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Workshop on Hypersonic Flows for Reentry Problems,
Antibes (France), January, 22-25 1990.

Solution of the Euler Equations Around a Double
Ellipsoidal Shape Using Unstructured Meshes
and Including Real Gas Effects.

Frangois DUBOIS and Olivier MICHAUX.
AEROSPATIALE, Division Systémes Stratégiques et Spatiaux
Direction Technique, BP 96, F-78133 Les Mureaux Cedex, France.

Abstract

We present the numerical solution of the Euler equations of gas dynamics
around the double ellipsoidal shape proposed by the organizers of the Antibes 1990
workshop. In two of the test cases we consider a modelization of air by a polytropic
perfect gas, at an upstream Mach number Moo = 8.15, and under incidences o = 0°
and 30° (problems 6.1.5 and 6.1.7). The last test case is related to hypersonic regimes
(Moo =25, a =30°) and the air is therefore described as a real gas at chemical
equilibrium (problem 6.3.9).

In the first part of this paper we describe our three-dimensional Euler
computing code named CEL3GR developed at AEROSPATIALE Les Mureaux since
1987. In the second part, we present the generation of our two box mesh around the
double ellipsoid and we emphasize on the approximation of the nontrivial line of
intersection. The third part is devoted to the numerical results for each test case.

I. Description of the Euler Solver CEL3GR.

The code CEL3GR is based on the MUSCL scheme (second order accurate
upstream scheme) proposed initially by Van Leer [1979] and the use of finite element
type unstructured meshes. It has been developed at the Technical Direction of the
Space and Strategic Systems Division of AEROSPATIALE since 1987. We refer to
Mercier [1987] for a preliminary 2D version, to Michaux [1989] for the 3D version
and to Pollet-Brenner [1989] for internal aerodynamics applications including a
moving body.

The computational domain is divided into finite volumes K that are supposed
to satisfy the usual restrictions associated with finite element meshes (see Ciarlet
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ume II: Test Cases — Fxperiments and Computations Proceedings of a Workshop Held in
Antibes, France, 22-25 January 1990, Editors Jean-Antoine Désidéri, Roland Glowinski,
Jacques Périaux, Springer Verlag, pages 358-373, 1992. Edition January 2024.
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[1976]). Moreover, we restrict ourselves in the present version to finite volumes that
are hexahedrons or prisms. As usual with the finite volume method, we integrate the
Euler equations (for details concerning this classical model and notations we refer to
Landau-Lifchitz [1953]) on each cell K and derive in this way a system of ordinary
differential equations for the mean values of the conservative variables in the control

volume K:
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where dK denotes the boundary of K, f a generic face of 9K and |K | the measure of
the cell K. The numerical flux ¢(f) is computed according to the second order
accurate MUSCL approach that can be divided into three steps: (i) evaluation of the
gradient of density, momentum and volumic internal energy in each cell K, (ii)
nonlinear extrapolation of these fields on the two sides of each interface f in order to
respect monotonicity constraints and (iii) approximate solution of the Riemann
problem at each face in the way initially proposed by Godunov [1959]. The
assumption of an unstructured mesh makes the first step not so obvious. We compute
the three components of the mean value of the gradient V@(K) in the cell K of a scalar

field ¢ according to Green's formula:

@ VoK) = %[ S onar .

Therefore it is sufficient to interpolate ¢ on each face f from the cell values ¢(K) in a
centered way to achieve this first step. The nonlinear extrapolation (second step)
o(K,f) of the field ¢ on the face f on the side of the element K generalizes the
procedure introduced by Van Leer [1977] ; we suppose that the field ¢ is
polynomial of degree 1 between the centers x(K) of the cell and x(f) of the face
and we limit the extrapolation associated with the first order Taylor formula by some
parameter 0i(K,@) between 0 and 1. We obtain :

B3 oK) = oK) + aK,9)- Vo(K) - (x(f) - x(K)).

and a(K,) is chosen as close to 1 as possible in order to satisfy the following
monotonicity condition




L) = oKfp < max oL)

4 , ,
L neighbouring K

min @
L neighbouring K

for each face f of the element K.

From the five scalar parameters @(K.,f) (i.e. one for density, three for momentum and
one for volumic internal energy) we easily obtain an extrapolation of the conservative
variables U(K,f). The third step is strongly nonlinear and evaluates the flux at the
interface f that results from the interface Riemann problem. The data of this one-
dimensional discontinuity decomposition are the two values @(L,f) and @(R,f) and the
direction of propagation is the normal n(f) of the interface. We have chosen the flux
splitting  proposed by Sanders-Prendergast [1974] which has the advantage of being
parameterized only by the following two thermodynamics functions : the pressure
and the (equilibrium) sound velocity given as functions of the density and the internal
energy. In the case of a (non perfect) equilibrium air modelization, we used the
function tgas1 proposed by Srinivasan et al [1987]. Then we compute the numerical

flux in (1) according to the relation :
&) o = y(ULD, nd), UR,D ) .

