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Abstract

Variational auto-encoders (VAE) are popular deep
latent variable models which are trained by max-
imizing an Evidence Lower Bound (ELBO). To
obtain tighter ELBO and hence better variational
approximations, it has been proposed to use im-
portance sampling to get a lower variance estimate
of the evidence. However, importance sampling
is known to perform poorly in high dimensions.
While it has been suggested many times in the lit-
erature to use more sophisticated algorithms such
as Annealed Importance Sampling (AIS) and its
Sequential Importance Sampling (SIS) extensions,
the potential benefits brought by these advanced
techniques have never been realized for VAE: the
AIS estimate cannot be easily differentiated, while
SIS requires the specification of carefully cho-
sen backward Markov kernels. In this paper, we
address both issues and demonstrate the perfor-
mance of the resulting Monte Carlo VAEs on a
variety of applications.

1. Introduction
Variational Auto-Encoders (VAE) introduced by (Kingma &
Welling, 2013) are a very popular class of methods in unsu-
pervised learning and generative modelling. These methods
aim at finding a parameter θ maximizing the marginal log-
likelihood pθ(x) =

∫
pθ(x, z)dz where x ∈ RN is the

observation and z ∈ Rd is the latent variable. They rely on
the introduction of an additional parameter φ and a family
of variational distributions qφ(z|x). The joint parameters
{θ, φ} are then inferred through the optimization of the
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Evidence Lower Bound (ELBO) defined as

L(θ, φ) =

∫
log

(
pθ(x, z)

qφ(z|x)

)
qφ(z|x)dz

= log pθ(x)−KL
(
qφ(z|x) ‖ pθ(z|x)

)
6 log pθ(x) .

The design of expressive variational families has been the
topic of many works and is a core ingredient in the effi-
ciency of VAE (Rezende & Mohamed, 2015; Kingma et al.,
2016). Another line of research consists in using positive
unbiased estimators p̂θ(x) of the loglikelihood pθ(x) for
qφ, i.e. Eqφ [p̂θ(x)] = pθ(x). Indeed, as noted in (Mnih &
Rezende, 2016), it follows from Jensen’s inequality that

L(θ, φ) = Eqφ [log p̂θ(x)] 6 log pθ(x) . (1)

A Taylor expansion shows that

L(θ, φ) ≈ log pθ(x)− 1

2
varqφ

[
p̂θ(x)

pθ(x)

]
;

see e.g. (Maddison et al., 2017; Domke & Sheldon, 2018)
for formal results. Hence the ELBO becomes tighter as the
variance of the estimator decreases.

A common method to obtain an unbiased estimate
is built on importance sampling; i.e. p̂θ(x) =

n−1
∑n
i=1[pθ(x, zi)/qφ(zi|x)] for zi

i.i.d.∼ qφ(·|x). In partic-
ular, combined with (1), we obtain the popular Importance
Weighted Auto Encoder (IWAE) proposed by (Burda et al.,
2015). However, it is expected that the relative variance
of this importance-sampling based estimator typically in-
creases with the dimension of the latent z. To circumvent
this issue, we suggest in this paper to consider other esti-
mates of the evidence which have shown great success in the
Monte Carlo literature. In particular, Annealed Importance
Sampling (AIS) (Neal, 2001; Wu et al., 2016), and its Se-
quential Importance Sampling (SIS) extensions (Del Moral
et al., 2006) define state-of-the-art estimators of the evi-
dence. These algorithms rely on an extended target distri-
bution for which an efficient importance distribution can be
defined using non-homogeneous Markov kernels.

It has been suggested in various contributions that AIS could
be useful to train VAE (Salimans et al., 2015; Wu et al.,
2016; Maddison et al., 2017; Wu et al., 2020). However, to
the authors knowledge, no contribution discusses how an
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Monte Carlo VAE

unbiased gradient of the resulting ELBO could be obtained.
Indeed, the main difficulty in this computation arises from
the MCMC transitions in AIS. As a result, when this esti-
mator is used, alternatives to the ELBO (1) have often been
considered, see e.g. (Ding & Freedman, 2019).

Whereas AIS requires using MCMC transition kernels, SIS
is more flexible and can exploit Markov transition kernels
which are only approximately invariant w.r.t. to a given
target distribution, e.g. unadjusted Langevin kernels. In
this case, the construction of the augmented target distri-
bution, which is at the core of the estimator, requires the
careful selection of a class of auxiliary ‘backward’ Markov
kernels. (Salimans et al., 2015; Ranganath et al., 2016;
Maaløe et al., 2016; Goyal et al., 2017; Huang et al., 2018)
propose to learn such auxiliary kernels parameterized with
neural networks through the ELBO. However, as illustrated
in our simulations, this comes at an increase in the overall
computational cost.

Our contributions. The contributions of this paper are as
follows:

(i) We show how to obtain an SIS-based ELBO relying
on undadjusted Langevin dynamics which, contrary
to (Salimans et al., 2015; Goyal et al., 2017; Huang
et al., 2018), does not require introducing and optimiz-
ing backward Markov kernels. In addition, an unbiased
gradient estimate of the resulting ELBO which exploits
the reparameterization trick is derived.

(ii) We propose an unbiased gradient estimate of the ELBO
computed based on AIS. At the core of this estimate is
a non-standard representation of Metropolis–Hastings
type kernels which allows us to differentiate them. This
is combined to a variance reduction technique for im-
proved efficiency.

(iii) We apply these new methods to build novel Monte
Carlo VAEs, and show their efficiency on real-world
datasets.

All the theoretical results are detailed in the supplementary
material.

2. Variational Inference via Sequential
Importance Sampling

2.1. SIS estimator

The design of efficient proposal importance distributions has
been proposed in (Crooks, 1998; Neal, 2001) starting from
an annealing schedule, and was later extended by (Del Moral
et al., 2006). Let {γk}Kk=0 be a sequence of unnormalized
“bridge” densities satisfying γ0(z) = qφ(z|x), γK(z) =

pθ(x, z). Note that γK is not normalized, in contrast to γ0.
Here we set

γk(z) = qφ(z|x)1−βkpθ(x, z)
βk (2)

for an annealing schedule 0 = β0 < · · · < βK = 1,
but alternative sequences of intermediate densities could
be considered. At each iteration, SIS samples a non-
homogeneous Markov chain use the transition kernels
{Mk}Kk=1. In this section, we assume that Mk admits a
positive transition density mk, such that mk leaves γk in-
variant, i.e.

∫
γk(z)mk(z, z′)dz = γk(z′), or is only ap-

proximately invariant. In particular, mk typically depends
on the data x. However, to simplify notation, this depen-
dence is omitted.

Based on this sequence of transition densities, SIS considers
the joint density on the path space z0:K ∈ Rd(K+1)

qKφ (z0:K |x) = qφ(z0|x)

K∏
k=1

mk(zk−1, zk) , (3)

where zi:j = (zi, . . . , zj) for 0 6 i 6 j. By con-
struction, we expect the K-th marginal qKφ (zK |x) =∫
qKφ (z0:K |x)dz0:K−1 to be close to pθ(zK |x). However,

we cannot use importance sampling to correct for the dis-
crepancy between these two densities, as qKφ (zK |x) is typ-
ically intractable. To bypass this problem, we introduce
another density on the path space

pKθ (x, z0:K) = pθ(x, zK)

0∏
k=K−1

`k(zk+1, zk) , (4)

where {`k}K−1k=0 is a sequence of auxiliary positive tran-
sition densities. Note that in this case, the K-th marginal∫
pKθ (x, z0:K)dz0:K−1 is exactly pθ(x, zK). Using now im-

portance sampling on the path space, we obtain the follow-
ing unbiased SIS estimator (Del Moral et al., 2006; Salimans
et al., 2015) by sampling independently zi0:K ∼ qKφ (·|x) and
computing

p̂θ(x) =
1

n

n∑
i=1

wK(zi0:K) , wK(z0:K) =
pKθ (x, z0:K)

qKφ (z0:K |x)
.

