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Abstract

: We consider in this paper the problem of sampling a high-dimensional probabil-
ity distribution π having a density w.r.t. the Lebesgue measure on R

d, known up to
a normalization constant x 7→ π(x) = e−U(x)/

∫
Rd e

−U(y)dy. Such problem naturally
occurs for example in Bayesian inference and machine learning. Under the assump-
tion that U is continuously differentiable, ∇U is globally Lipschitz and U is strongly
convex, we obtain non-asymptotic bounds for the convergence to stationarity in
Wasserstein distance of order 2 and total variation distance of the sampling method
based on the Euler discretization of the Langevin stochastic differential equation,
for both constant and decreasing step sizes. The dependence on the dimension of
the state space of these bounds is explicit. The convergence of an appropriately
weighted empirical measure is also investigated and bounds for the mean square
error and exponential deviation inequality are reported for functions which are mea-
surable and bounded. An illustration to Bayesian inference for binary regression is
presented to support our claims.

1 Introduction

Interest for Bayesian inference methods for high-dimensional models has recently re-
ceived renewed attention often motivated by machine learning applications. Rather

1Email: alain.durmus@cmla.ens-cachan.fr
2eric.moulines@polytechnique.edu
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than obtaining a point estimate, Bayesian methods attempt to sample the full posterior
distribution over the parameters and possibly latent variables which provides a way to
assert uncertainty in the model and prevents from overfitting [33], [42].

The problem can be formulated as follows. We aim at sampling a posterior distribu-
tion π on R

d, d ≥ 1, with density x 7→ e−U(x)/
∫
Rd e

−U(y)dy w.r.t. the Lebesgue measure,
where U is continuously differentiable. The Langevin stochastic differential equation
associated with π is defined by:

dYt = −∇U(Yt)dt+
√
2dBt , (1)

where (Bt)t≥0 is a d-dimensional Brownian motion defined on the filtered probability
space (Ω,F , (Ft)t≥0,P), satisfying the usual conditions. Under mild technical conditions,
the Langevin diffusion admits π as its unique invariant distribution.

We study the sampling method based on the Euler-Maruyama discretization of
(1). This scheme defines the (possibly) non-homogeneous, discrete-time Markov chain
(Xk)k≥0 given by

Xk+1 = Xk − γk+1∇U(Xk) +
√

2γk+1Zk+1 , (2)

where (Zk)k≥1 is an i.i.d. sequence of d-dimensional standard Gaussian random variables
and (γk)k≥1 is a sequence of step sizes, which can either be held constant or be chosen
to decrease to 0. This algorithm has been first proposed by [16] and [35] for molecular
dynamics applications. Then it has been popularized in machine learning by [20], [21]
and computational statistics by [33] and [37]. Following [37], in the sequel this method
will be referred to as the unadjusted Langevin algorithm (ULA). When the step sizes
are held constant, under appropriate conditions on U , the homogeneous Markov chain
(Xk)k≥0 has a unique stationary distribution πγ , which in most cases differs from the
distribution π. It has been proposed in [38] and [37] to use a Metropolis-Hastings step
at each iteration to enforce reversibility w.r.t. π. This algorithm is referred to as the
Metropolis adjusted Langevin algorithm (MALA).

The ULA algorithm has already been studied in depth for constant step sizes in [40],
[37] and [31]. In particular, [40, Theorem 4] gives an asymptotic expansion for the weak
error between π and πγ . When limk→+∞ γk = 0 and

∑∞
k=1 γk = ∞, weak convergence of

the weighted empirical distribution of the ULA algorithm has been established in [27],
[28] and [29].

Contrary to these reported works, we focus in this paper on non-asymptotic results.
These questions have been addressed previously in [10] and [12]. [10] establishes explicit
bounds on the total variation distance between the distribution of the n-th iterate of
the Markov chain defined in (2) and the target distribution π for fixed step size and a
strongly convex potential U . It is shown that if the initial distribution is an appropriately
chosen Gaussian or if a warm-start is used, the number of iterations required to get a
sample ǫ-close to π in total variation is of order O(d3ε−2) and O(dε−2) respectively.
The results of [10] were later sharpened in [12], using different technical arguments. In
particular, [12] shows that starting from a minimizer of U , the number of iterations to
get a sample ε-close from π in total variation is of order O(dε−2) and that therefore a
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warm start is not necessary. [12] also extends the results of [10] to non-convex potentials
and non-increasing sequences of step sizes. It also establish some bounds between π and
πγ in V -norm which scale as γ1/2 as γ → 0.

In this work, we focus on the case where U is strongly convex. Compared to [10] and
[12], our contributions are as follows.

• We give explicit bounds between the distribution of the n-th iterate of the Markov
chain defined in (2) and the target distribution π in Wasserstein and total variation
distance for fixed and non-increasing step sizes. The obtained bounds improve
those reported in [10] and [12] for the total variation distance.

• For fixed step sizes (γk = γ for all k ≥ 0), we analyse both fixed horizon (the total
computational budget is fixed and the step size is chosen to minimize the upper
bound on the Wasserstein or total variation distance) and fixed precision (for a
fixed target precision, the number of iterations and the step size are optimized
simultaneously to meet this constraint). For a fixed precision ε > 0, we show that
the number of iterations n ≥ 0, for ULA to get a sample ε-close to π in Wasserstein
distance / total variation of order O(dε−2) or O(dε−1) (up to logarithmic terms),
depending on the smoothness of U . We show that our result is optimal (up to
logarithmic factors again) for d-dimensional Gaussian distribution. We show in the
finite horizon setting that if the total number of iterations is n, we may choose the
step size γ = γn > 0 such that the Wasserstein distance between the distribution
of the n-th iterate and π is bounded by O(n−1/2) and O(n−1) depending on the
smoothness of U .

• When limk→+∞ γk = 0 and
∑∞

k=1 γk = ∞, we show that the marginal distribution
of the non-homogeneous Markov chain (Xk)k≥0 converges to the target distribution
π and provide explicit convergence bounds in the case γk = γ1k

−α, α ∈ (0, 1]. The
optimal rate of convergence derived from our bounds for the Wasserstein/total
variation distance is obtained for α = 1 with γ1 > 0 large enough. The convergence
rates we report, improve those given in [12].

• Quantitative estimates between π and πγ are obtained in Wasserstein and total
variation distance. The bound on the total variation distance between π and πγ we
derive improves the one reported in [12]. In particular, when U is smooth enough,
‖π − πγ‖TV scales as γ as γ → 0.

• Convergence of weighted empirical measure is studied through bounds on the mean
square error and exponential deviation of an estimator of

∫
Rd f(x)dπ(x), for func-

tions f : Rd → R which are either Lipschitz or bounded and measurable. When f
is Lipschitz, U is smooth enough and in the any-time setting, the optimal rate of
convergence for the MSE, using non-increasing sequences γk = γ1/k

α, is obtained
for α = 1/3 (which coincides with the rate used in [27] to derive a central limit
theorem). If the step size is held constant, we get that the number of iterations for
the mean square error to be smaller than ε > 0 is of order O(dε−4) or O(dε−3),
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depending on the smoothness of U . The case where f is bounded and measur-
able is an important result in Bayesian statistics to estimate credibility regions.
For that purpose, we study the convergence of the Euler-Maruyama discretization
towards its stationary distribution in total variation using a discrete time version
of reflection coupling introduced in [5]. For fixed step size, the conclusion on the
sufficient number of iterations for the mean square error to be smaller than ε > 0
is the same (up to logarithmic terms) as for Lipschitz functions.

In this paper, a special attention is paid to the dependency of the obtained bounds on
the dimension of the state space, since we are particularly interested in the applications
of this method to sampling in high-dimension.

The paper is organized as follows. In Section 2, we study the convergence in the
Wasserstein distance of order 2 of the Euler discretization for constant and decreasing
step sizes. In Section 3, we give non asymptotic bounds in total variation distance
between the Euler discretization and π. This study is completed in Section 4 by non-
asymptotic bounds of convergence of the weighted empirical measure applied to functions
which are either Lipschitz or bounded and measurable. Our claims are supported in a
Bayesian inference for a binary regression model in Section 5. Finally in Section 6, some
results of independent interest, used in the proofs, on functional autoregressive models
are gathered. Most proofs and derivations are postponed and carried out in Appendices
and a supplementary paper [11].

Notations and conventions

Denote by B(Rd) the Borel σ-field of Rd, F(Rd) the set of all Borel measurable functions
on R

d and for f ∈ F(Rd), ‖f‖∞ = supx∈Rd |f(x)|. For µ a probability measure on
(Rd,B(Rd)) and f ∈ F(Rd) a µ-integrable function, denote by µ(f) the integral of f
w.r.t. µ. We say that ζ is a transference plan of µ and ν if it is a probability measure
on (Rd × R

d,B(Rd × R
d)) such that for all measurable set A of Rd, ζ(A × R

d) = µ(A)
and ζ(Rd × A) = ν(A). We denote by Π(µ, ν) the set of transference plans of µ and ν.
Furthermore, we say that a couple of Rd-random variables (X,Y ) is a coupling of µ and
ν if there exists ζ ∈ Π(µ, ν) such that (X,Y ) are distributed according to ζ. For two
probability measures µ and ν, we define the Wasserstein distance of order p ≥ 1 as

Wp(µ, ν) =

(
inf

ζ∈Π(µ,ν)

∫

Rd×Rd

‖x− y‖p dζ(x, y)
)1/p

.

By [41, Theorem 4.1], for all µ, ν probability measures on R
d, there exists a transfer-

ence plan ζ⋆ ∈ Π(µ, ν) such that for any coupling (X,Y ) distributed according to ζ⋆,
Wp(µ, ν) = E[‖X − Y ‖p]1/p. This kind of transference plan (respectively coupling) will
be called an optimal transference plan (respectively optimal coupling) associated with
Wp. We denote by Pp(R

d) the set of probability measures with finite p-moment: for all
µ ∈ Pp(R

d),
∫
Rd ‖x‖p dµ(x) < +∞. By [41, Theorem 6.16], Pp(R

d) equipped with the
Wasserstein distance Wp of order p is a complete separable metric space.
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Let f : Rd → R be a Lipschitz function, namely there exists C ≥ 0 such that for all
x, y ∈ R

d, |f(x)− f(y)| ≤ C ‖x− y‖. Then we denote

‖f‖Lip = inf{|f(x)− f(y)| ‖x− y‖−1 | x, y ∈ R
d, x 6= y} .

The Monge-Kantorovich theorem (see [41, Theorem 5.9]) implies that for all µ, ν prob-
ability measures on R

d,

W1(µ, ν) = sup

{∫

Rd

f(x)dµ(x)−
∫

Rd

f(x)dν(x) | f : Rd → R ; ‖f‖Lip ≤ 1

}
.

Denote by Fb(R
d) the set of all bounded Borel measurable functions on R

d. For f ∈
Fb(R

d) set osc(f) = supx,y∈Rd |f(x)− f(y)|. For two probability measures µ and ν on

R
d, the total variation distance distance between µ and ν is defined by ‖µ − ν‖TV =

sup
A∈B(Rd) |µ(A)− ν(A)|. By the Monge-Kantorovich theorem the total variation distance

between µ and ν can be written on the form:

‖µ − ν‖TV = inf
ζ∈Π(µ,ν)

∫

Rd×Rd

1Dc(x, y)dζ(x, y) ,

where D = {(x, y) ∈ R
d ×R

d |x = y}. For all x ∈ R
d and M > 0, we denote by B(x,M),

the ball centered at x of radius M . For a subset A ⊂ R
d, denote by Ac the complementary

of A. Let n ∈ N
∗ and M be a n × n-matrix, then denote by MT the transpose of M

and ‖M‖ the operator norm associated with M defined by ‖M‖ = sup‖x‖=1 ‖Mx‖.
Define the Frobenius norm associated with M by ‖M‖2F = Tr(MTM). Let n,m ∈ N

∗

and F : Rn → Rm be a twice continuously differentiable function. Denote by ∇F and
∇2F the Jacobian and the Hessian of F respectively. Denote also by ~∆F the vector
Laplacian of F defined by: for all x ∈ R

d, ~∆F (x) is the vector of Rm such that for
all i ∈ {1, · · · ,m}, the i-th component of ~∆F (x) equals to

∑d
j=1(∂

2Fi/∂x
2
j )(x). In the

sequel, we take the convention that
∑n

p = 0 and
∏n

p = 1 for n, p ∈ N, n < p.

2 Non-asymptotic bounds in Wasserstein distance of order

2 for ULA

Consider the following assumption on the potential U :

H1. The function U is continuously differentiable on R
d and gradient Lipschitz: there

exists L ≥ 0 such that for all x, y ∈ R
d, ‖∇U(x)−∇U(y)‖ ≤ L ‖x− y‖.

Under H1, for all x ∈ R
d by [25, Theorem 2.5, Theorem 2.9 Chapter 5] there exists

a unique strong solution (Yt)t≥0 to (1) with Y0 = x. Denote by (Pt)t≥0 the semi-group
associated with (1). It is well-known that π is its (unique) invariant probability. To get
geometric convergence of (Pt)t≥0 to π in Wasserstein distance of order 2, we make the
following additional assumption on the potential U .
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H2. U is strongly convex, i.e. there exists m > 0 such that for all x, y ∈ R
d,

U(y) ≥ U(x) + 〈∇U(x), y − x〉+ (m/2) ‖x− y‖2 .

Under H2, [34, Theorem 2.1.8] shows that U has a unique minimizer x⋆ ∈ R
d. We

briefly summarize some background material on the stability and the convergence in W2

of the overdamped Langevin diffusion under H1 and H2. Most of the statements in
Proposition 1 are known and are recalled here for ease of references; see e.g. [6].

Proposition 1. Assume H1 and H2.

(i) For all t ≥ 0 and x ∈ R
d,

∫

Rd

‖y − x⋆‖2 Pt(x,dy) ≤ ‖x− x⋆‖2 e−2mt + (d/m)(1 − e−2mt) .

(ii) The stationary distribution π satisfies
∫
Rd ‖x− x⋆‖2 π(dx) ≤ d/m.

(iii) For any x, y ∈ R
d and t > 0, W2(δxPt, δyPt) ≤ e−mt ‖x− y‖.

(iv) For any x ∈ R
d and t > 0, W2(δxPt, π) ≤ e−mt

{
‖x− x⋆‖+ (d/m)1/2

}
.

Proof. The proof is given in the supplementary document Appendix A.1.

Note that the convergence rate in Proposition 1-(iv) does not depend on the dimen-
sion. Let (γk)k≥1 be a sequence of positive and non-increasing step sizes and for n, ℓ ∈ N,
denote by

Γn,ℓ =
ℓ∑

k=n

γk , Γn = Γ1,n . (3)

For γ > 0, consider the Markov kernel Rγ given for all A ∈ B(Rd) and x ∈ R
d by

Rγ(x,A) =

∫

A
(4πγ)−d/2 exp

(
−(4γ)−1 ‖y − x+ γ∇U(x)‖2

)
dy . (4)

The process (Xk)k≥0 given in (2) is an inhomogeneous Markov chain with respect to the
family of Markov kernels (Rγk)k≥1. For ℓ, n ∈ N

∗, ℓ ≥ n, define

Qn,ℓ
γ = Rγn · · ·Rγℓ , Qn

γ = Q1,n
γ (5)

with the convention that for n, ℓ ∈ N, ℓ < n, Qn,ℓ
γ is the identity operator.

We first derive a Foster-Lyapunov drift condition for Qn,ℓ
γ , ℓ, n ∈ N

∗, ℓ ≥ n. Set

κ =
2mL

m+ L
(6)

where m and L are defined in H1

Proposition 2. Assume H1 and H2.

6



(i) Let (γk)k≥1 be a non-increasing sequence with γ1 ≤ 2/(m+L). Let x⋆ be the unique
minimizer of U . Then for all x ∈ R

d and n, ℓ ∈ N
∗,

∫

Rd

‖y − x⋆‖2Qn,ℓ
γ (x,dy) ≤ ̺n,ℓ(x) ,

where ̺n,ℓ(x) is given by

̺n,ℓ(x) =

ℓ∏

k=n

(1− κγk) ‖x− x⋆‖2 + 2dκ−1

{
1− κ−1

ℓ∏

i=n

(1− κγi)

}
, (7)

(ii) For any γ ∈ (0, 2/(m + L)], Rγ has a unique stationary distribution πγ and

∫

Rd

‖x− x⋆‖2 πγ(dx) ≤ 2dκ−1 .

Proof. The proof is postponed to Appendix A.2.

We now proceed to establish that Qn
γ is a strict contraction in W2 for any n ≥ 1.

This result implies the geometric convergence of the sequence (δxR
n
γ )n≥1 to πγ in W2 for

all x ∈ R
d. Note that the convergence rate again does not depend on the dimension.

Proposition 3. Assume H1 and H2. Then,

(i) Let (γk)k≥1 be a non-increasing sequence with γ1 ≤ 2/(m + L). For all x, y ∈ R
d

and ℓ ≥ n ≥ 1,

W2(δxQ
n,ℓ
γ , δyQ

n,ℓ
γ ) ≤

{
ℓ∏

k=n

(1− κγk)

}1/2

‖x− y‖ .

(ii) For any γ ∈ (0, 2/(m + L)), for all x ∈ R
d and n ≥ 1,

W2(δxR
n
γ , πγ) ≤ (1− κγ)n/2

{
‖x− x⋆‖2 + 2κ−1d

}1/2
.

