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ROBUST AND GLOBALLY SPARSE PCA VIA MAJORIZATION-MINIMIZATION AND
VARIABLE SPLITTING

Hugo Brehier, Arnaud Breloy, Mohammed Nabil El Korso, Sandeep Kumar

ABSTRACT

This paper addresses the problem of robust and sparse PCA.
We consider a formulation combining a M -estimation type
robust subspace recovery term and a mixed norm that pro-
motes structured sparsity in the basis vectors, which is espe-
cially interesting for joint dimension reduction and variable
selection. To solve it, we propose to leverage variable split-
ting methods, with the crucial step then lying on the Stiefel
manifold. The resolution of this subproblem, involving the
orthonormality constraint, is achieved through a tailored
majorization-minimization (MM) step. Numerical experi-
ments on gene expression measurements illustrate the interest
of the proposal.

Index Terms— Sparse PCA, Robust Subspace Recovery,
Stiefel Manifold, ADMM, Majorization-Minimization.

1. INTRODUCTION

Principal components analysis (PCA) [1] is probably the most
celebrated solution to the problem of linear subspace recov-
ery. From a demeaned data matrix consisting of n samples of
dimension p, denoted X = [x1, . . . ,xn] ∈ Rp×n, PCA con-
sists in computing X̃ = UT

PCAX ∈ Rk×n where UPCA ∈
St(p, k)1 contains the k leftmost singular vectors of X. This
projection can serve for dimension reduction (from p to k <
p) and exploratory analysis. In comparison with non-linear
dimension reduction methods (kernel methods [2], manifold
embeddings [3] and autoencoders [4]), PCA has an advantage
in the interpretability that comes from the recovered basis.

The standard PCA appears as the solution of various prob-
lem, such as orthogonal regression (least-squares subspace re-
covery), variance maximisation or maximum likelihood [5].
Nevertheless, this solution is prone to several issues, which
motivated the derivation of alternative PCA algorithms with
some desired properties:

a) Robustness: The standard PCA is sensitive to outliers,
which can lead to irrelevant solutions when the sample set is
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1Stiefel manifold, denoted as St(p, k) = {U ∈ Rp×k : UTU = Ik}

partially corrupted. Numerous approaches exist to overcome
this issue, such as the use of robust estimators of the covari-
ance matrix, or robust geometric costs [6]. These methods are
broadly referred to as robust subspace recovery [7].

b) Sparsity: The standard PCA produces new variables
that are linear combinations of all the original ones. Since
these variables generally have a fundamental or physical
meaning, such as assets in finance or genes in biology, a basis
with only a few non-zero entries could facilitate the statistical
interpretation and the variable selection. The problem of find-
ing such vectors is referred to as sparse PCA and motivated
numerous works (see e.g. [8–15] and references therein).

To enjoy the best of both worlds, [16] considered a robust
sparse PCA formulation combining an M -estimation type fit-
ting term [17,18] and sparsity promoting penalties from [19].
In this paper, we propose a new algorithm suited to this ap-
proach that leverages variable splitting methods, see e.g. SOC
[20] or the Manifold Alternating Direction Method of Multi-
pliers (MADMM) [21]. Indeed, jointly handling the orthonor-
mality constraint and sparsity promoting penalties is gener-
ally a hard task. The algorithms in [16] resort to smoothed
penalties from [19] that allow to deal with the issue within
the majorization-minimization framework. The proposed ap-
proach will allow for a direct use of non-smooth penalties.
A notable interest is that it will newly permit the use of a
mixed norm [22]. This type of penalty promotes structured
sparsity patterns (e.g. globally sparse PCA [23, 24] or group
Lasso [25]), which is useful in variable selection.

Though the proposed algorithm can be generalized to var-
ious robust costs functions (cf. [16]), this paper will focus on
a Huber-type one, whose limit case yields the median sub-
space. The resulting algorithm will thus be referred to as me-
dian sparse PCA (MSPCA). Then, validations experiments on
gene expression data will show that the proposed approach
achieves a sparsity versus explained variance trade-off that is
comparable to the state of the art, but without sacrificing the
orthogonality of the basis vectors. It will also illustrate the
interest of combining both robust subspace recovery fitting
costs and sparse penalties.