(5)

2.2. AIS estimator

The selection of the kernel {`k}K−1k=0 has a large impact on
the variance of the estimator. The optimal reverse kernels
`k minimizing the variance of p̂θ(x) are given by

`k−1(zk, zk−1) =
qφ,k−1(zk−1|x)mk(zk−1, zk)

qφ,k(zk|x)
, (6)

where qφ,k(zk|x) =
∫
qKφ (z0:K |x)dz−k0:K is the k-th

marginal of qKφ ; see (Del Moral et al., 2006). However,
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the resulting estimator p̂θ(x) is usually intractable. An
approximation to (6) leading to a tractable estimator is pro-
vided by AIS (Crooks, 1998; Neal, 2001). When mk is
γk-invariant, then, by assuming that qφ,k ≈ qφ,k−1 ≈ γk
in (6), we obtain

`k−1(zk, zk−1) =
γk(zk−1)mk(zk−1, zk)

γk(zk)
. (7)

We refer to this kernel as the reversal of mk. In particu-
lar, if mk is γk-reversible, i.e. γk(zk−1)mk(zk−1, zk) =
γk(zk)mk(zk, zk−1), then `k−1 = mk. Note that the
weights (5) can be computed using the decomposition
wK(z0:K) =

∏K
k=1 wk(zk−1, zk) with

wk(zk−1, zk) =
γk(zk)`k−1(zk, zk−1)

γk−1(zk−1)mk(zk−1, zk)
, (8)

which simplifies when using (7) as

wk(zk−1, zk) = γk(zk−1)/γk−1(zk−1) . (9)

In contrast to previous works, we will consider in the next
section transition kernels mk which are only approximately
γk-invariant but still build `k−1 in the spirit of (7).

2.3. SIS-ELBO using unadjusted Langevin

For any k, we consider the Langevin dynamics associated
to γk and the corresponding Euler-Maruyama discretization.
Then, we choose for mk the transition density associated to
this discretization

mk(zk−1, zk) = N(zk; zk−1 + η∇ log γk(zk−1), 2η Id) .
(10)

Note that sampling qKφ boils down to sampling Z0 ∼ qφ
and defining the Markov chain {Zk}k6K recursively by

Zk = Zk−1 + η∇ log γk(Zk−1) +
√

2ηUk , (11)

where Uk ∼ N(0, Idd). Moreover, as the continuous
Langevin dynamics is reversible w.r.t. γk, this suggests that
we can approximate the reversal `k−1 of mk by mk directly
as in AIS and thus select for any k, `k−1 = mk as done
in (Heng et al., 2020). However, in this case, the weights
wk(zk−1, zk) do not simplify to γk(zk−1)/γk−1(zk−1) as
mk is not exactly γk-invariant and we need to rely on the
general expression given in (8). This approach was concur-
rently and independently proposed in (Wu et al., 2020) but
they do not discuss gradient computations therein.

Based on (1) and (5), we introduce

LSIS =

∫
log

(
K∏
k=1

wk(zk−1, zk)

)
qKφ (z0:K |x)dz0:K .

(12)

Algorithm 1 Langevin Monte Carlo VAE
Input: Number of steps K, initial distribution qφ, un-
normalized target distribution pθ, step-size η, annealing
schedule {βk}Kk=0.
Output: SIS estimator W of log pθ(x).

Draw z0 ∼ qφ(·|x);
Set W = − log qφ(z0|x);
for k = 1 to K do

Draw uk ∼ ϕd;
Set γk(·) = βk log pθ(x, ·) + (1− βk) log qφ(·|x);
Set zk = zk−1 + η∇ log γk(zk) +

√
2ηuk;

Set W = W + logmk(zk, zk−1)− logmk(zk−1, zk);
end for
Set W = W + log pθ(x, zK);
Return W

We consider a reparameterization of (12) based on the
Langevin mappings associated with target γk given by

Tk,u(zk−1) = zk−1+η∇ log γk(zk−1)+
√

2ηu . (13)

An easy change of variable based on the identity Zk =
Tk,Uk(Zk−1) in (11) shows that LSIS can be written as∫

log

(
K∏
k=1

wk(zk−1, zk)

)
qφ(z0|x)ϕd,K(u1:K)dz0du1:K ,

where ϕd stands for the density of the d-dimensional stan-
dard Gaussian distribution, ϕd,K(u1:K) =

∏K
i=1 ϕd(ui),

and we write zk = Tk,uk◦· · ·◦T1,u1
(z0) =©k

i=1Ti,ui(z0).
By (5) and as `k−1 = mk, our objective thus finally writes

LSIS(θ, φ;x) =

∫
qφ(z0|x)ϕd,K(u1:K) (14)

× log

(
pθ(x, zK)

∏K
k=1mk(zk, zk−1)

qφ(z0|x)
∏K
k=1mk(zk−1, zk)

)
dz0du1:K .

This defines the reparameterizable Langevin Monte Carlo
VAE (L-MCVAE). The algorithm to obtain an unbiased SIS
estimate of pθ(x) is described in Algorithm 1. This estimate
is related to the one presented in (Caterini et al., 2018), how-
ever this work builds on a deterministic dynamics which
limits the expressivity of the induced variational approxi-
mation. In contrast, we rely here on a stochastic dynamics.
While we limit ourselves here to undajusted (overdamped)
Langevin dynamics, this could also be easily extended to
unajusted underdamped Langevin dynamics (Monmarché,
2020).

3. Variational Inference via Annealed
Importance Sampling

In Section 2.3, we derived the SIS estimate of the evidence
computed using ULA kernels Mk, whose invariant distri-
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bution approximates γk. We can differentiate the resulting
ELBO and exploit the reparametrization trick as these ker-
nels admit a density mk w.r.t. Lebesgue measure. When
computing the AIS estimates, we need Markov kernels Mk

that are γk-invariant. Such Markov kernels Mk most often
rely on a Metropolis–Hastings (MH) step and therefore do
not typically admit a transition density. While this does
not invalidate the expression of the AIS estimate presented
earlier, it complicates significantly the computation of an
unbiased gradient estimate of the corresponding ELBO. In
this section, we propose a way to compute an unbiased esti-
mator of the ELBO gradient for MH Markov kernels. We
use here elementary measure-theoretical notations which
are recalled in Appendix A

3.1. Differentiating Markov kernels

Markov kernel. Let B(Rd) denote the Borelian σ-field
associated to Rd. A Markov kernel M is a function defined
on Rd × B(Rd), such that for any z ∈ Rd, M(z, ·) is a
probability distribution on B(Rd), i.e. M(z,A) is the prob-
ability starting from z to hit the set A ⊂ Rd. The simplest is
“deterministic”, in which case Q(z,A) = δT(z)(A), where
T is a measurable mapping on Rd and δy is the Dirac mass
at y. Instead of a single mapping T, we can consider a
family of “indexed” mappings

{
Tu : u ∈ Rdu

}
. If g is a

p.d.f on RdU , we consider

M(z,A) =

∫
1A(Tu(z))g(u)du .

To sample M(z, ·), we first sample u ∼ g and then apply
the mapping Tu(z). If d = du, we consider the function
Gz : Rd 7→ Rd defined for all z ∈ Rd by

Gz : u 7→ Gz(u) = Tu(z) (15)

If Gz is a diffeomorphism, then by applying the change of
variables formula, we obtain

M(z,A) =
∫
1A
(
Gz(u)

)
g(u)du (16)

=
∫
1A(z′)m(z, z′)dz′ ,

where, denoting JG−1
z

(z′) is the absolute value of the Jaco-
bian determinant of G−1z evaluated at z′, we set

m(z, z′) = JG−1
z

(z′)g
(
G−1z (z′)

)
. (17)

In this case, the Markov kernel has a transition density
m(z, z′). This is the setting considered in the previous
section.

Finally, some Markov kernels have both a deterministic and
a continuous component. This is for example the case of
Metropolis–Hastings (MH) kernels:

M(z,A) =

∫
U

Qu(z,A)g(u)du , where (18)

Qu
(
z,A

)
= αu(z)δTu(z)(A) +

{
1− αu(z)

}
δz(A) ,

with αu(z) = α
(
z,Tu(z)

)
is the acceptance function and

Tu : Rd → Rd is the proposal mapping. In the sequel, we
denote α1

u(z) = αu(z) and α0
u(z) = 1 − αu(z), and set

T0
u(z) = z. With these notations, (18) can be rewritten in a

more concise way

Qu(z,A) =

1∑
a=0

αau(z)δTau(z)(A) . (19)

To sample M(z, ·), we first draw u ∼ g and then compute
the proposal y = Tu(z). With probability αu(z), the next
state of the chain is set to z′ = y, and z′ = z otherwise. If
Gz defined in (15) is a diffeomorphism, then the Metropolis–
Hasting kernel may be expressed as

M(z,A) =

∫
α(z, z′)m(z, z′)1A(z′)dz′

+
(
1− ᾱ(z)

)
δz(A),

where ᾱ(z) =
∫
α(z, z′)m(z, z′)dz′ is the mean accep-

tance probability at z (the probability of accepting a move)
and m(z, z′) is defined as in (17). In MH-algorithms, the
acceptance function α : R2d → [0, 1] is chosen so that
M is π-reversible π(dz)M(z,dz′) = π(dz′)M(z′,dz),
where π is the target distribution. This implies, in par-
ticular, that M is π-invariant. Standard MH algorithms use
α(z, z′) = 1 ∧ π(z′)m(z′, z)/π(z)m(z, z′); see (Tierney,
1994).