The boundary conditions are treated weakly, i.e. the external state (in the case
of a fluid artificial boundary) or the mirror state (to take into account the body) is
introduced on one hand in the arguments of the right hand side of relation (5) to take
into account the Riemann problem at the boundary. For more details concerning the
treatment of the boundary conditions in terms of fluxes and its relation with the
solution of Riemann problems, we refer to Dubois-Le Floch [1989].

To obtain a steady state solution of the Euler equations the integration of the
differential system (1) with respect to time is performed with a second order
accurate explicit temporal scheme (the Courant-Friedrichs-Lewy (CFL) number is
typically of the order 0.4 to 0.6 in our computations) of the predictor-corrector type

with a conservative predictor step :
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We focus now on the multidomain treatment in the supersonic regions of the
flow. We consider a plane surface X separating two domains 1 and 2 in such a way
that we know a priori that the flow is supersonic in the direction orthogonal to X
everywhere on X. Node coincidence on each side of Z is not required by our
computer code. To handle the interface conditions we proceed as follows. In domain
1, the plane X corresponds to a supersonic outflow and no boundary data has to be
taken into account when we compute the flux (5) at this boundary. When
convergence is obtained in this first domain, we know both the state U(f1) and the
flux ¢(f1) on each face f1 of the mesh of the domain 1 lying on X. We transfer the
fluxes across the interface inside domain 2 by a conservative interpolation of

the fluxes :

(7)  area(f2)- ¢,(2) = > area (f1Nf2) - ¢(f1) ,

f1 face of domainl on X

for f2 face of domain2onX .

The second order accuracy is obtained in domain 2 by using the states U(f1) given at
the boundary from the first domain. This type of boundary procedure is referenced as
a "given state and given flux" boundary condition.

The code has been developed and optimized on the Cray-XMP 416 of the
"Club Aéronautique” located at ONERA. Due to the data structure, all the do-loops
have been vectorized and the present version uses 39 microsecond of CPU time
per cell and per time step (in the polytropic case ; 85 s/ Ax / At with real gas
effects) as well as 130 words per cell concerning the memory efficiency. Thus up to
100.000 cells can be introduced in the main memory of the Cray XMP.

II. Mesh Generation around the Double Ellipsoid.

The computational domain is divided into two boxes corresponding
respectively to the nose region and the remaining part of the body. The plane X of
separation is located at the abscissa x = x* = - 0.03742 (relatively to the coordinate

system proposed by Desideri [1989]).




The mesh of the nose region (x<x*) is generated by 37 half-planes turning
around the Ox axis inside the region {y>0}. Each meridian section is meshed between
the body and the "infinite boundary" (semi-empirically determined for each test case)
by a 46x31 structured mesh . The threedimensional cells generated in this way are
hexahedrons except around the x-axis where we obtain prisms.

The mesh of the second box (x>x*) is obtained by a set of 46 planes of the
type "x=constant" associated with a bidimensional mesh of 37x31 points in each
section. From this structured set of points, we have generated a unstructured
topology in such a way that the intersection line between the two ellipsoidal
shapes is discretized by edges that belongs to the mesh (in the finite element
sense, see figure 1). In this way, the intersection line is discretized with a precision of
the order O(h2) which would be only O(h) with a structured topology. For more
details, we refer to Dubois [1989].

The union of these two computational domains constitutes our mesh. It
contains 91 x 37 x 31 points and 97.500 elements.

III Presentation of the results.

The first case is problem 6.1.5; the infinite Mach number is 8.15 and the
incidence is 0°. Two strong shock waves are generated by the nose and the "canopy"
of the double ellipsoid. The distribution of the pressure coefficient Cp is given in
figure 3. We remark that the bow shock and the canopy shock intersect (see for
example the iso-Mach contours in the meridian plane y = 0 in figure 2) and produce a
shock wave and a contact discontinuity. The latter is weak and close to the reflected
bow shock wave. Due to a relative coarse mesh in this region of the flow, this contact
discontinuity is only visible on the iso-density contours (figure 4). We also remark
that the entropy lines in the meridian plane (figure 5) enter into the body. This fact
indicates that the numerical entropy generated by the scheme is very low (the reverse
situation, i.e. streamlines generated by the shape, is common when the numerical
dissipation is more important). We also present a view of the Mach number contours
on boundary surfaces of the computational domain (figure 6).

