The consequences of COVID-19 pandemic on patients with monoclonal gammopathy—associated systemic capillary leak syndrome (Clarkson disease) Marc Pineton de Chambrun, Quentin Moyon, Stanislas Faguer, Geoffrey Urbanski, Alexis Mathian, Noémie Zucman, Marie Werner, Charles-Edouard Luyt, Franco Verlicchi, Zahir Amoura, et al. ## ▶ To cite this version: Marc Pineton de Chambrun, Quentin Moyon, Stanislas Faguer, Geoffrey Urbanski, Alexis Mathian, et al.. The consequences of COVID-19 pandemic on patients with monoclonal gammopathy—associated systemic capillary leak syndrome (Clarkson disease). Journal of Allergy and Clinical Immunology: In Practice, 2022, 10 (2), pp.626-629. 10.1016/j.jaip.2021.11.023. hal-04399103 # HAL Id: hal-04399103 https://hal.science/hal-04399103v1 Submitted on 22 Jul 2024 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. 1 TITLE: The Consequences Of COVID-19 Pandemic On Patients With Monoclonal Gammopathy 2 Associated Systemic Capillary-Leak Syndrome (Clarkson's disease) 3 4 **RUNNING TITLE:** Consequences Of COVID-19 Pandemic In Clarkson's disease 5 **AUTHORS:** Marc Pineton de Chambrun^{1,2,3}, MD, MSc; Quentin Moyon^{1,3}, MD, MSc; Stanislas Faguer⁴, 6 7 MD, PhD; Geoffrey Urbanski⁵, MD, MSc; Alexis Mathian³, MD, PhD; Noémie Zucman⁶, MD; Marie Werner⁷, MD; Charles-Edouard Luyt^{1,2}, MD, PhD; Franco Verlicchi⁸, MD; Zahir Amoura³, MD, MSc for 8 9 the EurêClark Study Group. 10 11 AUTHOR AFFILIATIONS: 1Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Hôpital La Pitié-12 Salpêtrière, Service de Médecine Intensive-Réanimation, Paris, France; ²Sorbonne Université, INSERM, 13 UMRS_1166-ICAN, Institut de Cardiométabolisme et Nutrition (ICAN), Paris, France; ³Sorbonne Université, 14 APHP, Hôpital La Pitié-Salpêtrière, Institut E3M, Service de Médecine Interne 2; Centre de Référence National 15 Lupus Systémique, Syndrome des Anticorps Anti-phospholipides et Autres Maladies Auto-Immunes 16 Systémiques Rares, Paris, France; ⁴Département de Néphrologie Et Transplantation D'organes, Centre de 17 Référence Des Maladies Rénales Rares, INSERM U1297 (I2MC, équipe 12), Centre Hospitalier Universitaire de 18 Toulouse, Toulouse, France; ⁵Service de Médecine Interne et d'Immunologie Clinique, Centre Hospitalier 19 Universitaire, Angers, France; ⁶Université de Paris, APHP, DMU ESPRIT, Service de Médecine Intensive 20 Réanimation, Hôpital Louis Mourier, Colombes, France; ⁷Université Paris Saclay, AP-HP, Hôpital Bicêtre, Service 21 de réanimation chirurgicale adulte, Le Kremlin-Bicêtre, France; 8Transfusion Service, Romagna Local Health 22 Unit, Ravenna, Italy. 23 Correspondence and requests for reprints should be addressed to Marc Pineton de Chambrun, MD, 24 MSc, Service de Médecine Intensive-Réanimation, Hôpital La Pitié-Salpêtrière, 47-83, boulevard de 25 26 l'Hôpital, 75651 Paris Cedex 13, France; E-mail: marc.dechambrun@gmail.com; 27 marc.pinetondechambrun@aphp.fr Tel: +33 (0)1 84 82 76 32, +33 (0)1 42 16 38 16 | 1 | Word count: 979/1000 | |----|---| | 2 | Table count: 2 | | 3 | References: 7 | | 4 | | | 5 | Key words: systemic capillary-leak syndrome; COVID-19; Clarkson's disease; vaccination | | 6 | | | 7 | Competing interest: all authors certify they have no conflict of interest to disclose | | 8 | | | 9 | Funding: none | | 10 | | | 11 | Acknowledgment: none | | 12 | | | 13 | Patients and Public involvement in the