To illustrate these definitions and constructions, consider
first the symmetric Random Walk Metropolis Algorithm
(RWM). In this case, dU = d and g ← ϕd, where ϕd is
the d-dimensional standard Gaussian density. The proposal
mapping is given by

GRWM
z (u) = TRWM

u (z) = z + Σ1/2u ,

where Σ is a positive definite matrix, and the acceptance
function is given by αRWM

u (z) = 1∧
(
π
(
TRWM
u (z)

)
/π(z)

)
.

Consider now the Metropolis Adjusted Langevin Algorithm
(MALA); see (Besag, 1994). Assume that z 7→ log π(z) is
differentiable and denote by ∇ log π(z) its gradient. The
Langevin proposal mapping TMALA

u is defined by

GMALA
z (u) = TMALA

u (z) = z + η∇ log π(z) +
√

2ηu .
(20)

We set g← ϕd and αMALA
u (z) is the acceptance given by

αMALA
u (z) = 1 ∧ π

(
TMALA
u (z)

)
mη

(
TMALA
u (z), z

)
π(z)mη

(
z,TMALA

u (z)
) ,

(21)
where mη(z, z′) = η−1/2ϕd

(
η−1/2{z′ − TMALA

0 (z)}
)
,

similarly to (10).

Lemma 1. For all z ∈ Rd,GMALA
z is a C1-diffeomorphism.

Moreover, assume that log π is L-smooth with L > 0, i.e. for
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z, z′ ∈ Rd, ‖∇ log π(z′)−∇ log π(z) 6 L‖z′ − z‖. Then,
if 0 6 η < L−1, for all u ∈ Rd, TMALA

u defined in (20) is
a C1-diffeomorphism.

The proof of Lemma 1 is postponed to Appendix C.

3.2. Differentiable AIS-based ELBO

We now generalize the derivation of Section 2.1 to handle
the case where Mk and its reversal do not admit transition
densities. In this case, the proposal and unnormalized target
distributions are defined by

QK
φ (dz0:K |x) = qφ(z0|x)dz0

K∏
k=1

Mk(zk−1,dzk) , (22)

Pun
θ (x, dz0:K) = pθ(x, zK)dzK

1∏
k=K

Lk−1(zk,dzk−1) ,

where we define the reversal Markov kernel Lk−1 by

γk(zk−1)dzk−1Mk(zk−1,dzk)

= γk(zk)dzkLk−1(zk,dzk−1) .

We consider then the AIS estimator presented in Sec-
tion 2.1 in (5) by sampling independently zi0:K ∼ QK

φ (·|x)

and with wK(z0:K) =
∏K
k=1 wk(zk−1), wk(zk−1) =

γk(zk−1)/γk−1(zk−1). A rigorous proof of the unbiased-
ness of the resulting estimator can be found in the Supple-
mentary Material and is based on the formula

pθ(x) =

∫
wK(z0:K)QK

φ (dz0:K |x) . (23)

In the sequel, we use Metropolis Adjusted Langevin Al-
gorithm (MALA) kernels {Mk}Kk=1 targeting γk for each
k ∈ {1, . . . ,K}. By construction, the Markov kernel Mk

is reversible w.r.t. γk and we set for the reversal kernel
Lk−1 = Mk. Note that we could easily generalize to other
cases, especially inspired by recent works on non-reversible
MCMC algorithms (Thin et al., 2020).

For k ∈ {1, . . . ,K}, we use the representation of MALA
kernel Mk outlined in (18) with proposal mapping Tk,u and
acceptance function αk,u defined as in (20) and (21) with
π ← γk. We set

Qk,u(z,dz′) =

1∑
a=0

αak,u(z)δTak,u(z)(dz
′) . (24)

By construction, the MALA kernel Mk (see (18)) writes
Mk(z,dz′) =

∫
Qk,u(z,dz′)ϕd(u)du. Plugging this rep-

resentation into (22), we get

QK
φ (dz0:K |x) =

∫ K∏
k=1

Qk,uk(zk−1,dzk)

× qφ(z0|x)ϕd,K(u1:K)dz0du1:K ,

writing ϕd,K(u1:K) =
∏K
i=1 ϕd(ui). Eq. (24) suggests to

consider the extended distribution on (z0:K , a1:K , u1:K):

QK
φ (dz0:K , a1:K ,du1:K |x) = qφ(z0|x)

K∏
k=1

αakk,uk
(
zk−1

)
×

K∏
k=1

δTakk,uk (zk−1)
(dzk)ϕd,K(u1:K)dz0du1:K ,

which admits again as a marginal QK
φ (dz0:K |x). Note that

the variables a1:K correspond to the binary outcomes of
the K A/R steps. By construction, z1:K are deterministic
functions of z0, a1:K and u1:K : for each k ∈ {1, . . . ,K},
zk =©k

i=1Taii,ui(z0).

Set wK(z0:K) =
∏K
k=1 wk(zk−1), and

A(z0, a1:K , u1:K) =

K∏
k=1

αakk,uk
(k−1
©
i=1

Taii,ui(z0)
)
,

W (z0, a1:K , u1:K) = log

K∏
k=1

wk

(k−1
©
i=1

Taii,ui(z0)
)
.

Given z0 and u1:K , A(z0, a1:K , u1:K) is the conditional dis-
tribution of the A/R random variables a1:K . It is easy to sam-
ple this distribution recursively: for each k ∈ {1, . . . ,K}
we sample ak from a Bernoulli distribution of parameter
αk,uk(zk−1) and we set zk = Takk,uk(zk−1). Eqs. (5) and (9)
naturally lead us to consider the ELBO

LAIS =

∫ ∑
a1:K

QK
φ (dz0:K , a1:K ,du1:K |x) log

[
wK(z0:K)

]
=

∫ ∑
a1:K

qφ(z0|x)A(z0, a1:K , u1:K)

×W (z0, a1:K , u1:K)ϕd,K(u1:K)dz0du1:K ,

where in the last line we have integrated w.r.t. z1:K . The
fact that LAIS is an ELBO stems immediately from (23), by
applying Jensen’s inequality. We can optimize this ELBO
w.r.t. the different parameters at stake, even possibly the
parameters of the proposal mappings.

We reparameterize the latent variable distribution qφ(z0|x)
in terms of a known base distribution and a differentiable
transformation (such as a location-scale transformation).
Assuming for simplicity that qφ(z0|x) is a Gaussian distri-
bution N(z0;µφ(x), σ2

φ(x)), then the location-scale trans-
formation using the standard Normal as a base distribution
allows us to reparameterize z0 as z0 = µφ(x)+σφ(x)·u0 =
Vφ,x(u0), with u0 ∼ ϕd. Using this reparameterization
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trick, we can write∇LAIS = ∇LAIS1 +∇LAIS2 with

∇LAIS1 =

∫ ∑
a1:K

A(Vφ,x(u0), a1:K , u1:K)

×∇W (Vφ,x(u0), a1:K , u1:K)ϕd,K+1(u0:K)du0:K ,

∇LAIS2 =

∫ ∑
a1:K

A(Vφ,x(u0), a1:K , u1:K)W (Vφ,x(u0), a1:K , u1:K)

×∇ logA(Vφ,x(u0), a1:K , u1:K)ϕd,K+1(u0:K)du0:K . (25)

The estimation of ∇LAIS1 is straightforward. We sam-
ple n independent samples u1:n0:K ∼ ϕd,K+1 and, for
i ∈ {1, . . . , n}, we set zi0 = Vφ,x(ui0) and then, for
k ∈ {1, . . . ,K}, we sample the A/R variable aik ∼
Ber{α1

k,uik
(zik−1)} and set zik = T

aik
k,uik

(zik−1), see Algo-
rithm 2. Similarly, we then compute

∇̂LAIS2,n = n−1
n∑
i=1

∇W (Vφ,x(ui0), ai1:K , u
i
1:K) .

