))

where the square A commutes due to the quasi-coherence of M, the square
B commutes because fp,, is a natural transformation, and again the other
new squares commute by definition. Considering the expanded diagram in

its totality, the outermost path is the commutative diagram

Fxryx(g"(M))(U)

J/]:X’/X(

¢p(M)(U)

V—U)
dp(M)(V)

S (Fpyr(M))(U)

J/]:T’/T(V_)U)

Fxryx (g (M)V) ————— [ (Fryr(M))(V).
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Since this is commutative for all morphisms V' — U, we have a well defined
isomorphism of sheaves ¢p(M).

Now, we must check that these isomorphisms are functorial in M and
thus provide our desired isomorphism of functors ¢p. Luckily, this follows
directly from the fact that the various Fj, for h € J are functors. No more
large diagrams are needed, and we are done. O

C.10. Proposition. The functors Fr: r assemble into a morphism of stacks
§: QCohy; — QCob defined by

(i) Fh: T" =T, M) = (T, Fryp(M)) on objects, and
(i) for a morphism (f,g,¢): (W': X' = X,N) = (h: T — T, M), we
have a pullback diagram

and we set §(f,g,) = (f,§(p)) where

3(9): Frx W) 20 £ (g M) 2 p4(Fr (M)

is an O|x-module morphism between the appropriate modules.

Proof. We must argue that § is a well defined functor and that it preserves
cartesian morphisms. Since it is already clear that it respects the structure
functors, this will be sufficient to conclude that § is a morphism of stacks.

Consider the identity morphism of an object (Id,Id,Idpaq): (h: T' —
T,M)— (h: T' = T, M) and its associated fiber product diagram D. Our
assumption (C.8.c) implies that the isomorphism ¢p constructed in Lemma
C.9 is the identity. Therefore, F(Idy) = Id g, (M) 8S required.

Assume we have a composition of morphisms

(hs: T, — Ty, M) Y2282 (hy: T3 = Ty, Mo) Y28 (- T 5 T M),
For U € Affp,, let T] x1, U = U]. Then, we have fiber product diagrams

92,u 91,U

Us U, Uy
D= lh:S,U Do lhlU Dy lhl,U

U U U.
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The commutativity of the following diagram

‘Fhl,U (M1<U{))

FhiyM1(U])) @v U@y U
J{GD1®Id

Fhar (M (U7) @uy Uz) @u U

(§(p1)oT(2)) (V)

Frg.y (e1(U3))@1d l
]:hz,U(MQ(U )) QqulU —— }—h2U(M1(U2/)) Qu U

J’GDQ Fhs, U(Sol(Uz)@Id) J/GDQ
Ihs,U(MQ(U ) ®U’ U3) I ]:hs U(Ml(U ) ®U§ Ué)

Fhy o (02(U3)) l Fhag  (01(U3))
Fhaoy (M3(U3)) “—="Fiy oy (Ma(U3)) ———" Fi, (M (US))

\/

Fhg,u (95 (01)092) (Ug))

*

—

implies the commutativity of face A in the diagram below

(p1)oF(p2)) (U
) (8 (¢1)0F (02))(U) Fhyp (M1(U7))

can
TC&H

Fhpo(M1(U]) @u U @u U =5 Fr, (M1 (U])) @u U
A Pm@ld

/ ]:hz,U(Ml(U{) Quy U3) @u U B op
* J{GDQ

]:hs o (can)

‘th U(Ml U2 QuU ‘thU Ml Ul ®U' U2 ®U' US) — ‘Fhs U(M(U{) ®U{ Ué)

\\7\ ]:hsu Ml U2) ®U’ UB) .

((92(991)0992)(U3)) ‘L
“ Fhy o (Ma(U3)) L iy (M (U
o Ma(0) o (M) o)

J

and face B commutes by assumption (C.8.d). This diagram implies that
(F(p1) 0 F(w2))(U) = F(g5(01) 0 2)(U) for all U € Affp, and therefore
§(p1) o F(p2) = F(g5(p1) o ¢2) in general. This shows that § respects
composition and hence is a well-defined functor.
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Finally, we address cartesian morphisms. Recall that by construction, all
morphisms in QC€olh5 are cartesian. Since Q€oh is a substack of the stack
Sh of Example 1.12, a morphism (f,1) € Q€oh is cartesian if and only if ¢
is an isomorphism. Now, consider a morphism (f,g,¢): (h': X' = X, N) —
(h: T" = T, M) in QCobh5. The map ¢ is an isomorphism by definition and
the map ¢p constructed in Lemma C.9 is an isomorphism as well. Therefore,
3(0) = dp(M)oFy:/x () is an isomorphism and thus 3(f, g, ) = (/,3(¢))

is a cartesian morphism. This concludes the proof. O
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