research: none | | 14 | | | 15 | Clinical Implications box: SARS-CoV-2 infection and COVID-19 vaccination can trigger severe relapse | | 16 | of systemic capillary-leak syndrome (SCLS, Clarkson's disease). | | 17 | | | 18 | | | 19 | | | 20 | | | 21 | | | 22 | | | 23 | | | 24 | | | 25 | | | 23 | | The systemic capillary-leak syndrome (SCLS), also known as Clarkson's disease, is a rare condition characterized by recurrent life-threatening episodes of capillary hyperpermeability in the presence of a monoclonal gammopathy. Viral infections, especially influenza virus, are known to reveal the disease and to elicit its recurrence^{1–3}. Patients are asymptomatic between episodes. Monoclonal gammopathy of undetermined significance occurs in 3.2% of persons 50 years of age or older and in 5.3% of those 70 years of age or older⁴. However, the incidence and prevalence of Clarkson's disease in this population is unknown, certainly very low¹. The prevention of severe episodes rely on chronic perfusion of high-dose intravenous immunoglobulins (IVIg)⁵. Aside IVIg and a modest effect of terbutaline, no other treatment have shown to prevent recurrence. Moreover, despite some promising drugs, none have been proven effective in reducing capillary-leak during severe episodes. Several pathophysiological pathways, such as phosphodiesterase inhibition, are candidate for the treatment of severe episodes. The coronavirus disease 2019 (COVID-19) and its preventive vaccines have been recently reported to trigger Clarkson's disease first episodes and relapses^{6,7}. We aimed to describe the outcome of European patients with Clarkson's disease from the EurêClark Registry during the COVID-19 pandemic. All patients with a diagnosis of monoclonal gammopathy-associated SCLS included in the EurêClark Registry and alive at the start of COVID-19 pandemic (February 1st 2020), were included and evaluated until July 10th 2021 (**Table 1**). Thirty patients were included, with a female-to-male ratio 1.3 and a mean±SD age 58±14 years. Every patient had an IgG gammopathy with kappa (n=24) or lambda light chain (n=7). Most patients were under long-term treatment with intravenous immunoglobulins (n=27, 90%). Five patients (17%) experienced a relapse related to a proven (n=3) or highly probable (see Table 1 footnotes) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, with a fatal outcome in 4 patients. None had evidence of COVID-19 pneumonia and all experienced typical flare of Clarkson's disease with severe hypovolemic shock and refractory multiple organ failure. Twenty patients underwent COVID-19 vaccination with: BNT162b2 (Pfizer-BioNTech) n=17; Ad26.COV2.S (Janssen) n=1; and mRNA-1273 (Moderna) n=2. Vaccination was uneventful in 18 patients, including two not receiving IVIg. Two patients treated with IVIg had a relapse after a second dose mRNA vaccine, with favorable outcome in both cases. During the time of the study, 5 patients had a new diagnosis Clarkson's disease and were reported to the EurêClark Registry (**Table 2**). All required intensive care unit management, and one died during this opening episode. Four had their first flare triggered by a PCR-confirmed COVID-19 infection. The last patient, previously known to have a monoclonal gammopathy, had a typical opening flare of SCLS 3 days after the first injection of ChAdOx1 (AstraZeneca). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Our results highlight the burden of COVID-19 pandemic for patients with Clarkson's disease. They face the threat of both the infection and its preventive vaccine. Moreover, IVIg seems to protect them imperfectly against these foes. Several lessons can be drawn from our results jointly with previous reports. First, COVID-19 infection seems to induce very frequently a relapse of Clarkson's. Every patient from our cohort with a proven or suspected SARS-CoV-2 infection had a severe flare, fatal in 80% of cases. To the best of our knowledge and in the published literature, there are no report of uneventful SARS-CoV-2 infection in these patients. As previously reported, viral infection frequently elicit relapse in Clarkson's disease patients. However, vascular leakage seems to play a major role in COVID-19 pathophysiology and may explain the high relapse risk during SARS-CoV-2 infection. While IVIg have been shown to prevent severe episodes⁸ and to improve survival⁵, they failed to prevent the COVID-19-related relapses in 4 of our patients, including one treated at full dose (2g/kg/4 weeks). The tapered dose in the 3 others might have lowered their preventive effect. The lack of SARS-CoV-2 specific immunoglobulins in available preparations of IVIg could explain this lower efficacy⁶. A recent study revealed the apparition of anti-SARS-CoV-2 NP and S-RBD antibodies in IVIg preparation containing plasma collected in Italy after March 20209. Yet, it cannot be denied that some patients from our cohort might have had asymptomatic COVID-19 during the time of the study. Second, while the incidence of Clarkson's disease is unknown, being probably very low, this pandemic has been associated with an elevated number of new diagnosis in a short period of time. This findings highlights the critical role of viral triggers in the onset of SCLS. Third, while we usually recommended vaccination in our patients (especially against influenzae virus), COVID-19 vaccines have been shown to trigger Clarkson's disease episodes. All four vaccines authorised by the European Medicines Agency (EMA, BNT162b2, Ad26.COV2.S, mRNA-1273 and ChAdOx1) have be incriminated and not solely the ChAdOx1 (AstraZeneca) for which this adverse effect was recently pointed out by the EMA's safety committee. Conversely with cases reported by Kirk M. Druey's team⁷, our 2 patients relapsing after vaccination were given IVIg regularly. Furthermore, 18 patients, including 2 not receiving IVIg had no adverse event after COVID-19 vaccination. This study has several strength and limitations. First, the small sample size of this series should be put in perspective with the rarity of the disease. Second, while the retrospective nature of this work is inevitably associated with selection bias, most informations originate from prospectively collected data. Third, only symptomatic episodes after vaccination were monitored but not any other vaccine adverse reactions. Last, we did not evaluate the anti-spike antibody response to confirm that vaccination participates in Clarkson's disease relapse prevention. In conclusion, COVID-19 pandemic has serious consequences in SCLS patients. SARS-CoV-2 infection is associated with a high risk of relapse and all COVID-19 vaccines can trigger episodes. High-dose IVIg remains the only effective preventive treatment and should not be stopped during the pandemic. In our opinion, the benefit/risk ratio favors COVID-19 vaccination in our patients under IVIg, but further data is needed to determine its safest modalities. #### REFERENCES 1 - 2 1. Druey KM, Parikh SM. Idiopathic systemic capillary leak syndrome (Clarkson disease). J Allergy - 3 Clin Immunol. 