The expression ∇LAIS2 is the REINFORCE gradient esti-
mator (Williams, 1992) for the A/R probabilities. Indeed,
we have to compute the gradient of the conditional distribu-
tion of the A/R variables given (z0, u0:K), and there is no
obvious reparametrization for such purpose (see however
(Maddison et al., 2016) for a possible solution to the prob-
lem; this solution was not investigated in this work). To
reduce the variance of the REINFORCE estimator, we rely
on control variates, in the spirit of (Mnih & Rezende, 2016).
For i ∈ {1, . . . , n}, we define

W̃n,i =
1

n− 1

∑
j 6=i

W (Vφ,x(uj0), aj1:K , u
j
1:K) ,

which is independent of W (Vφ,x(ui0), ai1:K , u
i
1:K) and

∇ logA(Vφ,x(ui0), ai1:K , u
i
1:K) by construction. This pro-

vides the new unbiased estimator of the gradient using

∇̂LAIS2,n = n−1
n∑
i=1

[
W (Vφ,x(ui0), ai1:K , u

i
1:K)− W̃n,i

]
×∇ logA(Vφ,x(ui0), ai1:K , u

i
1:K) . (26)

Algorithm 2 shows how to compute W and logA.

4. Experiments
4.1. Methods and practical guidelines

In what follows, we consider two sets of experiments1. In
the first one, we aim at illustrating the expressivity and
the efficiency of our estimator for VI. In the second, we
tackle the problem of learning VAE: (a) Classical VAE based

1The code to reproduce all of the experiments is available
online at https://github.com/premolab/metflow/.

Algorithm 2 Annealed Importance Sampling VAE
Input: Number of steps K, proposal mappings
{Tk,u}k6K,u∈U, acceptance functions {αk,u}k6K,u∈U,
initial distribution qφ, unnormalized target distribution
pθ, annealing schedule {βk}Kk=0.
Output: AIS estimatorW of log pθ(x), sum logA of the
A/R log probabilities.

Draw z0 ∼ qφ(·|x);
Set W = 0;
Set logA = 0;
for k = 1 to K do

Draw uk ∼ ϕd;
Draw ak ∼ Ber(αk,uk

(
zk−1)

)
;

if ak = 1 (Accept) then
Set zk = zk−1 + η∇ log γk(zk) +

√
2ηuk;

else
zk = zk−1;

end if
Compute logwk(zk−1) =

(βk −βk−1)
(
log pθ(x, zk−1)− log qφ(zk−1|x)

)
;

Set W = W + logwk(zk−1);
Set logA = logA+ logαakk,uk(zk−1);

end for
Return W, logA

on mean-field approximation (Kingma & Welling, 2013);
(b) Importance-weighted Autoencoder (IWAE, (Burda et al.,
2015)); (c) L-MCVAE given by Algorithm 1; (d) A-MCVAE
given by Algorithm 2. We provide in the following some
guidelines on how to tune the step sizes and the annealing
schedules in Algorithm 1 and Algorithm 2.

A crucial hyperparameter of our method is the step size
η. In principle, it could be learned by including it as an
additional inference parameter φ and by maximizing the
ELBO. However, it is then difficult to find a good trade-
off between having a high A/R ratio and a large step size
η at the same time. Instead, we suggest adjusting η by
targeting a fixed A/R ratio ρ. It has proven effective to use
a preconditioned version of (11), i.e. Zk = Zk−1 + η �
∇ log γk(Zk−1) +

√
2η�Uk with η ∈ Rp, where we adapt

each component of η using the following rule

η(i) = 0.9η(i) +0.1η0/
(
ε+std[∂z(i) log pθ(x, z)]

)
. (27)

Here std denotes the standard deviation over the batch x
of the quantity ∂z(i) log pθ(x, z), and ε > 0. The scalar
η0 is a tuning parameter which is adjusted to target the
A/R ratio ρ. This strategy follows the same heuristics as
Adam (Kingma & Ba, 2014). In the following ρ is set to 0.8
for A-MCVAE and 0.9 for L-MCVAE (keeping it high for L-
MCVAE ensures that the Langevin dynamics stays “almost
reversible”, thus keeping a low variance SIS estimator).

https://github.com/premolab/metflow/


Monte Carlo VAE

Figure 1. Visualization of the posterior approximation given after
optimization of different bounds for toy generation process. Top
row, from left to right: True posterior, VAE posterior, IWAE poste-
rior. Bottom row, from left to right: VI with RealNVP posterior,
A-MCVAE posterior, L-MCVAE posterior.

An optimal choice of the temperature schedule {βk}Kk=0 for
SIS and AIS is a difficult problem. We have focused in our
experiments on three different settings. First, we consider
the temperature schedule fixed and regularly spaced between
0 and 1. Following (Grosse et al., 2015), the second option
is the sigmoidal tempering scheme where βk = (β̃k −
β̃1)/(β̃K − β̃1) with, β̃k = σ

(
δ(2k/K − 1)

)
, σ is the

sigmoid function and δ > 0 is a parameter that we optimize
during the training phase. The last schedule consists in
learning the temperatures {βk}Kk=0 directly as additional
inference parameters φ.

4.2. Toy 2D example and Probabilistic Principal
Component Analysis

In the following two examples, we fix the parameters θ
of the likelihood model and apply Algorithm 1 and Algo-
rithm 2 to perform VI to sample from z 7→ pθ(z|x). Con-
sider first a toy hierarchical example where we generate
some i.i.d. data x = (xi)

N
i=1 ∈ RN from the i.i.d. latent

variables z = (zi)
N
i=1 ∈ R2N as follows for ξ > 0 xi|zi ∼

N(ξ · (‖zi‖2 + ζ), σ2) = pθ(xi|zi). We consider the varia-
tional approximation as qφ(z|x) = N

(
z;µφ(x), σφ(x)2 Id

)
,

where µφ(x), σφ(x) ∈ Rd are the outputs of a fully con-
nected neural network with parameters φ. We compare these
algorithms to VI using Real-valued Non-Volume Preserving
transformation (RealNVP, Dinh et al. (2016)).

Figure 1 displays the VI posterior approximations corre-
sponding to the different schemes for a given observation x.
It can be observed that MCVAE benefit from flexible vari-
ational distributions compared to other classical schemes,
which mostly fail to recover the true posterior. Additional
results on the estimation of the parameters ξ, ζ, given in
the supplementary material, further support our claims; see
Appendix B.1.

We now illustrate the performance of MCVAE on a prob-
abilistic principal component analysis problem applied
to MNIST (Salakhutdinov & Murray, 2008), as we can
access in this case the exact likelihood and its gradi-
ent. We follow the set-up of (Ruiz et al., 2021, Section
6.1). We consider here a batch of size N = 100 for the
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Figure 2. Representation of the different estimators (top) and their
gradient (bottom) of the true log likelihood. From left to right,
a/ L-MCVAE, K = 5, b/ L-MCVAE, K = 10, c/ A-MCVAE,
K = 5, d/ A-MCVAE, K = 10, e/ A-MCVAE, K = 5 with
control variates.

model pθ(x, z) = N(z; 0, Idd)N(x; θ0 + θ1z, σ
2 Idp), with

d = 100 and p = 784. We fix arbitrarily θ0, θ1, and fit
an amortized variational distribution qφ(z|x) by maximiz-
ing the IWAE bound w.r.t. φ with K = 100 importance
samples for a large number of epochs. The distribution
qφ(z|x) = N(z;µφ(x),diag(σ2

φ(x))) is a mean-field Gaus-
sian distribution where µφ, σφ are linear functions of the
observation x.

We compare the Langevin SIS estimator (L-MCVAE) of the
log evidence log pθ(x) with Langevin auxiliary kernels as
described in Section 2.3, and the Langevin AIS estimate
(A-MCVAE). Moreover, we also compare the gradients of
these quantities w.r.t. the parameters θ0, θ1.