Proof. The proof is postponed to Appendix A.3.

Corollary 4. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with

γ1 ≤ 2/(m+ L). Then for all Lipschitz functions f : Rd → R and ℓ ≥ n ≥ 1, Qn,ℓ
γ f is a

Lipschitz function with ‖Qn,ℓ
γ f‖Lip ≤∏ℓ

k=n(1− κγk)
1/2‖f‖Lip.

Proof. The proof follows from Proposition 3-(i) using

∣∣∣Qn,ℓ
γ f(y)−Qn,ℓ

γ f(z)
∣∣∣ ≤ ‖f‖LipW2(δyQ

n,ℓ
γ , δzQ

n,ℓ
γ ) .
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We now proceed to establish explicit bounds for W2(δxQ
n
γ , π), with x ∈ R

d.

Theorem 5. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 1/(m+ L). Then for all x ∈ R

d and n ≥ 1,

W 2
2 (δxQ

n
γ , π) ≤ u(1)n (γ)

{
‖x− x⋆‖2 + d/m

}
+ u(2)n (γ) ,

where

u(1)n (γ) = 2
n∏

k=1

(1− κγk/2) (8)

κ is defined in (A) and

u(2)n (γ) = L2d
n∑

i=1

[
γ2i
{
κ−1 + γi

}{
2 +

L2γi
m

+
L2γ2i
6

} n∏

k=i+1

(1− κγk/2)

]
. (9)

Proof. The proof is postponed to Appendix A.4.

Corollary 6. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 1/(m + L). Assume that limk→∞ γk = 0 and limn→+∞ Γn = +∞. Then for all
x ∈ R

d, limn→∞W2(δxQ
n
γ , π) = 0.

Proof. The proof is postponed to Appendix A.5.

In the case of constant step sizes γk = γ for all k ≥ 1, we can deduce from Theorem 5,
a bound between π and the stationary distribution πγ of Rγ .

Corollary 7. Assume H1 and H2. Let (γk)k≥1 be a constant sequence γk = γ for all
k ≥ 1 with γ ≤ 1/(m + L). Then

W 2
2 (π, πγ) ≤ 2κ−1L2γ

{
κ−1 + γ

}
(2d + dL2γ/m+ dL2γ2/6) .

Proof. Since by Proposition 3, for all x ∈ R
d, (δxR

n
γ )n≥0 converges to πγ as n → ∞ in

(P2(R
d),W2), the proof then follows from Theorem 5 and [12, Lemma 23] applied with

ℓ = 1.

We can improve the bound provided by Theorem 5 under additional regularity as-
sumptions on the potential U .

H3. The potential U is three times continuously differentiable and there exists L̃ such
that for all x, y ∈ R

d,
∥∥∇2U(x)−∇2U(y)

∥∥ ≤ L̃ ‖x− y‖.

Note that under H1 and H3, we have that for all x, y ∈ R
d,

∥∥∇2U(x)y
∥∥ ≤ L ‖y‖ ,

∥∥∥~∆(∇U)(x)
∥∥∥
2
≤ d2L̃2 . (10)
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Theorem 8. Assume H1, H2 and H3. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 1/(m+ L). Then for all x ∈ R

d and n ≥ 1,

W 2
2 (δxQ

n
γ , π) ≤ u(1)n (γ)

{
‖x− x⋆‖2 + d/m

}
+ u(3)n (γ) ,

where u
(1)
n is given by (8), κ in (A) and

u(3)n (γ) =
n∑

i=1

[
dγ3i

{
2L2 + γiL

4
(γi
6
+m−1

)
+ κ−1

(
4dL̃2

3
+ γiL

4 +
4L4

3m

)}

×
n∏

k=i+1

(
1− κγk

2

)]
. (11)

Proof. The proof is postponed to Appendix A.6.

If γk = γ for all k ≥ 1, we can deduce from Theorem 8, a sharper bound between π
and the stationary distribution πγ of Rγ .

Corollary 9. Assume H1, H2 and H3. Let (γk)k≥1 be a constant sequence γk = γ for
all k ≥ 1 with γ ≤ 1/(m + L). Then

W 2
2 (π, πγ) ≤ 2κ−1dγ2

{
2L2 + γL4(γ/6 +m−1) + κ−1

(
4dL̃2

3
+ γL4 +

4L4

3m

)}
.

Proof. The proof follows the same line as the proof of Corollary 7 and is omitted.

Using Proposition 3-(ii) and Corollary 6 or Corollary 9, given ε > 0, we determine the
number of iterations nε and an associated step size γε to ensure that W2(δx⋆Rn

γε , π) ≤ ε
for all n ≥ nε. The precise expression of nε directly computed using Theorem 5 and
Theorem 8 are also given in [11, Section 1.1-Section 2.1]. Dependencies in dimension
d and precision ε of nε are reported in Table 1. Under H1 and H2, the complexity
matches the results reported in [12] for the total variation distance. Under H 3, the
dependency in the precision ε can be improved. If L̃ = 0 (for example for non-degenerate
d-dimensional Gaussian distributions), then the dependency in d given by Theorem 8 is
of order O(d1/2 log(d)).

In a recent work [9] (based on a previous version of this paper), an improvement of
the proof of Theorem 5 has been proposed for constant step size. Whereas the constants
are sharper, dependency in dimension d and precision ε > 0 is the same (first line of
Table 1).

Under H1 and H2, by Theorem 5, in the finite horizon setting, then for any n ≥ 1,
we may choose a step size γ = γn > 0 such that W 2

2 (δx⋆Rn
γn , π) = O(log(n)/n) and

W 2
2 (δx⋆Rn

γn , π) ≤ O(log(n)/n)2 if H3 holds by Theorem 8. The precise statement of
these results are given by [11, Corollary S2-Corollary S5] in [11, Section 1.3-Section 2.3].

For simplicity, consider sequences (γk)k≥1 defined for all k ≥ 1 by γk = γ1/k
α, for

γ1 < 1/(m+ L) and α ∈ (0, 1). Then for n ≥ 1, u
(1)
n = O(e−κΓn/2), u

(2)
n = dO(n−α) and

9



Parameter d, ε

Theorem 5 and Proposition 3-(ii) O(d log(d)ε−2 |log(ε)|)
Theorem 8 and Proposition 3-(ii) O(d log(d)ε−1 |log(ε)|)

Table 1: Dependencies of the number of iterations nε to get W2(δx⋆Rnε
γε , π) ≤ ε

u
(3)
n = d2O(n−2α) (see [11, Section 1.2-Section 2.2] for details). For γk = γ1/k, we need

to extend Theorem 5 and Theorem 8 to non-increasing sequence such that there exists
n1 ≥ 1 such that γn1 < 1/(m+L). It is done in [11, Theorem S11 in Section 3]. Using this
result in [11, Section 3.1], we get that under H1 and H2, that W 2

2 (δx⋆Qn
γ , π) = O(n−1)

for γ1 > 2κ−1. If in addition H3 holds, we have W 2
2 (δx⋆Qn

γ , π) = O(n−1) for γ1 > 4κ−1.
However, note that the constants are exponential in γ1. The conclusions of this discussion
are summarized in Table 2.

Note that these rates are explicit compared to those reported in [12, Proposition
3]. In addition, two regimes can be observed as in stochastic approximation in the case
α = 1.

α ∈ (0, 1) α = 1

Theorem 5 dO(n−α) dO(n−1) for γ1 > 2κ−1 see [11, Section 3.1]

Theorem 8 d2 O(n−2α) d2O(n−2) for γ1 > 4κ−1 see [11, Section 3.1]

Table 2: Order of convergence of W 2
2 (δx⋆Qn

γ , π) for γk = γ1/k
α

Details and further discussions are included in [11, Section 1 -Section 2]. In particular,
the dependencies of the obtained bounds with respect to the constants m and L which
appear in H1, H2 are evidenced.

3 Quantitative bounds in total variation distance

We develop in this section quantitative bounds in total variation distance. For Bayesian
inference application, total variation bounds are useful for computing highest posterior
density (HPD) credible regions and intervals. For computing such bounds we will use the
results of Section 2 combined with the regularizing property of the semigroup (Pt)t≥0.

The first key result consists in upper-bounding the total variation distance ‖µPt −
νPt‖TV for µ, ν ∈ P1(R

d). To that purpose, we use the coupling by reflection; see [30,
Section 3] or [6, Example 3.7] for its construction, and [14, 15, 4] for applications. It is
defined as the unique strong solution (Xt,Yt)t≥0 of the SDE:

{
dXt = −∇U(Xt)dt+

√
2dBd

t

dYt = −∇U(Yt)dt+
√
2(Id−2ete

T
t )dB

d
t ,

where et = e(Xt − Yt) (12)

with X0 = x, Y0 = y, e(z) = z/ ‖z‖ for z 6= 0 and e(0) = 0 otherwise. Define the
coupling time Tc = inf{s ≥ 0 | Xs = Ys}. By construction Xt = Yt for t ≥ Tc. Using
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Levy’s characterization, B̃d
t =

∫ t
0 (Id−2ese

T
s )dB

d
s is a d-dimensional Brownian motion,

therefore (Xt)t≥0 and (Yt)t≥0 are weak solutions to (1) started at x and y respectively.
Then by Lindvall’s inequality, for all t > 0 we have ‖Pt(x, ·)−Pt(y, ·)‖TV ≤ P (Xt 6= Yt).

Denote by Φ the cumulative distribution function of the standard normal distribu-
tion. For a > 0, define χa for all t ≥ 0 by

χa(t) =
√

(4/a)(e2at − 1) . (13)

Theorem 10. Assume H1 and H2.

(i) For any x, y ∈ R
d and t > 0, it holds

‖Pt(x, ·)− Pt(y, ·)‖TV ≤ 1− 2Φ{−‖x− y‖ /χm(t)} ,

where χm is defined in (13) and m is the strong convexity constant.

(ii) For any µ, ν ∈ P1(R
d) and t > 0,

‖µPt − νPt‖TV ≤ 21/2 W1(µ, ν)
/
(π1/2χm(t)) .

(iii) For any x ∈ R
d and t ≥ 0,

‖π − δxPt‖TV ≤ 21/2
{
(d/m)1/2 + ‖x− x⋆‖

}/
(π1/2χm(t)) .

Proof. (i) Denote for t > 0, B1
t =

∫ t
0 1{s<Tc}e

T
s dB

d
s . We compute a bound for the

coupling time. On {t < Tc}, by (12), we get

d{Xt − Yt} = −{∇U(Xt)−∇U(Yt)} dt+ 2
√
2etdB

1
t .

Itô’s formula on {t < Tc} yields

emt ‖Xt − Yt‖ = ‖x− y‖+m

∫ t

0
ems ‖Xs − Ys‖ ds

−
∫ t

0
ems 〈∇U(Xs)−∇U(Ys), es〉ds+ 2

√
2

∫ t

0
emsdB1

s .

Then by H 2, we obtain on {t < Tc}, ‖Xt − Yt‖ ≤ Ut, where (Ut)t∈(0,Tc) is the one-
dimensional Ornstein-Uhlenbeck process defined by

Ut = e−mt ‖x− y‖+ 2
√
2

∫ t

0
em(s−t)dB1

s .

Therefore, for all x, y ∈ R
d and t ≥ 0, we get

P(Tc > t) ≤ P

(
min
0≤s≤t

Us > 0

)
.

Finally the proof follows from [2, Formula 2.0.2, page 542]. For completeness, this
formula is given in Appendix D.2.
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(ii) Let µ, ν ∈ P1(R
d) and ξ ∈ Π(µ, ν) be an optimal transference plan for (µ, ν)

w.r.t. W1. Since for all s > 0, 1/2−Φ(−s) ≤ (2π)−1/2s, (i) implies that for all x, y ∈ R
d

and t > 0,

‖µPt − νPt‖TV ≤ 2

∫

Rd×Rd

‖x− y‖
(2π)1/2χm(t)

dξ(x, y) ,

which is the desired result.

(iii) The proof is a straightforward consequence of (ii) and Proposition 1-(iv).

Since for all s > 0, s ≤ es − 1, note that Theorem 10-(ii) implies that for all t > 0
and µ, ν ∈ P1(R

d),
‖µPt − νPt‖TV ≤ (4πt)−1/2W1(µ, ν) . (14)

Therefore for all bounded measurable function f , Ptf is a Lipschitz function for all t > 0
with Lipshitz constant

‖Ptf‖Lip ≤ (4πt)−1/2osc(f) . (15)

We will now study the contraction of Qn,ℓ
γ in total variation for non-increasing se-

quences (γk)k≥1. Strikingly, we are able to derive results which closely parallel Theo-
rem 10. The proof is nevertheless completely different because the reflection coupling is
no longer applicable in discrete time. We use a coupling construction inspired by the
method of [5, Section 3.3] for Gaussian random walks. This construction has been used
in [13] to establish convergence of homogeneous Markov chain in Wasserstein distances
using different method of proof. So as not to interrupt the argument, this construction
is postponed to Section 6.

For all n, ℓ ≥ 1, n < ℓ and (γk)k≥1 a non-increasing sequence denote by

Λn,ℓ(γ) = κ−1





ℓ∏

j=n

(1− κγj)
−1 − 1



 , Λℓ(γ) = Λ1,ℓ(γ) . (16)

Theorem 11. Assume H1 and H2.

(i) Let (γk)k≥1 be a non-increasing sequence satisfying γ1 ≤ 2/(m + L). Then for all
x, y ∈ R

d and n, ℓ ∈ N
∗, n < ℓ, we have

‖δxQn,ℓ
γ − δyQ

n,ℓ
γ ‖TV ≤ 1− 2Φ{−‖x− y‖ /{8Λn,ℓ(γ)}1/2} .

(ii) Let (γk)k≥1 be a non-increasing sequence satisfying γ1 ≤ 2/(m+L). Then, for all
µ, ν ∈ P1(R

d) and ℓ, n ∈ N
∗, n < ℓ, we have

‖µQn,ℓ
γ − νQn,ℓ

γ ‖TV ≤ {4πΛn,ℓ(γ)}−1/2W1(µ, ν) .

(iii) Let γ ∈ (0, 2/(m + L)]. Then for any x ∈ R
d and n ≥ 1,

‖πγ−δxR
n
γ‖TV ≤ {4πκ(1−(1−κγ)n/2)}−1/2(1−κγ)n/2

{
‖x− x⋆‖+ (2κ−1d)1/2

}
.
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Proof. (i) By (42) for all x, y and k ≥ 1, we have

‖x− γk∇U(x)− y + γk∇U(y)‖ ≤ (1− κγk)
1/2 ‖x− y‖ .

Let n, ℓ ≥ 1, n < ℓ, then applying Theorem 19 in Section 6, we get

‖δxQn,ℓ
γ − δyQ

n,ℓ
γ ‖TV ≤ 1− 2Φ

(
−‖x− y‖ /{8Λn,ℓ(γ)}1/2

)
,

(ii) Let f ∈ Fb(R
d) and ℓ > n ≥ 1. For all x, y ∈ R

d by definition of the total
variation distance and (i), we have

∣∣∣Qn,ℓ
γ f(x)−Qn,ℓ

γ f(y)
∣∣∣ ≤ osc(f)‖δxQn,ℓ

γ − δyQ
n,ℓ
γ ‖TV

≤ osc(f)
{
1− 2Φ

(
−‖x− y‖ /{8Λn,ℓ(γ)}1/2

)}
,

Using that for all s > 0, 1/2−Φ(−s) ≤ (2π)−1/2s concludes the proof.

(iii) The proof follows from (iii), the bound for all s > 0, 1/2 −Φ(−s) ≤ (2π)−1/2s
and Proposition 2-(ii).

We can combine Theorem 5 or Theorem 8 with Theorem 10 and Theorem 11 to
obtain explicit bounds in total variation between the Euler-Maruyama discretization
and the target distribution π. To that purpose, we use the following decomposition, for
all non-increasing sequence (γk)k≥1, initial point x ∈ R

d and ℓ ≥ 0:

‖π − δxQ
ℓ
γ‖TV ≤ ‖π − δxPΓℓ

‖TV + ‖δxPΓℓ
− δxQ

ℓ
γ‖TV . (17)

The first term is dealt with Theorem 10-(iii). It remains to bound the second term
in (17). Since we will use Theorem 5 and Theorem 8, we have two different results
depending on the assumptions on U . Define for all x ∈ R

d and n, p ∈ N,

ϑ(1)
n,p(x) = L2

n∑

i=1

γ2i

n∏

k=i+1

(1− κγk/2)
[{

κ−1 + γi
}
(2d+ dL2γ2i /6) (18)

+L2γiδi,n,p(x)
{
κ−1 + γi

}]

ϑ(2)
n,p(x) =

n∑

i=1

γ3i

n∏

k=i+1

(1− κγk/2)
[
L4δi,n,p(x)(4κ

−1/3 + γn+1) (19)

+d
{
2L2 + 4κ−1(dL̃2/3 + γn+1L

4/4) + γ2n+1L
4/6
}]

,

where
δi,n,p(x) = e−2mΓi−1̺n,p(x) + (1− e−2mΓi−1)(d/m) ,

and ̺n,p(x) is given by (7).
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Theorem 12. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 1/(m+ L). Then for all x ∈ R

d and ℓ, n ∈ N
∗, ℓ > n,

‖δxPΓℓ
− δxQ

ℓ
γ‖TV ≤ (ϑn(x)/(4πΓn+1,ℓ))

1/2

+ 2−3/2L

(
ℓ∑

k=n+1

{
(γ3kL

2/3)̺1,k−1(x) + dγ2k
}
)1/2

, (20)

where ̺1,n(x) is defined by (7), ϑn(x) is equal to ϑ
(2)
n,0(x) given by (19), if H3 holds, and

to ϑ
(1)
n,0(x) given by (18) otherwise.