2017;140:663–70. - 4 2. Pineton de Chambrun M, Luyt C-E, Beloncle F, Gousseff M, Mauhin W, Argaud L, et al. The - 5 Clinical Picture of Severe Systemic Capillary-Leak Syndrome Episodes Requiring ICU Admission. - 6 Crit Care Med. 2017;45:1216–23. - 7 3. Pineton de Chambrun M, Mathian A, Luyt C-E, Combes A, Amoura Z, EurêClark Study Group. - 8 Myocardial dysfunction is frequent in systemic capillary-leak syndrome (Clarkson disease) severe - 9 episodes. J Allergy Clin Immunol. 2018;141:1539–40. - 4. Kyle RA, Larson DR, Therneau TM, Dispenzieri A, Kumar S, Cerhan JR, et al. Long-Term Follow-up - of Monoclonal Gammopathy of Undetermined Significance. N Engl J Med. 2018;378:241–9. - 12 5. Pineton de Chambrun M, Gousseff M, Mauhin W, Lega J-C, Lambert M, Rivière S, et al. - 13 Intravenous Immunoglobulins Improve Survival in Monoclonal Gammopathy-Associated - 14 Systemic Capillary-Leak Syndrome. Am J Med. 2017;130:1219.e19-1219.e27. - 15 6. Pineton de Chambrun M, Cohen-Aubart F, Donker DW, Cariou P-L, Luyt C-E, Combes A, et al. - 16 SARS-CoV-2 Induces Acute and Refractory Relapse of Systemic Capillary Leak Syndrome - 17 (Clarkson's Disease). The American Journal of Medicine [Internet]. 2020; Available from: - 18 http://www.sciencedirect.com/science/article/pii/S0002934320303739 - 19 7. Matheny M, Maleque N, Channell N, Eisch AR, Auld SC, Banerji A, et al. Severe Exacerbations of - 20 Systemic Capillary Leak Syndrome After COVID-19 Vaccination: A Case Series. Ann Intern Med. - 21 2021; - 22 8. Gousseff M, Arnaud L, Lambert M, Hot A, Hamidou M, Duhaut P, et al. The systemic capillary leak - 23 syndrome: a case series of 28 patients from a European registry. Ann Intern Med. 2011;154:464– - 24 71. - 25 9. Pisani G, Cristiano K, Simeoni M, Martina A, Pati I, Carocci A, et al. Detection of antibodies - against SARS-CoV-2 both in plasma pools for fractionation and in commercial intravenous ## **EURÊCLARK STUDY GROUP** 1 17 - 2 PINETON de CHAMBRUN Marc^{1,49}, GOUSSEFF Marie², MAUHIN Wladimir¹, HOT Arnaud³, LEGA Jean- - 3 Christophe⁵, LAMBERT Marc⁴, RIVIERE Sophie⁶, DOSSIER Antoine⁷, RUIVARD Marc⁸, LHOTE François⁹, - 4 BLAISON Gilles¹⁰, MERCERON Sybille¹¹, ZAPELLA Nathalie¹¹, ALRIC Laurent¹², AGARD Christian¹³, - 5 Mathieu LACOUT¹³, SAADOUN David¹⁴, GRAVELEAU Julie¹⁵, SOUBRIER Martin¹⁶, HAROCHE Julien¹, - 6 BOILEAU Julien¹⁷, LUCCHINI LECOMTE Marie-Josee¹⁸, HANSLIK Thomas¹⁹, CHRISTIDES Christine²⁰, - 7 LEVESQUE Hervé²¹, TALASCZKA Aline²², BULTE Caroline²¹, HACHULLA Eric⁴, DECAUX Olivier²³, - 8 SONNEVILLE Romain⁷, IBOUANGA Florent²⁴, ARNULF Bertrand²⁵, BENEDIT Marcel²⁶, VIALLARD Jean - 9 François²⁷, TIEULIE Nathalie²⁸, HADDAD Fadi²⁹, MOULIN Bruno³⁰, COHEN-AUBERT Fleur¹, LOVEY - 10 Pierre-Yves³¹, LE MOAL Sylvie³², BIBES Béatrice³³, RIVARD Georges-Etienne³⁴, RONDEAU Eric³⁵, - 11 MALIZIA Giuseppe³⁶, DEBOURDEAU Philippe³⁷, ABGUEGUEN Pierre³⁸, BOSSERAY Annick³⁹, DEVAQUET - 12 Jérôme⁴⁰, PRESNE Claire⁴¹, LIFERMAN François⁴², LIMAL Nicolas⁴³ ARGAUD Laurent⁴⁴, HERNU - 13 Romain⁴⁴, DE LA SALLE Sylvie⁴⁴, FAGUER Stanislas⁴⁵, URBANSKI