Figure 2 summarises the results with boxplots computed
over 200 independent samples of each estimator. The quan-
tity reported on the first boxplot corresponds to the Monte
Carlo samples of log p̂θ(x)− log pθ(x). One the one hand,
we note that the SIS estimator has larger variance than AIS,
and that the latter achieves a better ELBO. Moreover, in
both cases, increasing the number of steps K tightens the
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bound. On the other hand, the estimator of the gradient
of AIS is noisier than that of SIS, even though variance
reduction techniques allows us to recover a similar variance.
We also present in the supplementary material the Langevin
SIS estimator using auxiliary backward kernels learnt with
neural networks (as done in previous contributions); see
Appendix B.2. The auxiliary neural backward kernels are
set as l(z, z′) = N(z′;µψ(z),diag(σ2

ψ(z))), µψ, σψ ∈ Rd,
where the parameters ψ are learnt through the SIS ELBO,
similarly to (Huang et al., 2018). The variance of the asso-
ciated estimator and their gradients are larger than that of
SIS using the approximate reversals as backward kernels;
i.e. `k−1 = mk.
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Figure 3. Log-likelihood of L-MCVAE depending on the number
of Langevin steps K. Increasing K improves performance, how-
ever at the expense of the computational complexity.

4.3. Numerical results for image datasets

Following (Wu et al., 2016), we propose to evaluate our
models using AIS (not to be confused with the proposed
AIS-based VI approach) to get an estimation of the negative
log-likelihood. The base distribution is the distribution out-
put by the encoder, and we perform K steps of annealing
to compute the estimator of the likelihood, as given by (5).
In practice, we use K = 5 HMC steps with 3 leapfrogs for
evaluating our models.
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Figure 4. Evolution of the held-out loglikelihood during training
for A-MCVAE, L-MCVAE, IWAE and VAE on MNIST.

We evaluate our models on three different datasets: MNIST,
CIFAR-10 and CelebA. All the models we compare share
the same architecture: the inference network qφ is given by
a convolutional network with 8 convolutional layers and one
linear layer, which outputs the parameters µφ(x), σφ(x) ∈
Rd of a factorized Gaussian distribution, while the genera-
tive model pθ(·|z) is given by another convolutional network
πθ, where we use nearest neighbor upsamplings. This out-
puts the parameters for the factorized Bernoulli distribution
(for MNIST dataset), that is

pθ(x|z) =

N∏
i=1

Ber
(
x(i)|

(
πθ(z)

)(i))
and similarly the mean of the Gaussian distributions for col-
ored datasets (CIFAR-10, Celeba). We compare A-MCVAE,
L-MCVAE, IWAE, and VAE with different settings. All the
models are implemented using PyTorch (Paszke et al., 2019)
and optimized using the Adam optimizer (Kingma & Ba,
2014) for 100 epochs each. The training process is using
PyTorch Lightning toolkit (Falcon, 2019).

First, consider dynamically binarized MNIST
dataset (Salakhutdinov & Murray, 2008). In this
case, the latent dimension is set to d = 64. We present
in Table 1 the results of the different models at different
stages of the optimization. Moreover, we show on Figure 3
the performance of L-MCVAE for different values of
K compared to IWAE baseline. In particular, we see
that increasing K increases the performance of our VAE,
however at the expense of an increase in computational cost.
We also display on Figure 4 the evolution of the held-out
loglikelihood for various objectives during training. Adding
Langevin transitions appears to help convergence of the
models.

Second, we compare similarly the different models on
CelebA and CIFAR, see Table 2 and Table 3. In this case,
the latent dimension is chosen to be d = 128. Increasing
the number of MCMC steps seems again to improve both
the ELBO and the final loglikelihood estimate. In each case,
all models are run with 5 different seeds to compute the
presented empirical standard deviation.

5. Discussion
We have shown in this article how one can leverage state-of-
the-art Monte Carlo estimators of the evidence to develop
novel competitive VAEs by developing novel gradient esti-
mates of the corresponding ELBOs.

For a given computational complexity, AIS based on MALA
provides ELBO estimates which are typically tighter than
SIS estimates based on ULA. However, the variance of the
gradient estimates of the AIS-based ELBO (A-MCVAE)
is also significantly larger than for the SIS-based ELBO
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Table 1. Results of the different models on MNIST. A more detailed version of this table is included in the supplementary material.
negative ELBO estimate NLL estimate

number of epochs 10 30 100 10 30 100
VAE 95.26 ± 0.49 91.58 ± 0.27 89.70 ± 0.19 89.83 ± 0.59 86.86 ± 0.26 85.22 ± 0.07
IWAE, K = 10 91.42 ± 0.21 88.56 ± 0.07 87.16 ± 0.19 88.54 ± 0.27 86.07 ± 0.1 84.82 ± 0.1
IWAE, K = 50 90.34 ± 0.27 87.5 ± 0.16 86.05 ± 0.11 89.4 ± 0.25 86.54 ± 0.15 85.05 ± 0.1
L-MCVAE, K = 5 96.62 ± 3.24 88.58 ± 0.75 87.51 ± 0.41 90.59 ± 2.01 85.68 ± 0.49 84.92 ± 0.24
L-MCVAE, K = 10 96.78 ± 1.06 87.99 ± 0.71 86.8 ± 0.66 91.33 ± 0.61 85.47 ± 0.46 84.58 ± 0.39
A-MCVAE, K = 3 96.21 ± 3.43 88.64 ± 0.78 87.63 ± 0.42 90.42 ± 2.34 85.77 ± 0.65 85.02 ± 0.37
A-MCVAE, K = 5 95.55 ± 2.96 87.99 ± 0.57 87.03 ± 0.27 90.39 ± 2.21 85.6 ± 0.67 84.84 ± 0.38
VAE with RealNVP 95.23 ± 0.33 91.69 ± 0.15 89.62 ± 0.17 89.98 ± 0.24 86.88 ± 0.05 85.23 ± 0.18

Table 2. Results of the different models on CelebA. A more detailed version of this table is included in the supplementary material. 11400
must be added to all scores in this table.

negative ELBO - 11400+ NLL - 11400+
number of epochs 10 30 100 10 30 100

VAE 23.78 ± 1.95 17.99 ± 0.4 14.72 ± 0.16 17.35 ± 1.7 12.68 ± 0.62 10.11 ± 0.32
IWAE, K = 10 20.59 ± 0.71 15.45 ± 0.52 12.2 ± 0.3 18.25 ± 0.6 13.18 ± 0.42 10.14 ± 0.31
IWAE, K = 50 19.05 ± 0.39 13.59 ± 0.5 10.48 ± 0.89 19.08 ± 0.42 13.17 ± 0.54 10.12 ± 0.86
L-MCVAE, K = 5 21.61 ± 1.48 12.72 ± 0.43 11.6 ± 0.37 16.42 ± 1.47 9.62 ± 0.47 8.72 ± 0.4
L-MCVAE, K = 10 20.7 ± 1.15 11.81 ± 0.34 10.6 ± 0.23 17.0 ± 1.87 9.29 ± 0.73 8.24 ± 0.52
A-MCVAE, K = 3 21.59 ± 1.5 13.94 ± 0.42 12.84 ± 0.3 16.64 ± 1.37 10.98 ± 0.48 9.95 ± 0.3
A-MCVAE, K = 5 20.95 ± 1.18 12.42 ± 0.42 11.13 ± 0.37 17.42 ± 1.49 9.97 ± 0.59 8.82 ± 0.57
VAE with RealNVP 15.12 ± 0.48 13.63 ± 0.27 12.58 ± 0.61 10.42 ± 0.33 9.04 ± 0.26 8.98 ± 0.2

Table 3. Results of the different models on CIFAR. A more detailed version of this table is included in the supplementary material. 2800
must be added to all scores in this table.

negative ELBO - 2800+ NLL - 2800+
number of epochs 10 30 100 10 30 100

VAE 69.57 ± 0.08 69.55 ± 0.51 68.84 ± 0.06 68.51 ± 0.07 68.41 ± 0.33 67.9 ± 0.03
IWAE, K= 10 69.82 ± 0.03 69.35 ± 0.03 69.36 ± 0.36 68.56 ± 0.03 68.0 ± 0.03 68.02 ± 0.4
IWAE, K= 50 69.94 ± 0.08 69.55 ± 0.04 69.43 ± 0.03 69.15 ± 0.15 68.37 ± 0.18 67.93 ± 0.02
L-MCVAE, K= 5 70.62 ± 0.41 68.55 ± 0.18 68.09 ± 0.1 69.15 ± 0.38 67.73 ± 0.07 67.5 ± 0.07
L-MCVAE, K= 10 70.99 ± 0.59 68.36 ± 0.04 68.03 ± 0.0 69.8 ± 0.67 67.76 ± 0.04 67.51 ± 0.03
A-MCVAE, K= 3 69.97 ± 0.99 68.48 ± 0.29 68.18 ± 0.16 69.26 ± 0.76 67.77 ± 0.18 67.55 ± 0.1
A-MCVAE, K= 5 70.1 ± 0.89 68.28 ± 0.2 68.01 ± 0.08 69.23 ± 0.75 67.71 ± 0.15 67.5 ± 0.07
VAE with RealNVP 70.01 ± 0.12 69.51 ± 0.07 69.19 ± 0.13 68.73 ± 0.05 68.35 ± 0.05 68.05 ± 0.02

(L-MCVAE) as it has to rely on REINFORCE gradient esti-
mates. While control variates can be considered to reduce
the variance, this comes at a significant increase in compu-
tational cost.