In the following sections, let A be a matrix with (i, j)th

entry [A]i,j , ith column ai and ith row Ai,: . Further on, we
denote by ∥·∥p the ℓp norm, by ∥·∥F the Frobenius one and
the ℓ2,1-norm by ∥A∥2,1 ≜

∑p
i=1∥Ai,:∥F



2. PROBLEM FORMULATION

We consider the following robust sparse PCA problem:

min
U

1
nFq,δ(U,X) + λψ(U)

s.t. U ∈ St(p, k)
(1)

where:
• Fq,δ is a robust Huber-type data-fitting cost [16, 17]:

Fq,δ(U,X) =

n∑
i=1

ρ(dist(xi,U)) (2)

with dist(xi,U) =
∥∥xi −UUTxi

∥∥
F

and the function:

ρ(x) =

{
1
2δ
x2 + (qδ)q/(2−q) − (qδ)2/(2−q)

2δ
if x2−q < qδ

xq if x2−q ≥ qδ
(3)

induces some robustness in the estimation process thanks to
the use of a q-norm rather than a quadratic term for large er-
rors. Typically, q = 1 and a small δ yield a tractable ap-
proximation of the median subspace. Otherwise, the classical
least-squares subspace fitting is obtained for q = 2. The in-
terest of Fq,δ was evidenced in robust subspace recovery but
not fully leveraged in (globally) sparse PCA with standard
sparsity promoting penalties such as ℓ1 and ℓ21-norms.
• ψ(·) is a sparsity promoting penalty and λ ∈ R+ is a reg-
ularization parameter. For example, the ℓ1-norm promotes
unstructured sparsity in the basis U, while the ℓ2,1-norm pro-
motes structured sparsity [25]. Its row-wise structure enforces
the same sparsity pattern along all basis vectors, so as to re-
veal a subset of useful variables.

Even for the usual sparse PCA (q = 2 and ℓ1-penalty),
most works relax the orthogonality constraint on U in (1).
This approach tends to create correlated loading vectors at
high regularization and thus degrade the explainability of the
PCs. We will leverage MADMM to avoid such relaxation.

3. MADMM ALGORITHM

The problem (1) is difficult to handle due to the orthonor-
mality constraint on U and the non-smooth regularization
penalty. We therefore consider a variable-splitting refor-
mulation which will allow us to derive a tractable and effi-
cient algorithm through MADMM [21], a special case of the
renowned ADMM [26–28]. Indeed, we first formulate:

min
U,V

1
nFq,δ(U,X) + λψ(V)

s.t. U ∈ St(p, k),U = V.
(4)

We keep the constraint U ∈ St(p, k) while relaxing it on
V and conversely for the sparsity constraint. The constraint
V = U implies that V is eventually orthonormal and U
sparse, which allows for deriving practical updates of both
variables. The augmented Lagrangian for (4) is:

L(U,V,Γ) =
1

n
Fq,δ(U,X) + λψ(V) + γ∥U−V∥2F + ⟨Γ,U−V⟩

(5)

Algorithm 1 MADMM for MSPCA
1: Entry: X = [x1, . . . ,xn] ∈ Rp×n

2: Initialize U ∈ Rp×k (by PCA or another method)
3: Initialize V ∈ Rp×k randomly
4: Initialize Γ ∈ Rp×k by a matrix of zeros
5: repeat
6: Update U by following Algorithm 2
7: Update V by following (15) or (16)
8: Update Γ by : Γ+ 2γ(U−V)
9: until convergence

10: Output: U ∈ Rp×k

with γ ∈ R+, and where Γ ∈ Rp×k contains Lagrange mul-
tipliers associated with the constraint U = V. We then aim
at alternatively minimizing this objective L for each variable,
while keeping other fixed. Each step is detailed below and the
full algorithm is summarized in Algorithm 1.

3.1. U-update

This step consists in fixing V and Γ and solving for a variable
constrained to the Stiefel manifold:

U = argmin
U∈St(p,k)

L(U,V,Γ), (6)

Leaving out constant terms, we then consider:

min
U

1
nFq,δ(U,X) + γ∥U−V∥2F + ⟨Γ,U−V⟩

s.t. U ∈ St(p, k)
(7)

The solution to this problem admits no closed-form solution.
We therefore tailor a majorization-minimization algorithm
in order to evaluate a local minimum of the objective func-
tion. The majorization step is applied thanks to the following
proposition:

Proposition 3.1. The objective function in (7) is majorized at
point Ut by the surrogate function:

g(U|Ut) = −Tr
(
UT

( q
n
X̃X̃TUt + 2γV − Γ

))
(8)

with X̃ = [x̃1, . . . , x̃n] and ∀i = 1, . . . , n :

x̃i = xi/max
(
dist(2−q)/2(xi,Ut),

√
qδ
)
. (9)

Equality is achieved at Ut.