Proof. The proof is postponed to Appendix B.1.

Consider the case of decreasing step sizes of the form γk = γ1/k
α for k ≥ 1 and

α ∈ (0, 1). Under H1 and H2, setting n = ℓ− ⌊ℓα⌋, ℓ ∈ N
∗, we have for i = 2, 3,

lim
n→+∞

Γn,ℓ = 1 ,

ℓ∑

k=n+1

γik ≤ γin+1(ℓ− n) ≤ γi1 ⌊ℓα⌋ /(ℓ− ⌊ℓα⌋)iα . (21)

In addition, by Table 2, ϑn(x) = dO(ℓ−α). Therefore combining this result and (21)
in the bound of Theorem 12, we get that ‖δx⋆Qℓ

γ − π‖TV = d1/2O(ℓ−α/2). In the case
γk = γ1/k

α for k ≥ 1 and α = 1, setting n = ℓ − ⌊ℓ/2⌋, ℓ ∈ N
∗, ℓ > 2, we have for

i = 2, 3,

lim
n→+∞

Γn,ℓ = 1/2 ,
ℓ∑

k=n+1

γik ≤ γin+1(ℓ− n) ≤ γi1/(ℓ/2 − 1) . (22)

In addition, by Table 2, ϑn(x) = dO(ℓ−1), for γ1 > 2κ−1. Therefore combining this
result and (22) in the bound of Theorem 12, we get that ‖δx⋆Qℓ

γ −π‖TV = d1/2O(ℓ−1/2).
Note that these rates for γk = γ1/k

α, k ∈ N
∗ and α ∈ (0, 1] improve those obtained

in [12, Proposition 3], for potentials satisfying H 1 but not necessarily convex since
[12, Proposition 3] only requires the additional assumption that (Pt)t≥0 is geometrically
ergodic in total variation.

Assume H1, H2 and H3 and that γk = γ1/k
α for k ≥ 1 and α ∈ (0, 1]. setting

n = ℓ−
⌊
ℓα/2

⌋
, ℓ ∈ N

∗, we have for i = 2, 3,

lim
n→+∞

Γn,ℓ = 1 ,

ℓ∑

k=n+1

γik ≤ γin+1(ℓ− n) ≤ γi1⌊ℓα/2⌋/(ℓ− ⌊ℓα/2⌋)iα . (23)

In addition (see Table 2) ϑn(x) = d2O(ℓ−2α), with γ1 > 4κ−1 in the case α = 1.
Therefore combining this result and (23) in the bound of Theorem 12, we get that
‖δx⋆Qℓ

γ − π‖TV = d1/2O(ℓ−3α/4). These discussions are summarized in Table 3.
When γk = γ ∈ (0, 1/(m + L)) for all k ≥ 1, under H 1 and H 2, for ℓ >

⌈
γ−1

⌉

choosing n = ℓ−
⌈
γ−1

⌉
implies that (see Appendix B.2)

‖δxRℓ
γ − δxPℓγ‖TV ≤ (4π)−1/2

[
γD1(γ, d) + γ3D2(γ)D3(γ, d, x)

]1/2
+ D4(γ, d, x) , (24)
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α ∈ (0, 1) α = 1

Theorem 5 d1/2 O(ℓ−α/2) d1/2 O(ℓ−1/2) for γ1 > 2κ−1

Theorem 8 d1/2 O(ℓ−3α/4) d1/2 O(ℓ−3/4) for γ1 > 4κ−1

Table 3: Order of convergence of ‖δx⋆Qℓ
γ − π‖TV for γk = γ1/k

α based on Theorem 12

where

D1(γ, d) = 2L2κ−1
(
κ−1 + γ

) (
2d+ L2γ2/6

)
,D2(γ) = L4

(
κ−1 + γ

)
(25)

D3(γ, d, x) =
{
(ℓ−

⌈
γ−1

⌉
)e−mγ(ℓ−⌈γ−1⌉−1) ‖x− x⋆‖2 + 2d(κγm)−1

}

D4(γ, d, x) = 2−3/2L [dγ(1 + γ)

+(L2γ3/3)
{
(1 + γ−1)(1− κγ)ℓ−⌈γ−1⌉ ‖x− x⋆‖2 + 2(1 + γ)κ−1d

}]1/2
.

Using this bound and Theorem 10-(iii), the number of iterations ℓε > 0 to achieve
‖δx⋆Rℓε

γε −π‖TV ≤ ε is of order d log(d)O(|log(ε)| ε−2) (the proper choice of the step size
γε is given in Table 5). This result is the same than the one obtained in [12].

Letting ℓ go to infinity in (24) we get the following result.

Corollary 13. Assume H1 and H2. Let γ ∈ (0, 1/(m + L)]. Then it holds

‖πγ − π‖TV ≤ 2−3/2L
[
dγ(1 + γ) + 2(L2γ3/3)(1 + γ)κ−1d

]1/2

+ (4π)−1/2
[
γD1(γ, d) + 2dγ2D2(γ)(κm)−1

]1/2
,

where D1(γ) and D2(γ) are given in (25).

Note that Corollary 13 shows that ‖πγ − π‖V 1/2 ≤ C1γ
1/2 for some constant C1 ≥ 0.

UnderH1 and the assumption andRγ and (Pt)t≥0 are V -uniformly geometrically ergodic,
[12, Theorem 10] establishes that ‖πγ − π‖V 1/2 ≤ C2γ

1/2 for some explicit constant

C2 ≥ 0. In the case where U satisfies H2, then we can take V = ‖·‖2 and C2 is very
similar to C1. In particular both C1 and C2 are of order d1/2.

However, if H3 holds, for constant step sizes, we can improve with respect to the
step size γ, the bounds given by Corollary 13.

Theorem 14. Assume H1, H2 and H3. Let γ ∈ (0, 1/(m + L)]. Then it holds

‖πγ − π‖TV ≤ (4π)−1/2
{
γ2E1(γ, d) + 2dγ2E2(γ)/(κm)

}1/2

+ (4π)−1/2
⌈
log
(
γ−1

)
/ log(2)

⌉ {
γ2E1(γ, d) + γ2E2(γ)(2κ

−1d+ d/m)
}1/2

+ 2−3/2L
{
2dγ3L2/(3κ) + dγ2

}1/2
,

where E1(γ, d) and E2(γ) are defined by

E1(γ, d) = 2dκ−1
{
2L2 + 4κ−1(dL̃2/3 + γL4/4) + γ2L4/6

}

E2(γ) = L4(4κ−1/3 + γ) .

15



Proof. The proof is postponed to Appendix B.3.

Note that the bound provided by Theorem 14 is of order dO(γ |log(γ)|), improv-
ing the dependency given by Corollary 13 and [12, Theorem 10], with respect to the
step size γ, but Theorem 14 requires that H3 holds contrary to Corollary 13 and [12,
Theorem 10]. Furthermore when L̃ = 0, this bound given by Theorem 14 is of order
d1/2O(γ |log(γ)|) and is sharp up to a logarithmic factor. Indeed, assume that π is the
d-dimensional standard Gaussian distribution. In such case, the ULA sequence (Xk)k≥0

is the autoregressive process given for all k ≥ 0 by Xk+1 = (1 − γ)Xk +
√
2γZk+1. For

γ ∈ (0, 1), this sequence has a stationary distribution πγ , which is a d-dimensional Gaus-
sian distribution with zero-mean and covariance matrix σ2

γ Id, with σ2
γ = (1 − γ/2)−1.

Therefore, using [26, Lemma 4.9] (or the Pinsker inequality), we get the following upper
bound: ‖π − πγ‖TV ≤ Cd1/2|σ2

γ − 1| = Cd1/2γ/2, where C is a universal constant.
We can also for a precision target ε > 0 choose γε > 0 and the number of iterations

nε > 0 to get ‖δxRnε
γε −π‖TV ≤ ε. By Theorem 10-(iii), Theorem 11-(iii) and Theorem 14,

a sufficient number of iterations ℓε is of order d log2(d)O(ε−1 log2(ε)) for a well chosen
step size γε. This result improves the conclusion of [12] and Corollary 13 with respect to
the precision parameter ε, which provides an upper bound of the number of iterations
of order d log(d)O(ε−2 log2(ε)). We can also compare our reported upper bound with
the one obtained for the d-dimensional standard Gaussian distribution. If the initial
distribution is the Dirac mass at zero (the minimum of the potential U(x) = ‖x‖2 /2)
and γ ∈ (0, 1), the distribution of the ULA sequence after n iterations is zero-mean
Gaussian with covariance (1 − (1 − γ)2(n+1))/(1 − γ/2) Id. If we use [26, Lemma 4.9]
again, we get for γ ∈ (0, 1),

‖δ0Rn
γ − π‖TV ≤ Cd1/2γ|1− 2γ−1(1− γ)2(n+1)| ,

where C is a universal constant. To get an ε precision we need to choose γε = d−1/2ε/(2C)
and then nε = ⌈(1/2) log(γε/4)/ log(1 − γε)⌉ = d1/2 log(d)O(ε−1| log(ε)|). On the other
hand since L̃ = 0, based on the bound given by Theorem 14, a sufficient number of
iterations to get ‖δxRnε

γε −π‖TV ≤ ε is of order d1/2 log2(d)O(ε−1 log2(ε)). It follows that
our upper bound for the step size and the optimal number of iterations is again sharp
up to a logarithmic factor in the dimension and the precision. The discussions on the
bounds for constant sequences of step sizes are summarized in Table 4 and Table 5.

H1, H2 H1, H2 and H3

‖π − πγ‖TV d1/2O(γ1/2) dO(γ |log(γ)|)

Table 4: Order of the bound between π and πγ in total variation function of the step
size γ > 0 and the dimension d.
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H1, H2 H1, H2 and H3

γε d−1O(ε2) d−1 log−1(d)O(ε
∣∣log−1(ε)

∣∣)
nε d log(d)O(ε−2 |log(ε)|) d log2(d)O(ε−1 log2(ε))

Table 5: Order of the step size γε > 0 and the number of iterations nε ∈ N
∗ to get

‖δx⋆Rnε
γε − π‖TV ≤ ε for ε > 0.

4 Mean square error and concentration for bounded mea-

surable functions

Let (Xk)k≥0 be the Euler discretization of the Langevin diffusion (2) associated with the
sequence of non-increasing step sizes (γk)k≥1. The result of the previous section allows
us to study the approximation of π(f) by the weighted average estimator π̂N

n (f) defined,
for f : Rd → R, N,n ∈ N, n ≥ 1 by

π̂N
n (f) =

N+n∑

k=N+1

ωN
k,nf(Xk) , ωN

k,n = γk+1Γ
−1
N+2,N+n+1 . (26)

In all this section, Px and Ex denote the probability and the expectation respectively,
induced on ((Rd)N,B(Rd)N) by the Markov chain (Xn)n≥0 started at x ∈ R

d. First we
derive a bound on the mean-square error, defined as

MSEN,n
f = Ex

[∣∣π̂N
n (f)− π(f)

∣∣2
]
,

for f : Rd → R, which is either Lipschitz or measurable and bounded. This quantity can
be decomposed as the sum of the squared bias and variance:

MSEN,n
f =

{
Ex[π̂

N
n (f)]− π(f)

}2
+Varx

{
π̂N
n (f)

}
.

We first obtain a bound for the bias for f Lipschitz. For all k ∈ {N+1, . . . , N+n}, de-
note by ξk the optimal transference plan between δxQ

k
γ and π for W2, i.e. W

2
2 (δxQ

k
γ , π) =∫

Rd×Rd ‖x− y‖2 dξk(x, y). Then by the Jensen inequality and because f is Lipschitz, we
have:

{
Ex[π̂

N
n (f)]− π(f)

}2
=

(
N+n∑

k=N+1

ωN
k,n

∫

Rd×Rd

{f(z)− f(y)}ξk(dz,dy)
)2

≤ ‖f‖2Lip
N+n∑

k=N+1

ωN
k,n

∫

Rd×Rd

‖z − y‖2 ξk(dz,dy)

≤ ‖f‖2Lip
N+n∑

k=N+1

ωN
k,nW

2
2 (δxQ

k
γ , π) . (27)
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Similarly, if f is bounded,

(
Ex[π̂

N
n (f)]− π(f)

)2 ≤ osc(f)2
N+n∑

k=N+1

ωN
k,n‖δxQk

γ − π‖2TV ;

Using the results of Sections 2 and 3, we can deduce different bounds for the bias,
depending on the assumptions on U and the sequence of step sizes (γk)k≥1. We now
derive a bound for the variance. We get then two different results depending on the class
to which the function f belongs. In the case of Lipschitz function, we adapt the proof
of [24, Theorem 2] for homogeneous Markov chain to our inhomogeneous setting.

Theorem 15. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 2/(m+L) and f : Rd → R be a Lipschitz function. Then for all N ≥ 0 and n ≥ 1,
we get Varx{π̂N

n (f)} ≤ 8κ−2 ‖f‖2Lip Γ−1
N+2,N+n+1vN,n(γ), where

vN,n(γ) =
{
1 + Γ−1

N+2,N+n+1(κ
−1 + 2/(m+ L))

}
. (28)

Proof. The proof is postponed to Appendix C.1.1.

It is noteworthy to observe that the bound for the variance does not depend on the
dimension. We may now discuss the bounds on the MSE (obtained by combining the
bounds for the squared bias (27) from Theorems 5 and 8, and the variance Theorem 15)
for step sizes given for k ≥ 1 by γk = γ1/k

α where α ∈ [0, 1] and γ1 < 1/(m+L). Details
of these calculations are postponed to [11, Sections 4.1 and 4.2]. The order of the bounds
(up to numerical constants) of the MSE are summarized in Table 6 as a function of γ1,
n and N . Then, we can conclude that in the infinite horizon setting, it is optimal to
take α = 1/2 under H1 and H2, and α = 1/3 under H1, H2 and H3. Note that [27]
shows also that the optimal value for α is 1/3 by studying the asymptotic behaviour of
π̂0
n(f) as n → +∞ for smooth functions f : Rd → R.

Bound for the MSE

α = 0 γ1 + (γ1n)
−1 {1 + exp(−κγ1N/2)}

α ∈ (0, 1/2) γ1n
−α + (γ1n

1−α)−1
{
1 + exp(−κγ1N

1−α/(2(1 − α)))
}

α = 1/2 γ1 log(n)n
−1/2 + (γ1n

1/2)−1
{
1 + exp(−κγ1N

1/2/4)
}

α ∈ (1/2, 1) nα−1
[
γ1 + γ−1

1

{
1 + exp(−κγ1N

1−α/(2(1 − α)))
}]

α = 1 O(log(n)−1) for γ1 > 2κ−1

Table 6: Bound for the MSE for γk = γ1k
−α for fixed γ1 and N under H1 and H2

In the case γk = γ for all k ∈ N
∗ and the total number of iterations n + N is held

fixed (fixed horizon setting), we optimize the value of the step size γ but also of the
burn-in period N to get an upper bound of order n−1/2 under H1 and H2, and n−2/3

under H1, H2 and H3.
In the case where f is measurable and bounded, we have the following result.
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Bound for the MSE

α = 0 γ21 + (γ1n)
−1{1 + exp(−κγ1N/2)}

α ∈ (0, 1/3) γ21n
−2α + (γ1n

1−α)−1{1 + exp(−κγ1N
1−α/(2(1 − α)))}

α = 1/3 γ21 log(n)n
−2/3 + (γ1n

2/3)−1{1 + exp(−κγ1N
1/2/4)}

α ∈ (1/3, 1) nα−1
[
γ21 + γ−1

1 {1 + exp(−κγ1N
1−α/(2(1 − α)))}

]

α = 1 O(log(n)−1) for γ1 > 4κ−1

Table 7: Bound for the MSE for γk = γ1k
−α for fixed γ1 and N under H1, H2 and H3

Theorem 16. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 2/(m + L) and f : Rd → R be a measurable and bounded function. Then for all
N ≥ 0, n ≥ 1, x ∈ R

d, we get

Varx{π̂N
n (f)} ≤ osc(f)2{2γ1Γ−1

N+2,N+n+1 + u
(4)
N,n(γ)}

u
(4)
N,n(γ) =

N+n−1∑

k=N

γk+1

{
N+n∑

i=k+2

ωN
i,n

(πΛk+2,i(γ))1/2

}2

+ κ−1

{
N+n∑

i=N+1

ωN
i,n

(4πΛN+1,i(γ))1/2

}2

, (29)

for n1, n2 ∈ N, Λn1,n2(γ) is given by (16).

Proof. The proof is postponed to Appendix C.1.2.