Empirically, L-MCVAE should thus be favoured as it pro-
vides both a tighter ELBO than standard techniques and low
variance gradient estimates.
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SUPPLEMENTARY DOCUMENT

A. Notations and definitions
Let (X,X ) be a measurable space. A Markov kernel N on X×X is a mapping N : X×X → [0, 1] satisfying the following
conditions:

(i) for every x ∈ X, the mapping N(x, ·) : A 7→ N(x,A) is a probability of on X ,

(ii) for every A ∈ X , the mapping N(·, A) : x 7→ N(x,A) is a measurable function from (X,X ) to ([0, 1] ,B([0, 1]),
where B([0, 1]) denotes the borelian sets of [0, 1].

Let λ be a positive σ-finite measure on (X,X ) and n : X× X→ R+ be a nonnegative function, measurable with respect to
the product σ-field X ⊗ X . Then, the application N defined on X×X by

N(x,A) =

∫
A

n(x, y)λ(dy) ,

is a kernel. The function n is called the density of the kernel N w.r.t. the measure λ. The kernel N is Markovian if and only
if
∫
X
n(x, y)λ(dy) = 1 for all x ∈ X.

Let N be a kernel on X×X and f be a nonnegative function. A function Nf : X→ R+ is defined by setting, for x ∈ X,

Nf(x) =

∫
X

N(x, dy)f(y) .

Let µ be a probability on (X,X ). For A ∈ X , define

µN(A) =

∫
X

µ(dx) N(x, A) .

If N is Markovian, then µN is a probability on (X,X ).

B. Experiences
B.1. Toy example

We first describe additional experiments on the toy dataset introduced in Section 4.2.

Recall that we generate some i.i.d. data x = (xi)
N
i=1 ∈ RN from the i.i.d. latent variables z = (zi)

N
i=1 ∈ R2N as follows for

η > 0: zi ∼ N(0; Id) and xi | zi ∼ N(η · (‖zi‖+ ζ), σ2) = pθ(xi | zi).

This example, presented for z ∈ R2, easily extends to the case where z lies in Rd, with d increasing from 2 to 300. We
tackle here the problem at estimating the parameter θ = (η, ζ) when d varies.

We show in Figure S1 the error ‖θ̂ − θ‖2 for the different methods. The increased flexibility of the posterior proves more
effective for estimating the true parameters of the generative model.

B.2. Probabilistic Principal Component Analysis

We detail the impact of the learnable reverse kernels on the variance of the estimator and looseness of the ELBO. In our
experiments, reverse kernels were given by fully-connected neural networks. We train K different reverse kernels {lk}K−1k=0
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Figure S2. Representation of the different estimators (left) and their gradient (right) of the true log likelihood. From left to right, a/
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A-MCVAE, K = 5, f/ A-MCVAE, K = 10, g/ A-MCVAE, K = 5 with control variates.

for the K transitions, each given by a separate neural network, and amortized over the observation x, similarly to (Salimans
et al., 2015; Huang et al., 2018). Given the parameters (θ, φ), we train these kernels for a large number of epochs using
the SIS objective (14) and the Adam optimizer (Kingma & Ba, 2014). In particular, we display in Figure S2 the different
estimators to be compared. It is easily seen that reverse kernels can not provide reasonable and stable density estimates. At
the same time, we observe the variance of the gradient is higher in those models than in the ones we present in the main text.
This motivates our approach bypassing the optimization of the reverse kernels.

B.3. Additional experimental results

We display in this section the full results on MNIST, CelebA and CIFAR respectively of the different models as well as the
effect of the different annealing schemes (respectively in Table 1, Table 2 and 3).

C. Proofs
C.1. Proof of SIS and AIS Identities

Proposition S2. Let {Γk}Kk=0 be a sequence of distributions on (Rd,B(Rd)), {Mk}Kk=1 and {Lk}K−1k=0 be Markov kernels.
Assume that for each k ∈ {0, . . . ,K − 1}, there exists a positive measurable function wk : Rd × Rd 7→ R+ such that

Γk(dzk)Lk−1(zk,dzk−1) = Γk−1(dzk−1)Mk(zk−1,dzk)wk(zk−1, zk) . (S1)



Table 1. Results of the different models on MNIST with different annealing schemes.

number of epoches ELBO: 10 30 100 NLL: 10 30 100

VAE 95.26 ± 0.5 91.58 ± 0.27 89.7 ± 0.19 89.83 ± 0.59 86.86 ± 0.26 85.22 ± 0.07
IWAE, K= 10 91.42 ± 0.21 88.56 ± 0.07 87.17 ± 0.19 88.54 ± 0.27 86.07 ± 0.1 84.82 ± 0.1
IWAE, K= 50 90.34 ± 0.27 87.5 ± 0.16 86.05 ± 0.11 89.4 ± 0.25 86.54 ± 0.15 85.05 ± 0.1
L-MCVAE Fixed, K= 5 96.6 ± 3.51 88.8 ± 0.46 87.77 ± 0.12 90.63 ± 2.19 85.85 ± 0.27 85.07 ± 0.04
L-MCVAE Sigmoidal, K= 5 95.48 ± 2.29 88.87 ± 0.82 87.81 ± 0.53 90.05 ± 1.63 85.92 ± 0.62 85.16 ± 0.38
L-MCVAE All learnable, K= 5 96.62 ± 3.24 88.58 ± 0.75 87.51 ± 0.41 90.59 ± 2.01 85.68 ± 0.49 84.92 ± 0.24
L-MCVAE Fixed, K= 10 95.98 ± 3.91 88.36 ± 0.7 87.38 ± 0.35 90.5 ± 2.23 85.75 ± 0.33 85.0 ± 0.11
L-MCVAE Sigmoidal, K= 10 96.78 ± 0.47 88.35 ± 0.63 87.17 ± 0.52 91.13 ± 0.27 85.72 ± 0.31 84.84 ± 0.26
L-MCVAE All learnable, K= 10 96.78 ± 1.06 87.99 ± 0.71 86.8 ± 0.66 91.33 ± 0.61 85.47 ± 0.46 84.58 ± 0.39
A-MCVAE Fixed, K= 3 96.21 ± 3.43 88.64 ± 0.78 87.63 ± 0.42 90.42 ± 2.34 85.77 ± 0.65 85.02 ± 0.37
A-MCVAE Sigmoidal, K= 3 96.59 ± 2.31 88.96 ± 0.4 87.86 ± 0.06 90.85 ± 1.62 85.97 ± 0.34 85.17 ± 0.1
A-MCVAE All learnable, K= 3 95.44 ± 2.68 88.79 ± 0.63 87.78 ± 0.37 89.9 ± 1.68 85.96 ± 0.59 85.23 ± 0.41
A-MCVAE Fixed, K= 5 95.55 ± 2.96 87.99 ± 0.57 87.03 ± 0.27 90.39 ± 2.21 85.6 ± 0.67 84.84 ± 0.38
A-MCVAE Sigmoidal, K= 5 96.56 ± 2.02 88.51 ± 0.31 87.46 ± 0.48 91.62 ± 1.55 85.96 ± 0.06 85.15 ± 0.21
A-MCVAE All learnable, K= 5 95.81 ± 1.72 88.11 ± 0.13 87.14 ± 0.18 90.79 ± 1.14 85.71 ± 0.28 84.95 ± 0.04
VAE with RealNVP 95.23 ± 0.33 91.69 ± 0.15 89.62 ± 0.17 89.98 ± 0.24 86.88 ± 0.05 85.23 ± 0.18