Proof. First, we leverage the result of [17], stating that Fq,δ

can be majorized at point Ut by the quadratic surrogate func-
tion

Hq,δ(U,X|Ut) =
q

2

n∑
i=1

dist2(x̃i,U) + const. (10)



Algorithm 2 U-Update
1: Entry: X = [x1, . . . ,xn] ∈ Rp×n

2: repeat
3: Form X̃ = [x̃1, . . . , x̃n] ∈ Rp×n

4: with x̃i = xi/max
(
dist(2−q)/2(xi,U),

√
qδ
)

5: Compute C = q
nX̃X̃TU+ 2γV − Γ

6: Compute the thin SVD: C = UCΣCV
T
C

7: Update U by : U = UCV
T
C

8: until convergence
9: Output: U ∈ Rp×k

with x̃i defined in (9) (implicitly dependent on q and δ) and
const. denoting a constant term w.r.t. U. Now, remark that:

n∑
i=1

dist2(x̃i,U) =

n∑
i=1

∥∥x̃i −UUT x̃i

∥∥2
= −Tr (UT X̃X̃TU) + const.

(11)

Denote fB(U) = Tr (UT X̃X̃TU). The function −fB(U) is
quadratic concave, so it can be majorized at point Ut by its
first order Taylor expansion [29]:

−fB(U) ≤ −fB(Ut)− Tr

((
∂fB(Ut)

∂Ut

)T

(U−Ut)

)
= −2Tr (UT X̃X̃TUt) + const.

(12)

Adding the last two terms of (7), this linear majorizer yields
the surrogate g as in (8).

From the majorizer in Proposition 3.1, the minimization
of the surrogate g is equivalent to:

Ut+1 = argmax
U∈St(p,k)

Tr
(
UT

( q
n
X̃X̃TUt + 2γV − Γ

))
(13)

which corresponds to an orthogonal Procrustes problem [30]
whose solution can be computed as Ut+1 = UCV

T
C , with

the thin-SVD: C TSVD
= UCΣCV

T
C and C = q

nX̃X̃TUt +
2γV − Γ. The resulting algorithm to compute the U-update
is summarized in the box Algorithm 2.

3.2. V-update

Thanks to the variable splitting, this step consists simply in a
proximal evaluation. Fixing U and Γ, we get:

V = argmin
V

γ
∥∥∥Ũ−V

∥∥∥2
F
+ λψ(V), (14)

with Ũ = U + 1
2γΓ. This gives the problem the form of

a proximal [31] of the function ψ. If ψ is the ℓ1-norm, the
solution is given by:

V = Sλ/2γ(Ũ) (15)

with the entry-wise soft-thresholding operator, defined (entry
by entry) by: [Sλ/2γ(Ũ)]ij = sgn([Ũ]ij)

(
|[Ũ]ij | − λ

2γ

)
+

where (x)+ is the positive part function and sgn is the sign
function. If ψ is the ℓ2,1-norm, the solution is given by:

V = Tλ/2γ(Ũ) (16)

with the row-wise thresholding operator, defined (row by row)

by: [Tλ/2γ(Ũ)]i: =

(
1− λ/2γ

∥[Ũ]i:∥

)
+

[Ũ]i:

For completeness, we mention the Γ-update, a generic
dual ascent step: Γ← Γ+ 2γ(U−V)

4. EXPERIMENTS

4.1. Simulation study for robustness

In the following, synthetic data will be drawn according to a
Gaussian probabilistic model.

Definition 4.1. Probabilistic PCA Model (PPCA) [5]
Samples are drawn as a structured signal plus noise :

x = U0s+ n (17)

with U0 ∈ Rp×k, s ∼ N (0, I) ∈ Rk and n ∼ N (0, σ2I) ∈
Rp. Then, x ∼ N (0,Σ) with Σ = U0U

T
0 + σ2I.

Next, the outliers will be generated according to a Haystack-
type model, which consists in a specific mixture of PPCA
models, defined as follows.