To illustrate the result Theorem 16, we first illustrate numerically the behaviour

(u
(4)
N,n)n≥1 for κ = 1 N = 0, and four different non-increasing sequences of step sizes

(γk)k≥1, γk = (1 + k)−α for α = 1/4, 1/2, 3/4 and γk = 1/2 for k ≥ 1. These results

are gathered in Figure 1, where it can be observed that (Γnu
(4)
0,n(γ))n≥1 converges to a

limit as n → +∞. In Appendix C.2, we show that there exist C1, C2 > 0 independent

of (γk)k≥1, such that C1Γ
−1
n ≤ u

(4)
0,n(γ) ≤ C2Γ

−1
n , for non-increasing sequence (γk)k≥1

satisfying limk→+∞ γk = 0 and limk→+∞ Γk = +∞. Therefore, the consequences of
Theorem 16 are similar to those of Theorem 15 and are omitted.

We now establish an exponential deviation inequality for π̂N
n (f) − Ex[π̂

N
n (f)] given

by (26) for a bounded measurable function f .

Theorem 17. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 2/(m+ L). Then for all N ≥ 0, n ≥ 1, r > 0 and Lipschitz functions f : Rd → R:

Px

[
π̂N
n (f) ≥ Ex[π̂

N
n (f)] + r

]
≤ exp

(
− r2κ2ΓN+2,N+n+1

16 ‖f‖2Lip vN,n(γ)

)
,

where vN,n(γ) is defined by (28).
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Figure 1: Plots of (u
(4)
0,n)n≥1Γn for four sequences of step sizes (γk)k≥1, γk = (1 + k)−α

for α = 0, 1/4, 1/2, 3/4

Proof. The proof is postponed to Appendix C.3.

If we apply this result to the sequence (γk)k≥1 defined for all k ≥ 1 by γk = γ1k
−α,

for α ∈ [0, 1], we end up with a concentration of order exp(−Cr2γ1n
1−α) for α ∈ [0, 1),

for some constant C ≥ 0 independent of γ1 and n.

Theorem 18. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 2/(m+L). Let (Xn)n≥0 be given by (2) and started at x ∈ R

d. Then for all N ≥ 0,
n ≥ 1, r > 0, and functions f ∈ Fb(R

d):

Px

[
π̂N
n (f) ≥ Ex[π̂

N
n (f)] + r

]
≤ e−{r−osc(f)(ΓN+2,N+n+1)

−1}2
/{2osc(f)2u

(5)
N,n(γ)} ,

where

u
(5)
N,n(γ) =

N+n−1∑

k=N

γk+1

{
N+n∑

i=k+2

ωN
i,n

(πΛk+2,i)1/2

}2

+ κ−1

{
N+n∑

i=N+1

ωN
i,n

(πΛN+1,i)1/2

}2

.

Proof. The proof is postponed to Appendix C.4.

Note that u
(5)
N,n(γ) is up to numerical constants similar to u

(4)
N,n(γ) given in (29).

Therefore, using the same calculations as in Appendix C.2, there exist C1, C2 > 0 such

that C1Γ
−1
n ≤ u

(5)
0,n(γ) ≤ C2Γ

−1
n , for γk = γ1/k

−α, α ∈ [0, 1]. Then, if we apply Theo-
rem 18 to the sequence (γk)k≥1 defined for all k ≥ 1 by γk = γ1k

−α, for α ∈ [0, 1], we
end up with a concentration of order exp(−Cr2γ1n

1−α) for α ∈ [0, 1), for some constant
C ≥ 0 independent of γ1 and n.
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5 Numerical experiments

Consider a binary regression set-up in which the binary observations (responses) {Yi}pi=1

are conditionally independent Bernoulli random variables with parameters {̺(βββTXi)}pi=1,
where ̺ is the logistic function defined for z ∈ R by ̺(z) = ez/(1 + ez) and {Xi}pi=1 and
βββ are d dimensional vectors of known covariates and unknown regression coefficients,
respectively. The prior distribution for the parameter βββ is a zero-mean Gaussian distri-
bution with covariance matrix Σβββ. The density of the posterior distribution of βββ is up
to a proportionality constant given by

πβββ(βββ|{(Xi, Yi)}pi=1) ∝ exp

(
p∑

i=1

{
Yiβββ

TXi − log(1 + eβββ
TXi)

}
− 2−1βββTΣ−1

βββ βββ

)
.

Bayesian inference for the logistic regression model has long been recognized as a nu-
merically involved problem. Several algorithms have been proposed, trying to mimick
the data-augmentation (DA) approach of [1] for probit regression; see [23], [18] and [19].
Recently, a very promising DA algorithm has been proposed in [36], using the Polya-
Gamma distribution in the DA part. This algorithm has been shown to be uniformly
ergodic for the total variation by [7, Proposition 1], which provides an explicit expres-
sion for the ergodicity constant. This constant is exponentially small in the dimension
of the parameter space and the number of samples. Moreover, the complexity of the
augmentation step is cubic in the dimension, which prevents from using this algorithm
when the dimension of the regressor is large.

We apply ULA to sample from the posterior distribution πβββ(·|{(Xi, Yi)}pi=1). The
gradient of its log-density may be expressed as

∇ log{πβββ(βββ|{Xi, Yi}pi=1)} =

p∑

i=1

{
YiXi −

Xi

1 + e−βββTXi

}
− Σ−1

βββ βββ ,

Therefore − log πβββ(·|{Xi, Yi}pi=1) is strongly convex H2 with m = λ−1
max(Σβββ) and satis-

fies H1 with L = (1/4)
∑p

i=1 X
T
i Xi + λ−1

min(Σβββ), where λmin(Σβββ) and λmax(Σβββ) denote
the minimal and maximal eigenvalues of Σβββ, respectively. We first compare the his-
tograms produced by ULA and the Pòlya-Gamma Gibbs sampling from [36]. For that
purpose, we take d = 5, p = 100, generate synthetic data (Yi)1≤i≤p and (Xi)1≤i≤p, and
set Σ−1

βββ = (dp)−1(
∑p

i=1X
T
i Xi) Id. We produce 108 samples from the Pólya-Gamma

sampler using the R package BayesLogit [43]. Next, we make 103 runs of the Euler ap-
proximation scheme with n = 106 effective iterations, with a constant sequence (γk)k≥1,
γk = 10(κn1/2)−1 for all k ≥ 0 and a burn-in period N = n1/2. The histogram of
the Pólya-Gamma Gibbs sampler for first component, the corresponding mean of the
obtained histograms for ULA and the 0.95 quantiles are displayed in Figure 2. The
same procedure is also applied with the decreasing step size sequence (γk)k≥1 defined by
γk = γ1k

−1/2, with γ1 = 10(κ log(n)1/2)−1 and for the burn in periodN = log(n), see also
Figure 2. In addition, we also compare MALA and ULA on five real data sets, which are
summarized in Table 8. Note that for the Australian credit data set, the ordinal covari-
ates have been stratified by dummy variables. Furthermore, we normalized the data sets
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Figure 2: Empirical distribution comparison between the Polya-Gamma Gibbs Sampler
and ULA. Left panel: constant step size γk = γ1 for all k ≥ 1; right panel: decreasing
step size γk = γ1k

−1/2 for all k ≥ 1

❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵

Data set
Dimensions

Observations p Covariates d

German credit 1 1000 25

Heart disease 2 270 14

Australian credit3 690 35

Pima indian diabetes4 768 9

Musk5 476 167

Table 8: Dimension of the data sets

and consider the Zellner prior setting Σ−1 = (π2d/3)Σ−1
X where ΣX = p−1

∑p
i=1 XiX

T
i

; see [39], [22] and the references therein. Also, we apply a pre-conditioned version of

MALA and ULA, targeting the probability density π̃βββ(·) ∝ πβββ(Σ
1/2
X ·). Then, we ob-

tain samples from πβββ by post-multiplying the obtained draws by Σ
1/2
X . We compare

MALA and ULA for each data sets by estimating for each component i ∈ {1, . . . , d} the
marginal accuracy between their d marginal empirical distributions and the d marginal
posterior distributions, where the marginal accuracy between two probability measure
µ, ν on (R,B(R)) is defined by

MA(µ, ν) = 1− (1/2)‖µ − ν‖TV .

This quantity has already been considered in [17] and [8] to compare approximate sam-
plers. To estimate the d marginal posterior distributions, we run 2 · 107 iterations of
the Polya-Gamma Gibbs sampler. Then 100 runs of MALA and ULA (106 iterations
per run) have been performed. For MALA, the step size is chosen so that the accep-
tance probability at stationarity is approximately equal to 0.5 for all the data sets. For
ULA, we choose the same constant step size than MALA. We display the boxplots of the
mean of the estimated marginal accuracy across all the dimensions in Figure 3. These
results all imply that ULA is an alternative to the Polya-Gibbs sampler and the MALA
algorithm.
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Figure 3: Marginal accuracy across all the dimensions.
Upper left: German credit data set. Upper right: Australian credit data set. Lower left:
Heart disease data set. Lower right: Pima Indian diabetes data set. At the bottom:
Musk data set

6 Contraction in total variation for functional autoregres-

sive models

In this section, we consider functional autoregressive models defined for k ≥ 0 by

Xk+1 = hk+1(Xk) + σk+1Zk+1 , (30)

where (Zk)k≥1 is a sequence of i.i.d. d dimensional standard Gaussian random variables,
(σk)k≥1 is a sequence of positive real numbers and (hk)k≥1 is a sequence of measurable
functions from R

d to R
d which satisfies the following assumption:

AR1. For all k ≥ 1, hk is ̟k-Lipschitz.

The sequence {Xk, k ∈ N} is an inhomogeneous Markov chain with Markov kernels
(Pk)k≥1 on (Rd,B(Rd)) given for all x ∈ R

d and A ∈ R
d by

Pk(x, A) =
1

(2πσ2
k)

d/2

∫

A

exp
(
−‖y − hk(x)‖2 /(2σ2

k)
)
dy . (31)

We denote for all n ≥ 1 by Qn the marginal distribution of Xn given by

Qn = P1 · · ·Pn . (32)

1http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
2http://archive.ics.uci.edu/ml/datasets/Statlog+(Heart)
3http://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval)
4http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
5https://archive.ics.uci.edu/ml/datasets/Musk+(Version+1)
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In this section we compute an upper bound of ‖δxQn− δyQ
n‖TV which does not depend

on the dimension d. Define for x, y ∈ R
d

Ek(x, y) = hk(y)− hk(x) , ek(x, y) =

{
Ek(x, y)/ ‖Ek(x, y)‖ if Ek(x, y) 6= 0

0 otherwise ,
(33)

For all x, y, z ∈ R
d, x 6= y, define

Fk(x, y, z) = hk(y) +
(
Id−2ek(x, y)ek(x, y)

T
)
z (34)

αk(x, y, z) =
ϕϕϕσ2

k
(‖Ek(x, y)‖ − 〈ek(x, y), z〉)

ϕϕϕσ2
k
(〈ek(x, y), z〉)

, (35)

where ϕϕϕσ2
k
is the probability density of a zero-mean gaussian variable with variance σ2

k.

Let Z1 be a standard d-dimensional Gaussian random variable. Set X1 = hk(x) + σkZ1

and

Y1 =

{
hk(y) + σkZ1 if Ek(x, y) = 0

B1 X1 + (1−B1) Fk(x, y,Z1) if Ek(x, y) 6= 0 ,

where B1 is a Bernoulli random variable independent of Z1 with success probability

pk(x, y, z) = 1 ∧ αk(x, y, z) .

The construction above defines for all (x, y) ∈ R
d × R

d the Markov kernel Kk on (Rd ×
R
d,B(Rd)⊗ B(Rd)) given for all (x, y) ∈ R

d × R
d and A ∈ B(Rd)⊗B(Rd) by

Kk((x, y), A) =
1D(hk(x), hk(y))

(2πσ2
k)

d/2

∫

Rd

1A(x̃, x̃)e
−‖τk(x̃,x)‖

2/(2σ2
k)dx̃ (36)

+
1Dc(hk(x), hk(y))

(2πσ2
k)

d/2

[∫

Rd

1A(x̃, x̃)pk(x, y, τk(x̃, x))e
−‖τk(x̃,x)‖

2/(2σ2
k)dx̃

+

∫

Rd

1A(x̃,Fk(x, y, τk(x̃, x))) {1− pk(x, y, τk(x̃, x))} e−‖τk(x̃,x)‖
2/(2σ2

k)dx̃

]
,

where for all x̃ ∈ R
d, τk(x̃, x) = x̃ − hk(x) and D =

{
(x̃, ỹ) ∈ R

d × R
d
∣∣ x̃ = ỹ

}
. It is

shown in [5, Section 3.3] that for all x, y ∈ R
d and k ≥ 1, Kk((x, y), ·) is a transference

plan of Pk(x, ·) and Pk(y, ·). For completeness, the proof is given in Appendix D.1.
Furthermore, we have for all x, y ∈ R

d and k ≥ 1

Kk((x, y),D) = 2Φ

(
−‖Ek(x, y)‖

2σk

)
. (37)

For all initial distribution µ0 on (Rd × R
d,B(Rd) ⊗ B(Rd)), P̃µ0 and Ẽµ0 denote the

probability and the expectation respectively, associated with the sequence of Markov
kernels (Kk)k≥1 defined in (36) and µ0 on the canonical space ((Rd × R

d)N, (B(Rd) ⊗
B(Rd))⊗N), {(Xi,Yi), i ∈ N} denotes the canonical process and {F̃i, i ∈ N} the cor-
responding filtration. Then if (X0,Y0) = (x, y) ∈ R

d × R
d, for all k ≥ 1 (Xk,Yk) is

a coupling of δxQ
k and δyQ

k. Using Lindvall’s inequality, bounding ‖δxQn − δyQ
n‖TV

amounts to evaluate P̃(x,y)(Xn 6= Yn).
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Theorem 19. Assume AR1. Then for all x, y ∈ R
d and n ≥ 1,

‖δxQn − δyQ
n‖TV ≤ 1Dc((x, y))

{
1− 2Φ

(
−‖x− y‖

2Ξ
1/2
n

)}
,

where (Ξi)i≥1 is defined for all k ≥ 1 by Ξk =
∑k

i=1{σ2
i /
∏i

j=1̟
2
j}.

We preface the proof by a technical Lemma.

Lemma 20. For all ς, a > 0 and t ∈ R+, the following identity holds

∫

R

ϕϕϕς2(y)

{
1− 1 ∧ ϕϕϕς2(t− y)

ϕϕϕς2(y)

}{
1− 2Φ

(
−|2y − t|

2a

)}
dy

= 1− 2Φ

(
− t

2(ς2 + a2)1/2

)
.

Proof. Let ς, a > 0 and t ∈ R+. Let us denote by I the integral on the left hand side in
the expression above. Then,

I =

∫ t/2

−∞
{ϕϕϕς2(y)−ϕϕϕς2(t− y)}

{
1− 2Φ

(
2y − t

2a

)}
dy

=

∫ t/2

−∞
ϕϕϕς2(y)

{
1− 2Φ

(
2y − t

2a

)}
dy (38)

−
∫ −t/2

−∞
ϕϕϕς2(y)

{
1− 2Φ

(
t+ 2y

2a

)}
dy ,

Now to simplify the proof, we give a probabilistic interpretation of this two integrals.
Let X and Y be two real Gaussian random variables with zero mean and variance a2

and ς2 respectively. Since for all u ∈ R+, 1− 2Φ(−u/(2a)) = P[|X | ≤ u/2], we have by
(38)

I = P (Y ≤ t/2,X + Y ≤ t/2,Y − X ≤ t/2)

− P (Y ≥ t/2,X + Y ≥ t/2,Y − X ≥ t/2) .

Using that Y and −Y have the same law in the second term, we get I = I1 + I2 where

I1 = P (Y ≤ t/2,X + Y ≤ t/2,Y −X ≤ t/2,X ≥ 0)

− P (Y ≤ −t/2,X −Y ≥ t/2,Y + X ≤ −t/2,X ≥ 0)

= P (|X + Y | ≤ t/2,X ≥ 0) , (39)

and

I2 = P (Y ≤ t/2,X + Y ≤ t/2,Y − X ≤ t/2,X ≤ 0)

− P (Y ≤ −t/2,X − Y ≥ t/2,Y + X ≤ −t/2,X ≤ 0) .
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Using again that Y and −Y have the same law in the two terms we have

I2 = P (Y ≥ −t/2,X − Y ≤ t/2,Y + X ≥ −t/2,X ≤ 0)

− P (Y ≥ t/2,X + Y ≥ t/2,X − Y ≤ −t/2,X ≤ 0)

= P (|X + Y | ≤ t/2,X ≤ 0) . (40)

Combining (39), (40), we get I = P(|X + Y | ≤ t/2). The proof follows from the fact
that X + Y is a real Gaussian random variable with mean zero and variance a2 + ς2,
since X and Y are independent.

Proof of Theorem 19. Since for all k ≥ 1, (Xk,Yk) is a coupling of δxQ
k and δyQ

k,

‖δxQk − δyQ
k‖TV ≤ P̃(x,y)(Xk 6= Yk).