Geoffrey⁴⁶, ZUCMAN Noémie⁴⁷, - 14 WERNER Marie ⁴⁸, LUYT Charles-Edouard⁴⁹, MOYON Quentin^{1,49}, VERLICCHI Franco⁵⁰, TRONCOSO - Jorge Álvarez⁵¹, HARTY John⁵², GODMER Pascal², HIE Miguel¹, PAPO Thomas⁷, HATRON Pierre-Yves⁴, - 16 MATHIAN Alexis¹, AMOURA Zahir¹ - 18 ¹Service de médecine interne 2, CHU La Pitié-Salpêtrière, APHP, Paris, France - 19 ²Service de médecine interne, CH Bretagne Atlantique, Vannes, France - 20 ³Service de médecine interne, CHU Edouard Herriot, Lyon, France - 21 ⁴Service de médecine interne, Hôpital Claude Huriez, CHRU Lille, France - ⁵Service de médecine interne et vasculaire, CHU Lyon Sud, France - ⁶Service de médecine interne, Hôpital S^t-Eloi, CHRU Montpellier, France - ⁷Service de médecine interne, CHU Bichat, Paris, APHP, France - 25 ⁸Service de médecine interne, Hôpital d'Estaing, CHU de Clermont-Ferrand, France - ⁹Service de médecine interne, Hôpital Delafontaine, Saint-Denis, France - 1 ¹⁰Service de médecine interne et rhumatologie, Hôpital Pasteur, Colmar, France - 2 ¹¹Service de réanimation polyvalente, CH André Mignot, Versailles, France - 3 ¹²Service de médecine interne, Pôle digestif, CHU Purpan, Toulouse, France - 4 ¹³Service de médecine interne, CHU Hôtel-Dieu, Nantes, France - 5 ¹⁴Service de médecine interne et immunologie clinique, CHU La Pitié-Salpêtrière, APHP, Paris, France - 6 ¹⁵Service de médecine polyvalente, CH S^t-Nazaire, France - 7 ¹⁶Service de rhumatologie, Hôpital Gabriel-Montpied, CHU Clermont-Ferrand, France - 8 ¹⁷Service de médecine interne, CH Morlaix, France - 9 ¹⁸Service de médecine Interne, CH Notre-Dame de la Miséricorde, Ajaccio, France - 10 ¹⁹Service de médecine interne, CHU Ambroise Paré, Boulogne-Billancourt, France - 11 ²⁰Service de médecine interne, CH Avignon, France - 12 ²¹Service de médecine interne, Hôpital de Bois-Guillaume, CHU de Rouen, France - 13 ²²Service de médecine interne, CH Roubaix, France - 14 ²³Service de médecine interne, Hôpital Pontchaillou, CHU Rennes, France - 15 ²⁴Service de médecine Interne, CH S^t-Omer, France - 16 ²⁵Service d'immunologie clinique, CHU S^t-Louis, Paris, APHP, France - 17 ²⁶Service de réanimation polyvalente, CH Moulins, France - 18 ²⁷Service de médecine interne, Hôpital Haut-Lévêque, CHU Bordeaux Sud, Pessac, France - 19 ²⁸Service de rhumatologie, Hôpital Pasteur 2, CHU Nice, France - 20 ²⁹Service de médecine interne, Hôtel-Dieu de France, Beyrouth, Liban - 21 ³⁰Service de néphrologie dialyse transplantation rénale, Hôpital Civil, CHU de Strasbourg, France - 22 ³¹ Service d'hématologie, CH Sion, Suisse - 23 ³²Service de médecine interne, CH de S^t-Brieuc, France - ³³Service de médecine interne, CHP S^t-Grégoire, France - 25 ³⁴Service d'hématologie, CHU S^{te}-Justine, Montréal, Canada - 26 ³⁵Service d'urgences néphrologiques et de transplantation rénale, CHU Tenon, France - 1 ³⁶Divisione di Medicina, Ospedale V. Cervello, Palermo, Italy - 2 ³⁷Institut Sainte-Catherine, Avignon, France - 3 ³⁸Service des maladies infectieuses et tropicales, CHU d'Angers, Angers, France - 4 ³⁹Service de médecine interne, CHU Grenoble Alpes, France - 5 ⁴⁰Service de réanimation polyvalente, CH Foch, Suresnes, France - 6 ⁴¹Service de néphrologie, Hôpital sud, CHU Amiens, Salouël, France - 7 ⁴²Service de médecine interne, CH Dax, France - 8 ⁴³Service de médecine interne, CHU Henri Mondor, APHP, Créteil, France - 9 ⁴⁴Service de réanimation médicale, CHU