Definition 4.2. Haystack Model [32]
Samples {xi}ni=1 are drawn as inliers and outliers as follows:

{xi}ni=1 = {{xin
i }

nin
i=1, {x

out
i }ni=nin+1}

xin ∼ N (0, σ2
sU0U0

T + Ip)

xout ∼ N (0, σ2
oU

⊥
0 (U

⊥
0 )

T + Ip)

(18)

where U0 is the underlying signal subspace basis, U⊥
0 ∈

St(p, p − k) is its orthonormal complement, σ2
s and σ2

o are
respectively the signal and outlier to noise ratio while pco =
(n− nin)/n is the fraction of outliers.

The sparse signal subspace basis U0 is generated as:

U0 =

[
Ud

0

]
, Where Ud ∈ Rd×k, d ≤ p , is an orthogonal

basis and 0 ∈ R(p−d)×k is a matrix of zeros. For some result-
ing basis U, the performance is evaluated in terms of average
fraction of energy:

AFE(U) = E
[
Tr(UTU0U0

TU)
]
/k (19)

which assesses if the subspace spanned by U0 is well recov-
ered (on average) by the estimation process. The expectation
is evaluated through 250 Monte-Carlo runs.
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Fig. 1. AFE and NOR versus SP on synthetic data

This criterion will slightly favor the algorithms that relax
the orthonormality constraint in PCA, so we also assess the
non-orthogonality criterion NOR(Û) = ||ÛHÛ − I||2F . We
measure these two criterions against the degree of sparsity
of the basis: SP(U) = 1 − ∥U∥0

p×k . The methods we com-
pare against are rSVD [13], a vector-by-vector method with
deflation from [33], SPCArt [14], a basis-wide method, and
ROBSPCA [34].

Figure 1 shows the result of such a simulation with p =
100, k = 5, n = 100, d = 0.5p while σs = σo =

√
(10)

and pco = 0.05. MSPCA is set with q = 1 and δ = 1 (whose
value does not dramatically impacting the results, as observed
in [17]). It is evident that MSPCA, thanks to its robust cost,
deals with outliers better than other methods from the leftmost
plot: the AFE over all sparsity degrees is higher for MSPCA.
From the rightmost plot we find out that MSPCA also respects
more stricly the orthonormality constraint.

4.2. Study on a microarray gene dataset

Experiments are carried out on the Khan Gene Data [35],
which consists of 2308 gene expression measurements from
small round blue cell tumors of 63 patients across 4 classes
(cancer types). We study the sparsity-performance trade-off
of MSPCA using either ℓ1-norm or ℓ2,1-norm penalties. Since
there is no ground truth for the ‘true’ underlying subspace, the
AFE is computed as the fraction of recovered variance in X.

Figure 2 displays the AFE and NOR versus the degree
of row-sparsity (SProw). ROBSPCA and rSVD, not suited to
structured sparsity, perform worse. We notice that MSPCA-
ℓ2,1 achieves an AFE close to the one of SPCArt-ℓ2,1 (i.e.,
we modify SPCArt algorithm to use the ℓ2,1-norm penalty),
while not relaxing the orthonormality constraints.

Finally, Figure 3 displays the first 3 principal compo-
nents obtained with various algorithms: i) standard PCA; ii)
MSPCA with no sparse penalty (equivalent to RSR in [17]);
iii) MSPCA-ℓ1; iv) MSPCA-ℓ2,1. All robust formulations
use a Huber cost with q = 1 and δ = 1. The sparse penalties
are set to obtain a similar sparsity (SP) level.
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Fig. 2. AFE and NOR versus SProw of various sparse PCA
algorithms on Khan Gene Data.

Fig. 3. Display of the 3 first principal components from PCA
(top left), RSR (top right), MSPCA-ℓ1 (bottom left), MSPCA-
ℓ2,1 (bottom right).Each color in the point cloud represent a
different class (cancer type).

We notice the interest of the robust fitting criterion (2)
compared to the standard least squares PCA formulation, as
the obtained principal components separates the classes more
clearly across the data points cloud (top row). We also ob-
serve that the sparse PCA approaches offer a projection where
the classes appear more clearly separated (bottom-left). The
proposed ℓ2,1 penalty allows us to perform an interesting joint
dimension reduction and variable selection, that improves the
class separation (bottom-right) in an unsupervised manner.

5. CONCLUSION

This paper proposed a method to perform sparse PCA us-
ing a robust subspace recovery fitting and a non-smooth spar-
sity promoting penalty. Experiments on gene expression data
showed both the interest of the approach in terms of explained
variance versus sparsity trade-off, as well as for the visual rep-
resentation of the principal components.
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