Table 2. Full results of the different models on CelebA. All scores must be added 11400 in this table.
number of epoches ELBO: 10 30 100 NLL: 10 30 100

VAE 23.78 ± 1.95 17.99 ± 0.4 14.72 ± 0.16 17.35 ± 1.7 12.68 ± 0.62 10.11 ± 0.32
IWAE, K= 10 20.59 ± 0.71 15.45 ± 0.52 12.2 ± 0.3 18.25 ± 0.6 13.18 ± 0.42 10.14 ± 0.31
IWAE, K= 50 19.05 ± 0.39 13.59 ± 0.5 10.48 ± 0.89 19.08 ± 0.42 13.17 ± 0.54 10.12 ± 0.86
L-MCVAE Fixed, K= 5 21.93 ± 1.34 13.12 ± 1.27 12.03 ± 1.21 16.65 ± 1.55 10.12 ± 1.38 9.14 ± 1.27
L-MCVAE Sigmoidal, K= 5 21.61 ± 1.48 12.72 ± 0.43 11.6 ± 0.37 16.42 ± 1.47 9.62 ± 0.47 8.72 ± 0.4
L-MCVAE All learnable, K= 5 20.75 ± 0.65 12.99 ± 0.7 11.91 ± 0.61 16.16 ± 0.93 10.01 ± 0.72 9.03 ± 0.64
L-MCVAE Fixed, K= 10 21.49 ± 0.03 12.83 ± 0.57 11.76 ± 0.56 17.67 ± 0.75 10.26 ± 0.9 9.24 ± 0.79
L-MCVAE Sigmoidal, K= 10 19.44 ± 0.82 11.81 ± 0.45 10.7 ± 0.4 15.67 ± 1.48 9.24 ± 0.8 8.24 ± 0.73
L-MCVAE All learnable, K= 10 20.7 ± 1.15 11.81 ± 0.34 10.6 ± 0.23 17.0 ± 1.87 9.29 ± 0.73 8.26 ± 0.52
A-MCVAE Fixed, K= 3 21.59 ± 1.5 13.94 ± 0.42 12.84 ± 0.3 16.64 ± 1.37 10.98 ± 0.48 9.95 ± 0.3
A-MCVAE Sigmoidal, K= 3 23.63 ± 1.19 14.17 ± 0.26 12.96 ± 0.18 18.0 ± 0.54 11.09 ± 0.2 10.11 ± 0.13
A-MCVAE All learnable, K= 3 22.11 ± 1.66 14.62 ± 0.35 13.54 ± 0.18 17.38 ± 1.54 11.68 ± 0.33 10.67 ± 0.16
A-MCVAE Fixed, K= 5 20.13 ± 1.11 13.11 ± 0.38 11.99 ± 0.56 16.71 ± 1.47 10.64 ± 0.24 9.63 ± 0.32
A-MCVAE Sigmoidal, K= 5 20.95 ± 1.18 12.42 ± 0.42 11.13 ± 0.37 17.42 ± 1.49 9.97 ± 0.59 8.82 ± 0.57
A-MCVAE All learnable, K= 5 22.17 ± 0.17 12.73 ± 0.09 11.46 ± 0.15 18.97 ± 1.04 10.41 ± 0.28 9.22 ± 0.16
VAE with RealNVP 15.56 ± 0.29 13.60 ± 0.35 12.21 ± 0.27 10.69 ± 0.19 9.09 ± 0.26 8.98 ± 0.2



Table 3. Results of the different models on CIFAR-10 with different annealing schemes. All scores must be added 2800 in this table.

number of epoches ELBO: 10 30 100 NLL: 10 30 100

VAE 69.57 ± 0.08 69.55 ± 0.51 68.84 ± 0.06 68.51 ± 0.07 68.41 ± 0.33 67.9 ± 0.03
IWAE, K= 10 69.82 ± 0.03 69.35 ± 0.03 69.36 ± 0.36 68.56 ± 0.03 68.0 ± 0.03 68.02 ± 0.4
IWAE, K= 50 69.94 ± 0.08 69.55 ± 0.04 69.43 ± 0.03 69.15 ± 0.15 68.37 ± 0.18 67.93 ± 0.02
L-MCVAE Fixed, K= 5 70.86 ± 0.53 68.44 ± 0.18 68.12 ± 0.11 69.37 ± 0.37 67.78 ± 0.1 67.53 ± 0.07
L-MCVAE Sigmoidal, K= 5 70.9 ± 0.59 68.46 ± 0.13 68.12 ± 0.11 69.42 ± 0.39 67.77 ± 0.11 67.51 ± 0.08
L-MCVAE All learnable, K= 5 70.62 ± 0.41 68.55 ± 0.18 68.09 ± 0.1 69.15 ± 0.38 67.73 ± 0.07 67.5 ± 0.07
L-MCVAE Fixed, K= 10 70.67 ± 0.42 68.37 ± 0.06 69.07 ± 1.49 69.62 ± 0.54 67.78 ± 0.06 67.51 ± 0.03
L-MCVAE Sigmoidal, K= 10 70.99 ± 0.59 68.36 ± 0.04 68.03 ± 0.0 69.8 ± 0.67 67.76 ± 0.04 67.51 ± 0.03
L-MCVAE All learnable, K= 10 71.19 ± 0.79 68.36 ± 0.03 68.01 ± 0.04 69.95 ± 0.62 67.78 ± 0.07 67.5 ± 0.05
A-MCVAE Fixed, K= 3 69.97 ± 0.99 68.48 ± 0.29 68.18 ± 0.16 69.26 ± 0.76 67.77 ± 0.18 67.55 ± 0.1
A-MCVAE Sigmoidal, K= 3 70.5 ± 1.18 68.45 ± 0.28 68.19 ± 0.18 69.18 ± 0.8 67.77 ± 0.19 67.56 ± 0.11
A-MCVAE All learnable, K= 3 70.69 ± 1.23 68.44 ± 0.3 68.17 ± 0.18 69.36 ± 0.89 67.76 ± 0.2 67.55 ± 0.11
A-MCVAE Fixed, K= 5 70.37 ± 1.04 68.31 ± 0.21 68.04 ± 0.1 69.36 ± 0.87 67.73 ± 0.17 67.51 ± 0.08
A-MCVAE Sigmoidal, K= 5 70.89 ± 0.38 68.4 ± 0.05 68.07 ± 0.04 69.71 ± 0.33 67.8 ± 0.04 67.53 ± 0.02
A-MCVAE All learnable, K= 5 70.1 ± 0.89 68.28 ± 0.2 68.01 ± 0.08 69.23 ± 0.75 67.71 ± 0.15 67.5 ± 0.07
VAE with RealNVP 70.01 ± 0.12 69.51 ± 0.07 69.19 ± 0.13 68.73 ± 0.05 68.35 ± 0.05 68.05 ± 0.02

Then,

Γ0(dz0)

K∏
k=1

Mk(zk−1,dzk)

K∏
k=1

wk(zk−1, zk) = ΓK(dzK)

1∏
k=K

Lk−1(zk,dzk−1) . (S2)

Proof. We prove by induction that for k ∈ {1, . . . ,K},

Γ0(dz0)

k∏
i=1

Mi(zi−1,dzi)

k∏
i=1

wi(zi−1, zi) = Γk(dzk)

1∏
i=k

Li−1(zi,dzi−1) . (S3)

Eq. (S3) is satisfied for k = 1 by (S1). Assume that (S3) is satisfied for k 6 K − 1. By (S1),

Γk+1(dzk+1)

1∏
i=k+1

Li−1(zi,dzi−1) = Γk+1(dzk+1)Lk(zk+1,dzk)

1∏
i=k

Li−1(zi,dzi−1)

= Γk(dzk)Mk+1(zk,dzk+1)wk+1(zk, zk+1)

1∏
i=k

Li−1(zi,dzi−1)

= Mk+1(zk,dzk+1)wk+1(zk, zk+1)Γ0(dz0)

k∏
i=1

Mi(zi−1,dzi)

k∏
i=1

wi(zi−1, zi)

which concludes the proof.

We now highlight conditions under which (S1) is satisfied.