Edouard Herriot, Lyon, France - 10 ⁴⁵Département de Néphrologie Et Transplantation D'organes, CHU de Toulouse, Toulouse, France - 11 ⁴⁶Service de Médecine Interne et d'Immunologie Clinique, CHU d'Angers, Angers, France - 12 ⁴⁷Service de Médecine Intensive Réanimation, Hôpital Louis Mourier, Colombes, France - 13 ⁴⁸Service de réanimation chirurgicale adulte, Le Kremlin-Bicêtre, France - 14 ⁴⁹Service de Médecine Intensive-Réanimation, Hôpital La Pitié-Salpêtrière, Paris, France - 15 ⁵⁰Transfusion Service, Romagna Local Health Unit, Ravenna, Italy - 16 ⁵¹Medicina Interna, Unidad de Enfermedades Autoinmunes Sistémicas, Hospital Universitario La Paz- - 17 Cantoblanco-Carlos III, Madrid, Espana - 18 ⁵²Daisy Hill Hospital, Newry, Northern Ireland Table 1. Consequences and outcome of patients with known Clarkson's disease during the COVID-19 pandemic (2020-2021) | | Sex | Age | Diagnosis | Monoclonal
Gammopathy | | | Dose | | Covid-19 | | Interval ¹ | ICU ² | Outcome | |----------|-----|-----|-----------|--------------------------|------|------|-------------|-----------------------|-----------|-------|-----------------------|------------------|---------| | Patients | | | | | IVIg | Date | | Covid-19 | vaccine | Flare | | | | | 1 | F | 45 | 2013 | IgG K | 1 | 2013 | 0.5g/kg/4w | PCR + | - | Yes | Concomitant | Yes | Dead | | 2 | М | 62 | 2015 | IgG K | 1 | 2015 | 2g/kg/4w | - | BNT162b2 | No | - | - | Alive | | 3 | М | 53 | 2010 | IgG K | 1 | 2011 | 0.5g/kg/4w | - | BNT162b2 | No | - | - | Alive | | 4 | F | 81 | 2012 | IgG K & L | 1 | 2012 | 0.5g/kg/12w | - | BNT162b2 | No | - | - | Alive | | 5 | М | 76 | 2004 | IgG K | 1 | 2021 | 1g/kg/4w | - | - | No | - | - | Alive | | 6 | M | 75 | 2007 | IgG L | 1 | 2009 | 0.5g/kg/16w | - | BNT162b2 | No | - | - | Alive | | 7 | M | 56 | 2010 | IgG K | 1 | 2010 | 1g/kg/4w | PCR + | - | Yes | Concomitant | Yes | Alive | | 8 | F | 54 | 2008 | IgG L | 1 | 2008 | 0.5g/kg/6w | Probable ³ | - | Yes | Concomitant | Yes | Dead | | 9 | М | 61 | 2011 | IgG K | 1 | 2012 | 0.7g/kg/6w | - | BNT162b2 | No | - | - | Alive | | 10 | М | 67 | 2003 | IgG K | 1 | 2005 | 2g/kg/4w | - | BNT162b2 | No | - | - | Alive | | 11 | F | 81 | 2013 | IgG K | 1 | 2014 | 0.5g/kg/6w | - | BNT162b2 | No | - | - | Alive | | 12 | F | 80 | 2013 | IgG K | 1 | 2014 | 1g/kg/4w | - | BNT162b2 | No | - | - | Alive | | 13 | F | 59 | 2009 | IgG K | 0 | - | - | - | BNT162b2 | No | - | - | Alive | | 14 | F | 62 | 2002 | IgG K | 1 | 2007 | 1g/kg/8w | - | mRNA-1273 | No | - | - | Alive | | 15 | F | 73 | 2011 | IgG L | 1 | 2011 | 2g/kg/6w | - | BNT162b2 | No | - | - | Alive | | 16 | М | 73 | 2015 | IgG L | 1 | 2015 | 0.5g/kg/8w | - | Ad26.COV2.S | No | - | - | Alive | |----|---|----|------|-------|---|------|------------|-----------------------|-------------|-----|-------------------------------|-----|-------| | 17 | М | 51 | 2008 | IgG K | 1 | 2008 | 1g/kg/4w | - | - | No | - | - | Alive | | 18 | F | 68 | 2016 | IgG L | 1 | 2016 | 0.5g/kg/4w | - | - | No | - | - | Alive | | 19 | F | 59 | 2008 | IgG K | 1 | 2008 | 0.5g/kg/4w | - | BNT162b2 | No | - | - | Alive | | 20 | М | 59 | 2012 | IgG K | 1 | 2012 | 2g/kg/4w | PCR + | - | Yes | Concomitant | Yes | Dead | | 21 | F | 40 | 2017 | IgG K | 1 | 2018 | 1g/kg/4w | - | BNT162b2 | No | - | - | Alive | | 22 | F | 46 | 2016 | IgG K | 1 | 2019 | 0.5g/kg/4w | - | BNT162b2 | Yes | 2d after 2 nd dose | No | Alive | | 23 | F | 52 | 2018 | IgG K | 0 | - | - | - | BNT162b2 | No | - | - | Alive | | 24 | F | 61 | 2003 | IgG K | 0 | - | - | Probable ³ | - | Yes | Concomitant | Yes | Dead | | 25 | М | 43 | 2021 | IgG L | 1 | 2021 | 2g/kg/4w | - | BNT162b2 | No | - | - | Alive | | 26 | М | 45 | 2020 | IgG K | 1 | 2021 | 2g/kg/4w | - | BNT162b2 | No | - | - | Alive | | 27 | М | 60 | 2019 | IgG K | 1 | 2019 | 1g/kg/3w | - | BNT162b2 | No | - | - | Alive | | 28 | F | 27 | 2021 | IgG K | 1 | 2021 | 2g/kg/4w | - | - | No | - | - | Alive | | 29 | F | 37 | 2016 | IgG K | 1 | 2016 | 1g/kg/4w | - | mRNA-1273 | Yes | 3d after 2 nd dose | Yes | Alive | | 30 | F | 43 | 2011 | IgG K | 1 | 2011 | 1g/kg/6w | - | - | No | - | - | Alive | EurêClark Registry was approved by local review boards and by the Commission Nationale de l'Informatique et des Libertés n°1001704; no AP-HP 14 in 1997. Abbreviation: COVID-19, the coronavirus disease 2019; M, male; F, female; IgG, G immunoglobulin; K, kappa light chain; L, lambda light chain; g/kg/w, gram per kilogram of body weight delivered every x weeks; PCR, polymerase-chain reaction; d, days; ICU, intensive care unit. ¹Interval between COVID-19 infection or COVID-19 vaccination and Clarkson's disease flare. ²Admission to the ICU. ³Two patients died during severe flare of Clarkson's disease complicated by refractory cardiac arrest probably related to an undiagnosed COVID-19 infection. Both had fever and viral symptoms upon emergency department admission which happened respectively during the epidemic peak of the first wave in France (March 23, 2020) and of the third wave in Italy (March 5, 2021). As cardiac arrest occurred very early in both patients, deep airway COVID-19 PCR could not be taken. Table 2. New diagnosis of Clarkson's disease during the COVID-19 pandemic (2020-2021) | Patients | Sex | Age, | Monoclonal | Covid-19 | Covid-19
Flare | | Interval ¹ | ICU ² | Hb³, g/dL | MV | RRT | Compartment | Outcome | |----------|-----|-------|------------|----------|-------------------|-------|-------------------------------|------------------|------------|------|-----|-------------|---------| | raticits | Jex | years | Gammopathy | COVIG-13 | vaccine | riale | interval | 100 | TID , g/uL | IVIV | KKI | syndrome | Outcome | | A | М | 44 | ?4 | PCR + | - | Yes | Concomitant | Yes | 23 | Yes | Yes | 4 limbs | Alive | | В | F | 47 | ? 5 | PCR + | - | Yes | Concomitant | Yes | 19 | Yes | Yes | No | Dead | | С | М | 56 | lgG K | - | ChAdOx1 | Yes | 3d after 1 st dose | Yes | 23 | No | No | No | Alive | | D | М | 35 | IgG L | PCR + | - | Yes | Concomitant | Yes | 25 | Yes | Yes | 4 limbs | Alive | | E | М | 38 | IgG K | PCR + | - | Yes | Concomitant | Yes | 26 | Yes | No | Lower limbs | Alive | Abbreviation: COVID-19, the coronavirus disease 2019; M, male; F, female; IgG, G immunoglobulin; K, kappa light chain; L, lambda light chain; PCR, polymerase-chain reaction; d, days; ICU, intensive care unit; Hb, hemoglobin; MV, mechanical ventilation; RRT, renal replacement therapy. ¹Interval between COVID-19 infection or COVID-19 vaccination and Clarkson's disease flare ²Admission to the ICU ³Hemoglobin highest value during the episode ⁴Monoclonal gammopathy could not be found during the acute episode and will be tested few weeks/month after the flare ⁵Monoclonal gammopathy could not be found during the acute episode and the patient died