Define for all k1, k2 ∈ N
∗, k1 ≤ k2, Ξk1,k2 =

∑k2
i=k1

{σ2
i /
∏i

j=k1
̟2

j}. Let n ≥ 1. We
show by backward induction that for all k ∈ {0, · · · , n− 1},

P̃(x,y)(Xn 6= Yn) ≤ Ẽ(x,y)

[
1Dc(Xk,Yk)

[
1− 2Φ

{
− ‖Xk −Yk‖
2 (Ξk+1,n)

1/2

}]]
, (41)

Note that the inequality for k = 0 will conclude the proof.
Since Xn 6= Yn implies that Xn−1 6= Yn−1, the Markov property and (37) imply

P̃(x,y)(Xn 6= Yn) = Ẽ(x,y)

[
1Dc(Xn−1,Yn−1)Ẽ(Xn−1,Yn−1) [1Dc(X1,Y1)]

]

≤ Ẽ(x,y)

[
1Dc(Xn−1,Yn−1)

[
1− 2Φ

{
−‖En−1(Xn−1,Yn−1)‖

2σn

}]]

Using AR1 and (33), ‖En(Xn−1,Yn−1)‖ ≤ ̟n ‖Xn−1 −Yn−1‖, showing (41) holds for
k = n− 1.

Assume that (41) holds for k ∈ {1, . . . , n− 1}. On {Xk 6= Yk}, we have

‖Xk −Yk‖ =
∣∣−‖Ek(Xk−1,Yk−1)‖+ 2σkek(Xk−1,Yk−1)

TZk

∣∣ ,

which implies

1Dc(Xk,Yk)


1− 2Φ



−‖Xk −Yk‖

2Ξ
1/2
k+1,n








= 1Dc(Xk,Yk)


1− 2Φ



−

∣∣2σkek(Xk−1,Yk−1)
TZk − ‖Ek(Xk−1,Yk−1)‖

∣∣

2Ξ
1/2
k+1,n






 .
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Since Zk is independent of F̃k−1, σkek(Xk−1,Yk−1)
TZk is a real Gaussian random variable

with zero mean and variance σ2
k, therefore by Lemma 20, we get

Ẽ
F̃k−1

(x,y)



1Dc(Xk,Yk)


1− 2Φ



−‖Xk −Yk‖

2Ξ
1/2
k+1,n










≤ 1Dc(Xk−1,Yk−1)

[
1− 2Φ

{
−‖Ek(Xk−1,Yk−1)‖
2
(
σ2
k + Ξk+1,n

)1/2

}]
.

Using by AR1 that ‖Ek(Xk−1,Yk−1)‖ ≤ ̟k ‖Xk−1 −Yk−1‖ concludes the induction.
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Probability and its Applications. Birkhäuser Verlag, Basel, second edition, 2002.

[3] S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities. Oxford Uni-
versity Press, Oxford, 2013. A nonasymptotic theory of independence, With a
foreword by Michel Ledoux.

[4] S. Bubeck, R Eldan, and J. Lehec. Finite-time analysis of projected langevin monte
carlo. In Proceedings of the 28th International Conference on Neural Information
Processing Systems, NIPS’15, pages 1243–1251, Cambridge, MA, USA, 2015. MIT
Press.

[5] R. Bubley, M. Dyer, and M. Jerrum. An elementary analysis of a procedure for
sampling points in a convex body. Random Structures Algorithms, 12(3):213–235,
1998.

[6] M. F. Chen and S. F. Li. Coupling methods for multidimensional diffusion processes.
Ann. Probab., 17(1):151–177, 1989.

[7] H. M. Choi and J. P. Hobert. The Polya-Gamma Gibbs sampler for Bayesian logistic
regression is uniformly ergodic. Electron. J. Statist., 7:2054–2064, 2013.

27



[8] N. Chopin and Ridgway J. Leave Pima Indians alone: binary regression as a bench-
mark for Bayesian computation. Statist. Sci., 32(1):64–87, 2017.

[9] A. S. Dalalyan. Further and stronger analogy between sampling and optimization:
Langevin monte carlo and gradient descent. In Proceedings of the 30th Annual
Conference on Learning Theory.

[10] A. S. Dalalyan. Theoretical guarantees for approximate sampling from smooth and
log-concave densities. J. R. Stat. Soc. Ser. B. Stat. Methodol., 79(3):651–676, 2017.
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A Proofs of Section 2

In this section are gathered the postponed proofs of Section 2. If H1 holds, then [34,
Theorem 2.1.12, Theorem 2.1.9] show that for all x, y ∈ R

d:

〈∇U(y)−∇U(x), y − x〉 ≥ κ

2
‖y − x‖2 + 1

m+ L
‖∇U(y)−∇U(x)‖2 , (42)

where

κ =
2mL

m+ L
.

A.1 Proof of Proposition 1

(i) The generator A associated with (Pt)t≥0 is given, for all f ∈ C2(Rd) and y ∈ R
d,

by:
A f(y) = −〈∇U(y),∇f(y)〉+∆f(y) . (43)

Denote for all y ∈ R
d by V (y) = ‖y − x⋆‖2. Let x ∈ R

d and (Yt)t≥0 be a solution of (1)
started at x. Under H1 supt∈[0,T ] E[‖Yt‖2] < +∞ for all T ≥ 0. Therefore, the process

(
V (Yt)− V (x)−

∫ t

0
A V (Ys)ds

)

t≥0

30



is a (Ft)t≥0-martingale. Denote for all t ≥ 0 and x ∈ R
d by v(t, x) = PtV (x). Then we

have, ∂v(t, x)/∂t = PtA V (x).

Since ∇U(x⋆) = 0 and by H2, 〈∇U(x)−∇U(x⋆), x− x⋆〉 ≥ m ‖x− x⋆‖2, we have

A V (x) = 2 (−〈∇U(x)−∇U(x⋆), x− x⋆〉+ d) ≤ 2 (−mV (x) + d) . (44)

Therefore, we get

∂v(t, x)

∂t
= PtA V (x) ≤ −2mPtV (x) + 2d = −2mv(t, x) + 2d ,

and the proof follows from the Grönwall inequality.

(ii) Set V (x) = ‖x− x⋆‖2. By Proposition 1-(i), using that πPt = π for all t > 0 and
that the function z 7→ z ∧ c is concave for all c > 0, we get using the Jensen inequality

π(V ∧ c) = πPt(V ∧ c) ≤ π(PtV ∧ c)

≤
∫

π(dx) c ∧
{
V (x)e−2mt +

d

m
(1− e−2mt)

}

Using Lebesgue’s dominated convergence theorem and taking the limit as t → +∞, we
get π(V ∧ c) ≤ d/m. Using the monotone convergence theorem and taking the limit as
c → +∞ concludes the proof.

(iii) Let x, y ∈ R
d. Consider the following SDE in R

d ×R
d:

{
dYt = −∇U(Yt)dt+

√
2dBt ,

dỸt = −∇U(Ỹt)dt+
√
2dBt ,

(45)

where (Y0, Ỹ0) = (x, y). Since ∇U is Lipschitz, then by [25, Theorem 2.5, Theorem 2.9,
Chapter 5], this SDE has a unique strong solution (Yt, Ỹt)t≥0 associated with (Bt)t≥0.
Moreover since (Yt, Ỹt)t≥0 is a solution of (45),

∥∥∥Yt − Ỹt

∥∥∥
2
=
∥∥∥Y0 − Ỹ0

∥∥∥
2
− 2

∫ t

0

〈
∇U(Ys)−∇U(Ỹs), Ys − Ỹs

〉
ds ,

which implies using H2 and Grönwall’s inequality that

∥∥∥Yt − Ỹt

∥∥∥
2
≤
∥∥∥Y0 − Ỹ0

∥∥∥
2
− 2m

∫ t

0

∥∥∥Ys − Ỹs

∥∥∥
2
ds ≤

∥∥∥Y0 − Ỹ0

∥∥∥
2
e−2mt .

Since for all t ≥ 0, the law of (Yt, Ỹt) is a coupling between δxPt and δyPt, by definition
of W2, W2(δxPt, δyPt) ≤ E[‖Yt − Ỹt‖2]1/2, which concludes the proof.

(iv) The proof is a direct consequence of (ii) and (iii)
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A.2 Proof of Proposition 2

(i) Note that the proof is trivial if ℓ < n. Therefore we only need to consider the
case ℓ ≥ n. For any γ ∈ (0, 2/(m + L)), we have for all x ∈ R

d:

∫

Rd

‖y − x⋆‖2 Rγ(x,dy) = ‖x− γ∇U(x)− x⋆‖2 + 2γd .

Using that ∇U(x⋆) = 0, we get using the previous identity and (42):

∫

Rd

‖y − x⋆‖2 Rγ(x,dy)

≤ (1− κγ) ‖x− x⋆‖2 + γ

(
γ − 2

m+ L

)
‖∇U(x)−∇U(x⋆)‖2 + 2γd

≤ (1− κγ) ‖x− x⋆‖2 + 2γd ,

where we have used for the last inequality that γ ≤ 2/(m + L). Then by definition (5)

of Qn,ℓ
γ for ℓ, n ≥ 1, ℓ ≥ n, the proof follows from a straightforward induction.

(ii) By (i), we have for all x ∈ R
d and n ≥ 1,

∫

Rd

‖y − x⋆‖2 Rn
γ (x,dy) ≤ (1− κγ)n ‖x− x⋆‖2 + 2d

n∑

k=1

γ(1− κγ)n−k

= (1− κγ)n ‖x− x⋆‖2 + 2κ−1d(1− (1− κγ)n) . (46)

Since any compact set of Rd is accessible and small for Rγ , then [32, Theorem 15.0.1]
implies that Rγ has a unique stationary distribution πγ . Using (46), the proof is along
the same lines as Proposition 1-(ii).

A.3 Proof of Proposition 3

(i) Let (Zk)k≥1 be a sequence of i.i.d. d-dimensional Gaussian random variables. For

n ∈ N, define the process (Xn,1
k ,Xn,2

k )k≥0 as follows: (X
n,1
0 ,Xn,2

0 ) = (x, y) and for k ≥ 0,

Xn,j
k+1 = Xn,j

k − γk+n∇U(Xn,j
k ) +

√
2γk+nZk+1 j = 1, 2 . (47)

Note that Xn,1
ℓ and Xn,2

ℓ are distributed according to δxQ
n,ℓ
γ and δyQ

n,ℓ
γ respectively.

Therefore by definition of the Wasserstein distance of order 2, we get for any ℓ ≥ n ≥ 1.
W 2

2 (δxQ
n,ℓ
γ , δyQ

n,ℓ
γ ) ≤ E[‖Xn,1

ℓ −Xn,2
ℓ ‖2] and (42) implies for k ≥ n− 1,

∥∥∥Xn,1
k+1 −Xn,2

k+1

∥∥∥
2
=
∥∥∥Xn,1

k −Xn,2
k

∥∥∥
2
+ γ2n+k

∥∥∥∇U(Xn,1
k )−∇U(Xn,2

k )
∥∥∥
2

− 2γn+k

〈
Xn,1

k −Xn,2
k ,∇U(Xn,1

k )−∇U(Xn,2
k )

〉

≤ (1− κγn+k)
∥∥∥Xn,1

k −Xn,2
k

∥∥∥
2
.
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Therefore by a straightforward induction we get for all ℓ ≥ n,

∥∥∥Xn,1
ℓ −Xn,2

ℓ

∥∥∥
2
≤

ℓ∏

k=n

(1− κγk)
∥∥∥Xn,1

0 −Xn,2
0

∥∥∥
2
.

(ii) Let µ ∈ P2(R
d). For all n ≥ 0, µRn

γ ∈ P2(R
d). Then, by Proposition 3-(i) for

γ ≤ 2/(m + L), Rγ is a strict contraction in (P2(R
d),W2) and there is a unique fixed

point πγ which is the unique invariant distribution.

A.4 Proof of Theorem 5

We preface the proof by a technical Lemma.

Lemma 21. Let (Yt)t≥0 be the solution of (1) started at x ∈ R
d. For all t ≥ 0 and

x ∈ R
d,

E

[
‖Yt − x‖2

]
≤ dt(2 + L2t2/3) + (3/2)t2L2 ‖x− x⋆‖2 .

Proof. Let A be the generator associated with (Pt)t≥0 defined by (44). Denote for all
x, y ∈ R

d, Ṽx(y) = ‖y − x‖2. Note that the process (Ṽx(Yt)− Ṽx(x)−
∫ t
0 A Ṽx(Ys)ds)t≥0,

is a (Ft)t≥0-martingale. Denote for all t ≥ 0 and x ∈ R
d by ṽ(t, x) = PtṼx(x). Then we

get,
∂ṽ(t, x)

∂t
= PtA Ṽx(x) . (48)

By H2, we have for all y ∈ R
d, 〈∇U(y)−∇U(x), y − x〉 ≥ m ‖x− y‖2, which implies

A Ṽx(y) = 2 (−〈∇U(y), y − x〉+ d) ≤ 2
(
−mṼx(y) + d− 〈∇U(x), y − x〉

)
.

Using (48), this inequality and that Ṽx is positive, we get

∂ṽ(t, x)

∂t
= PtA Ṽx(x) ≤ 2

(
d−

∫

Rd

〈∇U(x), y − x〉Pt(x,dy)

)
. (49)

By the Cauchy-Schwarz inequality, ∇U(x⋆) = 0, (1) and the Jensen inequality, we have,

|E [〈∇U(x), Yt − x〉]| ≤ ‖∇U(x)‖ ‖E [Yt − x]‖

≤ ‖∇U(x)‖
∥∥∥∥E
[∫ t

0
{∇U(Ys)−∇U(x⋆)} ds

]∥∥∥∥

≤
√
t ‖∇U(x)−∇U(x⋆)‖

(∫ t

0
E

[
‖∇U(Ys)−∇U(x⋆)‖2

]
ds

)1/2

.

Furthermore, by H1 and Proposition 1-(i), we have
∣∣∣∣
∫

Rd

〈∇U(x), y − x〉Pt(x,dy)

∣∣∣∣ ≤
√
tL2 ‖x− x⋆‖

(∫ t

0
E

[
‖Ys − x⋆‖2

]
ds

)1/2

≤
√
tL2 ‖x− x⋆‖

(
1− e−2mt

2m
‖x− x⋆‖2 + 2tm+ e−2mt − 1

2m

d

m

)1/2

≤ L2 ‖x− x⋆‖ (t ‖x− x⋆‖+ t3/2d1/2) ,
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where we used for the last line that by the Taylor theorem with remainder term, for all
s ≥ 0, (1 − e−2ms)/(2m) ≤ s and (2ms + e−2ms − 1)/(2m) ≤ ms2, and the inequality√
a+ b ≤ √

a+
√
b. Plugging this upper bound in (49), and since 2 ‖x− x⋆‖ t3/2d1/2 ≤

t ‖x− x⋆‖2 + t2d, we get

∂ṽ(t, x)

∂t
≤ 2d+ 3L2t ‖x− x⋆‖2 + L2t2d

Since ṽ(0, x) = 0, the proof is completed by integrating this result.

To show Theorem 5 and Theorem 8, since π is invariant for Pt for all t ≥ 0, it suffices
to get some bounds on W2(δxQ

n
γ , ν0PΓn), with ν0 ∈ P2(R

d) and take ν0 = π. To do so,
we construct a coupling between the diffusion and the linear interpolation of the Euler
discretization. An obvious candidate is the synchronous coupling (Yt, Y t)t≥0 defined for
all n ≥ 0 and t ∈ [Γn,Γn+1) by

{
Yt = YΓn −

∫ t
Γn

∇U(Ys)ds+
√
2(Bt −BΓn)

Ȳt = ȲΓn −∇U(ȲΓn)(t− Γn) +
√
2(Bt −BΓn) ,

(50)

with Y0 is distributed according to ν0, Ȳ0 = x and (Γn)n≥1 is given in (3). Therefore since
for all n ≥ 0, W 2

2 (δxQ
n
γ , ν0PΓn) ≤ E[‖YΓn − ȲΓn‖2], taking ν0 = π, we derive an explicit

bound on the Wasserstein distance between the sequence of distributions (δxQ
k
γ)k≥0 and

the stationary measure π of the Langevin diffusion (1).
Let (F ′

t)t≥0 be the filtration associated with (Bt)t≥0 and (Y0, Y 0).

Lemma 22. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 1/(m + L). Let ζ0 ∈ P2(R

d × R
d), (Yt, Y t)t≥0 such that (Y0, Y 0) is distributed

according to ζ0 and given by (50). Then almost surely for all n ≥ 0 and ǫ > 0,

∥∥YΓn+1 − Y Γn+1

∥∥2 ≤ {1− γn+1 (κ− 2ǫ)}
∥∥YΓn − Y Γn

∥∥2 (51)

+ (2γn+1 + (2ǫ)−1)

∫ Γn+1

Γn

‖∇U(Ys)−∇U(YΓn)‖2 ds ,

E
F

′

Γn

[∥∥YΓn+1 − Y Γn+1

∥∥2
]
≤ {1− γn+1 (κ− 2ǫ)}

∥∥YΓn − Y Γn

∥∥2 (52)

+ L2γ2n+1(1/(4ǫ) + γn+1)
(
2d+ L2γn+1 ‖YΓn − x⋆‖2 + dL2γ2n+1/6

)
.

Proof. We first show (51). Set Θn = YΓn − Y Γn . By definition we have:

‖Θn+1‖2 = ‖Θn‖2 +
∥∥∥∥
∫ Γn+1

Γn

{
∇U(Ys)−∇U(Y Γn)

}
ds

∥∥∥∥
2

− 2γn+1

〈
Θn,∇U(YΓn)−∇U(Y Γn)

〉
− 2

∫ Γn+1

Γn

〈Θn, {∇U(Ys)−∇U(YΓn)}〉ds . (53)
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Young’s inequality and Jensen’s inequality imply

∥∥∥∥
∫ Γn+1

Γn

{
∇U(Ys)−∇U(Y Γn)

}
ds

∥∥∥∥
2

≤ 2γ2n+1

∥∥∇U(YΓn)−∇U(Y Γn)
∥∥2

+ 2γn+1

∫ Γn+1

Γn

‖∇U(Ys)−∇U(YΓn)‖2 ds .