1. Assume that {Γk}Kk=0 have positive densities w.r.t. to the Lebesgue measure, i.e. Γk(dzk) = Γk(zk)dzk and that
the kernels {Mk}Kk=1 and {Lk}K−1k=0 have positive transition densities Mk(zk−1,dzk) = mk(zk−1, zk)dzk and
Lk−1(zk,dzk−1) = `k−1(zk, zk−1)dzk−1, k ∈ {1, . . . ,K}. Then,

wk(zk−1, zk) =
γk(zk)`k−1(zk, zk−1)

γk−1(zk−1)mk(zk−1, zk)



2. Assume that for k ∈ {1, . . . ,K}, Γk(dzk−1)Mk(zk−1,dzk) = Γk(dzk)Lk−1(zk,dzk−1), and that there exists a
positive measurable function such that Γk(dzk−1) = w̃k(zk−1)Γk−1(dzk−1). Then,

Γk(dzk)Lk−1(zk,dzk−1) = Γk(dzk−1)Mk(zk−1,dzk) = w̃k(zk−1)Γk−1(dzk−1)Mk(zk−1,dzk) .

Hence, (S1) is satisfied with wk(zk−1, zk) = w̃k(zk−1). In particular, if for all k ∈ {0, . . . ,K}, Γk(zk) = γk(zk)dzk,
where γk is a positive p.d.f., then w̃k(zk) = γk(zk)/γk−1(zk−1).

3. Assume that for k ∈ {1, . . . ,K}, Mk is reversible w.r.t. Γk, i.e. Γk(dzk−1)Mk(zk−1,dzk) = Γk(dzk)Mk(zk,dzk−1),
and that there exists a positive measurable function such that Γk(dzk−1) = w̃k(zk−1)Γk−1(dzk−1). Then, setting
Lk−1 = Mk, (S1) is satisfied.

C.2. Proof of (14)

For k ∈ {1, . . . ,K}, zk−1 ∈ Rd, denote by Gk,zk−1
the mapping uk 7→ Tuk(zk−1). Our derivation below rely on the fact

that for k ∈ {1, . . . ,K}, zk−1 ∈ Rd, Gk,zk−1
is a C1-diffeomorphism. This is the case for the Langevin mappings. Note,

similarly to the density considered in Section 3, that mk(zk−1, zk) = ϕ(G−1k,zk−1
(zk))JG−1

k,zk−1

(zk). When K = 1, we have

∫
log
(
w1(z0, z1)

)
q1φ(z0:1 | x)dz0:1 =

∫
log
(
w1(z0, z1)

)
qφ(z0 | x)JG−1

1,z0

(z1)ϕ
(
G−11,z0

(z1)
)
dz0:1

=

∫
log
(
w1(z0,T1,u1

(z0))
)
qφ(z0 | x)ϕ(u1)dz0du1 ,

where we have performed the change of variables u1 = G−11,z0
(z1), hence z1 = G1,z0(u1) = T1,u1

(z0). Let now K be in
N∗. In general, we write

LSIS =

∫
log

(
K∏
k=1

wk(zk−1, zk)

)
qKφ (z0:K | x)dz0:K =

∫
log

(
K∏
k=1

wk(zk−1, zk)

)
qφ(z0 | x)

K∏
k=1

mk(zk−1, zk)dz0:K−1dzK

=

∫
log

(
K∏
k=1

wk(zk−1, zk)

)
qφ(z0 | x)

K−1∏
k=1

mk(zk−1, zk)ϕ(G−1K,zK−1
(zK))JG−1

K,zK−1

(zK)dz0:K−1dzK

=

∫
log

(
K−1∏
k=1

wk(zk−1, zk)wK(zK−1,TuK (zK−1))qφ(z0 | x)

)
K−1∏
k=1

mk(zk−1, zk)ϕ(uK)dz0:K−1duK

using the change of variables uK = G−1K,zK−1
(zK). By an immediate backwards induction, we write

LSIS =

∫
log

(
K∏
k=1

wk(
k−1
©
i=1

Ti,ui(z0),
k

©
i=1

Ti,ui(z0))

)
qφ(z0 | x)ϕ(u1:K)dz0du1:K .

C.3. Proof of Lemma 1

Let η < L−1 and u ∈ RD. First we show that TMALA
u is invertible. Consider, for each (y, u) ∈ R2d, the mapping

Hy,u(z) = y −√2ηu− η∇ log π(z). We have, for z1, z2 ∈ Rd,

‖Hy,u(z1)−Hy,u(z2)‖ 6 η‖∇ log π(z1)−∇ log π(z2)‖ 6 ηL‖z1 − z2‖

and ηL < 1. Hence Hy,u is a contraction mapping and thus has a unique fixed point zy,u. Hence, for all (y, u) ∈ R2d there
exists a unique zy,u satisfying

Hy,u(zy,u) = zy,u ⇒ y = zy,u + η∇ log π(zy,u) +
√

2ηu = TMALA
u (zy,u).

This establishes the invertibility of TMALA
u . The fact that the inverse of TMALA

u is C1 follows from a simple application of
the local inverse function theorem.



D. ELBO AIS
D.1. Construction of the control variates

We prove in this section that the variance reduced objective we consider is valid. Sample now n samples u1:n0:K
i.i.d.∼ ϕd,K+1.

For an index i ∈ {1, . . . , n}, given the initial point zi0 = Vφ,x(ui0) and the innovation noise ui1:K , we sample the A/R
booleans ai1:K . We introduce, in the main text, for i ∈ {1, . . . , n}

W̃n,i =
1

n− 1

∑
j 6=i

W (Vφ,x(uj0), aj1:K , u
j
1:K) ,

W̃i provides a reasonable estimate of the AIS ELBO but is independent from the i-th trajectory. We use this quantity as a
control variate to reduce the variance of our gradient estimator by introducing

∇̂LAISn = n−1
n∑
i=1

∇W (Vφ,x(ui0), ai1:K , u
i
1:K)

+ n−1
n∑
i=1

[
W (Vφ,x(ui0), ai1:K , u

i
1:K)− W̃n,i

]
×∇ logA(Vφ,x(ui0), ai1:K , u

i
1:K) . (S4)

Proving its unbiasedness boils down to proving that the term n−1
∑n
i=1 W̃n,i∇ logA(Vφ,x(ui0), ai1:K , u

i
1:K) has expectation

zero. Let us compute for i ∈ {1 . . . , n},∫ ∑
ai1:K

ϕd,K+1(ui0:K)A(Vφ,x(ui0), ai1:K , u
i
1:K)W̃n,i∇ logA(Vφ,x(ui0), ai1:K , u

i
1:K)dui0:K =
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ai1:K−1
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k=1
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(
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)
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∇ logα
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(
ziK−1

)dui0:K ,

denoting zj0 = Vφ,x(uj0), zjk = ©k
i=1T

aji
i,uji

(zj0) by simplicity of notation. Yet,
∑
aiK

α
aiK
K,uiK
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= 1 ex-

actly, thus
∑
aiK

α
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K,uiK

(
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)
∇ logα
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K,uiK

(
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)
= 0. We can thus show by an immediate induction that∫∑

ai1:K
ϕd(u

i
0:K)W̃n,i∇ logA(Vφ,x(ui0), ai1:K , u

i
1:K)duii:K = 0, as W̃n,i is a constant in that integral by independence of

the samples for i ∈ {1 . . . , n}. Moreover, as∫ ∑
a1:n1:K

n∑
i=1

W̃n,i∇ logA(Vφ,x(ui0), ai1:K , u
i
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then n−1
∑n
i=1 W̃n,i∇ logA(Vφ,x(ui0), ai1:K , u

i
1:K) is of zero expectation, and (S4) is an unbiased estimator of the gradient.

D.2. Discussion of (Wu et al., 2020)

In (Wu et al., 2020), authors consider a MCMC VAE inspired by AIS. The model used however is quite different in spirit to
what is performed in this work. (Wu et al., 2020) use Langevin mappings and accept reject steps in their VAE. Note however
that the A/R probabilities defined are written as

α(x, y) = 1 ∧ π(y)/π(x) ,

different from (21). Moreover, even though accept/reject steps are considered, the score function estimator (25) is not taken
into account.



Finally, the initial density of the sequence is not taken to be some variational mean field initialization but directly the prior
in the latent space. As a result, the scores obtained by the MCMC VAE are less competitive than that of the RNVP VAE
presented in (Wu et al., 2020, Table 3.), contrary to what is presented here.
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