The second computation is problem 6.1.7; the infinite Mach number is 8.15
and the incidence is 30°. The two shock waves do not intersect in this case as we can
see on the iso-Mach number contours in the meridian plane (figure 7). The plane
separating the two computational boxes is visible on this view ; moreover, the bow
shock wave is better captured in the first box, due to a more refined mesh. The Cp




wall distribution contours (figure 8) clearly show that the canopy shock is in
comparison weaker in this case than in the previous one (see figure 3). The iso-
density and iso-entropy contours in the meridian plane are presented in figures 9 and
10. The streamlines on the wall (figure 11) are regular as in the previous test case.

Our third test case is problem 6.3.9. The air is no longer a polytropic perfect
gas but a real gas at chemical equilibrium. The infinite Mach number is 25 and the
incidence 30°. The convergence has been obtained in two steps: we used the first
order accurate scheme (in space and time) to obtain a good approximation of the
solution before integrating in time with the numerical scheme described in part I and
obtaining a converged result. As in the previous case, the two shock waves do not
interact (see the iso-Mach number contours in the meridian plane in figure 12). We
also note in the pressure (figure 13), Mach number (figure 14) and temperature
distributions (figure 15) along the body the oblique shock wave and the stagnation
point, particularily visible in the Mach number distribution. The transversal Mach
number repartition on the body in the plane x =0 (see figure 16 indicates that the
canopy shock wave is quasi-transversal in this part of the flow. This last result is not
clearly visible on the threedimensional views of Mach number on the boundaries
(figure 17) and the streamlines on the body (figure 18).

Conclusion.

In the test cases around the double ellipsoidal shape the computing code
CEL3GR developed at AEROSPATIALE DSSS (Les Mureaux) has proved its
capability to solve the Euler equations of gas dynamics in supersonic and hypersonic
situations. Due to the choice of an unstructured mesh, other types of geometries have
also been taken into account such as transonic nozzle flows. Further developments are

under study.
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Figure 1. Unstructured mesh on the shape of the double ellipsoid.
Triangles are generated to discretize precisely the line
of intersection. The limit between the two boxes
without node coincidence is also clearly visible.




Figure 2. Problem 6.1.5, Moo = 8.15, a0 = 0°. Mach number iso-
value contours in the plane y = 0 (Am = 0.25).
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Figure 3. Problem 6.1.5, Mo =38.15, a =
distribution in the plane y = 0.
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Figure 4. Problem 6.1.5, M« = 8.15, o = 0°. Density iso-value
contours in the plane y = 0 (Ap = 0.25).




Figure 5. Problem 6.1.5, Mo = 8.15, o = 0°. Entropy iso-value
contours in the plane y = 0 (As = 0.5).




Figure 6. Problem 6.1.5, Moo = 8.15, oo = 0°. Mach number iso-
value contours on the body and in the planes y = 0 and
x = 0.016.




Figure 7. Problem 6.1.7, Moo = 8.15, & = 30°. Mach number
iso-value contours in the plane y = 0 (Am = 0.25).
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Figure 8. Problem 6.1.7, Mo =8.15, a = 30°. Cp wall
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Figure 9. Problem 6.1.7, Mo = 8.15, o = 30°. Density iso-value
contours in the plane y = 0 (Ap = 0.25).




Figure 10. Problem 6.1.7, Mo =8.15, o = 30°. Entropy iso-
value contours in the plane y = 0 (As = 0.5).




Figure 11. Problem 6.1.7, Moo = 8.15, a = 30°. Side view of the
wall streamlines.




Figure 12. Problem 6.3.9, Mo = 25, a = 30°. Mach number iso-
value contours in the plane y = 0 (Am = 0.25).




Cp wall distribution in the planey =0
0.0 T

0.2 _.
0.4
0.6
0.8

1.0

Cp

1.2

-.-t..--.-.:f---...,..,},....“.-4;;;-.'.'.'.{;' ERRREE

1.4

we WL

L8 i

20 o i

Figure 13. Problem 6.3.9, Mo =25, a = 30° Cp wall
distribution in the plane y = 0.
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Figure 14. Problem 6.3.9, M
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Temperature wall distribution in the plane y =0
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Figure 15. Problem 6.3.9, Mo =25, o = 30°. Temperature
distribution on the body in the plane y = 0.
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Figure 16. Problem 6.3.9, Moo =25, o = 30°. Transversal Mach
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Figure 17. Problem 6.3.9, Mo =25, o = 30°. Mach number iso-

value contours on the body and in the planes y = 0 and
x = 0.016.




Figure 18. Problem 6.3.9, M =25, oo = 30°. Side view of the
the wall streamlines.