Using (42), γ1 ≤ 1/(m+ L) and (γk)k≥1 is non-increasing, (53) becomes

‖Θn+1‖2 ≤ {1− γn+1κ} ‖Θn‖2 + 2γn+1

∫ Γn+1

Γn

‖∇U(Ys)−∇U(YΓn)‖2 ds

−2

∫ Γn+1

Γn

〈Θn, {∇U(Ys)−∇U(YΓn)}〉 ds . (54)

Using the inequality | 〈a, b〉 | ≤ ǫ‖a‖2 + (4ǫ)−1‖b‖2 concludes the proof of (51).
We now prove (52). Note that (51) implies that

E
F

′

Γn

[
‖Θn+1‖2

]
≤ {1− γn+1(κ− 2ǫ)} ‖Θn‖2

+ (2γn+1 + (2ǫ)−1)

∫ Γn+1

Γn

E
F

′

Γn

[
‖∇U(Ys)−∇U(YΓn)‖2

]
ds . (55)

By H1, the Markov property of (Yt)t≥0 and Lemma 21, we have

∫ Γn+1

Γn

E
F

′

Γn

[
‖∇U(Ys)−∇U(YΓn)‖2

]
ds

≤ L2
(
dγ2n+1 + dL2γ4n+1/12 + (1/2)L2γ3n+1 ‖YΓn − x⋆‖2

)
.

The proof is then concluded plugging this bound in (55) .

Proof of Theorem 5. Let x ∈ R
d, n ≥ 1 and ζ0 = π ⊗ δx. Let (Yt, Y t)t≥0 with (Y0, Y 0)

distributed according to ζ0 and defined by (50). By definition of W2 and since for all

t ≥ 0, π is invariant for Pt, W
2
2 (µ0Q

n, π) ≤ E

[∥∥YΓn − Y Γn

∥∥2
]
. Lemma 22 with ǫ = κ/4,

Proposition 1-(i) imply, using a straightforward induction, that for all n ≥ 0

E

[∥∥YΓn − Y Γn

∥∥2
]
≤ u(1)n (γ)

∫

Rd

‖y − x‖2 π(dy) +An(γ) , (56)

where (u
(1)
n (γ))n≥1 is given by (8), and

An(γ) = L2
n∑

i=1

γ2i
{
κ−1 + γi

}
(2d + dL2γ2i /6)

n∏

k=i+1

(1− κγk/2)

+ L4
n∑

i=1

δ̃iγ
3
i

{
κ−1 + γi

} n∏

k=i+1

(1− κγk/2) (57)
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with
δ̃i = e−2mΓi−1E

[
‖Y0 − x⋆‖2

]
+ (1− e−2mΓi−1)(d/m) ≤ d/m .

Since Y0 is distributed according to π, Proposition 1-(ii) shows that for all i ∈ {1, · · · , n},

δ̃i ≤ d/m . (58)

In addition since for all y ∈ R
d, ‖x− y‖2 ≤ 2(‖x− x⋆‖2+‖x⋆ − y‖2), using Proposition 1-

(ii), we get
∫
Rd ‖y − x‖2 π(dy) ≤ ‖x− x⋆‖2 + d/m. Plugging this result, (58) and (57)

in (56) completes the proof.

A.5 Proof of Corollary 6

We preface the proof by a technical lemma.

Lemma 23. Let (γk)k≥1 be a sequence of non-increasing real numbers, ̟ > 0 and
γ1 < ̟−1. Then for all n ≥ 0, j ≥ 1 and ℓ ∈ {1, . . . , n + 1},

n+1∑

i=1

n+1∏

k=i+1

(1−̟γk) γ
j
i ≤

n+1∏

k=ℓ

(1−̟γk)

ℓ−1∑

i=1

γji +
γj−1
ℓ

̟
.

Proof. Let ℓ ∈ {1, . . . , n + 1}. Since (γk)k≥1 is non-increasing and γ1 < ̟−1,

n+1∑

i=1

n+1∏

k=i+1

(1−̟γk) γ
j
i =

ℓ−1∑

i=1

n+1∏

k=i+1

(1−̟γk) γ
j
i +

n+1∑

i=ℓ

n+1∏

k=i+1

(1−̟γk) γ
j
i

≤
n+1∏

k=ℓ

(1−̟γk)
ℓ−1∑

i=1

γji + γj−1
ℓ

n+1∑

i=ℓ

n+1∏

k=i+1

(1−̟γk) γi

≤
n+1∏

k=ℓ

(1−̟γk)

ℓ−1∑

i=1

γji +
γj−1
ℓ

̟
.

Proof of Corollary 6. By Theorem 5, it suffices to show that u
(1)
n (γ) and u

(2)
n (γ), de-

fined by (8) and (9) respectively, goes to 0 as n → +∞. Using the bound 1 + t ≤ et

for t ∈ R, and limn→+∞ Γn = +∞, we have limn→+∞ u
(1)
n (γ) = 0. Since (γk)k≥0

is non-increasing, note that to show that limn→+∞ u
(2)
n (γ) = 0, it suffices to prove

limn→+∞
∑n

i=1

∏n
k=i+1(1 − κγk/2)γ

2
i = 0. But since (γk)k≥1 is non-increasing, there

exists c ≥ 0 such that cΓn ≤ n− 1 and by Lemma 23 applied with ℓ = ⌊cΓn⌋ the integer
part of cΓn:

n∑

i=1

n∏

k=i+1

(1− κγk/2) γ
2
i ≤ 2κ−1γ⌊cΓn⌋ + exp

(
−2−1κ(Γn − Γ⌊cΓn⌋)

) ⌊cΓn⌋−1∑

i=1

γi . (59)

36



Since limk→+∞ γk = 0, by the Cesáro theorem, we have limn→+∞ n−1Γn = 0. Then
using that limn→+∞ Γn = +∞, we get limn→+∞ Γ⌊cΓn⌋/Γn = 0, and the conclusion
follows from combining in (59), this limit, limk→+∞ γk = 0, limn→+∞ Γn = +∞ and∑⌊cΓn⌋−1

i=1 γi ≤ cγ1Γn.

A.6 Proofs of Theorem 8

Lemma 24. Assume H1, H2 and H3. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 1/(m + L). Let ζ0 ∈ P2(R

d × R
d) and (Yt, Y t)t≥0 be defined by (50) such that

(Y0, Y 0) is distributed according to ζ0. Then for all n ≥ 0 and ǫ > 0, almost surely

E
FΓn

[∥∥YΓn+1 − Y Γn+1

∥∥2
]
≤ {1− γn+1 (κ− 2ǫ)}

∥∥YΓn − Y Γn

∥∥2

+ γ3n+1

{
d
[
2L2 + γ2n+1L

4/6 + ǫ−1(dL̃2/3 + γn+1L
4/4)

]

+L4(ǫ−1/3 + γn+1) ‖YΓn − x⋆‖2
}

.

Proof. Let n ≥ 0 and ǫ > 0, and set Θn = YΓn − Y Γn . Using Itô’s formula, we have for
all s ∈ [Γn,Γn+1),

∇U(Ys)−∇U(YΓn) =

∫ s

Γn

{
∇2U(Yu)∇U(Yu) + ~∆(∇U)(Yu)

}
du

+
√
2

∫ s

Γn

∇2U(Yu)dBu . (60)

Since Θn is FΓn-measurable and (
∫ s
0 ∇2U(Yu)dBu)s∈[0,Γn+1] is a (Fs)s∈[0,Γn+1]-martingale

under H1, by (60) we have:

∣∣EFΓn [〈Θn,∇U(Ys)−∇U(YΓn)〉]
∣∣

=

∣∣∣∣
〈
Θn,E

FΓn

[∫ s

Γn

{
∇2U(Yu)∇U(Yu) + ~∆(∇U)(Yu)

}
du

]〉∣∣∣∣

Combining this equality and | 〈a, b〉 | ≤ ǫ‖a‖2 + (4ǫ)−1‖b‖2 in (54) we have

E
FΓn

[
‖Θn+1‖2

]
≤ {1− γn+1(κ− 2ǫ)} ‖Θn‖2 + (2ǫ)−1A

+ 2γn+1E
FΓn

[∫ Γn+1

Γn

‖∇U(Ys)−∇U(YΓn)‖2 ds
]
, (61)

where

A =

∫ Γn+1

Γn

∥∥∥∥E
FΓn

[∫ s

Γn

∇2U(Yu)∇U(Yu) + ~∆(∇U)(Yu)du

]∥∥∥∥
2

ds .
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We now separately bound the two last terms of the right hand side. By H1, the Markov
property of (Yt)t≥0 and Lemma 21, we have

∫ Γn+1

Γn

E
FΓn

[
‖∇U(Ys)−∇U(YΓn)‖2

]
ds

≤ L2
(
dγ2n+1 + dL2γ4n+1/12 + (1/2)L2γ3n+1 ‖YΓn − x⋆‖2

)
. (62)

We now bound A. We get using Jensen’s inequality, Fubini’s theorem, ∇U(x⋆) = 0 and
(10)

A ≤ 2

∫ Γn+1

Γn

(s− Γn)

∫ s

Γn

E
FΓn

[∥∥∇2U(Yu)∇U(Yu)
∥∥2
]
duds

+ 2

∫ Γn+1

Γn

(s− Γn)

∫ s

Γn

E
FΓn

[∥∥∥~∆(∇U)(Yu)
∥∥∥
2
]
duds

≤ 2

∫ Γn+1

Γn

(s− Γn)L
4

∫ s

Γn

E
FΓn

[
‖Yu − x⋆‖2

]
duds+ 2γ3n+1d

2L̃2/3 . (63)

By Lemma 21-(i), the Markov property and for all t ≥ 0, 1 − e−t ≤ t, we have for all
s ∈ [Γn,Γn+1],

∫ s

Γn

E
FΓn

[
‖Yu − x⋆‖2

]
du ≤ (2m)−1(1− e−2m(s−Γn)) ‖YΓn − x⋆‖2 + d(s− Γn)

2 .

Using this inequality in (63) and for all t ≥ 0, 1− e−t ≤ t , we get

A ≤ (2L4γ3n+1/3) ‖YΓn − x⋆‖2 + L4dγ4n+1/2 + 2γ3n+1d
2L̃2/3 .

Combining this bound and (62) in (61) concludes the proof.

Proof of Theorem 8. The proof of is along the same lines as Theorem 5, using Lemma 24
in place of Lemma 22.

B Proofs of Section 3

In this section are gathered the postponed proofs of Section 3.

B.1 Proof of Theorem 12

Applying Lemma 22 or Lemma 24, we get that for all x ∈ R
d

W1(δxQ
n
γ , δxPΓn) ≤ {ϑn(x)}1/2 , ϑn(x) =

{
ϑ
(1)
n,0(x) (H1, H2) ,

ϑ
(2)
n,0(x) (H1, H2, H3) ,

(64)
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By the triangle inequality, we get
∥∥∥δxPΓℓ

− δxQ
ℓ
γ

∥∥∥
TV

≤
∥∥{δxPΓn − δxQ

n
γ

}
PΓn+1,ℓ

∥∥
TV

+
∥∥∥δxQn

γ

{
Qn+1,ℓ

γ − PΓn+1,ℓ

}∥∥∥
TV

.

(65)
Using (14) and (64), we have

∥∥{δxPΓn − δxQ
1,n
γ

}
PΓn+1,ℓ

∥∥
TV

≤ (ϑn(x)/(4πΓn+1,ℓ))
1/2 . (66)

For the second term, by [12, Equation 15] (note that we have a different convention for
the total variation distance) and the Pinsker inequality, we have

∥∥∥δxQ1,n
γ

{
Qn+1,ℓ

γ − PΓn+1,ℓ

}∥∥∥
2

TV

≤ 2−3L2
ℓ∑

k=n+1

{
(γ3k/3)

∫

Rd

‖∇U(z)−∇U(x⋆)‖2Qk−1
γ (x,dz) + dγ2k

}
.

By H1 and Proposition 2, we get

∥∥∥δxQ1,n
γ

{
Qn+1,ℓ

γ − PΓn+1,ℓ

}∥∥∥
2

TV
≤ 2−3L2

ℓ∑

k=n+1

{
(γ3kL

2/3)̺1,k−1(x) + dγ2k
}

.

Combining the last inequality and (66) in (65) concludes the proof.

B.2 Proof of (24)

Consider the constant sequence γk = γ for all k ∈ N
∗ with γ ∈ (0, 1/(m + L)]. By (18),

we have for all n ∈ N
∗ and x ∈ R

d

ϑ
(1)
n,0(x) ≤ γD1(γ, d) + γ3D2(γ)

n∑

i=1

(1− κγ/2)n−iδi,n,0(x) ,

where

D1(γ, d) = 2L2κ−1
(
κ−1 + γ

) (
2d+ L2γ2/6

)
, D2(γ) = L4

(
κ−1 + γ

)
.

In addition, using that κ ≥ 2m and for all t ≥ 0, 1− t ≤ e−t,

n∑

i=1

(1− κγ/2)n−iδi,n,0(x) =
n∑

i=1

[
(1− κγ/2)n−i

{
e−2mγ(i−1) ‖x− x⋆‖2

+
(
1− e−2mγ(i−1)

)
(d/m)

}]

≤ ne−mγ(n−1) ‖x− x⋆‖2 + 2d(κγm)−1 . (67)

Therefore for all n ≥ 1 and x ∈ R
d we get

ϑ
(1)
n,0(x) ≤ γD1(γ) + γ3D2(γ)

{
ne−mγ(n−1) ‖x− x⋆‖2 + 2d(κγm)−1

}
. (68)
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Let now ℓ ∈ N
∗, ℓ ≥

⌈
γ−1

⌉
+ 1 and n = ℓ−

⌈
γ−1

⌉
. Then,

ℓ∑

k=n+1

{
(γ3kL

2/3)̺1,k−1(x) + dγ2k
}

≤ (L2γ3/3)
{
(1− κγ)n(ℓ− n) ‖x− x⋆‖2 + 2κ−1γd(ℓ− n)

}
+ dγ2(ℓ− n)

≤ (L2γ3/3)
{
(1 + γ−1)(1 − κγ)ℓ−⌈γ−1⌉ ‖x− x⋆‖2 + 2(1 + γ)κ−1d

}
+ dγ(1 + γ) .

Combining this inequality and (68) in the bound given by Theorem 12 shows (24).

B.3 Proof of Theorem 14

We preface the proof by a preliminary lemma. Define for all γ > 0, the function n :
R
∗
+ → N by

n(γ) =
⌈
log
(
γ−1

)
/ log(2)

⌉
. (69)

Lemma 25. Assume H1, H2 and H3. Let γ ∈ (0, 1/(m + L)). Then for all x ∈ R
d

and ℓ ∈ N
∗, ℓ > 2n(γ),

‖δxPℓγ − δxR
ℓ
γ‖TV ≤ (ϑ

(2)

ℓ−2n(γ),0
(x)/(π2n(γ)+2γ))1/2

+ 2−3/2L
{
(γ3L2/3)̺1,ℓ−1(x) + dγ2

}1/2
+

n(γ)∑

k=1

(ϑ
(2)

2k−1,ℓ−2k
(x)/(π2k+1γ))1/2 .

where ̺1,ℓ−1(x) is defined by (7) and for all n1, n2 ∈ N, ϑ
(2)
n1,n2 is given by (19).

Proof. Let γ ∈ (0, 1/(m + L)) and ℓ ∈ N
∗. For ease of notation, let n = n(γ), and

assume that ℓ > 2n. Consider the following decomposition

∥∥∥δxPℓγ − δxR
ℓ
γ

∥∥∥
TV

≤
∥∥∥
{
δxP(ℓ−2n)γ − δxR

ℓ−2n

γ

}
P2nγ

∥∥∥
TV

+
∥∥∥δxRℓ−1

γ {Pγ −Rγ}
∥∥∥
TV

+

n∑

k=1

∥∥∥δxRℓ−2k
γ

{
P2k−1γ −R2k−1

γ

}
P2k−1γ

∥∥∥
TV

. (70)

We bound each term in the right hand side. First by (14) and Equation (64), we have

∥∥∥
{
δxP(ℓ−2n)γ − δxR

ℓ−2n
γ

}
P2nγ

∥∥∥
TV

≤ (ϑ
(2)
ℓ−2n,0(x)/(π2

n+2γ))1/2 , (71)

where ϑ
(2)
n,0(x) is given by (19). Similarly but using in addition Proposition 2, we have

for all k ∈ {1, · · · , n},
∥∥∥δxRℓ−2k

γ

{
P2k−1γ −R2k−1

γ

}
P2k−1γ

∥∥∥
TV

≤ (ϑ
(2)

2k−1,ℓ−2k
(x)/(π2k+1γ))1/2 , (72)
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where ϑ
(2)

2k−1,ℓ−2k
(x) is given by (19). For the last term, by [10, Equation 11] and the

Pinsker inequality, we have

∥∥∥δxRℓ−1
γ {Pγ −Rγ}

∥∥∥
2

TV
≤ 2−3L2

{
(γ3/3)

∫

Rd

‖∇U(z)‖2Rℓ−1
γ (x,dz) + dγ2

}
.

By H1 and Proposition 2, we get

∥∥∥δxRℓ−1
γ {Rγ − Pγ}

∥∥∥
2

TV
≤ 2−3L2

{
(γ3L2/3)̺1,ℓ−1(x) + dγ2

}
. (73)

Combining (71), (72) and (73) in (70) concludes the proof.

Proof of Theorem 14. First for all n ≥ 1 and x ∈ R
d, we have

ϑ
(2)
n,0(x) ≤ γ2E1(γ, d) + γ3E2(γ)

n∑

i=1

n∏

k=i+1

(1− κγk/2)δi,n,0(x) ,

where

E1(γ, d) = 2dκ−1
{
2L2 + 4κ−1(dL̃2/3 + γL4/4) + γ2L4/6

}
,E2(γ) = L4(4κ−1/3 + γ) .

By (67), we get for all n ≥ 1 and x ∈ R
d,

ϑ
(2)
n,0(x) ≤ γ2E1(γ, d) + γ3E2(γ)

{
ne−mγ(n−1) ‖x− x⋆‖2 + 2d(κγm)−1

}
. (74)

On the other hand, for all x ∈ R
d, ℓ, n ∈ N, n ≥ 1, ℓ > n we have using that κ ≥ 2m

and for all t ≥ 0, 1− t ≤ e−t,

ϑ
(2)
n,ℓ(x) ≤ γ3nE1(γ) + γ3nE2(γ)

{
e−mγ(n−1)̺n,ℓ(x) + d/m

}

≤ γ3nE1(γ) + γ3nE2(γ)
{
e−mγ(n−1)

(
(1− κγ)ℓ−n ‖x− x⋆‖2 + 2κ−1d

)
+ d/m

}

≤ γ3nE1(γ) + γ3nE2(γ)
{
e−mγ(ℓ−1) ‖x− x⋆‖2 + 2κ−1d+ d/m

}
. (75)

Finally, for all ℓ ∈ N
∗ and x ∈ R

d, we have

(γ3L2/3)̺1,ℓ−1(x) + dγ2 ≤ (γ3L2/3)
{
(1− κγ)ℓ−1 ‖x− x⋆‖2 + 2dκ−1

}
+ dγ2 . (76)

Combining (74), (75) and (76) in the bound given by Lemma 25, and using that
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γ−1 ≤ 2n(γ) ≤ 2γ−1 we have for all ℓ ∈ N
∗, ℓ > 2n(γ),

‖δxPℓγ − δxR
ℓ
γ‖TV ≤ 2−3/2L

[
(γ3L2/3)

{
(1− κγ)ℓ−1 ‖x− x⋆‖2 + 2dκ−1

}
+ dγ2

]1/2

+ (4π)−1/2
[
γ2E1(γ) + γ3E2(γ)

{
(ℓ− γ−1)e−mγ(ℓ−2γ−1−1) ‖x− x⋆‖2 + 2d(κγm)−1

}]1/2

+

n(γ)∑

k=1



γ32k−1E1(γ) + γ32k−1E2(γ)

{
e−mγ(ℓ−2k−1) ‖x− x⋆‖2 + 2κ−1d+ d/m

}

π2k+1γ



1/2

≤ 2−3/2L
{
(γ3L2/3)

{
(1− κγ)ℓ−1 ‖x− x⋆‖2 + 2dκ−1

}
+ dγ2

}1/2

+ (4π)−1/2
[
γ2E1(γ) + γ3E2(γ)

{
(ℓ− γ−1)e−mγ(ℓ−2γ−1−1) ‖x− x⋆‖2 + 2d(κγm)−1

}]1/2

+ (4π)−1/2n(γ)
[
γ2E1(γ) + γ2E2(γ)

{
e−mγ(ℓ−2γ−1−1) ‖x− x⋆‖2 + 2κ−1d+ d/m

}]1/2
.

Letting ℓ go to infinity, using Theorem 10-(iii) and Theorem 11-(iii), we get the desired
conclusion.

C Proof of Section 4

In this section are gathered the postponed proofs of Section 4.

C.1 Proof of Theorem 15 and Theorem 16

Our main tool in the proof of Theorem 15 and Theorem 16 is the Gaussian Poincaré
inequality [3, Theorem 3.20] which can be applied to Rγ(y, ·) defined by (4), noticing
that Rγ(y, ·) is a Gaussian distribution with mean y − γ∇U(y) and covariance matrix
2γ Id: for all Lipschitz function g : Rd → R

Rγ {g(·) −Rγg(y)}2 (y) ≤ 2γ ‖g‖2Lip . (77)

To go further, we decompose π̂N
n (f)−Ex[π̂

N
n (f)], for f : Rd → R, Lipschitz or measurable

and bounded, as the sum of martingale increments, w.r.t. (Gn)n≥0, the natural filtration
associated with Euler approximation (Xn)n≥0, and we get

Varx
{
π̂N
n (f)

}
=

N+n−1∑

k=N

Ex

[(
E
Gk+1
x

[
π̂N
n (f)

]
− E

Gk
x

[
π̂N
n (f)

])2]

+ Ex

[(
E
GN
x

[
π̂N
n (f)

]
− Ex[π̂

N
n (f)]

)2]
. (78)

Since π̂N
n (f) is an additive functional, the martingale increment E

Gk+1
x

[
π̂N
n (f)

]
−E

Gk
x

[
π̂N
n (f)

]

has a simple expression. For k = N + n − 1, . . . , N + 1, define backward in time the
function

ΦN
n,k : xk 7→ ωN

k,nf(xk) +Rγk+1
ΦN
n,k+1(xk) , (79)
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where ΦN
n,N+n : xN+n 7→ ΦN

n,N+n(xN+n) = ωN
N+n,nf(xN+n). Denote finally

ΨN
n : xN 7→ RγN+1

ΦN
n,N+1(xN ) . (80)

Note that for k ∈ {N, . . . ,N + n− 1}, by the Markov property,

ΦN
n,k+1(Xk+1)−Rγk+1

ΦN
n,k+1(Xk) = E

Gk+1
x

[
π̂N
n (f)

]
− E

Gk
x

[
π̂N
n (f)

]
, (81)

and ΨN
n (XN ) = E

GN
x

[
π̂N
n (f)

]
. With these notations, (78) may be equivalently expressed

as

Varx
{
π̂N
n (f)

}
=

N+n−1∑

k=N

Ex

[
Rγk+1

{
ΦN
n,k+1(·)−Rγk+1

ΦN
n,k+1(Xk)

}2
(Xk)

]

+Varx
{
ΨN

n (XN )
}

. (82)

Now for k = N + n− 1, . . . , N , we will use the Gaussian Poincaré inequality (77) to the
sequence of function ΦN

n,k+1 to prove that x 7→ Rγk+1
{ΦN

n,k+1(·) − Rγk+1
ΦN
n,k+1(x)}2(x)

is uniformly bounded. It is required to bound the Lipschitz constant of ΦN
n,k .

C.1.1 Proof of Theorem 15

We preface the proof by two lemmas.

Lemma 26. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 2/(m + L). Let N ≥ 0 and n ≥ 1. Then for all y ∈ R

d, Lipschitz function f and
k ∈ {N, . . . ,N + n− 1},

Rγk+1

{
ΦN
n,k+1(·)−Rγk+1

ΦN
n,k+1(y)

}2
(y) ≤ 8γk+1 ‖f‖2Lip (κΓN+2,N+n+1)

−2 ,

where ΦN
n,k+1 is given by (79).

Proof. By (79), ‖ΦN
n,k‖Lip ≤ ∑N+n

i=k+1 ω
N
i,n‖Qk+2,i

γ f‖Lip. Using Corollary 4, the bound

(1− t)1/2 ≤ 1− t/2 for t ∈ [0, 1] and the definition of ωN
i,n given by (26), we have

∥∥ΦN
n,k

∥∥
Lip

≤ ‖f‖Lip
N+n∑

i=k+1

ωN
i,n

i∏

j=k+2

(1 − κγj/2) ≤ 2 ‖f‖Lip (κΓN+2,N+n+1)
−1 .

Finally, the proof follows from (77).

Also to control the last term in right hand side of (82), we need to control the
variance of ΨN

n (XN ) under δxQ
N
γ . But similarly to the sequence of functions ΦN

n,k, Ψ
N
n is

Lipschitz by Corollary 4 by definition, see (80). Therefore it suffices to find some bound
for the variance of g under δyQ

n,p
γ , for g : Rd → R a Lipschitz function, y ∈ R

d and
γ > 0, which is done using the following result.
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Lemma 27. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 2/(m + L). Let g : Rd → R be a Lipschitz function. Then for all n, p ≥ 1, n ≤ p
and y ∈ R

d

0 ≤
∫

Rd

Qn,p
γ (y,dz)

{
g(z) −Qn,p

γ g(y)
}2 ≤ 2κ−1 ‖g‖2Lip ,

where Qn,p
γ is given by (5).

Proof. By decomposing g(Xp) − E
Gn
y [g(Xp)] =

∑p
k=n+1{EGk

y [g(Xp)] − E
Gk−1
y [g(Xp)]},

and using E
Gk
y [g(Xp)] = Qk+1,p

γ g(Xk), we get

VarGn
y {g(Xp)} =

p∑

k=n+1

E
Gn
y

[
E
Gk−1
y

[(
E
Gk
y [g(Xp)]− E

Gk−1
y [g(Xp)]

)2]]

=

p∑

k=n+1

E
Gn
y

[
Rγk

{
Qk+1,p

γ g(·)−RγkQ
k+1,p
γ g(Xk−1)

}2
(Xk−1)

]
.

Equation (77) implies VarGn
y {g(Xp)} ≤ 2

∑p
k=n+1 γk‖Q

k+1,p
γ g‖2Lip. The proof follows

from Corollary 4 and Lemma 23, using the bound (1− t)1/2 ≤ 1− t/2 for t ∈ [0, 1].

Corollary 28. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 2/(m + L). Then for all Lipschitz function f and x ∈ R

d, Varx{ΨN
n (XN )} ≤

8κ−3 ‖f‖2Lip Γ−2
N+2,N+n+1, where ΨN

n is given by (80).

Proof. By (80) and Corollary 4, ΨN
n is Lipschitz function with ‖ΨN

n ‖Lip ≤∑N+n
i=N+1 ω

N
i,n‖QN+1,i

γ f‖Lip.
Using Corollary 4, the bound (1− t)1/2 ≤ 1− t/2 for t ∈ [0, 1] and the definition of ωN

i,n

given by (26), we have

∥∥ΨN
n

∥∥
Lip

≤ ‖f‖Lip
N+n∑

i=N+1

ωN
i,n

i∏

j=N+2

(1− κγj/2) ≤ 2 ‖f‖Lip (κΓN+2,N+n+1)
−1 .

The proof follows from Lemma 27.

Plugging the bounds given by Lemma 26 and Corollary 28 in (82), we have

Varx
{
π̂N
n (f)

}
≤ 8κ−2 ‖f‖2Lip

{
Γ−2
N+2,N+n+1ΓN+1,N+n + κ−1Γ−2

N+2,N+n+1

}

≤ 8κ−2 ‖f‖2Lip
{
Γ−1
N+2,N+n+1 + Γ−2

N+2,N+n+1(γN+1 + κ−1)
}

.

Using that γN+1 ≤ 2/(m + L) concludes the proof of Theorem 15.
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C.1.2 Proof of Theorem 16

Let k ∈ {N, . . . ,N + n− 1}. We cannot directly apply the Poincaré inequality (77) since
the function ΦN

n,k, defined in (79), is not Lipschitz. However, Theorem 11-(ii) shows that

for all ℓ, n ∈ N
∗, n < ℓ, Qn,ℓ

γ f is a Lipschitz function with

∥∥∥Qn,ℓ
γ f

∥∥∥
Lip

≤ osc(f)/{4πΛn,ℓ(γ)}1/2 . (83)

Using (79), we may decompose ΦN
n,k = ωN

k+1,nf+Φ̃N
n,k, where Φ̃

N
n,k =

∑N+n
i=k+2 ω

N
i,nQ

k+2,i
γ f

which is Lipshitz with constant

∥∥∥Φ̃N
n,k

∥∥∥
Lip

≤
N+n∑

i=k+2

ωN
i,n

∥∥∥Qk+2,i
γ f

∥∥∥
Lip

≤ osc(f)
N+n∑

i=k+2

ωN
i,n/ {4πΛk+2,i(γ)}1/2 . (84)

Using the inequality (a+ b)2 ≤ 2a2 + 2b2, (77), we finally get for any y ∈ R
d

Rγk+1

{
ΦN
n,k+1(·)−Rγk+1

ΦN
n,k+1(y)

}2
(y) ≤ 2(ωN

k+1,n)
2osc(f)2

+ γk+1osc(f)
2

{
N+n∑

i=k+2

ωN
i,n/{πΛk+2,i(γ)}1/2

}2

. (85)

It remains to control Varx
{
ΨN

n (XN )
}
, where ΨN

n is defined in (80). Using (83), ΨN
n is

a Lipschitz function with Lipschitz constant bounded by:

∥∥ΨN
n

∥∥
Lip

≤
N+n∑

i=N+1

ωN
i,n

∥∥QN+1,i
γ f

∥∥
Lip

≤ osc(f)

N+n∑

i=N+1

ωN
i,n/{4πΛN+1,i(γ)}1/2 . (86)

By Lemma 27, we have the following result which is the counterpart of Corollary 28:
for all y ∈ R

d,

Vary
{
ΨN

n (XN )
}
≤ 2κ−1 ‖f‖2∞

{
N+n∑

i=N+1

ωN
i,n/(πΛN+1,i)

1/2

}2

. (87)

Finally, the proof follows from combining (85) and (87) in (82).

C.2 Bounds on u
(4)
0,n(γ)

Let (γk)k≥1 be a non-increasing sequence of step size such that limk→+∞ γk = 0 and
limk→+∞ Γk = +∞. In this section, we show that there exist C1, C2 > 0 independent of
(γk)k≥1 satisfying for any n ∈ N

∗

C1Γ
−1
n ≤ u

(4)
0,n(γ) ≤ C2Γ

−1
n , (88)
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for u
(4)
0,n defined in (29). We consider the following decomposition of u

(4)
0,n(γ)

u
(4)
N,n(γ) = w1

n + w2
n ,

w1
n =

n−1∑

k=0

γk+1

{
n∑

i=k+2

ω0
i,n

(πΛk+2,i(γ))1/2

}2

, w2
n = κ−1

{
n∑

i=1

ω0
i,n

(4πΛ1,i(γ))1/2

}2

.

Since κΛn,ℓ =
∏ℓ

j=n(1 − κγj)
−1 − 1 for n, ℓ ∈ N

∗ , using that for all (ai)i∈{1,...,k} ∈
[0, 1)k, k ∈ N

∗,
∏k

i=1(1− ai)
−1 − 1 ≥ exp(

∑k
i=1 ai)− 1 ≥∑k

i=1 ai, we have

ℓ∏

j=n

(1− κγj) ≤ 1/(κΛn,ℓ) ≤ 1/(κ2Γn,ℓ) . (89)

From the left inequality, we conclude using the definition of ω0
i,n, i ∈ {1, . . . , n}, in

(26) and the bound (1−t)1/2 ≤ 1−t/2 for t ∈ [0, 1], that there exists C1 > 0 independent
of (γk)k≥1 such that for any n ∈ N

∗,

C1Γ2,n+1 ≤ w1
n . (90)

Now from the right inequality in (89) and using (a + b)2 ≤ 2(a2 + b2), we have for
any n ∈ N

∗,

w1
n = 2

n−1∑

k=0

γk+1

{
pk∑

i=k+2

ω0
i,n

(πκ2Γk+2,i)1/2

}2

+ 2

n−1∑

k=0

γk+1





n∑

i=pk+1

ω0
i,n

(πΛk+2,i(γ))1/2





2

,

(91)
where (pk)k∈N∗ is any sequence of integers. Also we have using that (γj)j≥1 is non-
increasing and an integral comparison test that there exists C ≥ 0 independent of (γk)k≥1

such that for any k, p ∈ N
∗, k + 2 ≤ p,

p∑

i=k+2

ω0
i,n

(πκ2Γk+2,i(γ))1/2
≤ Γ−1

2,n+1

p∑

i=k+2

γi+1

(πκ2Γk+2,i)1/2
≤ Γ−1

2,n+1

p∑

i=k+2

Γk+2,i − Γk+2,i−1

(πκ2Γk+2,i)1/2

≤ CΓ−1
2,n+1Γ

1/2
k+1,p .

Using this result in (91), we obtain that for any n ∈ N
∗,

w1
n ≤ 2CΓ−2

2,n+1

n−1∑

k=0

γk+1Γk+1,pk + 2
n−1∑

k=0

γk+1





n∑

i=pk+1

ω0
i,n

(πΛk+2,i(γ))1/2





2

. (92)

Now taking for any n ∈ N
∗, k ∈ {0, . . . , n − 1},

pk = n ∧ inf {p ∈ {k + 1, . . . , n− 1} : Γk+1,p ≥ 1} , (93)
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with the convention inf ∅ = +∞, we have for any i ∈ {pk + 1, . . . , n}, pk + 1 ≤ n, using
for t ≥ 0, 1− t ≤ e−t,

κΛk+1,i(γ) =





i∏

j=k+1

(1− κγj)





−1
1−

i∏

j=k+1

(1− κγj)



 ≥





i∏

j=k+1

(1− κγj)





−1

(1−e−κΓk+1,pk )

≥





i∏

j=k+1

(1− κγj)





−1

(1− e−κ) .

Using this result, we get by (92) and (1− t)1/2 ≤ 1− t/2 for t ∈ [0, 1], that there exists
C̃ ≥ 0 independent of (γk)k≥1 such that for any n ∈ N

∗,

w1
n ≤ 2CΓ−2

2,n+1

n−1∑

k=0

γk+1Γk+1,pk + 2(1 − e−κ)−1
n−1∑

k=0

γk+1





n∑

i=pk+1

ω0
i,n

i∏

j=k+1

(1− κγj)
1/2





2

≤ 2CΓ−1
2,n+1

n−1∑

k=0

γk+1Γk+1,pk + 2(1 − e−κ)−1
n−1∑

k=0

γk+1





n∑

i=pk+1

ω0
i,n

i∏

j=k+1

(1− κγj/2)





2

≤ 2CΓ−1
2,n+1

n−1∑

k=0

γk+1Γk+1,pk + 2(1 − e−κ)−1C̃Γ−1
2,n+1 ,

Since Γk+1,pk ≤ 1 + γ1, for any n ∈ N
∗, k ∈ {0, . . . , n − 1} and definition of pk (93), we

obtain that there exists C ≥ 0 such that for any n ∈ N
∗,

w1
n ≤ CΓ−1

2,n+1 . (94)

Similarly, we have that there exists C ≥ 0 independent of (γk)k≥1 satisfying for any
n ∈ N

∗, w2
n ≤ CΓ−1

2,n+1 Combining this result, (90) and (94) concludes the proof of (88).

C.3 Proof of Theorem 17

Let N ≥ 0, n ≥ 1, x ∈ R
d and f be a Lipschitz function. To prove Theorem 17, we

derive an upper bound of the Laplace transform of π̂N
n (f) − Ex[π̂

N
n (f)]. Consider the

decomposition by martingale increments

Ex

[
eλ{π̂

N
n (f)−Ex[π̂N

n (f)]}
]
= Ex

[
eλ{E

GN
x [π̂N

n (f)]−Ex[π̂N
n (f)]}+

∑N+n−1
k=N λ{E

Gk+1
x [π̂N

n (f)]−E
Gk
x [π̂N

n (f)]}
]
.

Now using (81) with the sequence of functions (ΦN
n,k) and ΨN

n given by (79) and (80),
respectively, we have by the Markov property

Ex

[
eλ{π̂

N
n (f)−Ex[π̂N

n (f)]}
]

= Ex

[
eλ{ΨN

n (Xn)−Ex[ΨN
n (Xn)]}

N+n−1∏

k=N

Rγk+1

[
eλ{Φ

N
n,k+1(·)−Rγk+1

ΦN
n,k+1(Xk)}

]
(Xk)

]
, (95)
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where Rγ is given by (4) for γ > 0. We use the same strategy to get concentration in-
equalities than to bound the variance term in the previous section, replacing the Gaussian
Poincaré inequality by the log-Sobolev inequality to get uniform bound on

Rγk+1
{exp(λ{ΦN

n,k+1(·)−Rγk+1
ΦN
n,k+1(Xk)})}(Xk)

w.r.t. Xk, for all k ∈ {N + 1, . . . , N + n}. Indeed for all x ∈ R
d and γ > 0, recall

that Rγ(x, ·) is a Gaussian distribution with mean x − γ∇U(x) and covariance matrix
2γ Id. The log-Sobolev inequality [3, Theorem 5.5] shows that for all Lipschitz function
g : Rd → R, x ∈ R

d, γ > 0 and λ > 0,
∫

Rγ(x,dy) {exp (λ{g(y)−Rγg(x)})} ≤ exp
(
γλ2 ‖g‖2Lip

)
. (96)

We deduced from this result, (81) and Corollary 4, an equivalent of Lemma 26 for the
Laplace transform of ΦN

n,k+1 under δyRγk+1
for k ∈ {N + 1, . . . , N + n} and all y ∈ R

d.

Corollary 29. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 2/(m + L). Let N ≥ 0 and n ≥ 1. Then for all k ∈ {N, . . . ,N + n− 1}, y ∈ R

d

and λ > 0,

Rγk+1

{
eλ{Φ

N
n,k+1(·)−Rγk+1

ΦN
n,k+1(y)}

}
(y) ≤ exp

(
4γk+1λ

2 ‖f‖2Lip (κΓN+2,N+n+1)
−2
)

,

where ΦN
n,k is given by (79).

It remains to control the Laplace transform of ΨN
n under δxQ

N
γ , where δxQ

N
γ is

defined by (5). For this, using again that by (80) and Corollary 4, ΨN
n is a Lipschitz

function, we iterate (96) to get bounds on the Laplace transform of Lipschitz function

g under Qn,ℓ
γ (y, ·) for all y ∈ R

d and n, ℓ ≥ 1, since for all n, ℓ ≥ 1, Qn,ℓ
γ g is a Lipschitz

function by Corollary 4.

Lemma 30. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 2/(m + L). Let g : Rd → R be a Lipschitz function, then for all n, p ≥ 1, n ≤ p,
y ∈ R

d and λ > 0:

Qn,p
γ

{
exp

(
λ{g(·) −Qn,p

γ g(y)}
)}

(y) ≤ exp
(
κ−1λ2 ‖g‖2Lip

)
, (97)

where Qγ
n,p is given by (5).

Proof. Let (Xn)n≥0 the Euler approximation given by (2) and started at y ∈ R
d. By

decomposing g(Xp) − E
Gn
y [g(Xp)] =

∑p
k=n+1{EGk

y [g(Xp)] − E
Gk−1
y [g(Xp)]}, and using

E
Gk
y [g(Xp)] = Qk+1,p

γ g(Xk), we get

E
Gn
y

[
exp

(
λ
{
g(Xp)− E

Gn
y [g(Xp)]

})]

= E
Gn
y

[
p∏

k=n+1

E
Gk−1
y

[
exp

(
λ
{
E
Gk
y [g(Xp)]− E

Gk−1
y [g(Xp)]

})]]

= E
Gn
y

[
p∏

k=n+1

Rγk exp
(
λ
{
Qk+1,p

γ g(·) −RγkQ
k+1,p
γ g(Xk−1)

})
(Xk−1)

]
.
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By the Gaussian log-Sobolev inequality (96), we get

E
Gn
y

[
exp

(
λ
{
g(Xp)− E

Gn
y [g(Xp)]

})]
≤ exp

(
λ2

p∑

k=n+1

γk

∥∥∥Qk+1,p
γ g

∥∥∥
2

Lip

)
.

The proof follows from Corollary 4 and Lemma 23, using the bound (1− t)1/2 ≤ 1− t/2
for t ∈ [0, 1].

Combining this result and ‖ΨN
n ‖Lip ≤ 2κ−1 ‖f‖Lip Γ−1

N+2,N+n+1 by Corollary 4, we

get an analogue of Corollary 28 for the Laplace transform of ΨN
n :

Corollary 31. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 2/(m+ L). Let N ≥ 0 and n ≥ 1. Then for all λ > 0 and x ∈ R

d,

Ex

[
eλ{Ψ

N
n (Xn)−Ex[ΨN

n (Xn)]}
]
≤ exp

(
4κ−3λ2 ‖f‖2Lip Γ−2

N+2,N+n+1

)
,

where ΨN
n is given by (80).

The Laplace transform of π̂N
n (f) can be explicitly bounded using Corollary 29 and

Corollary 31 in (95).

Proposition 32. Assume H1 and H2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 2/(m+ L). Then for all N ≥ 0, n ≥ 1, Lipschitz functions f : Rd → R, λ > 0 and
x ∈ R

d:

Ex

[
eλ{π̂

N
n (f)−Ex[π̂N

n (f)]}
]
≤ exp

(
4κ−2λ2 ‖f‖2Lip Γ−1

N+2,N+n+1u
(3)
N,n(γ)

)
,

where u
(3)
N,n(γ) is given by (28).

Proof of Theorem 17. Using the Markov inequality and Proposition 32, for all λ > 0, we
have:

Px

[
π̂N
n (f) ≥ Ex[π̂

N
n (f)] + r

]
≤ exp

(
−λr + 4κ−2λ2 ‖f‖2Lip Γ−1

N+2,N+n+1vN,n(γ)
)

.

Then the result follows from taking λ = (rκ2ΓN+2,N+n+1)/(8 ‖f‖2Lip vN,n(γ)).

C.4 Proof of Theorem 18

Let N ≥ 0, n ≥ 1, x ∈ Rd and f ∈ Fb(R
d). The main idea of the proof is to consider

the decomposition (95) again but combined with the decomposition of ΦN
n,k+1, for k ∈

{N, . . . ,N + n− 1}, into a Lipschitz component and a bounded measurable component
as it is done in the proof of (85). Let k ∈ {N, . . . ,N + n− 1}. By definition (79),
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ΦN
n,k = ωN

k+1,nf + Φ̃N
n,k, where Φ̃N

n,k =
∑N+n

i=k+2 ω
N
i,nQ

k+2,i
γ f . Using that f is bounded, we

get for all y ∈ R
d and λ > 0,

Rγk+1

{
eλ{Φ

N
n,k+1(·)−Rγk+1

ΦN
n,k+1(y)}

}
(y)

≤ eλ osc(f) γk+2(ΓN+2,N+n+1)
−2
Rγk+1

{
eλ{Φ̃

N
n,k+1(·)−Rγk+1

Φ̃N
n,k+1(y)}

}
(y)

By (84) and (96), we obtain for all y ∈ R
d and λ > 0,

Rγk+1

{
eλ{Φ

N
n,k+1(·)−Rγk+1

ΦN
n,k+1(y)}

}
(y)

≤ exp


λ osc(f) γk+2(ΓN+2,N+n+1)

−2 + (λ osc(f))2γk+1

(
N+n∑

i=k+2

ωN
i,n/(πΛk+2,i)

1/2

)2

 .

(98)

It remains to control the Laplace transform of ΨN
n under δxQ

N
γ . For this, note that

by (86) ΨN
n is a Lipschitz function. Therefore using Lemma 30, we get an analogue of

Corollary 31: for all y ∈ R
d and λ > 0,

Ey

[
eλ{Ψ

N
n (Xn)−Ex[ΨN

n (Xn)]}
]
≤ exp


κ−1λ2osc(f)2

(
N+n∑

i=N+1

ωN
i,n/(πΛN+1,i)

1/2

)2

 ,

(99)
Combining (98) and (99) in (95), the Laplace transform of π̂N

n (f) can be explicitly
bounded: for all λ > 0,

Ex

[
eλ{π̂

N
n (f)−Ex[π̂N

n (f)]}
]
≤ eλ osc(f)(ΓN+2,N+n+1)

−1+(λ osc(f))2u
(5)
N,n(γ) .

Using this result and the Markov inequality, for all λ > 0, we have:

Px

[
π̂N
n (f) ≥ Ex[π̂

N
n (f)] + r

]

≤ exp
(
−λr + λ osc(f)(ΓN+2,N+n+1)

−1 + (λ osc(f))2u
(5)
N,n(γ)

)
.

Then the proof follows from taking

λ = (r − osc(f)(ΓN+2,N+n+1)
−1)/(2osc(f)2u

(5)
N,n(γ)) .

D Additional technical results

D.1 Coupling

Lemma 33. Assume AR1. For all x, y ∈ R
d and k ≥ 1, Kk((x, y), ·) is a transference

plan of Pk(x, ·) and Pk(y, ·)
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Proof. By construction, Kk((x, y), · ×R
d) = Pk(x, ·) for all x, y ∈ R

d and Kk((x, y),R
d ×

·) = Pk(y, ·) for all (x, y) such that hk(x) = hk(y). Therefore, it remains to show that
Kk((x, y),R

d × ·) = Pk(y, ·) for any (x, y) ∈ R
d × R

d, hk(x) 6= hk(y). First for all
A ∈ B(Rd), we have

Kk((x, y),R
d × A) =

1

(2πσ2
k)

d/2

∫

Rd

1A(x̃)pk(x, y, x̃− hk(x))e
−‖x̃−hk(x)‖

2/(2σ2
k)dx̃ (100)

+
1

(2πσ2
k)

d/2

∫

Rd

1A(Fk(x, y, x̃− hk(x))) {1− pk(x, y, x̃− hk(x))} e−‖x̃−hk(x)‖
2/(2σ2

k)dx̃ .

Since (Id−2ek(x, y)ek(x, y)
T) is an orthogonal matrix, making the change of variable

ỹ = Fk(x, y, x̃− hk(x)) and using that

〈ek(x, y), hk(y)− ỹ〉 = 〈ek(x, y), x̃ − hk(x)〉

we get that

∫

Rd

1A(Fk(x, y, x̃− hk(x))) {1− pk(x, y, x̃− hk(x))} e−‖x̃−hk(x)‖
2/(2σ2

k)dx̃

=

∫

Rd

1A(ỹ) {1− pk(x, y, hk(y)− ỹ)} e−‖ỹ−hk(y)‖
2/(2σ2

k)dỹ . (101)

By definition of αk (35), we have for all x̃ ∈ R
d,

αk (x, y, x̃− hk(x)) =
ϕϕϕσ2

k
(〈ek(x, y), hk(y)− x̃〉)

ϕϕϕσ2
k
(‖Ek(x, y)‖ − 〈ek(x, y), hk(y)− x̃〉) =

1

αk (x, y, hk(y)− x̃)
.

(102)
In addition using that

‖x̃− hk(x)‖2 = ‖x̃− hk(y)‖2 − 2 〈hk(y)− x̃,Ek(x, y)〉+ ‖Ek(x, y)‖2 ,

we obtain

pk(x, y, x̃− hk(x))e
−‖x̃−hk(x)‖

2/(2σ2
k) = pk(x, y, hk(y)− x̃)e−‖x̃−hk(y)‖

2/(2σ2
k) . (103)

Plugging (101) and (103) into (100) implies that Kk((x, y),R
d × A) = Pk(y, A).

D.2 Distribution of hitting time of 0 for Ornstein-Ulhenbeck processes

Consider the one-dimensional Ornstein-Ulhenbeck process (Ũt)t≥0 defined for t ≥ 0 by

Ũt = ae−θt + σ

∫ t

0
eθ(s−t)dB1

s = ae−θt +
σ√
2θ

e−θtB1
e2θt−1 ,

where a ∈ R, θ, σ > 0 and (B1
t )t≥0 is a one-dimensional Brownian motion. Note that

with our convention, (Ũt)t≥0 is the solution of the SDE dŨt = −θ Ũtdt+σdB1
t with initial

condition Ũ0 = a. Define the hitting time of (Ũt)t≥0 of 0 by T̃0 = inf{t ≥ 0 : Ũt = 0}.
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Proposition 34 ([2, Formula 2.0.2, page 542]). For all a ∈ R, θ, σ > 0, and t > 0, it
holds

P

(
min
0≤s≤t

Ũs > 0

)
= P

(
T̃0 > t

)
= 1− 2Φ

(
−

√
2θ |a|

σ
√
e2θt − 1

)
,

where Φ is the cumulative distribution function of the standard normal distribution.

52



This figure "var_tv_0_v2.png" is available in "png"
 format from:

http://arxiv.org/ps/1605.01559v4

http://arxiv.org/ps/1605.01559v4


This figure "var_tv_1_2_v2.png" is available in "png"
 format from:

http://arxiv.org/ps/1605.01559v4

http://arxiv.org/ps/1605.01559v4


This figure "var_tv_1_4_v2.png" is available in "png"
 format from:

http://arxiv.org/ps/1605.01559v4

http://arxiv.org/ps/1605.01559v4


This figure "var_tv_3_4_v2.png" is available in "png"
 format from:

http://arxiv.org/ps/1605.01559v4

http://arxiv.org/ps/1605.01559v4

	1 Introduction
	2 Non-asymptotic bounds in Wasserstein distance of order 2 for ULA
	3 Quantitative bounds in total variation distance
	4 Mean square error and concentration for bounded measurable functions
	5 Numerical experiments
	6 Contraction in total variation for functional autoregressive models
	A Proofs of sec:non-asympt-bounds
	A.1 Proof of theo:convergence-WZ-strongly-convex
	A.2 Proof of theo:kinddrift
	A.3 Proof of theo:convergencepEuler
	A.4 Proof of theo:distanceEulerdiffusion 
	A.5 Proof of coro:distanceEulertarget
	A.6 Proofs of theo:distanceEulerdiffusionD

	B Proofs of sec:quant-bounds-total
	B.1 Proof of theo:tvdecreasing
	B.2 Proof of (??)
	B.3 Proof of theo:biastvgammafixedimp

	C Proof of SEC:MSETV
	C.1 Proof of theo:var and theo:vartv
	C.1.1 Proof of theo:var
	C.1.2 Proof of theo:vartv

	C.2 Bounds on u0,n(4)()
	C.3 Proof of theo:concentrationgauss
	C.4 Proof of theo:concentrationgausstv

	D Additional technical results
	D.1 Coupling
	D.2 Distribution of hitting time of 0 for Ornstein-Ulhenbeck processes


